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Abstract

We study the behavior of a simple string bit model at finite temperature. We use
thermal perturbation theory to analyze the high temperature regime. But at low tem-
peratures we rely on the large N limit of the dynamics, for which the exact energy
spectrum is known. Since the lowest energy states at infinite N are free closed strings,
the N = ∞ partition function diverges above a finite temperature β−1

H , the Hagedorn
temperature. We argue that in these models at finite N , which then have a finite num-
ber of degrees of freedom, there can be neither an ultimate temperature nor any kind of
phase transition. We discuss how the discontinuous behavior seen at infinite N can be
removed at finite N . In this resolution the fundamental string bit degrees of freedom
become more active at temperatures near and above the Hagedorn temperature.

1E-mail address: thorn@phys.ufl.edu



1 Introduction

Half a century ago Hagedorn proposed an experimentally successful statistical model of
strongly interacting particles in which the density of states grows exponentially with energy
d(E) ∼ EαeβHE , with the thermodynamic consequence that β−1

H is the ultimate temperature
which cannot be exceeded by hadronic matter in thermal equilibrium [1]. The discovery
that dual resonance models (a.k.a. string theory) predicted an energy level degeneracy with
just this exponential behavior at zero coupling [2] provided unanticipated early support for
string theory as a model of strong interactions. Hagedorn’s thermal interpretation of an
exponential level density has also been exploited to apply string theory to early universe
cosmology, first to describe the role of the strong interactions in the hot early universe [3].
Later on, after string theory was promoted from a faulty model of strong interactions to
a promising vehicle for unifying quantum gravity with the rest of physics, the Hagedorn
model formed the basis for string gas cosmology [4], which provides an alternative to the
inflationary universe. Apparently string gas cosmology is still viable after all these years [5].

Thinking about the thermal properties of a system often leads to theoretical insight
into puzzling aspects of the system. For example, Atick and Witten, motivated in part by
parallels with the temperature dependence of large N QCD [6], interpreted the ultimate
temperature of the free string as an artifact of the zero coupling limit. They suggested that,
at finite coupling, there should be a phase transition near the Hagedorn temperature to a
new phase dominated by the fundamental degrees of freedom underlying string theory [7].
They argued that, much as in QCD where there are many fewer quarks and gluons than
mesons and baryons, the true degrees of freedom of string theory are probably much reduced
compared to expectations from string field theory.

It has been proposed that string should be regarded as a composite system of fundamental
entities [8, 9] called “string bits” [10]. It is then of interest to study string bit models at finite
temperature and to explore how the string bit degrees of freedom can be exposed at high
temperature. In string bit dynamics a string bit is a discrete bit of lightcone parameterized
[11] string. Then the total P+ = (P 0 + P 1)/

√
2 of a string is discretized as Mm where

M is the bit number operator. The string itself is simply a long chain of string bits whose
nearest neighbor dynamics is implemented by introducing N ×N “color” matrix string bit
creation operators, imposing a U(N) color symmetry. Then we identify string perturbation
theory as the ’t Hooft 1/N expansion [12] of string bit dynamics. In early versions of this
dynamics [9] the creation operators were fields depending on transverse coordinates x, as
well as spinor indices in the case of superstring bits [13]. However, each transverse coordinate
can effectively emerge from a simple two valued internal flavor degree of freedom [14], so
spaceless string bit models (in zero space dimensions) can underlie string theory [15, 16] in
any space dimension less than or equal to the critical one.

Since the Hagedorn phenomenon is common to all string models, even subcritical ones,
we choose to analyze this phenomenon in the simplest stable superstring bit model studied in
[15]. Its large N limit describes a noncovariant subcritical lightcone string with no transverse
coordinates and one Grassmann worldsheet field: the string moves in one dimensional space.
The string bit degrees of freedom are specified by bosonic aβα, ā

β
α = (aαβ)

† and fermionic bβα,
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b̄βα = (bαβ)
† N ×N matrix operators satisfying (anti)commutation relations

[aβα, ā
η
γ] = δηαδ

β
γ , {bβα, b̄ηγ} = δηαδ

β
γ . (1)

The bit number M = tr (āa + b̄b) is identified with P+ = mM, and the dynamics is given
by the Hamiltonian (to be related to P−)

