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Abstract

We study one and two point functions of conformal field theories on spaces of maximal

symmetry with and without boundaries and investigate their spectral representations. Integral

transforms are found, relating the spectral decomposition to renormalized position space corre-

lators. Several applications are presented, including the holographic boundary CFTs as well as

spacelike boundary CFTs, which provide realizations of the pseudo-conformal universe.



1 Introduction

Correlation functions in quantum field theories can present both short and long distance singu-

larities. Short-distance singularities are regularization dependent. They parametrize un-calculable

high energy effects which are renormalized into the undetermined local couplings of the effective

action1. Theories without a mass gap exhibit long-range correlations, which can lead to infra-red

singularities in Fourier space. These are calculable universal features, not dependent on regulariza-

tion ambiguities or absorbable into local couplings.

In this paper we use a combination of quantum-field theoretic and holographic techniques to

study the relationship between position and momentum space correlation functions in conformal

field theories (CFTs) on maximally symmetric curved spaces, with and without boundaries. We

focus primarily on one and two-point functions, paying special attention to the short-distance

singularities and how they are to be renormalized into local counterterms.

Our general analysis encompasses the anti-de Sitter/boundary conformal field theory (AdS/BCFT)

correspondence [2] (see [3, 4] for reviews). The AdS/BCFT correspondence can be regarded as a

generalization of AdS/CFT [5] to situations in which the dual field theory itself has some bound-

ary or defect [6]. In this case, the bulk theory possesses a boundary Q in addition to the usual

asymptotic boundary M of AdSd+1. The intersection ∂M = Q ∩M of the new boundary Q with

the CFT living on M represents the defect or boundary of the CFT. In this case the dual field

theory is called a boundary conformal field theory. If the bulk boundary Q is chosen to preserve

some subgroup of the O(2, d) isometries of the bulk AdSd+1, then the dual field theory is invariant

under the corresponding subgroup of the conformal group.

There exist a number of existing examples of this general setup. The metric for the Poincaré

patch of AdSd+1 is

ds2 =
dz2 − dt2 + dx2

1 + · · ·+ dx2
d−2 + dy2

z2
, (1.1)

where z ∈ (0,∞), and (t, x1, . . . , xd−2, y) label the coordinates of the d-dimensional dual field

theory at z = 0. The Randall-Sundrum or hard-wall AdS/QCD models [7, 8] can be considered as

an example, where the role of Q is played by the IR brane which lies at a fixed value z = z∗ > 0

of the Poincaré radial coordinate, and the role of M is played by the z = 0 boundary; M = R1,d−1

at z → 0. In this example Q does not intersect M . Poincaré symmetry ISO(1, d − 1) ⊂ O(2, d) is

respected but the dilation and special conformal symmetry of O(2, d) is broken and this introduces a

mass scale 1/z∗ in the dual quantum field theory. The soft wall can be thought of as a generalization

of the Randall-Sundrum I model [7], which contains a back-reacting scalar field in the bulk. The

scalar field becomes singular in the interior of AdS and forms a naked singularity which plays the

role of the IR boundary brane.

Locally localized gravity [9] is another example where Q is an AdSd submanifold of AdSd+1

which intersects M = R1,d−1 along a flat, timelike surface y = 0. This holographically realizes a

1There are some exceptions, e.g. [1].
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CFT on a half space y ∈ [0,∞) whose boundary at y = 0 breaks the conformal group O(2, d) but

leaves unbroken an O(2, d− 1) subgroup.

If we instead take a suitable de Sitter submanifold Q = dSd, then we find that Q intersects

M = R1,d−1 on the flat spacelike surface t = 0 and the CFT is defined at times t ∈ (−∞, 0]. This

is our proposal for the holographic dual to a new kind of conformal field theory which possesses a

spacelike boundary at future infinity. These new CFTs find application in the pseudo-conformal

universe scenario for early universe cosmology. The pseudo-conformal universe [10–13] is an early

universe scenario which serves as an alternative to inflation, in which the early universe is dominated

by a CFT that spontaneously breaks the conformal group to a subgroup which is isomorphic to

the group of de Sitter symmetries. Here, contrary to most applications of AdS/CFT or dS/CFT

to cosmology, the theory of cosmological interest is the boundary CFT. Within this boundary

CFT, there is a spacelike surface at t = 0 which marks the point at which the pseudo-conformal

phase ends and the universe must reheat and transition into a radiation dominated phase. This

spacelike surface is the boundary of the CFT, which makes it a wick-rotated version of a BCFT.

The boundary t = 0 now preserves a de Sitter subgroup O(1, d) ⊂ O(2, d) and the most general

vacuum expectation values for scalar operators of dimension ∆ can evolve in time as 1/(−t)∆. Our

proposal can be considered as the hard-wall version of [14–16].

Our goal will be to study the simplest correlation function in these various situations. Our

initial motivation was to follow up on the analysis of [14] and holographically compute two-point

functions in the conformal universe (which would correspond to the power spectra of interest in

cosmology), but the results apply more widely to other BCFTs.

The organization is as follows. In Section 2 we study two-point functions and their singularities

in CFTs on flat space, the sphere, and hyperbolic space. In Section 3 we review the construction

of holographic BCFTs, including their one- and two-point functions from the gravity dual. We

additionally present a new derivation of the AdS/BCFT two-point function which exploits the AdS

slicing of the bulk and provides an additional test of the of the construction laid out in section

2. In section 4 we provide additional calculations for the one-point and two-point function in the

spacelike boundary (or pseudo-conformal) CFT.

2 CFT correlators on maximally symmetric spaces and their UV

singularities

We would like to understand how two-point correlators, the treatment of their UV singularities,

their interpretation as distributions, and their Fourier transforms, generalize to curved spaces. In

particular, we consider maximally symmetric spaces, which have the same number of symmetries

as flat Ed and are related to it by Weyl transformations. Physically, these spaces are solutions to

the Einstein equations with a cosmological constant. In this section, we will consider the cases of

Euclidean CFTs on spaces without boundaries, moving on to cases with boundaries in Section 3.
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2.1 Flat space

We warm up by analyzing the singularity structure of the simplest possibility: a CFT on flat

space without boundaries. We recall how local counter-terms must be introduced to remove the

short-distance singularities of bare correlation functions. Our analysis differs from [17] in that we

employ cut-off, rather than differential regularization, which we found easier to generalize to curved

spaces. We will see in particular examples how the renormalized correlation functions thus defined

are implicitly determined in terms of their Fourier transform.

Consider a CFT on flat Ed with d ≥ 3. As is well known, the conformal symmetry fixes the form

of the two-point correlator for scalar primary operators of dimension ∆ to be 1/x2∆. Naively, the

Fourier transform of the function 1/x2∆ is generally ill-defined both in the UV and IR. The naive

definition of the Fourier transform of the two-point function is

G̃∆,d(k)
!

=

∫
dd~x e−i

~k·~x|~x|−2∆ (2.1)

= VSd−2

∫ π

0
dθ(sin θ)d−2

∫ ∞
0

dr r(d−2∆)−1e−irk cos θ , (2.2)

with VSd−2 the volume of the unit d− 2 sphere. We see that this integral is only convergent if

d− 2

2
< ∆ <

d

2
, (2.3)

where the upper and lower bounds are UV and IR constraints, respectively. There exist plenty of

CFTs with operators violating this naive bound2.

The above considerations underscore the well-known fact that correlation functions should be

interpreted as distributions (i.e. generalized functions, see e.g. [19–22] in the AdS/CFT context).

A distribution is a linear functional defined to act on some space of smooth test functions with nice

prescribed behavior at infinity3. The action of the correlation functional on a test function f(x) is

as follows
1

x2∆
[f ] =

∫
ddx

1

x2∆
f(x) . (2.4)

Due to the nice fall-off behavior of the test function, this interpretation of the two-point correlator

is free from IR divergences. However it is still not defined because of possible UV divergences

localized at x = 0. These are dealt with in the following way. We first define a regulated functional

1/x2∆
∣∣
ε

which is UV finite for ε > 0. There are many ways to do this. One way, which we illustrate

below, is to cut off the integral within some ball around the origin of radius ε. Another is differential

regularization [23] (reviewed in Appendix B).

2∆ ≥ d−2
2

is the unitarity bound for a scalar operator, saturated only for a free scalar, so the lower bound in (2.3)

would be violated only for a free scalar [18].
3Usually the space of test functions is taken to be the Schwartz space, the space of smooth functions which fall at

infinity, along with any of its multiple derivatives, faster than any inverse power of the coordinates. Unlike the space

of functions with compact support, this has the advantage that the Fourier transform is always defined within the

space of test functions. The corresponding distributions are known as tempered distributions.
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Because the divergence is associated with the singularity at x = 0, the divergent terms in (2.4)

depend only on the value of the test function and its derivatives at x = 0. Because the divergences

are localized, they can be cancelled by adding distributions which are delta functions and derivatives

of delta functions, at the origin. We define the renormalized two-point correlator as a distribution

of the following form

〈O∆(x)O∆(0)〉ren
Ed = lim

ε→0

[
1

x2∆

∣∣∣∣
ε

+ c1δ
d(x) + c2�δ

d(x) + · · ·
]
, (2.5)

where the coefficients c1, c2, . . . are chosen to depend on 1/ε in such a way that the result is finite

as ε→ 0 when (2.5) is integrated against an arbitrary test function.

The infinite parts of the c’s are fixed by requiring finiteness, but the finite parts are undetermined

and represent ambiguities that are not calculable from the theory. Different regularization schemes

will give different finite parts. If we let J be a source for the operator O and think in terms of

the effective action W [J ] whose functional derivatives generate the correlators, these delta function

ambiguities are precisely the local terms,

W [J ] ⊃
∫
ddx c1J

2 + c2J�J + · · · . (2.6)

The local terms are ambiguous and contribute only to correlators at equal points, whereas the

non-local terms are finite and unambiguous and contribute to the correlators at separate points.

For example, we can define the regulated functional by integrating only outside of a d-dimensional

ball Bε of radius ε,
1

x2∆

∣∣∣∣
ε

[f ] =

∫
Ed\Bε

ddx
1

x2∆
f(x) , (2.7)

in which case the coefficients c1, c2, . . . are either inverse powers or logarithms of ε,

1

x2∆

∣∣∣∣
ε

[f ] =

∫ ∞
ε

dr rd−1−2∆

∫
dΩd−1

[
f(0) + rx̂µ∂µf(0) +

r2

2
x̂µx̂ν∂µ∂νf(0) + · · ·

]
, (2.8)

= VSd−1

∫ ∞
ε

dr rd−1−2∆

[
f(0) +

r2

2d
�f(0) + · · ·

]
. (2.9)

The set of divergences ends with a logarithm if ∆ = d/2 + k (k = 0, 1, 2, . . .). Taking d = 4 and

∆ = 2, for instance, we find

1

x4

∣∣∣∣
ε

[f ] = 2π2

∫ ∞
ε

dr

r

[
f(0) +O(r2)

]
, (2.10)

= −2π2 log(µε)f(0) + finite . (2.11)

The mass scale µ is arbitrary and ambiguous, because it can be changed by the addition of a finite

local piece. The renormalized two-point correlator is thus the following distribution

〈O2(x)O2(0)〉ren
E4 = lim

ε→0

[
1

x4

∣∣∣∣
ε

+ 2π2 log(µε)δ4(x)

]
. (2.12)
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This is finite and well-defined as a distribution, ambiguous only up to local delta contributions.