H =
T0

2mN
tr

[

(ā2 − ib̄2)a2 − (b̄2 − iā2)b2 + (āb̄+ b̄ā)ba+ (āb̄− b̄ā)ab
]

(2)

H has been chosen to commute with the supercharge Q = tr [ābeiπ/4 + b̄ae−iπ/4], which
satisfies Q2 = M, and so respects a supersymmetry. We have written the coefficient as T0/m
with T0 the rest tension of the emergent string for which m will disappear as a parameter.
Later, when we study thermal perturbation theory, we will take g = T0/(2m

√
2) as the

expansion parameter. Here it is important that m and g are independent parameters at
the level of string bits. We shall work directly with this Hamiltonian in analyzing the high
temperature behavior of the system, which is best described in terms of the fundamental
string bits.

The eigenstates of H in the color singlet sector were obtained in [15] in the limit N → ∞.
These N = ∞ eigenstates can be pictured as containing several noninteracting (discretized)
closed chains of bits. A single closed chain state is a linear combination of single trace states
with fixed bit number M . The ground single chain state has energy

EG = −1

2

∑

n

ωn = −T0
m

cot
π

2M
= −2T0M

mπ
+

πT0
6Mm

+O(M−3) (3)

where ωn = (2T0/m) sin(nπ/M), and in the last form we have taken M large to show the
limit in which a chain becomes a continuous string. If we identify

P− ≡ 2T0
mπ

M+H, (4)

the dispersion relation P−(P+) is Lorentz invariant in 1+1 dimensional spacetime, in the
limit M → ∞: 2P+P−

G = πT0/3.
In this simplest string bit model the excited states of a single closed chain are those of

left and right moving statistics waves [17, 18] described in the emergent string theory by a
Grassmann worldsheet field. A wave in the nth normal mode adds energy ωn to the ground
state. If mode number n < M/2 is left moving then mode number M − n is right moving.
These two modes have the same frequency ωn. The mode number n takes on the values
0, 1, 2, . . . ,M−1. The zero mode n = 0 is a fermionic operator, whose square is unity, which
converts a state satisfying Bose-Einstein statistics to one satisfying Fermi-Dirac statistics or
vice versa. There is a cyclic constraint on the occupied modes {ni}, which is that

∑

i ni is a
multiple of M if M is odd, but it is an odd multiple of M/2 if M is even. This mismatch of
cyclic constraints for M even and odd is due to the fact that the number of fermionic bits
b is odd (1 in this model). In the limit of continuous string the cyclic constraint reduces to
the familiar L0 = L̃0 constraint of closed string theory.
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The energy of states with several closed strings is simply the sum of the energies of the
individual closed strings, reflecting the absence of interactions between them when N = ∞.
All of these multistring states are color singlets and all have finite P− in the limit m → 0
with P+ = mM fixed. As noted in [15] the color nonsinglet states have P− of order T0/m.
Thus one has true color confinement in the limit m → 0 since in that limit the only finite
energy states are the color singlets with M = ∞. If m is kept finite but small, then the
color non-singlets have energy much greater than

√
T0, and we can say we have effective

confinement.
At zero temperature the largeN limit is given by summing all planar Feynman graphs. At

finite temperature, the limit is given by summing the planar graphs of thermal perturbation
theory, reviewed for the string bit system in the appendix. The canonical partition function
is given by2 Z = Tre−βP 0

where

P 0 =
P+ + P−

√
2

=
1√
2

[(

m+
2T0
mπ

)

M+H

]

≡ ωM+
H√
2
. (5)

The vertices of the thermal graphs are determined by the terms in H . The sum of connected
graphs calculates lnZ. This sum is easily shown to have the structure

lnZ = N2f0(β) + f1(β) +
1

N2
f2(β) + · · · (6)

where the leading term f0 is found by calculating the sum of planar diagrams. The presence
of the N2 term is due to the fact that the operators a, b are N×N matrices with N2 elements.
As we shall find, the calculation of lnZ using the known energy spectrum at N = ∞, at low
temperature (β large) gives a contribution to f1(β) (because color singlet states with largeM
dominate). This contribution blows up when β < βH , predicting the ultimate temperature
β−1
H . In string models the singularity in f1(β) is of the form (β − βH)

p where the power
p = −α − 1 depends on the details of the model. For the simple model studied here we
find α = −3/2 implying p = 1/2. The corresponding contribution to f0 comes from color
adjoint states and is suppressed by factors of e−βT0/m. In the limit of absolute confinement
m → 0, this implies that f0(β) = 0 at low temperature. On the other hand, calculating
with the graphical expansion shows no problem with arbitrarily high temperatures which
are dominated by the string bit description suggesting there is no limiting temperature. For
these two facts to be compatible, the ultimate temperature must be an artifact of the large
N limit. At finite N the string bit system has a finite number of degrees of freedom, and
hence lnZ should be a smooth function of β for the whole range 0 < β <∞.