Note that in cases in which there is a logarithmic divergence, such as this one, the coefficient of

the logarithm is unambiguous and calculable, and is responsible for violation of scale invariance at

coincident points,

µ
∂

∂µ
〈O2(x)O2(0)〉ren

E4 = 2π2δ4(x) . (2.13)

Cases without logarithmic divergences, for example a ∆ = 2 operator in d = 3,

〈O2(x)O2(0)〉ren
E3 = lim

ε→0

[
1

x4

∣∣∣∣
ε

− 4π

ε
δ3(x)

]
, (2.14)

do not exhibit scale-dependence at coincidence points. Another important case which we will return

to later is a marginal operator for which ∆ = d, for example ∆ = 3 in d = 3,

〈O3(x)O3(0)〉ren
E3 = lim

ε→0

[
1

x6

∣∣∣∣
ε

− 2π

3

(
2

ε3
δ3(x) +

1

ε
�δ3(x)

)]
. (2.15)

Now consider the Fourier transform (the appropriate integral transform in flat space). The

ordinary Fourier transform of a test function f is another test function f̃ . Given a distribution G,

its Fourier transform is always defined and is the distribution G̃ which gives the same value acting

on f̃ as G does acting on f . By this definition, the Fourier transform G̃∆,d(k) of the renormalized

two-point distribution 〈O∆(x)O∆(0)〉ren
Ed satisfies

1

(2π)d

∫
ddk G̃∆,d(k)f̃(k) =

∫
ddx 〈O∆(x)O∆(0)〉ren

Ed f(x) . (2.16)

It can be shown that G̃∆,d(k) is given by

G̃∆,d(k) = 2d−2∆πd/2
Γ(d/2−∆)

Γ(∆)
k2∆−d , (2.17)

when ∆ 6= d/2 + k, and contains terms logarithmic in k otherwise [23]. We are free to add to this

arbitrary polynomials in k2, since these are the Fourier transforms of the ambiguous local contact

terms. Note that (2.17) is the expression which would be obtained by analytically continuing

in ∆ the Fourier transform from the region (2.3) in which it is defined without distributional

considerations.

As a concrete example, consider a Gaussian test function of some width a > 0,

f̃(k) = e−ak
2 ⇐⇒ f(x) =

e−x
2/(4a)

(2
√
πa)3

. (2.18)

In the example of d = 3, ∆ = 2 given above, the left-hand side of (2.16) trivially gives −1/(4a2)

while the right-hand side evaluates to

RHS =
1

(2
√
πa)3

lim
ε→0

[
4π

∫ ∞
ε

dr
e−r

2/(4a)

r2
− 4π

ε

]
= − 1

4a2
. (2.19)
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In summary, we must regulate the UV singularities in position-space correlators, e.g. by im-

posing some short-distance cut-off around coincident points. After renormalization, the resulting

correlators are finite, with ambiguous finite contact terms, and are related to their spectral decom-

positions by the integral transform (2.16). IR divergences, on the other hand, are calculable and

unambiguous (and can be physically important, e.g. [25–27]) and are handled automatically by the

distributional interpretation, requiring no special treatment.

2.2 Sphere

Next we consider a Euclidean CFT on the d-dimensional sphere Sd, which is related by analytic

continuation to a Lorentzian CFT on de Sitter space dSd. This example will prove to be important

for understanding the pseudo-conformal universe.

The two-point function for a CFT on Sd can be found by exploiting the fact that the round

sphere is related to flat space by a Weyl transformation. The Euclidean space metric in spherical

coordinates, and the standard round metric on the sphere are

ds2
Ed = dr2 + r2dΩ2

d−1, ds2
Sd = dθ2 + sin2 θdΩ2

d−1 . (2.20)

Consider the stereographic projection from Sd to Ed, given by r = sin θ/(1− cos θ) = cot(θ/2) and

thus dr = dθ/(1− cos θ). Substituting, we find

ds2
Sd = (1− cos θ)2ds2

Ed . (2.21)

Conformal field theory correlators transform under Weyl transformations (up to anomalies) as

〈O∆1(x1) · · · O∆n(xn)〉Ω2g = Ω(x1)−∆1 · · ·Ω(xn)−∆n〈O∆1(x1) · · · O∆n(xn)〉g . (2.22)

Setting Ω = (1− cos θ) and using the known flat space form for the two-point function, we deduce

the following bare two-point function on the sphere,

〈O∆(~n)O∆(~n′)〉Sd =
1

2∆(1− cos Θ)∆
, (2.23)

where

cos Θ = cos θ cos θ′ + cosα sin θ sin θ′ . (2.24)

Θ is the geodesic distance between the two points in Sd and α is their angular separation in Sd−1.

It is noteworthy that the two-point function only depends on the geodesic distance between two

points on the sphere, which follows from the symmetries of the problem. The normalization of

1/2∆ is such that the short-distance limit matches the normalization 1/x2∆ for flat space.

We now attempt to perform the analog of the Fourier transform, that is, expand the two-point

distribution on the sphere into hyper-spherical harmonics as

〈O∆(~n)O∆(~n′)〉ren
Sd =

∑
l,m

glY∗lm(~n)Ylm(~n′) , (2.25)

=
1

VSd(d− 1)

∑
l

(2l + d− 1)glC
(d−1)/2
l (~n · ~n′) , (2.26)
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where we have used the addition theorem on the d-dimensional sphere,∑
m

Y∗lm(~n)Ylm(~n′) =
1

VSd(d− 1)

∑
l

(2l + d− 1)C
(d−1)/2
l (~n · ~n′) , (2.27)

and Cαl (x) are the Gegenbauer polynomials defined by the generating function

1

(1− 2xt+ t2)α
=
∞∑
l=0

Cαl (x)tl . (2.28)

The coefficients gl are the analog of the Fourier transform. The inverse of this transform allows us

to calculate the gl’s

gl =
1

Ylm(~n′)

∫
Sd
d~nYlm(~n)〈O∆(~n)O∆(~n′)〉ren

Sd , (2.29)

=
VSd−1

C
(d−1)/2
l (1)

∫ 1

−1
dx (1− x2)(d−2)/2

[
1

2∆(1− x)∆
+ counter-terms

]
C

(d−1)/2
l (x) , (2.30)

where we have used rotational invariance to move ~n′ to θ = 0 and have also used that the expression

is independent of m to set m = 0, in which case the spherical harmonics become proportional to

Gegenbauer polynomials.

As in the flat case, this integral transform is generally ill-defined unless counter-terms are in-

cluded: the singularity of the integrand (2.30) at x = 1 leads to the non-physical bound

∆ <
d

2
. (2.31)

This is easy to understand because the sphere is locally flat, so we expect the same UV divergences

as (2.3) on flat space. There is no lower bound, however, because the finite volume of the sphere

naturally cuts off the IR divergence.

To study the UV singularity structure of the bare two-point correlator, we integrate it against

a smooth test function on Sd × Sd of the form f(~n · ~n′) as follows,∫
Sd
d~n〈O∆(~n)O∆(~n′)〉Sdf(~n · ~n′) = VSd−12−∆

∫ 1−η

−1
dx(1− x2)(d−2)/2(1− x)−∆f(x) ,

= VSd−12−∆

∫ 1−η

−1
dx(1− x2)(d−2)/2(1− x)−∆

[
f(1) + (x− 1)f ′(1) + · · ·

]
,

(2.32)

where 0 < η � 1 is a UV regulator, cutting off the region x = 1 in the integral where the two points

come together. Expanding in powers of 1
η , there will be divergent parts which must be cancelled

off by local counterterms.

For example, consider the case ∆ = 2 and d = 3, which has the divergent part.∫
S3

d~n 〈O2(~n)O2(~n′)〉S3f(~n · ~n′) =
2π
√

2√
η
f(1) + finite . (2.33)
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As in flat space, the divergence is local, depending only on the value of the test function at the

point x = 1 where the two points come together. Subtracting off this divergence, the renormalized

two-point correlator for an operator of this dimension should be defined as the distribution

〈O2(~n)O2(~n′)〉ren
S3 = lim

η→0

[
1

22(1− ~n · ~n′)2
− 2π

√
2√
η
δ3(~n, ~n′)

]
, (2.34)

where δd(~n1, ~n2) is the covariant delta function on the sphere, defined such that∫
Sd
d~n δ3(~n, ~n′)f(~n · ~n′) = f(1) . (2.35)

In terms of the x = cos Θ coordinate,

δd(~n, ~n′) =
δ(1− x)

VSd−1(1− x)(d−2)/2
. (2.36)

Expanding for small Θ we obtain

δd(~n, ~n′) ∼ δ(Θ)

VSd−1Θd−1
∼ δd(x) , (2.37)

where δd(x) is the delta function in flat space. Let us check that the short distance behavior of this

correlator agrees with flat space. We have η = 1− cos ε ∼ ε2/2 and thus we reproduce (2.14),

〈O2(~n)O2(~n′)〉ren
S3 ∼ lim

ε→0

[
1

x4
− 4π

ε
δ3(x)

]
, (2.38)

where x is now the physical distance between ~n and ~n′ and ε is the physical cut-off distance. Now

let us calculate the gl’s for our renormalized correlation function. Since we have a well defined

distribution, the integral transform should exist and hence the gl’s will be finite. We get

gl =
1

Ylm(~n′)

∫
S3

d~nYlm(~n)〈O2(~n)O2(~n′)〉ren
S3 , (2.39)

= lim
η→0

1

Ylm(~n′)

∫
S3

d~nYlm(~n)

[
1

22(1− ~n · ~n′)2
− 2π

√
2√
η
δ3(~n, ~n′)

]
, (2.40)

= lim
η→0

[
−2π
√

2√
η

+
VS2

Ul(1)

∫ 1−η

−1
dx(1− x2)1/2 1

22(1− x)2
Ul(x)

]
. (2.41)

If instead we define gl by analytic continuation in ∆ from the region in which (2.30) is defined,

we obtain4

gl =
πd/2

22∆−d
Γ(d/2−∆)

Γ(∆)

Γ(l + ∆)

Γ(d+ l −∆)
, (2.42)

4See also [28], which is missing a factor of 2−∆.
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where ∆ 6= d/2 + k (k = 0, 1, 2, . . .). One can check by direct evaluation with l = 0, 1, 2, . . . that

(2.42) agrees with the formula (2.41) obtained by properly renormalizing, namely

gl = −π2(l + 1) . (2.43)

We see that analytic continuation in ∆ corresponds to minimal subtraction in the hard cut-off

formalism, as was the case on flat space. The spectral decomposition (2.42) is thus related to the

renormalized two-point function by the following integral transform,∑
l,m

glf
∗
l Ylm(~n′)Y∗lm(~n′′) =

∫
Sd
d~n〈O∆(~n)O∆(~n′)〉ren

Sd f(~n · ~n′′) , (2.44)

or, written in terms of Gegenbauer polynomials,

1

VSd(d− 1)

∑
l

glf
∗
l (2l + d− 1)C

(d−1)/2
l (~n′ · ~n′′) =

∫
Sd
d~n〈O∆(~n)O∆(~n′)〉ren

Sd f(~n · ~n′′) . (2.45)

The above formula is the analog of the flat-space Fourier transform (2.16).

To further illustrate, consider a gaussian test function on the sphere. We can make a gaussian on

the sphere by stereographically mapping a gaussian on Ed to the sphere. Starting with the smooth

test function e−r
2

on Ed (with r the polar radial coordinate) we obtain the following smooth test

function on Sd,

f(~n · ~n′′) = exp

(
−1 + ~n · ~n′′

1− ~n · ~n′′
)
, (2.46)

where we have made the following identifications,

r = cot(θ/2), ~n · ~n′′ = cos θ . (2.47)

Computing the corresponding fl’s gives

fl =
1

Ylm(~n′)

∫
S3

d~nYlm(~n)f(~n · ~n′) , (2.48)

=
4π

Ul(1)

∫ 1

−1
dx(1− x2)1/2Ul(x) exp

(
−1 + x

1− x

)
. (2.49)

It is convenient to choose ~n′′ · ~n′ = −1 so that the Gaussian is peaked when the arguments of the

two-point distribution coincide. We then obtain for the right-hand side of (2.45),

RHS = 4π lim
η→0

∫ 1

−1
dx(1− x2)1/2

[
1

22(1− ~n · ~n′)2
− 2π

√
2√
η

δ(1− x)

4π(1− x2)1/2

]
exp

(
−1− x

1 + x

)
,

= 4π lim
η→0

∫ 1−η

−1
dx(1− x2)1/2

exp
(
−1−x

1+x

)
22(1− x)2

− 2π
√

2√
η

, (2.50)

while on the left-hand side we obtain an infinite sum over Chebyshev polynomials

LHS = −1

2

∞∑
l=0

f∗l (l + 1)2Ul(−1) . (2.51)

Numerically computing the fl’s it is easy to see that that LHS and RHS agree, as they should.
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2.3 Hyperboloid

The next example we treat is the hyperboloid CFT (see e.g. [29]), where we will see that correlators

continue from the sphere in a simple way by analytic continuation of the angular momentum to

complex values, as in [30].

Analytically continuing the sphere Sd to negative curvature we obtain the d-dimensional hyper-

bolic space Hd, which is the Euclidean continuation of anti de Sitter space AdSd. The analysis for

the hyperboloid CFT proceeds similarly to the sphere. The conformal map from Ed to Hd is given

by r = coth(ρ/2) = sinh ρ/(cosh ρ− 1),

ds2
Hd = dρ2 + sinh2 ρdΩ2

d−1 = (1− cosh ρ)2(dr2 + r2dΩ2
d−1) , (2.52)

and hence the conformal factor is Ω = (1− cosh ρ). Using (2.22) and the known flat space form for

the two-point function, it follows that the bare two-point function on the hyperboloid is given by

〈O∆(n)O∆(n′)〉Hd =
1

2∆(cosh `− 1)∆
, (2.53)

where

cosh ` = cosh ρ cosh ρ′ − cosα sinh ρ sinh ρ′ . (2.54)

` is the geodesic distance on Hd, and α is the angular separation of the two points in Sd−1. Ex-

panding the two-point distribution into eigenfunctions ψp,l,m of the Laplacian on Hd (reviewed in

appendix A.1) gives

〈O∆(n)O∆(n′)〉ren
Hd =

∫ ∞
0

dp g(p)
∑
l,m

ψp,l,m(n)ψp,l,m(n′)∗ . (2.55)

The right-hand side can be expressed in terms of the geodesic distance between n and n′ with the

help of the addition theorem [31]

∑
l,m

ψp,lm(n)ψ∗p,lm(n′) =
1

2π
(2π sinh `)(2−d)/2

∣∣∣∣Γ((d− 1)/2 + ip)

Γ(ip)

∣∣∣∣2 P (2−d)/2
−1/2+ip(cosh `) , (2.56)

where n · n′ = cosh `. We will focus on the case when d is odd for simplicity, since in this case the

Legendre functions can be expressed in terms of Gegenbauer functions. The generalization to even

d is straightforward. The addition theorem for d odd is∑
l,m

ψp,lm(n)ψ∗p,lm(n′) =
2i

VSd(d− 1)
pC

(d−1)/2
−(d−1)/2+ip(cosh `) , (2.57)

and thus

〈O∆(n)O∆(n′)〉ren
Hd =

2i

VSd(d− 1)

∫ ∞
0

dp p g(p)C
(d−1)/2
−(d−1)/2+ip(cosh `) . (2.58)
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Hence, we see that, at least in the case of odd dimension d, there is a simple relationship between

the spectral decomposition of the two-point function on the sphere and the hyperboloid; namely,

we simply take the corresponding expression on the sphere (2.26) and analytically continue the

angular momentum quantum number to complex values, corresponding to the principal series of

unitary irreducible representations of SO(1, d) [33]

l = −d− 1

2
+ ip , p ≥ 0 . (2.59)

The spectral decomposition can be inverted to give

g(p) =
1

ψp,l,m(n)

∫
dnψp,l,m(n′)〈O∆(n)O∆(n′)〉ren

Hd , (2.60)

=
VSd−1

C
(d−1)/2
−(d−1)/2+ip(1)

∫ ∞
1

dz(z2 − 1)(d−2)/2

[
1

2∆(z − 1)∆
+ counter-terms

]
C

(d−1)/2
−(d−1)/2+ip(z) .

(2.61)

Here we have used that the expression is independent of l and m to set them both to zero. This

allows us to make use of the following identity which expresses the wavefunctions in terms of

Gegenbauer functions

C
(d−1)/2
−(d−1)/2+ip(cosh `) = (sinh `)(d−2)/2P

(2−d)/2
−1/2+ip(cosh `)

2(d−2)/2Γ(d/2)Γ((d− 1)/2 + ip)

Γ(d− 1)Γ(ip− d/2 + 3/2)
. (2.62)

That is,

ψp,0,0(r,Ω) ∝ Γ((d− 1)/2 + ip)

Γ(ip)
(sinh r)(2−d)/2P

(2−d)/2
−1/2+ip(cosh r) ∝ C(d−1)/2

−(d−1)/2+ip(cosh r) . (2.63)

The generalization of the integral transformation (2.16) is now∫ ∞
0

dp
∑
l,m

g(p)f(p)∗ ψp,l,m(~n′)ψp,l,m(~n′)∗ =

∫
Hd
dn〈O(n)O(n′)〉ren

Hd f(n · n′) , (2.64)

where

f(p) =
VSd−1

C
(d−1)/2
−(d−1)/2+ip(1)

∫ ∞
1

dz(z2 − 1)(d−2)/2f(z)C
(d−1)/2
−(d−1)/2+ip(z) . (2.65)

Using the addition theorem this becomes simply

2i

VSd(d− 1)

∫ ∞
0

dp pC
(d−1)/2
−(d−1)/2+ip(1)g(p)f(p)∗ =

∫
Hd
dn〈O(n)O(n′)〉ren

Hd f(n · n′) . (2.66)

Let us test this formula by focusing on the case of a ∆ = 2 scalar operator in d = 3 dimensions.

Following the same steps as on the sphere we obtain the renormalized two-point correlator

〈O2(n)O2(n′)〉ren
H3

= lim
η→0

[
1

22(n · n′ − 1)2
− 2π

√
2√
η
δ3(n, n′)

]
, (2.67)

g(p) = lim
η→0

[
−2π
√

2√
η

+
VS2

U−1+ip(1)

∫ ∞
1+η

dz(z2 − 1)1/2 1

22(z − 1)2
U−1+ip(z)

]
. (2.68)
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As before, consider a Gaussian test function to illustrate. We recall that ` is related to z by the

relation z = cosh `, so the natural analog of a Gaussian on the hyperboloid is the test function

f(z) = e−z. In order to evaluate the integral on the left-hand side of (2.66) we need the spectral

representations of 〈O2(n)O2(n′)〉H3 and f(~n ·~n′) which are given by (2.68) and (2.65), respectively.

The integral defining f(p) was evaluated numerically for different values of p and numerically in-

terpolated. The integral defining g(p), while difficult to evaluate, can be guessed by analytical

continuation from the sphere. Substituting l = −(d − 1)/2 + ip, dropping a factor of i and mul-

tiplying by a measure factor of coth(πp) one finds agreement with the numerics. Substituting the

approximate expression for f(p) and the exact expression for g(p) into the left-hand side of (2.66)

and carrying out the final p-integral numerically leads to excellent agreement. Here we demonstrate

the numerics for a ∆ = 2 operator in d = 3 dimensions,∫
H3

dn〈O2(n)O2(n′)〉ren
H3
f(n · n′) = lim

η→0

[
4π

∫ ∞
1+η

dz(z2 − 1)1/2 e−z

22(z − 1)2
− 2π

√
2√
η
e−1

]
, (2.69)

' −5.118 . (2.70)

i

2π2

∫ ∞
0

dp pU−1+ip(1)g(p)f(p)∗ ' 5.118 . (2.71)

Let us now consider a marginal operator ∆ = d = 3. We have

1 2 3 4 5 6
p

-60

-50

-40

-30

-20

-10

gHpL

1 2 3 4 5 6
p

1

2

3

4

5

f HpL

Figure 1: Spectral representations 〈O2(n)O2(n′)〉H3 (left) and f(~n·~n′) (right) obtained by numerical

interpolation.

i

2π2

∫ ∞
0

dp pU−1+ip(1)g(p)f(p)∗ ' 1.1659 , g(p) =
π2

12
p(1 + p2) coth(πp) , (2.72)

and∫
H3

dn〈O3(n)O3(n′)〉ren
H3
f(n · n′) = lim

η→0

[
4π

∫ ∞
1+η

dz(z2 − 1)1/2 e−z

23(z − 1)3
− π
√

2

3η3/2
e−1 +

3π

2
√

2η
e−1

]
,

' 1.1659 . (2.73)
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3 Holographic Boundary CFT

In this section we will review the calculation of the one- and two-point functions for a boundary

CFT from holography and then connect this with the integral transforms of the previous section.

We begin with the AdSd+1 metric (1.1) and change to radial coordinates in the z and y variables:

(z, y) = (η cosφ, η sinφ). We will also use the coordinate ρ, defined by (z, y) = (η sech ρ, η tanh ρ).