In this note we shall calculate, from the N = ∞ eigenvalues of H , the value of βH and
also determine the power p = 1/2. Then f1(β) = −K1(β − βH)

1/2 +K2 for β slightly larger
than βH . It then follows that f ′′

1 ∼ (K1/4)(β − βH)
−3/2. Since ∂2 lnZ/∂β2 > 0, we must

have K1 > 0. It is natural to guess that at finite N , this function is made smooth by the
substitution (β − βH)

−3/2 → ((β − βH)
2 + η(N))−3/4, where η(N) is some function of N

2We have used tr to denote the trace over matrix indices; here we use Tr to denote the thermal trace.
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which vanishes as N → ∞. With this ansatz one can then integrate back to determine that
lnZ for β near βH would be proportional to the function3

g(β,N) =
N2

√
γ
(βH − β)

Γ(1/4)
√
π

Γ(3/4)
+

∫ β

0

dt(β − t)

[

(t− βH)
2 +

γ2

N8

]−3/4

(7)

∼











−4(β − βH)
1/2 + 4β

1/2
H − 2ββ

−1/2
H β > βH

N2

√
γ
(βH − β)Γ(1/4)

√
π

Γ(3/4)
− 4(βH − β)1/2 + 4β

1/2
H − 2ββ

−1/2
H β < βH

(8)

where the last lines show the large N behavior. The determination that η(N) = γ2/N8 is
made by requiring that the divergence as N → ∞ be precisely proportional to N2 as dictated
by the rules of the 1/N expansion. We have fixed the integration constants Aβ +B so that
the N2 term is absent when β > βH . We have not yet learned enough about 1/N corrections
to confirm the validity of this ansatz, but if it is valid, the physical interpretation of the N2

term, which is present only for β < βH , is that it signals the liberation of the fundamental
string bit degrees of freedom.

In the following sections we discuss our results in detail. Section 2 gives a brief review
of the Hagedorn phenomenon for a single free string as it is described in lightcone param-
eterization. Section 3 then extends the discussion to the string discretized as a chain of
string bits. We obtain the Hagedorn temperature as a function of the discretization unit
m. Section 4 concludes the paper. An appendix which reviews thermal perturbation theory,
needed in the high temperature analysis of Section 3, in the context of string bit models is
included at the end.

2 The free lightcone string at finite temperature

2.1 A general ideal gas

Consider a system of bosons of various species b and fermions of various species f . Here b
and f can include momentum as well as internal state labels. In the absence of interactions
the canonical partition function is

Z =
∏

b

1

1− e−βǫb

∏

f

(1 + e−βǫf ) (9)

lnZ =
∑

f

ln(1 + e−βǫf )−
∑

b

ln(1− e−βǫb) (10)

=
∞
∑

n=1

1

n

[

∑

b

e−nβǫb + (−)n−1
∑

f

e−nβǫf

]

(11)

3More generally one could construct a family gk(β,N), each with a different γk. Then a linear combination
of this family would remove the discontinuities of the N = ∞ limit in the same way.
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We see that the gas partition function can be expressed in terms of the partition functions
for a single particle immersed in heat baths of temperatures β−1, (2β)−1, . . . , (nβ)−1), . . ..
More specifically the nth term involves either the single particle partition function

z(nβ) =
∑

b

e−nβǫb +
∑

f

e−nβǫf =
∑

k

e−nβǫk , for n odd (12)

or the single superparticle partition function

zS(nβ) =
∑

b

e−nβǫb −
∑

f

e−nβǫf , for n even (13)

When the particle spectrum is supersymmetric, as in the model studied here, zS = 0.

2.2 Hagedorn temperature for the lightcone string

The Hagedorn temperature is by definition the lowest temperature above which the partition
function of the system diverges. Assuming the divergence does not come from the sum over
n in (11), we see that the the Hagedorn temperature satisfies z(βH − ǫ) = ∞, because then
all the z((2n+1)βH − ǫ), zS(2nβH − ǫ) for n > 0 are finite. Thus to determine the Hagedorn
temperature, it suffices to examine the partition function for a single particle in a heat bath!

In the lightcone description the energy of a closed string is expressed as

P 0 =
1√
2
(P+ + P−), P− =

4πT0(L0 + L̃0 + 1/12)

2P+
(14)

where L0 (L̃0) is the transverse string mode number operator for left (right) moving waves.
They depend in detail on the string model of interest. Here we assume the simplest possible
transverse dynamics, namely a single fermion field on a closed string worldsheet (hence the
1/12 in P− above). For more elaborate string models one simply adds more worldsheet
fields. For example, for a closed string worldsheet system of s left-right pairs of periodic
Grassmann fields and d bosonic fields, the c-number 1/12 is replaced by (s−d)/12. Here we
have chosen s = 1 and d = 0.

For all models, the physical states of a closed string satisfy the constraint (L0−L̃0)|ψ〉 = 0.
We must therefore insert the projection operator

PPhys =

∫ 2π

0

dθ

2π
eiθ(L0−L̃0) (15)

in the thermal trace. The canonical partition function for a single string in a heat bath at
temperature β−1 is then

z(β) =

∫ ∞

0

dP+

∫ 2π

0

dθ

2π
Tre−βP 0

eiθ(L0−L̃0) =

∫ ∞

0

dP+

∫ 2π

0

dθ

2π
Tre−(β/

√
2)(P++P−)eiθ(L0−L̃0)

=

∫ ∞

0

dP+e−(β/
√
2)[P++πT0/(6P+)]

∫ 2π

0

dθ

2π

∞
∏

n=1

∣

∣

∣
1 + e−βπT0n

√
2/P++inθ

∣

∣

∣

2

(16)
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The Hagedorn temperature is the temperature above which the integral over P+ diverges.
Putting z = e−βπT0

√
2/P++iθ, we see that z → eiθ for P+ → ∞ and the product

∏

n(1 +
zn)(1 + z∗n) will be maximized in this limit for θ = 0. To find βH in this simple model we
need the z → 1 behavior of the product

∏

n |1 + zn|2. One can either change variables via
the Jacobi imaginary transformation, or for the leading behavior as z → 1, it is enough to
write

ln
∏

n

(1 + zn) =

∞
∑

n=1

ln(1 + zn) =

∞
∑

k=1

(−)k−1

k

zk

1− zk

∼ 1

1− z

∞
∑

k=1

(−)k−1

k2
=
π2

12

1

1− z
→ π2

12

P+

βπT0
√
2

(17)

where the last form inserted the value of z at θ = 0 and large P+ for our model. It is
evident that the large P+ behavior of the P+ integrand is of the form (P+)αe−h(β)P+

where
the power α is determined to be α = −3/2 by integrating θ in the neighborhood of zero.
Thus the Hagedorn temperature is determined by

0 = h(βH) =
βH√
2
− π

12

√
2

βHT0
, βH =

√

π

6T0
(18)

Because α = −3/2 < −1, z(βH) is actually finite for this model, the Hagedorn singularity
being a square root branch point (p = 1/2).

3 Superstring bit model at finite temperature

3.1 Low temperature behavior at N = ∞
The color singlet eigenstates of the Hamiltonian (2) at N = ∞ were obtained in [15]. They
are states of multi-closed-chains with P+ = Mm each with fermion worldsheet fields for
which the normal mode frequencies are ωn = (2T0/m) sin(nπ/M). The cyclic constraint can
be imposed through the projection operator

P =
1

M

M−1
∑

k=0

(−)k(M−1)e2πikN/M (19)

where N is the mode number operator with values
∑

i nl on a state with modes ni occupied.
Then the partition function for a single chain in a heat bath at temperature β−1 is

z(β) =

∞
∑

M=1

e−βEG
1

M

M−1
∑

k=0

(−)k(M−1)

M−1
∏

n=1

(

1 + e−(
√
2βT0/m) sin(nπ/M)+2iπnk/M

)

(20)

EG ≡ mM + P−
G√

2
=

1√
2

(

mM +
2MT0
mπ

− T0
m

cot
π

2M

)

(21)
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Multi-chain states can then be included as usual by including the z((2n+1)β) and zS(2nβ)
terms of the ideal gas formula for lnZ.