The metric in these coordinates is

ds2 =
1

cos2 φ
(dφ2 + ds2

AdSd
) (3.1)

= dρ2 + cosh2 ρ ds2
AdSd

. (3.2)

This covers the full Poincaré patch of AdSd+1 if −∞ < ρ < ∞, or −π/2 < φ < π/2 (the UV

boundary is at ρ = −∞, or φ = −π/2). The claim of the AdS/BCFT correspondence is that we

obtain the holographic dual to a half-space CFT by restricting −∞ < ρ < ρ∗ for some ρ∗. This

effectively cuts the space off in the IR and introduces a second boundary Q at ρ∗ in addition to the

usual UV boundary at ρ = −∞. The surface Q defined by ρ = ρ∗ is given in Poincaré coordinates

by z = η sech ρ∗ and y = η tanh ρ∗. Hence, Q is defined by a curve in the (y, z) plane

y = z sinh ρ∗ . (3.3)

Notice that if we choose ρ∗ = 0 then Q is given simply by y = 0. For general ρ∗ let us define

tan θ = sinh ρ∗ and consider the rotation(
ỹ

z̃

)
=

(
cos θ − sin θ

sin θ cos θ

)(
y

z

)
. (3.4)

Now we see that Q lies at ỹ = 0.

Assume that localized on Q there is a linear coupling

SQ =

∫
Q
d4x
√
h aφ , (3.5)

with
√
h the induced volume form on Q and a a constant. It is natural to add such a term because,

from a Witten diagram point of view, it can be seen to correspond to giving a vacuum expectation

value to the dual operator [34]. An alternative possibility would be to add a boundary mass term∫
Q d

dx
√
h b φ2. Taking b → ∞ realizes the Dirichlet boundary condition on Q. The variation of

this term does not affect the bulk equations of motion but contributes to the boundary variation.

The total boundary variation is

δS =

∫
Q
d4x
√
hδφ(nµ∂µφ+ a) , (3.6)

where nµ is the unit normal to Q. The first term is the boundary term coming from the variation

of the bulk kinetic term after integration by parts, and the second term comes from varying (3.5).
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The variational principle requires (3.6) to vanish for arbitrary δφ, which requires the boundary

condition on Q to be of Neumann form

(nµ∂µφ+ a)|Q = 0 . (3.7)

In our case, we have nµdx
µ = c dỹ where c is determined by the normalization condition nµn

µ = 1

or gỹỹc2 = 1. The metric written in terms of these variables is

ds2 =
dz̃2 − dt2 + dx2

1 + dx2
2 + dỹ2

z2
=
dz̃2 − dt2 + dx2

1 + dx2
2 + dỹ2

(z̃ cos θ − ỹ sin θ)2
. (3.8)

Hence, gỹỹ = z2, c = ±1/z, nµ∂µ = cgỹỹ∂ỹ = ±z∂ỹ. Choosing the plus sign we obtain the boundary

condition

∂ỹφ|ỹ=0 +
a

z̃ cos θ
= 0 , (3.9)

(cos θ∂y − sin θ∂z)φ|y=z tan θ +
a

z
= 0 . (3.10)

3.1 One-point function

Let us consider the Fourier transform of the field configuration in the y-direction,

φ(y, z) = zd/2
∫ ∞
−∞

dq fq(z)c(q)e
iqy . (3.11)

Substituting into the scalar equation in the flat slicing

z2∂2
zφ− (d− 1)z∂zφ+ z2ηµν∂µ∂νφ = m2φ (3.12)

we obtain

zd/2+2

∫ ∞
−∞

dq fq(z)c(q)e
iqy

[
f ′′q (z)

fq(z)
+

1

z

f ′q(z)

fq(z)
− 1

z2
(q2z2 +m2 + d2/4)

]
= 0 , (3.13)

which can be solved by choosing fq(z) = Kν(|q|z) or Iν(|q|z) where

ν =

√(
d

2

)2

+m2 . (3.14)

To find c(q) we need to substitute the ansatz into the inhomogeneous boundary condition. Choosing

the solution which is regular in the interior we find that the boundary condition is satisfied if

c(q) ∝ |q|d/2/q [3]. Setting d = 4 and m2 = 0, for example, we obtain

φ(y, z) ∝
(
2y3 + 3yz2

)
(y2 + z2)3/2

= 2− 3z4

4y4
+O(z6/y6) . (3.15)

The vacuum expectation value can then be read off from coefficient of the normalizable term

〈O4(y)〉 ∝ 1

y4
, (3.16)

which is of the form required by the unbroken subgroup of the conformal group, namely,

〈O∆(y)〉 =
c

y∆
. (3.17)
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3.2 Two-point function

Unlike the holographic interface CFT [32, 34], the holographic BCFT two-point function is not of

the form 1/x2∆ even when a = 0 [35]. If we insert a boundary at z = z∗ then we need to impose

the Neumann boundary condition at y = z sinh ρ∗. For convenience we will choose ρ∗ = 0 so that

the boundary condition is simply

∂yφ|y=0 = 0 . (3.18)

Substituting the ansatz φ = zd/2f(z)h(y)e−i~ω·~x we find that the boundary condition fixes h(y) =

e−iqy + eiqy and the general solution is thus of the form

φ(~x, y, z) = zd/2
∫
dd−1~ω dq (e−iqy + eiqy)e−i~ω·~xkνKν(kz)φ(0)(~ω, q) . (3.19)

Since (e−iqy + eiqy)Kν(kz) is an even function of q, the integral over q projects out the even part

of φ(0)(~ω, q). Hence the only constraint on φ(0)(~ω, q) is that it is itself an even function of q,

φ(0)(~ω, q) = φ(0)(~ω,−q) . (3.20)

Fourier transforming, we have

φ(0)(~x, y) =

∫
dd−1~ω dq e−i(qy+~ω·~x)φ(0)(~ω, q) , (3.21)

=

∫
dd−1~ω dq cos(qy)e−i~ω·~xφ(0)(~ω, q) , (3.22)

=
1

2

∫
dd−1~ω dq(eiqy + e−iqy)e−i~ω·~xφ(0)(~ω, q) . (3.23)

Inverting the Fourier transform we then find

φ(0)(~ω, q) =
1

2(2π)d

∫
dd−1~x dy(eiqy + e−iqy)ei~ω·~xφ(0)(~x, y) , (3.24)

which is automatically invariant under q → −q for any φ(0)(~x, y). Substituting back we obtain

φ(~x, y, z) =
1

2

∫
dd−1~x′dy′

[
K∆(~x, y; ~x′, y′, z) +K∆(~x,−y; ~x′, y′, z)+

+K∆(~x, y; ~x′,−y′, z) +K∆(~x,−y; ~x′,−y′, z)
]
φ(0)(~x

′, y′) , (3.25)

=

∫
dd−1~x′dy′

[
K∆(~x, y; ~x′, y′, z) +K∆(~x,−y; ~x′, y′, z)

]
φ(0)(~x

′, y′) , (3.26)

where

K∆(~x, y; ~x′, y′, z) = zd/2
∫
dd−1~ω dq

(2π)d
eiq(y−y

′)+i~ω(~x−~x′)kνKν(kz) (3.27)

is the standard bulk-to-boundary propagator for an operator of dimension ∆ = d/2 + ν. The

two-point function is

〈O(X1)O(X2)〉 =
1

|X1 −X2|2∆
+

1

|X1 −X∗2 |2∆
, (3.28)
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where X ≡ (~x, y) and X∗ ≡ (~x,−y). Setting ~x2 = ~0 without loss of generality we obtain

〈O(~x, y1)O(~0, y2)〉 =
1

(~x2 + (y1 − y2)2)∆
+

1

(~x2 + (y1 + y2)2)∆
, (3.29)

=
1

(4y1y2)∆

[
1

ξ∆
+

1

(ξ + 1)∆

]
, (3.30)

which is of the correct form [37, 38] dictated by conformal invariance,

〈O1(~x, y1)O2(~0, y2)〉 =
F (ξ)

y∆1
1 y∆2

2

, ξ =
~x2 + (y1 − y2)2

4y1y2
. (3.31)

The function F (ξ), which is not fixed by conformal invariance alone, is determined by the AdS/CFT

calculation. If we take y2 → 0 then

〈O(~x, y)O(~0, 0)〉 =
2

(~x2 + y2)∆
, (3.32)

which is of the form fixed by O(1, 4) invariance

〈O1(~x, y1)O2(~0, 0)〉 ∝ 1

y∆1−∆2
1 (~x2 + y2

1)∆2
. (3.33)

Repeating the calculation for the Dirichlet boundary condition we obtain

〈O(X1)O(X2)〉 =
1

|X1 −X2|2∆
− 1

|X1 −X∗2 |2∆
(3.34)

=
1

(4y1y2)∆

[
1

ξ∆
− 1

(ξ + 1)∆

]
. (3.35)

Note that, unlike in the case of Neumann boundary conditions, this two-point function vanishes in

the limit y2 → 0.

3.3 Two-point function in AdS slicing

If we allow ρ∗ 6= 0 then we encounter a difficulty because the boundary condition now mixes y

derivatives with z derivatives on Q

∂yφ|y=z tan θ = cot θ∂zφ|y=z tan θ . (3.36)

It is thus more natural to work in the slicing of AdSd+1 by AdSd, where the boundary condition is

replaced by ∂ρφ|ρ∗ = 0. The metric in these coordinates is given by

ds2 = dρ2 + cosh2 ρ ds2
Hd . (3.37)

We will mainly focus on the example of a marginal operator in three dimensions, but similar results

hold for any d and ∆. As shown in appendix A.1, the bulk-to-boundary propagator (assuming d

odd) is given in these coordinates by

K(ρ, x;x′) =
2i

VSd(d− 1)

∫ ∞
0

dpfp(ρ)pC
(d−1)/2
−(d−1)/2+ip(cosh `) , (3.38)
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where fp(ρ) is some linear combination of

f(ρ) = (sech ρ)d/2
{
P ν−1/2+ip(tanh ρ), Qν−1/2+ip(tanh ρ)

}
, (3.39)

to be fixed by boundary conditions. Given a marginal operator we should, according to the

AdS/CFT correspondence, consider a m2 = 0 scalar field in AdS4. We obtain (assuming d = 3) the

following asymptotics for the conical functions in (3.39) (the asymptotic boundary is at ρ = −∞) ,

(sech ρ)d/2P ν−1/2+ip(tanh ρ) =

√
2

π
cosh(pπ)− 2

(
1 + p2

)√ 2

π
cosh(pπ)e2ρ

+
8

3
p
(
1 + p2

)√ 2

π
sinh(pπ)e3ρ +O(e4ρ) , (3.40)

(sech ρ)d/2Qν−1/2+ip(tanh ρ) = −i
√
π

2
sinh(pπ) + i

(
1 + p2

)√
2π sinh(pπ)e2ρ

− 4

3
ip
(
1 + p2

)√
2π cosh(pπ)e3ρ +O(e4ρ) . (3.41)

Regularity in the interior (ρ∗ = ∞) demands that we drop the Legendre-P function and thus,

according to the AdS/CFT dictionary, the bare two-point function is given by

〈O3(n)O3(n′)〉H3 ∝
∫ ∞

0
dp p2(1 + p2) coth(πp)U−1+ip(n · n′) . (3.42)

The right-hand side is clearly divergent, as is to be expected since we are dealing with the bare,

rather than the renormalized correlator. We can gain considerable insight about this infinite ex-

pression with the help of the integral representation of the generalized Gegenbauer function [36]

C
(d−1)/2
−(d−1)/2+ip(z) = i(−1)(d−1)/2+12−(d−1)/2 sinh(πp)

π

∫ ∞
−∞

dβ(coshβ + z)−(d−1)/2e−ipβ . (3.43)

Rotating the contour to the imaginary axis by defining σ = iβ, and using the Mellin transformation,

we obtain the following generating function

p(σ) = (cosσ + z)−(d−1)/2 = i(−2)(d−1)/2

∫ ∞
0

dp cosh(σp)
C

(d−1)/2
−(d−1)/2+ip(z)

sinh(πp)
. (3.44)

It is now possible to express the bare correlator as a linear combination of derivatives of p(σ), thus

extracting the finite part of the bare correlator

〈O3(n)O3(n′)〉H3 ∝
(
d2p

dσ2
+
d4p

dσ4

)∣∣∣∣
σ=π

=
6

(n · n′ − 1)3
. (3.45)

We thus see that the finite piece agrees with the expectations from conformal invariance.

For the BCFT we obtain a linear combination of Q and P Legendre functions determined by

the boundary condition f ′p(ρ∗) = 0. In particular,

fp(ρ) = (sech ρ)d/2
[
Qν−1/2+ip(tanh ρ) + bpP

ν
−1/2+ip(tanh ρ)

]
, (3.46)
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where

bp = −
(1 + 2ip− 2ν)Qν1/2+ip(tanh ρ∗) + (d− 1− 2ip)Qν−1/2+ip(tanh ρ∗) tanh ρ∗

(1 + 2ip− 2ν)P ν1/2+ip(tanh ρ∗) + (d− 1− 2ip)P ν−1/2+ip(tanh ρ∗) tanh ρ∗
. (3.47)

Notice that for ρ∗ → 0 we obtain

bp = −
Qν1/2+ip(0)

P ν1/2+ip(0)
, (3.48)

while for ρ∗ →∞ we have bp → 0 and we recover the formula for a pure CFT.

Choosing d = 3, m2 = 0, ρ∗ = 0 and using our Gaussian test function f(z) = e−z, we obtain

i

2π2

∫ ∞
0

dp pU−1+ip(1)g(p)f(p)∗ ' −1.19857 , g(p) =
π coth(πp) + 2ibp
2ibp coth(πp) + π

. (3.49)

In order to evaluate the RHS of the distribution formula, we need to conformally map the BCFT

two-point function (3.30) to the hyperboloid. This can be achieved by identifying y > 0 with the

Poincaré radial coordinate of Hd. It then follows that

cosh `− 1 =
(z − z′)2 + (~x− ~x′)2

2zz′
= 2ξ , (3.50)

and thus

〈O(n)O(n′)〉Hd =
1

2∆

[
1

(cosh `− 1)∆
+

1

(cosh `+ 1)∆

]
. (3.51)

Subtracting divergences and smearing with the test function over the hyperboloid we obtain∫
H3

dn〈O3(n)O3(n′)〉renH3
f(n · n′) = lim

η→0

[
4π

∫ ∞
1+η

dz(z2 − 1)1/2e−z
1

23

[
1

(z − 1)3
+

1

(z + 1)3

]
− π
√

2

3η3/2
e−1 +

3π

2
√

2η
e−1
]

' 1.19857 . (3.52)

In the case of a Dirichlet boundary condition at ρ∗ = 0, the two-point function (3.35) expressed

in terms of the geodesic distance is

〈O(n)O(n′)〉Hd =
1

2∆

[
1

(cosh `− 1)∆
− 1

(cosh `+ 1)∆

]
, (3.53)

and

bp = −
Qν−1/2+ip(0)

P ν−1/2+ip(0)
. (3.54)

In this case∫
H3

dn〈O3(n)O3(n′)〉renH3
f(n · n′) = lim

η→0

[
4π

∫ ∞
1+η

dz(z2 − 1)1/2e−z
1

23

[
1

(z − 1)3
− 1

(z + 1)3

]
− π
√

2

3η3/2
e−1 +

3π

2
√

2η
e−1
]

' 1.1333 , (3.55)

i

2π2

∫ ∞
0

dp pU−1+ip(1)g(p)f(p)∗ ' −1.1333 . (3.56)
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4 Holographic pseudo-conformal CFT

The pseudo-conformal CFT can be regarded as a CFT with a spacelike boundary at future infinity.

We begin with the AdSd+1 metric (1.1) and perform the coordinate transformation z = (−η) csch ρ

and t = η coth ρ. Then

ds2 = dρ2 + sinh2 ρ
−dη2 + d~x2

η2
(4.1)

= dρ2 + sinh2 ρ ds2
dSd

, (4.2)

where η ∈ (−∞, 0) and ρ ∈ (0,∞). Unlike the AdSd slicing, this coordinate system only covers

a subregion of the AdSd+1 Poincaré patch. The subregion already has a boundary given by the

light-cone at ρ = 0. Rather than choosing Q to be this null boundary, however,we will instead fix

Q at some ρ∗ > 0.

We expect that the resulting VEV will be of the form 1/(−t)∆ with a ρ∗-dependent coefficient

which vanishes as ρ∗ → 0. A general ρ = ρ∗ surface is given in Poincaré coordinates by a worldline

(−t) = z cosh ρ∗ , (4.3)

which intersects the boundary on the spacelike surface t = 0, as in Figure 2. Let us define cosh ρ∗ =

cothφ so that the surface Q is defined by t = −z cothφ. Consider the Lorentz boost(
t̃

z̃

)
=

(
coshφ sinhφ

sinhφ coshφ

)(
t

z

)
. (4.4)

Now the surface is defined by z̃ = 0, and the metric in these coordinates is

ds2 =
dz̃2 − dt̃2 + d~x2

z2
. (4.5)

The boundary condition on Q is now

∂z̃φ|t=−z cothφ +
a

z
= 0 , (4.6)

(sinhφ∂t + coshφ∂z)φ|t=−z cothφ +
a

z
= 0 . (4.7)

4.1 One-point function

For 0 < a <∞ we choose the ansatz to be

φ(t, z) = zd/2
∫ ∞
−∞

dq fq(z)c(q)e
iqt . (4.8)

Substituting into the scalar equation we obtain

zd/2+2

∫ ∞
−∞

dq fq(z)c(q)e
iqt

[
f ′′q (z)

fq(z)
+

1

z

f ′q(z)

fq(z)
− 1

z2
(−q2z2 +m2 + d2/4)

]
= 0 . (4.9)
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t = 0

t = 1

t = �1⌘ = �1

⌘ = 0

z
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0

z
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1

⇢
=
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⇢
=

0
⇢

=
⇢ ⇤

Figure 2: Setup for the pseudo-conformal BCFT, showing the Poincaré patch covered by z, t, the

region covered by the dS slice coordinates ρ, η, and the surface Q at ρ = ρ∗ intersecting the ρ =∞
boundary at t = 0.

Demanding that the terms in square brackets vanish we find that fq(z) should be a linear combi-

nation of Bessel functions, which have the following asymptotic behavior

Yν(|q|z) = zν
(
−2−ν |q|ν cos(πν)Γ(−ν)

π
+O(z2)

)
+ z−ν

(
−2ν |q|−νΓ(ν)

π
+O(z2)

)
, (4.10)

Jν(|q|z) = zν
(

2−ν |q|ν
Γ(1 + ν)

+O(z2)

)
. (4.11)

These asymptotic expansions suggest that in order to interpret the scalar field configuration as

a spontaneously generated VEV, we should choose fq(z) = Jν(|q|z). Substituting this into the
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boundary condition we then obtain∫ ∞
−∞

dq

[
iq sinhφ+

1

z

(
d

2
− 1− q c

′(q)

c(q)
+ iqz cothφ

)
coshφ

]
Jν(|q|z)c(q)e−iqz cothφ = − a

zd/2+1
,

(4.12)

where we have replaced z∂z by q∂q and integrated by parts. Notice that for large arguments the

Bessel function is oscillating rather than decaying exponentially

Jν(z) ∼
√

2

πz
cos (z − νπ/2− π/4) . (4.13)

The function c(q) cannot be a power law |q|α because this would imply

1

z2

∫ ∞
−∞

dq̃

[
iq̃ sinhφ+

(
d

2
− 1− α+ iq̃ cothφ

)
coshφ

]
Jν(q̃)c(q̃/z)e−iq̃ cothφ = − a

zd/2+1
, (4.14)

and then α = d/2− 1, which would cause the LHS to diverge. On the other hand, if we choose c(q)

to be a regulated delta function

c(q) =
1

2α
e−α|q| , (4.15)

then assuming d = 4 and m2 = 0 we obtain

φ(y, z) = z2

∫ ∞
−∞

dq Jν(|q|z) 1

2α
e−α|q|eiqt , (4.16)

=

(
− 3

4t4
+O(α2)

)
z4 +

(
− 5

4t6
+O(α2)

)
z6 +O(z)8 . (4.17)

The correctly normalized scalar is

φ(y, z) =
a
(

2− 2
√

1− x2 + x2
(
−3 + 2

√
1− x2

))
csch4 φ sech(2φ)

3 (1− x2)3/2
, (4.18)

where x = z/(−t). By direct substitution it can be shown that this solves both the equation of

motion and the boundary condition. For the same reason as in the timelike BCFT case, the dual

operator acquires a VEV

〈O4(t)〉 ∝ 1

t4
. (4.19)

4.2 Two-point function

In the Euclidean signature the space dSd continues to Sd and the wave equation in AdSd+1 sliced

by Sd is solved by

φ(ρ, n̂) =
∑
l,m

fl(ρ)Ylm(n̂)φ(0)lm (4.20)

=
1

VSd(d− 1)

∫
dΩ′d

∑
l

(2l + d− 1)fl(ρ)C
(d−1)/2
l (n̂ · n̂′)φ(0)(n̂

′) , (4.21)
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where

fl(ρ) = (sinh ρ)(1−d)/2
{
P

(1−d)/2−l
−1/2+ν (cosh ρ), Q

(1−d)/2−l
−1/2+ν (cosh ρ)

}
. (4.22)

The asymptotics of the ring functions can be found from the relations (see sec. 3.13 of [51])

Pµ−1/2+ν(cosh ρ) =
22µ

Γ(1− µ)
(1− e−2ρ)−µe−(ν+1/2)ρF (1/2− µ, 1/2 + ν − µ; 1− 2µ; 1− e−2ρ) ,

(4.23)

Qµ−1/2+ν(cosh ρ) =
π1/2eiµπΓ(1/2 + ν + µ)

Γ(1 + ν)
(1− e−2ρ)µe−(ν+1/2)ρF (1/2 + µ, 1/2 + ν + µ; 1 + ν; e−2ρ) .