The summand is maximized by the k = 0 term, so the Hagedorn temperature for this
string bit model is given by the condition

0 =
βHm√

2
− lim

M→∞
1

M

M−1
∑

n=1

ln
(

1 + e−(
√
2βHT0/m)) sin(nπ/M)

)

(22)

To analyze this condition, it is convenient to define the variable ξ =
√
2βHT0/m and then

rewrite the equation as a formula for the discretization unit m as a function of ξ:

m2

2T0
= lim

M→∞
1

Mξ

M
∑

n=1

ln
(

1 + e−ξ sin(nπ/M)
)

=
1

ξ

∫ 1

0

dx ln
(

1 + e−ξ sin(xπ)
)

=
2

ξ

∫ 1/2

0

dx ln
(

1 + e−ξ sin(xπ)
)

(23)

Then one should choose ξ so that m2/T0 ≪ 1 to compare to the continuous string. Evidently
m→ 0 when ξ → ∞. So to recover the continuous string result we need the large ξ behavior
of the integral on the right side

2

∫ 1/2

0

dx ln
(

1 + e−ξ sin(xπ/2)
)

=
2

π

∫ 1

0

du√
1− u2

ln(1 + e−ξu)

=
2

π

1

ξ

∞
∑

k=1

(−)k−1

k2
+O(ξ−3) =

π

6ξ
+O(ξ−3) (24)

so that

m2

2T0
∼ π

6ξ2
, ξ → ∞ (25)

βH =
mξ

√
2

2T0
∼ ξ

√
2

2T0

√

2πT0
6ξ2

=

√

π

6T0
(26)

in agreement with the direct continuum calculation.
To assess the consequences of discreteness one can simply take ξ finite. If ξ is large m

will be small and the effects of discreteness will be small. For example put ξ = 10 and
M = 50000 and calculate:

m√
T0

= 0.1029839985, βH
√

T0 = 0.7282068418 = 1.006364824

√

π

6
(27)

For ξ = 2 and M = 50000 the numbers become

m√
T0

= 0.52988823849, βH
√

T0 = 0.7493668536 = 1.035607454

√

π

6
(28)
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It appears that the value of the Hagedorn temperature is rather insensitive to the discreteness
parameter m!

We should stress that these results depend on N = ∞. We have also restricted the
partition sum to color singlet states. Non-singlet states would add a positive amount and
certainly couldn’t remove the singularity. But the energies of the nonsinglet states are of
order T0/m and so are highly suppressed (when m2 ≪ T0) at low temperatures.

In our study of thermal perturbation theory, the expansion parameter g = T0/(2m
√
2)

will be small in the opposite limit m2 ≫ T0. In that case we need to put ξ ≪ 1, for which

m2

2T0
∼ ln 2

ξ
, ξ ≪ 1 (29)

Then we find the Hagedorn temperature βH ∼ √
ξ ln 2/

√
T0. In this limit ξ ∼ (g2/T0)16 ln 2.

Thus the Hagedorn temperature goes to ∞ in the limit of g = 0:

βH ∼ 4g ln 2√
T0

. (30)

3.2 High temperature

In the high temperature limit, we expect the fundamental constituents to play an active
visible role. We shall use thermal perturbation theory, reviewed in the appendix, to analyze
this limit. Write the energy of the string bit system as

P 0 =
1√
2

[(

m+
2T0
mπ

)

M+H

]

(31)

so that in the notation of the appendix ω = (m + 2T0/(mπ))/
√
2 and g = T0/(2m

√
2) is

the expansion parameter. The small expansion parameter condition g ≪ ω translates to
m2 ≫ T0 which is the opposite of the continuous string limit we are eventually interested
in, but we hope some of our qualitative insights will retain some validity, at least at high
temperature.