(4.24)

Setting d = 3 and m2 = 0, we obtain

(sinh ρ)(1−d)/2P
(1−d)/2−l
−1/2+ν (cosh ρ) =

1

Γ(3 + l)
− 2(1 + l)2e−2ρ

Γ(3 + l)
+

8e−3ρ

3Γ(l)
+O(e−4ρ) , (4.25)

(sinh ρ)(1−d)/2Q
(1−d)/2−l
−1/2+ν (cosh ρ) = −8

3
(−1)lΓ(1− l)e−3ρ +O(e−5ρ) . (4.26)

For a massless scalar in AdSd+1 (assuming d odd) there are similar expressions in which 3 is replaced

by d. It follows that the holographic two-point function on Sd is given by

〈O(~n)O(~n′)〉 ∝
∞∑
l=0

(2l + d− 1)
Γ(d+ l)

Γ(l)
C

(d−1)/2
l (~n′ · ~n′) . (4.27)

Comparing with (2.42) we obtain

〈O(~n)O(~n′) ∝ 1

(1− cos Θ)d
, (4.28)

which is the correct result for a marginal operator in d dimensions.

The infinite sums defining our holographic two-point functions do not converge. They can be

regulated, however, by using the following generating function for Gegenbauer polynomials

p(t) =
1

(1− 2tx+ t2)ν
=

∞∑
l=0

Cνl (x)tl . (4.29)

Let us check this explicitly for d = 3,

〈O(~n)O(~n′)〉 ∝
∞∑
l=1

l(l + 1)2(l + 2)Ul(cos Θ) , (4.30)

= p′′′′(1) + 10p′′′(1) + 24p′′(1) + 12p′(1) . (4.31)

=
3

(1− x)3
. (4.32)
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In the general situation with a boundary in the bulk, we require a linear combination

fl(ρ) = (sech ρ)1−d/2
[
P

(1−d)/2−l
−1/2+ν (cosh ρ) + blQ

(1−d)/2−l
−1/2+ν (cosh ρ)

]
, (4.33)

where the coefficient bl is determined by imposing either a Neumann (f ′l (ρ∗) = 0) or Dirichlet

(fl(ρ∗) = 0) condition at ρ = ρ∗. As we move ρ∗ → ∞ the boundary disappears, bl → 0 and we

recover the pure CFT.

5 Discussion

We have developed the formalism that relates the spectral decomposition of correlation functions

to the renormalized correlation functions in position space. In highly symmetric situations the

spacetime representation of the two-point function can be deduced from spacetime symmetries.

This is true of both the pure CFT on flat and curved backgrounds as well as CFTs with spacelike

or timelike boundaries. We have checked in all these cases that both representations are related by

integral transforms.

In other situations such as the pseudo-conformal CFT where the exact spacetime form of two-

point function is not known, our formalism allows it to be computed implicitly from a knowledge of

the spectral representation obtained via holography. It would be interesting to try to compare the

results of that calculation with the low-momentum expansion of the two-point functions computed

from effective field theory considerations in [12].

So far our calculations have been restricted to Euclidean signature, although it would be inter-

esting to extend them to the Lorentzian signature, in which the foliation of AdSd+1 by Sd becomes

a foliation by d-dimensional de Sitter slices.
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A Green’s functions and propagators

Here we collect some results about scalar propagators and Green’s functions in various maximally

symmetric spaces.
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A.1 Bulk-to-boundary propagator in anti-de Sitter slicing

The wave equation in the Hd slicing of Hd+1 is

∂2
ρφ+ d tanh ρ ∂ρφ+ sech2 ρ∇2

Hdφ = m2φ . (A.1)

Separating variables by writing φ = f(ρ)g(x) we obtain

cosh2 ρ

[
f ′′(ρ)

f(ρ)
+ d tanh ρ

f ′(ρ)

f(ρ)
−m2

]
+
∇2

Hdg(x)

g(x)
= 0 , (A.2)

and thus we need to solve the following eigenvalue problem

+l(l + d− 1) =
∇2

Hdg(x)

g(x)
, (A.3)

0 =
f ′′(ρ)

f(ρ)
+ d tanh ρ

f ′(ρ)

f(ρ)
−m2 + λ sech2 ρ . (A.4)

Consider the flat slicing of Hd,

ds2
Hd =

dη2 + d~x2

η2
. (A.5)

There are two branches of solutions depending on whether λ ≡ l(l + d − 1) is above or below the

Breitenlohner-Freedman bound [39, 40] for AdSd

λBF = −
(
d− 1

2

)2

. (A.6)

We will focus on the range λ < λBF since this is required to obtain a complete set. Defining the

complex angular momentum

l = −d− 1

2
+ ip , p > 0 , (A.7)

we have

λ = λBF − p2 , (A.8)

and the general solutions are given by the linear combinations

g(~x, η) = η(d−1)/2 {Kip(kη), Iip(kη)} e−i~k·~x , (A.9)

f(ρ) = (sech ρ)d/2
{
P ν−1/2+ip(tanh ρ), Qν−1/2+ip(tanh ρ)

}
, (A.10)

where ν =
√
d2/4 +m2. The modified Bessel functions of imaginary order (MacDonald functions)

satisfy the Sturm-Liouville differential identity

d

dx

[
x
d

dx
Kip(x)

]
− xKip(x) +

p2

x
Kip(x) = 0 , (A.11)
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where the weight function w(x) = 1/x is positive for x > 0. This ensures that they obey the

orthogonality relations [41]

2

π2
p sinh(πp)

∫ ∞
0

dx
Kip(x)Kip′(x)

x
, = δ(p− p′) (A.12)

2

π2x

∫ ∞
0

dp p sinh(πp)Kip(x)Kip(y) = δ(x− y) . (A.13)

The normalized wavefunctions on Hd satisfy∫
ddx
√
gHdψk,p(x)ψk′,p′(x)∗ = δd−1(~k − ~k′)δ(p− p′) , (A.14)

and are given by

ψk,p(~x, η) = η(d−1)/2

√
p sinh(πp)

2d−2πd+1
Kip(kη)e−i

~k·~x , (A.15)

which agrees with [42] for d = 2. Notice that these wavefunctions vanish at η = ∞ because

Kiρ(kη) ∼
√

π
2kηe

−kη, while at small η they behave as ψk,p ∼ η(d−1)/2−ip, which vanishes as η → 0.

The Iiρ(kη) are not permissible wavefunctions because while they vanish at η = 0 they exponentially

diverge as η →∞.

Now consider the spherical slicing of Hd. The equation defining g is now

∂2
rg + (d− 1) coth r ∂rg(r) + csch2 r∇2

Sd−1g = λg . (A.16)

Separating variables as g = Y (n̂)R(r) we then need to solve the following eigenvalue problem

∇2
Sd−1Y

Y
= −l(l + d− 2) , (A.17)

0 = R′′(r) + (d− 1) coth(r)R′(r)−
[
l(l + d− 2) csch2 r + λ

]
R(r) . (A.18)

We find that Y is a hyper-spherical harmonic on Sd−1 and the general solution for R(r) (assuming

λ < λBF) is

R(r) = (sinh r)(2−d)/2
{
P

(2−d)/2−l
−1/2+ip (cosh r), Q

(2−d)/2−l
−1/2+ip (cosh r)

}
. (A.19)

The associated Legendre functions P ν−1/2+iρ(x), with complex degree −1/2 + ip, are called conical

functions and satisfy the completeness relations∫ ∞
0

dp

∣∣∣∣Γ(ip− ν + 1/2)

Γ(ip)

∣∣∣∣2 P ν−1/2+ip(x)P ν−1/2+ip(y) = δ(x− y) , (A.20)∣∣∣∣Γ(ip− ν + 1/2)

Γ(ip)

∣∣∣∣2 ∫ ∞
1

dxP ν−1/2+ip(x)P ν−1/2+ip′(x) = δ(p− p′) . (A.21)

We therefore find that the normalized wavefunctions in the Sd−1 slicing of Hd are [43]

ψp,lm(r,Ω) =
Γ((d− 1)/2 + ip+ l)

Γ(ip)
(sinh r)(2−d)/2P

(2−d)/2−l
−1/2+ip (cosh r)Ylm(Ωd−1) . (A.22)
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We conclude that the general solution of the massive scalar wave equation in AdSd+1 is

φ(ρ, x) =
∑
l,m

∫
dp fp(ρ)ψp,lm(x)φ(0)p,lm , (A.23)

=
∑
l,m

∫
dp fp(ρ)ψp,lm(r,Ω)

[∫
dV ′Hdψ

∗
p,lm(x′)φ(0)(x

′)

]
, (A.24)

=

∫
dV ′Hd

∫
dp fp(ρ)

∑
l,m

ψp,lm(x)ψ∗p,lm(x′)

φ(0)(x
′) , (A.25)

=

∫
dV ′HdK(ρ, x;x′)φ(0)(x

′) , (A.26)

where we have used (2.56) and defined the bulk-to-boundary propagator

K(ρ, x;x′) =
1

2π
(2π sinh `)(2−d)/2

∫
dp fp(ρ)

∣∣∣∣Γ((d− 1)/2 + ip)

Γ(ip)

∣∣∣∣2 P (2−d)/2
−1/2+ip(cosh `) . (A.27)

A.2 Scalar Green’s functions

Here we review the scalar Green’s functions on maximally symmetric spaces.