Even if g is assumed small, the high temperature limit requires at least partial summation
to all orders, because the bare boson propagators blow up as (βω)−1 as β → 0 making
successive terms in perturbation theory blow up more and more severely. In the appendix
we show that the solution to a one loop Dyson equation for the boson propagator reduces
the divergence to (2βg)−1/2 which is sufficient to make the remaining terms in the expansion
finite as β → 0. The upshot is that the zeroth order high temperature behavior of the
partition function is modified from (βω/2)−N2

to (βg)−N2/2. Some support for believing
this result captures the qualitative small β behavior is that the power of β (though not the
constant) agrees with the known exact solution of the N = 1 case.

4 Concluding Remarks

In this note we have analyzed the Hagedorn phenomenon in string bit models. We started
with a derivation of the Hagedorn temperature of the continuous string from the point of
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view of lightcone quantization, which is perhaps less familiar than other treatments. Then we
basically repeated this derivation for the simplest string bit model. In this case the Hagedorn
temperature depends onm the discrete unit of P+. It ranges from

√

πT0/6 form/
√
T0 → 0 to

0 form/
√
T0 → ∞. We also analyzed the high temperature behavior of the system employing

thermal perturbation theory. In string bit models the Hagedorn phenomenon cannot reflect
a phase transition at finite N . We presented a possible hypothesis (8) for the behavior of
lnZ near the Hagedorn temperature, which illustrates how a perfectly smooth function of
temperature at finite N induces the Hagedorn phenomenon when N → ∞. Namely, in that
limit the leading term N2f0 is present only at temperatures above the Hagedorn temperature.
The string bit degrees of freedom start to become more active, but in a smooth way, above
and near the Hagedorn temperature. So far (8) is merely an educated guess– it needs to be
tested by studying higher orders in the 1/N expansion.

Acknowledgments: This research was supported in part by the Department of Energy under
Grant No. DE-FG02-97ER-41029.

A Perturbation Theory

Here we give a brief review of thermal perturbation theory taking advantage of the special
features of string bit models. We concentrate on the simplest model defined by (31).

P 0 = ωM+
g

N
tr V (32)

where V = āāaa+· · · are the quartic operators within the square brackets of (2). We develop
the perturbation expansion as a power series in g.

Z = Tre−βP 0

=

∞
∑

n=0

1

n!
Tre−βωM

( g

N
tr V

)n

(33)

=

(

1 + e−βω

1− e−βω

)N2 ∞
∑

n=0

1

n!

〈(−βg
N

tr V
)n〉

(34)

〈Ω〉 ≡ Tre−βωMΩ (35)

where tr denotes the matrix trace and Tr denotes the thermal trace. The average is computed
by applying Wick’s theorem with the contraction rules

〈

āβαa
κ
γ

〉

= δκαδ
β
γ

1

eβω − 1
,

〈

aκγ ā
β
α

〉

= δκαδ
β
γ

eβω

eβω − 1
(36)

〈

b̄βαb
κ
γ

〉

= δκαδ
β
γ

1

eβω + 1
,

〈

bκγ b̄
β
α

〉

= δκαδ
β
γ

eβω

eβω + 1
(37)

A graphical representation of Wick’s theorem is constructed using ’t Hooft’s double line
notation for the matrix operators. The propagator and vertex are shown in Fig. 1. First and
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(a) (b)

Figure 1: Graphical rules for thermal perturbation theory. The arrow points
from an ā to an a. Operators ordered left to right are represented by graph
elements ordered top to bottom. Thus the propagator (a) contributes a factor
(eβω − 1)−1 if its arrow points down and contributes the factor eβω(eβω − 1)−1

if its arrow points up. In a graph contributing to nth order the top to bottom
order of the vertices (b) coincides with the left to right ordering of the n
perturbation operators.

second order examples of the application of the graphical rules are shown in Fig. 2.
To define the 1/N expansion, we calculate the sum of connected graphs which gives

the perturbation expansion for lnZ. Then restricting the sum to planar diagrams give the
leading order as N → ∞, which is of order N2. Both diagrams shown in Fig. 2 are planar
and contribute to leading order. The structure of the 1/N expansion in string bit models is
that shown in (6).