A.2.1 Sphere Sd+1

We consider the scalar field action

S =
1

2

∫
Sd+1

dd+1x
√
g
[
(∇φ)2 +m2φ2

]
, (A.28)

The standard round metric on the sphere is

ds2 = dθ2 + sin2 θdΩ2
d , (A.29)

where θ ∈ (0, π) and the wave equation for a scalar of mass m is[
∂2
θ + d cot θ∂θ + csc2 θ∇2

Sd −m2
]
φ = 0 . (A.30)

The Green’s function when acted upon by the above differential operator gives a unit normalized

delta function source. We can use rotational invariance to move the delta function source to θ = 0

so that the Green’s function only depends on the θ coordinate, and thus the ∇2
Sd term can be set to

zero. Defining z = 1
2(1 + cos θ) we have dz/dθ = −[z(1− z)]−1/2 and thus the equation of motion

away from coincident points (z 6= 1) becomes

z(1− z)G′′(z) + (d+ 1)(1/2− z)G′(z)−m2G(z) = 0 . (A.31)

Comparing with the hypergeometric equation

z(1− z)F ′′(z) + [c− (a+ b+ 1)z]F ′(z)− abF (z) = 0 (A.32)
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we obtain c = (d + 1)/2, ab = m2 and a + b = d. The last two relations give a(d − a) = m2. The

hypergeometric function equation has three singular points at z = 0, 1,∞. The linearly independent

solutions around each of these points are

z = 0 : F (a, b; c; z) , z1−cF (1 + a− c, 1 + b− c; 2− c; z) ,
z = 1 : F (a, b; 1 + a+ b− c; 1− z) , (1− z)c−a−bF (c− a, c− b; 1 + c− a− b; 1− z) ,
z =∞ : z−aF (a, 1 + a− c; 1 + a− b; z−1) , z−bF (b, 1 + b− c; 1 + b− a; z−1) . (A.33)

For the sphere z ∈ [0, 1], and we expect a singularity at θ = 0 (z = 1) but want to avoid a singularity

at θ = π (z = 0). Smoothness at θ = π implies that we discard the second solution around z = 0

and the first solution around z = 1. Moreover, we can discard the second solution around z = 1

because it is singular at θ = π. The solution is thus the original hypergeometric function,

Ḡ(θ) = F

(
δ, d− δ; d+ 1

2
;
1

2
(1 + cos θ)

)
, (A.34)

where bar indicates that we have dropped an overall normalization factor. The parameter δ (not

to be confused with ∆) is chosen to be the larger root of the quadratic equation δ(d − δ) = m2;

namely,

δ =
d

2
+

√(
d

2

)2

−m2 . (A.35)

This choice is without loss of generality because of the hypergeometric identity

F (a, b; c; z) = F (b, a; c; z) . (A.36)

This Green functions behaves in the expected way for a conformally coupled scalar on Sd+1 (which

has5 m2 = (d+ 1)(d− 1)/4 and δ = (d+ 1)/2),

Ḡ(θ) = F

(
d+ 1

2
,
d− 1

2
;
d+ 1

2
;
1

2
(1 + cos θ)

)
=

(
2

1− cos θ

)(d−1)/2

. (A.37)

For a massless scalar m2 = 0, there is subtlety due to the shift symmetry of the action and the

resultant divergence over the zero mode causes the propagator to be divergent in the massless limit.

If we interpret the shift symmetry as a gauge symmetry, the two-point function turns out to be

the coefficient of m2 in the Taylor expansion of the normalized Green function G(θ) (see [45] for

details). In the case of a massless scalar on S4 we obtain

Ḡ(θ) = 1 +
1

3

[
1

2

z

1− z − log(1− z)
]
m2 +O(m4) , (A.38)

and the divergent normalization factor (∼ 1/m2) selects the second term.

5Recall that a conformally coupled scalar has m2 = d−1
4d

R and R = (d + 1)d is the scalar curvature for the unit

d + 1-sphere.
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It is also interesting to express the Green’s function in terms of the heat Kernel on Sd+1,

K(n̂, n̂′; t) =
1

VSd+1d

∞∑
l=0

(2l + d)C
d/2
` (~n · ~n′)e−t`(`+d) . (A.39)

The Green’s function is given by the Laplace transform of the heat kernel which provides a spectral

decomposition analogous to (2.26),

G(n̂, n̂′;m2) =

∫ ∞
0

dt e−m
2tK(~n, ~n′; t) (A.40)

=
1

VSd+1d

∞∑
l=0

2l + d

l(l + d) +m2
C
d/2
` (~n · ~n′) (A.41)

=
1

VSd+1d

π

sin(πν)
Cd/2ν (−~n · ~n′) , (A.42)

where ν satisfies m2 = −ν(ν + d). We can see that this agrees with the previous calculation by

making use of the representation of the Gegenbauer function in terms of a hypergeometric function

Cd/zν (z) = Cd/zν (1)F

(
−ν, ν + d;

d+ 1

2
;
1− z

2

)
, Cd/2ν (1) =

Γ(ν + d)

Γ(ν + 1)Γ(d)
. (A.43)

A.2.2 Hd+1

The wave equation on Hd+1 can be obtained from that on Sd+1 by analytically continuing the polar

coordinate θ = ir and simultaneously flipping the sign of the curvature, which flips m2 → −m2,

yielding [
∂2
r + d coth r ∂r + csch2 r∇2

Sd−1 −m2
]
φ = 0 . (A.44)

Here r ∈ (0,∞). Defining z = 1
2(1 + cosh r), z ∈ (0,∞), we have dz/dr = [z(z − 1)]−1/2 and the

equation of motion away from coincident points becomes

z(1− z)G′′(z) + (d+ 1)(1/2− z)G′(z) +m2G(z) = 0. (A.45)

The unnormalized Green’s function obtained by analytical continuation from the sphere is given

by

ḠE(`) = F

(
∆, d−∆;

d+ 1

2
;
1

2
(1 + cosh `)

)
, ∆ =

d

2
+

√(
d

2

)2

+m2 , (A.46)

where ` is the usual geodesic distance and ∆ is the larger of the two roots ∆± of the quadratic

equation ∆(d − ∆) = −m2. For large arguments the hypergeometric function has the following

asymptotics (assuming a− b is non-integer)

F (a, b; c; z) = z−a
[
λ1 +O(z−1)

]
+ z−b

[
λ2 +O(z−1)

]
, (A.47)

and thus the above Green’s function behaves asymptotically for large ` as

GE(`) ∼ Ae−∆+` +Be−∆−` . (A.48)
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The second term means that this Green’s function is finite only if m2 ≤ 0. If we consider the first

solution of the hypergeometric equation around z =∞ we find

Ḡ(`) = u∆F

(
∆,∆ +

1− d
2

; 2∆− d+ 1;u

)
, u =

2

1 + cosh `
, (A.49)

which behaves for large ` as G(`) ∼ e−∆`. The second solution around z = ∞ gives the same

expression (A.49) with ∆ = ∆−. We can use the hypergeometric identity ([51] sec. 2.10, p. 109)

F (a, b; c, u) = (1− u)−aF

(
a, c− b; c; u

u− 1

)
, (A.50)

to express (A.49) in the equivalent form

Ḡ(`) = (2v−1)∆F

(
∆,∆ +

1− d
2

; 2∆− d+ 1;−2v−1

)
, v =

1

2
(nµ−n′µ)(nν−n′ν)ηµν = cosh `−1 .

(A.51)

We can also use the hypergeometric identity from sec. 2.1.5 of [51] (p. 66)

F (a, b; 2b, u) =
(

1− u

2

)−a
F

(
a

2
,
a+ 1

2
; b+

1

2
;

u2

(2− u)2

)
, (A.52)

which gives

Ḡ(`) = (2ξ)∆F

(
∆

2
,
∆ + 1

2
; ∆ + 1− d

2
; ξ2

)
, ξ = sech ` . (A.53)

Remembering to remove the factor of 2∆, we fix notation be defining the ‘Feynman’ Green’s function

to be

Ḡ∆(`) = ξ∆F

(
∆

2
,
∆ + 1

2
; ∆ + 1− d

2
; ξ2

)
. (A.54)

If m2 lies in the range

−
(
d

2

)2

< m2 < −
(
d

2

)2

+ 1 , (A.55)

then the most general Green’s function compatible with the AdS isometries is a linear combination

Ḡ(`) = αḠ∆+(`) + βḠ∆−(`) . (A.56)

An important example is provided by a conformally coupled scalar on AdSd+1, which has a mass

given by

m2 = −
(
d

2

)2

+
1

4
, (A.57)

so both ∆± branches are allowed. In fact, conformal covariance of Ḡ(`) actually requires that both

Green’s functions appear in the linear combination α = (d− 1)/2, β = 1. Let us see this explicitly

for a conformally coupled scalar on AdS4 which has ∆+ = 2 and ∆− = 1,

Ḡ(`) = α
1

cosh2 `− 1
+ β

cosh `

cosh2 `− 1
. (A.58)
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We notice that for α = β = 1, Ḡ(`) is proportional to the Weyl transform of the CFT two-point

function from flat space
1

cosh2 `− 1
+

cosh `

cosh2 `− 1
=

1

cosh `− 1
. (A.59)

This boundary condition can be interpreted [47] as allowing the scalar energy to pass through the

AdS4 boundary into a second copy of AdS4. Another interesting interpretation of this boundary

condition is that it is precisely the one for which Ḡ(`) is proportional to the analytic continuation

from the sphere ḠE(`). Using hypergeometric identifies it can be shown that [48]

Ḡ∆(`) = A(d,∆)
[
ḠE(`) + G̃E(`)

]
−B(d,∆)

[
ḠE(`)− G̃E(`)

]
, (A.60)

where G̃E(`) is related to ḠE(`) by taking cosh `→ − cosh ` and

A(d,∆) =
(−1)∆/2Γ(∆− d/2 + 1)Γ

(
d+1−∆

2

)
2Γ (∆/2− d/2 + 1) Γ

(
d+1

2

) , (A.61)

B(d,∆) =
(−1)(∆+1)/2Γ(∆− d/2 + 1)Γ

(
d−∆

2

)
2Γ (∆/2− d/2 + 1/2) Γ

(
d+1

2

) . (A.62)

Demanding that the coefficient of G̃E(`) vanishes leads to the boundary condition

α = −A(d,∆−) +B(d,∆−)

A(d,∆+) +B(d,∆+)
β . (A.63)

Setting ∆± = (d± 1)/2 for a conformally coupled scalar we obtain α/β = (d− 1)/2.

Finally, let us note that there is a subtlety with using the ∆− branch for a conformally coupled

scalar in (A.49) or (A.51). This is because ∆− = (d−1)/2 so the hypergeometric function becomes

F (∆, 0, 0, u) = 1. Instead one should first represent the hypergeometric function using (A.52) and

then take the limit b→ 0.

Let us derive these results from the sum over Brownian motions on the hyperboloid. The heat

kernel on Hd+1 is given by [43]

K(x, y; t) =
1

2π
(2π sinh `)(1−d)/2

∫ ∞
0

dp

∣∣∣∣Γ(d/2 + ip)

Γ(ip)

∣∣∣∣2 P (1−d)/2
−1/2+ip(cosh `)e−t[p

2+d2/4] . (A.64)

For d = 1 we have

K(`; t) =
1

2π

∫ ∞
0

dp p tanhπpP−1/2+ip(cosh `)e−t[p
2+1/4] , (A.65)

and the associated Green’s function is a ring function

G(`;m2) =

∫ ∞
0

dt e−m
2tK(`; t) (A.66)

=
1

2π

∫ ∞
0

dp
p tanhπ

p2 + ν2
P−1/2+ip(cosh `) (A.67)

=
1

2π
Q−1/2+ν(cosh `) , (A.68)
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where now ν =
√

1/4 +m2. The generalization to arbitrary d (ignoring normalization) is given by

Ḡ(`;m2) = (sinh `)(1−d)/2Q
(1−d)/2
−1/2+ν(cosh `) , (A.69)

where ν =
√

(d/2)2 +m2. Let us now express this in terms of the hypergeometric function using

sec. 3.2 of [51] (p. 122), namely,

Qµν (z) = eµiπ2−ν−1π1/2 Γ(ν + µ+ 1)

Γ(ν + 3/2)
z−ν−µ−1(z2 − 1)µ/2F

(
ν + µ+ 2

2
,
ν + µ+ 1

2
; ν +

3

2
; z−2

)
, (A.70)

= eµiπ2−ν−1π1/2 Γ(ν + µ+ 1)

Γ(ν + 3/2)
z−ν−µ−1(z2 − 1)µ/2(1− z−2)−µF

(−ν + µ+ 1

2
,
−ν + µ+ 2

2
; ν +

3

2
; z−2

)
,

(A.71)

where in the second line we have used the Euler transformation

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z) , |z| < 1 , (A.72)

which is applicable because sech l < 1. Replacing µ → (1 − d)/2 and ν → −1/2 + ν we obtain

(A.53).