Since the boson propagators blow up at high temperature (β → 0), this limit is not
amenable to straight perturbation theory. At least some form of (partial) summation to
all orders must be attempted. A relatively simple partial summation is to set up a Dyson
equation for the “self-energy” Π defined as the one particle irreducible (1PIR) two point
function, in terms of which the fully corrected propagator ∆ is, at high temperature,

∆ =
1

βω

∞
∑

n=0

Πn

(βω)n
=

1

βω − Π
(38)

At finite temperature the formalism is complicated by the distinction that must be kept
between 〈āa〉 6= 〈aā〉. At high temperature, this distinction disappears and both propagators
are approximately (βω)−1. Here we limit the discussion to this simplifying limit. In general
both ∆ and Π are matrices in internal color space. There are two cases where they can be
treated as numbers: namely N = 1 when they are numbers, and N = ∞ when the indices
are simply spectators, which factor out of both sides of the Dyson equation.

In the latter case (N = ∞) the one loop Dyson equation for the boson propagator reads
(for N = 1 change the 2 to a 4)

Π = −2βg
1

βω − Π
(39)
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(a) (b)

Figure 2: Example of graphs contributing to the perturbation expansion of the
partition function. Its logarithm lnZ is calculated by restricting to connected
graphs. These particular graphs, being planar contribute to leading order in
the large N limit.

which is a quadratic equation for Π:

0 = Π2 −Π(βω)− 2βg (40)

Π =
1

2

[

βω −
√

β2ω2 + 8βg
]

(41)

where the branch of the square root is chosen so that Π → 0 at g = 0. We see that in the
high temperature limit Π ∼ −√

2βg. In this approximation, the high temperature behavior
of lnZ is

lnZ ∼ −N2 ln(1− e−βω) +N2
∞
∑

n=1

1

n

(

Π

βω

)n

∼ −N2 ln(βω)−N2 ln

(

1− Π

βω

)

= −N2 ln
βω +

√

β2ω2 + 8βg

2

∼ −N
2

2
ln(2βg) (42)

The effect of the interactions in this approximation is to soften the singularity in Z at β → 0
but not to remove it entirely.

Of course this only takes into account a subset of the terms in the perturbation expansion,
after which the terms in perturbation expansion are at least finite as β → 0. But it would
be helpful to test how it does in a context where the exact answer is known. The special
case N = 1 is an instructive example. For simplicity we drop the fermionic operators. In
that case the Hamiltonian is a function of the number operator M = āa:

H = Mω + gāāaa = Mω + g(M2 −M) (43)
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and hence

Z =

∞
∑

n=0

e−nβω−βg(n2−n) (44)

Taking the limit β → 0 the sum can be approximated by an integral over a variable x = n
√
β:

Z ∼ 1√
β

∫ ∞

0

dxe−x
√
βω−g(x2−x

√
β) ≈ 1√

β

∫ ∞

0

dxe−gx2

=

√
π

2
√
βg

(45)

We see that the one loop approximation gets the power of β right but not the constant
prefactor.

It is also encouraging that this last result can be obtained by analyzing the perturbation
expansion for Z. At order n, one can count the number of Wick contraction schemes of
〈(ā2a2)n〉 and find that there are exactly (2n)!. Since at N = 1 and high temperature all
graphs at each order are equal, we can conclude that

Z =
1

1− e−βω

∞
∑

n=0

(−βg
β2ω2

)n
(2n)!

n!
(46)

a sum that has zero radius of convergence. However we can use the Borel summation trick

(2n)! =

∫ ∞

0

dtt2ne−t (47)

to interpret the sum as

Z =
1

1− e−βω

∫ ∞

0

dte−t−gt2/(βω2) =
1

1− e−βω

√

βω2

g

∫ ∞

0

dte−tω
√

β/g−t2 (48)

∼ 1

2

√

π

βg
, as β → 0 (49)

Thus a complete analysis of perturbation theory in this simple case gets the power of β and

the prefactor right. If we could get an accurate count of the number of planar connected
vacuum diagrams at each order n, we could make a similar statement about high temperature
in the large N limit. Our one loop Dyson equation evaluation provides support for the high
temperature behavior lnZ → (N2/2) ln(βg) + C in the N → ∞ limit but gives no reliable
nonperturbative information about the constant C.

Because fermion propagators are perfectly finite as β → 0, the presence of fermion lines
in the graphical rules does not affect the singular high temperature behavior of the partition
function, which is entirely determined by the bosonic degrees of freedom. However, they
will certainly contribute to the subleading behavior and in particular can be expected to
contribute to the constant C.
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