A.2.3 de Sitter

The Bunch-Davies de Sitter two-point function can be obtained by analytic continuation from the

sphere, θ = it+ π/2. Under this continuation the geodesic distance Θ defined by cos Θ = ~n · ~n′ =

cos θ1 cos θ1 + cosα sin θ1 sin θ2 becomes

cosh ` = − sinh t1 sinh t1 + cosα cos t1 cosh t2 , (A.73)

where we recall that α is the angular separation in the sphere dSd+1
∼= Rt × Sd. The de Sitter

Green’s function can now be expressed in arbitrary coordinates by realizing that cosh ` = ηµνnµn
′
ν .

where ηµν is the (mostly plus) metric for R1,d+1 and n, n′ label two points on the single-sheeted

hyperboloid defined by nµn
µ = 1. The geodesic distance l can be either real (for timelike separated

points) or imaginary (for spacelike separations). In the flat slicing of de Sitter space we have

cosh ` =
η2 + η′2 − (~x− ~x′)2

2ηη′
. (A.74)

The Bunch-Davies propagator has the following asymptotics for large `

GBD(`) ∼ Ae−δ` +Be−(d−δ)` . (A.75)

The observation that the Bunch-Davies propagator contains two asymptotic components has been

used to argue that it cannot be defined as a sum over trajectories in de Sitter space. The alternative

proposal is to take [46]

GdS(n, n′;m2) = GAdS(n, n′;−m2) ∼ Ae−δ` . (A.76)
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B Differential regularization

We have seen in Section (2.1) that the hard-cut off regulator introduces both power law and loga-

rithmic divergences in the CFT two-point function on flat space. There should exist a regularization

scheme in which only the logarithmic divergences appear, since the only unambiguous information

present in the divergences is contained in the coefficients of these logarithms. The differential reg-

ularization of [23] is such a scheme. In this appendix we review the calculation of these logarithmic

divergences which appeared in [24]. Consider the two-point function of an operator of dimension

∆. We begin by expressing 1/|x|2∆ in terms of an arbitrary number of Laplacians �k+1,

1

|x|2∆
=

1

22k+2

Γ(∆− k − 1)

Γ(∆)

Γ(∆− k − d/2)

Γ(∆− d/2 + 1)
�k+1 1

|x|2(∆−k−1)
. (B.1)

We notice that the coefficient diverges whenever ∆ = d/2 + k where k = 0, 1, 2, . . .. Letting

∆ = d/2 + k + ε we obtain

1

|x|2∆
=

1

ε(d+ 2ε− 2)

1

22k+1

Γ(d/2 + ε)

Γ(d/2 + k + ε)

Γ(1 + ε)

Γ(k + 1 + ε)
�k

(
�

1

|x|d−2+2ε

)
. (B.2)

As ε → 0 two things happen; the object in parentheses approaches a delta function and the

coefficient diverges. Expanding in ε and keeping only the leading divergent term we find

1

|x|2∆
∼ −VSd−1

1

ε

1

22k+1

Γ(d/2)

Γ(d/2 + k)

1

k!
�kδ(d)(x) . (B.3)

We therefore define the renormalized two-point function as

〈O∆(x)O∆(0)〉 ≡ lim
ε→0

[
1

|x|2∆
+ VSd−1

µ2ε

ε

1

22k+1

Γ(d/2)

Γ(d/2 + k)

1

k!
�kδ(d)(x)

]
, (B.4)

where we have introduced the mass scale µ to keep the equation dimensionally correct. As an

example, consider d = 4 and ∆ = 2 (k = 0),

〈O2(x)O2(0)〉 = lim
ε→0

[
1

x4
+
π2µ2ε

ε
δ4(x)

]
(B.5)

= lim
ε→0

[
1

x4
+

(
π2

ε
+ 2π2 logµ

)
δ4(x)

]
(B.6)

so

µ
∂

∂µ
〈O2(x)O2(0)〉 = 2π2δ4(x), (B.7)

in agreement with (2.13) obtained using the cutoff method.

We can re-express the delta function as a derivative to obtain an alternative expression for the

two-point correlator

〈O∆(x)O∆(0)〉 = − 1

d− 2

1

22k+1

Γ(d/2)

Γ(d/2 + k)

1

k!
�k+1 1

|x|d−2
log(x2µ2) . (B.8)
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To compute the Fourier transform we use6 (see Eq. (A.2) of [23]),∫
ddx eipx

1

|x|d−2
log(µ2x2) = − 4πd/2

Γ(d/2− 1)

1

p2
log(p2/µ̄2), µ̄ ≡ 2µ/γ. (B.9)

It follows that

〈O∆(k)O∆(−k)〉 ∝ p2k log(p2/µ̄2). (B.10)

References

[1] C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, JHEP 1209, 091

(2012) [arXiv:1206.5218 [hep-th]].

[2] T. Takayanagi, Phys. Rev. Lett. 107, 101602 (2011) [arXiv:1105.5165 [hep-th]].

[3] M. Fujita, T. Takayanagi and E. Tonni, JHEP 1111, 043 (2011) [arXiv:1108.5152 [hep-th]].

[4] M. Nozaki, T. Takayanagi and T. Ugajin, JHEP 1206, 066 (2012) [arXiv:1205.1573 [hep-th]].

[5] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]

[hep-th/9711200].

[6] J. L. Cardy, hep-th/0411189.

[7] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [hep-ph/9905221].

[8] J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005)

[hep-ph/0501128].

[9] A. Karch and L. Randall, JHEP 0105, 008 (2001) [hep-th/0011156].

[10] V. A. Rubakov, JCAP 0909, 030 (2009) [arXiv:0906.3693 [hep-th]].

[11] P. Creminelli, A. Nicolis and E. Trincherini, JCAP 1011, 021 (2010) [arXiv:1007.0027 [hep-th]].

[12] K. Hinterbichler and J. Khoury, JCAP 1204, 023 (2012) [arXiv:1106.1428 [hep-th]].

[13] K. Hinterbichler, A. Joyce and J. Khoury, JCAP 1206, 043 (2012) [arXiv:1202.6056 [hep-th]].

[14] K. Hinterbichler, J. Stokes and M. Trodden, JHEP 1501, 090 (2015) [arXiv:1408.1955 [hep-

th]].

[15] M. Libanov, V. Rubakov and S. Sibiryakov, Phys. Lett. B 741, 239 (2015) [arXiv:1409.4363

[hep-th]].

[16] M. Libanov and V. Rubakov, arXiv:1502.05897 [hep-th].

[17] H. Osborn and A. C. Petkou, Annals Phys. 231, 311 (1994) [hep-th/9307010].

6This formula requires differential regularization to make sense.

34



[18] G. Mack, Commun. Math. Phys. 55, 1 (1977).

[19] I. Y. Aref’eva and I. V. Volovich, Phys. Lett. B 433, 49 (1998) [hep-th/9804182].

[20] I. Y. Aref’eva and I. V. Volovich, hep-th/9803028.

[21] S. de Haro, S. N. Solodukhin and K. Skenderis, Commun. Math. Phys. 217, 595 (2001) [hep-

th/0002230].

[22] K. Skenderis, Class. Quant. Grav. 19, 5849 (2002) [hep-th/0209067].

[23] D. Z. Freedman, K. Johnson and J. I. Latorre, Nucl. Phys. B 371, 353 (1992).

[24] A. Petkou and K. Skenderis, Nucl. Phys. B 561, 100 (1999) [hep-th/9906030].

[25] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

[26] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

[27] S. R. Coleman, Commun. Math. Phys. 31, 259 (1973).

[28] S. S. Gubser and I. R. Klebanov, Nucl. Phys. B 656, 23 (2003) [hep-th/0212138].

[29] O. Aharony, D. Marolf and M. Rangamani, JHEP 1102, 041 (2011) [arXiv:1011.6144 [hep-th]].

[30] A. Polyakov, Z. H. Saleem and J. Stokes, Nucl. Phys. B 893, 54 (2015) [arXiv:1412.1437

[hep-th]].

[31] M. Bander and C. Itzykson, Rev. Mod. Phys., 38, 330 (1966)

[32] O. Aharony, O. DeWolfe, D. Z. Freedman and A. Karch, JHEP 0307, 030 (2003) [hep-

th/0303249].

[33] N. Vilenkin, Special functions and the theory of group representations, American Mathematical

Society, Rhode Island 1968.

[34] O. DeWolfe, D. Z. Freedman and H. Ooguri, Phys. Rev. D 66, 025009 (2002) [hep-th/0111135].

[35] M. Alishahiha and R. Fareghbal, Phys. Rev. D 84, 106002 (2011) [arXiv:1108.5607 [hep-th]].

[36] L. Durand1, P. M. Fishbane and L. M. Simmons Jr., J. Math. Phys. 17, 1933 (1976)

[37] J. L. Cardy, Nucl. Phys. B 240, 514 (1984).

[38] D. M. McAvity and H. Osborn, Nucl. Phys. B 455, 522 (1995) [cond-mat/9505127].

[39] P. Breitenlohner and D. Z. Freedman, Annals Phys. 144, 249 (1982).

[40] P. Breitenlohner and D. Z. Freedman, Phys. Lett. B 115, 197 (1982).

[41] A. Passian, H. Simpson, S. Kouchekian, S. B. Yakubovic, On the orthogonality of the Mac-

Donald’s functions, J. Math. Anal. Appl. doi:10.1016/j.jmaa.2009.06.067

35



[42] C. Grosche and F. Steiner, Phys. Lett. A 123, 319 (1987).

[43] C. Grosche and F. Steiner, Annals Phys. 182, 120 (1988).

[44] G.S. Pogosyan and A. Yakhno, Physics of Atomic Nuclei, 74, 1062 (2011).

[45] A. Folacci, Phys. Rev. D 46, 2553 (1992) [arXiv:0911.2064 [gr-qc]].

[46] A. M. Polyakov, Nucl. Phys. B 797, 199 (2008) [arXiv:0709.2899 [hep-th]].

[47] M. Porrati, JHEP 0204, 058 (2002) [hep-th/0112166].

[48] C. P. Burgess and C. A. Lutken, Phys. Lett. B 153, 137 (1985).

[49] Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. 7th edn. Jeffrey, A.

and Zwillinger, D. (eds.) Academic Press, London (2007)

[50] W. Mueck and K. S. Viswanathan, Phys. Rev. D 58, 041901 (1998) [hep-th/9804035].

[51] H. Bateman, Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953.

36


