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Abstract: We study soft theorems in a broader context, their universality in effective

field theories and string theory as well as continue the analysis of their fate at loop-level.

In effective field theories with F 3 and R3 interactions, the soft theorems are not modi-

fied. However for gravity theories with R2φ interactions, the sub-sub-leading order soft

graviton theorem, which is beyond what is implied by the extended BMS symmetry, re-

quires modifications at tree level for non-supersymmetric theories, and at loop level for

N ≤ 4 supergravity due to anomalies. For open and closed superstrings at finite α′, via

explicit calculation for lower-point examples as well as world-sheet OPE analysis for ar-

bitrary multiplicity, we show that scattering amplitudes satisfy the same soft theorem as

their field-theory counterpart. This is no longer true for closed bosonic or heterotic strings

due to the presence of R2φ interactions. We also consider loop corrections to gauge theories

in the planar limit, where we show that tree-level soft gluon theorems are respected at the

integrand level for 1 ≤ N ≤ 4 SYM. Finally we discuss the fate of soft theorems for finite

loop amplitudes in pure Yang-Mills theory and gravity.
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1 Introduction

It is well known that scattering amplitudes in gauge and gravity theories display universal

behavior as one of the external leg becomes soft. Historically, soft theorems at tree level

were derived using Feynman diagrams, at leading order [1], and at sub-leading orders for

soft photons [2, 3], and for soft gravitons [4]. More recently soft theorems have been revived

for gravity [5] and for Yang-Mills theory [6], using BCFW recursion relations [7, 8] for tree

amplitudes1. One of the motivations for studying soft graviton theorems is to understand

their relations with the conjectured new infinite dimensional symmetry of gravitational

scattering amplitudes [13–19], extending the Bondi, van der Burg, Metzner, and Sachs

(BMS) symmetry [20] at null infinity. Given all these different ways of motivating and

deriving soft theorems, it is natural to ask if these theorems are respected in more general

gauge and gravity theories, including string theory.

Furthermore, the soft behavior of loop-level amplitudes has been studied at leading

order [21–23] and more recently at sub-leading orders [24, 25], for both gauge theories and

gravity. It is well known that the leading soft graviton theorem is protected from loop cor-

rections [23], but sub-leading soft graviton theorems and soft gluon theorems both require

corrections at loop level. On the other hand, it has been argued in [26] that the distribu-

tional nature of the soft limit implies an alternative way of studying soft behaviors at loop

level: one should first expand around the soft limit and then perform the loop integrals for

the amplitude, which involves an expansion in the regulator. With this prescription, it has

been shown in [26] that the sub-leading soft theorem is not renormalized in the example of

one-loop five-point amplitude in N = 8 supergravity. Note that for the purpose of obtain-

ing the correct infrared behavior for scattering amplitudes, it is necessary to abide by the

usual procedure of regulating before taking the soft-limit [24]. The prescription prescribed

by [26] instead serves as constraint one can impose on D-dimensional integrands.

In this paper we will continue the investigation of soft theorems along these two direc-

tions: their universality in effective field theories and string theory, as well as their fate at

loop level and its implications. First we consider the question of how universal are they

at tree level. Naively one would expect that, sub-leading soft theorems may fail in any

effective field theory of gauge or gravity if the three-point interaction is modified. In section

2, we will study effective field theories with F 3 and R3 interactions, and show that soft

theorems are not altered in theses cases. A byproduct of our study is a BCFW recursion

relation for F 3 amplitudes, written in momentum-twistor space in a form very similar to

that of Yang-Mills amplitudes. However, for R2φ interactions, the sub-sub-leading soft

graviton theorem needs modifications at tree level. Note that while such interactions can

be suppressed at tree level via supersymmetry, they are generated in N ≤ 4 supergravity

due to the presence of U(1) anomalies [27]. This modification does not contradict with that

implied by BMS symmetry, since the latter only predicts universality for the sub-leading

soft behavior.

1The sub-leading soft graviton theorem was also proposed in [9]. Both gauge and gravity soft theorems

have been proven to hold in arbitrary dimensions [10, 11], based on scattering equations [12].
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A more interesting aspect of universality is the soft theorems for tree-level string am-

plitudes. Although α′-expansions of string amplitudes are coded in effective field theories,

there is a priori no Feynman-diagram-like argument for soft theorems at finite α′. In

section 3, we will show, by explicit computations using four-dimensional kinematics for

the cases of four and five points (six-point computation will be present in Appendix B),

that open superstring amplitudes on the disk satisfy the same soft gluon theorem as the

corresponding gauge theory amplitudes. Using KLT relations [28], we will also verify the

soft graviton theorem for four- and five-point closed superstring amplitudes. The above

result can be understood via BCFW recursion relations for string amplitudes. Combin-

ing BCFW recursion relations with the crucial observation that only massless states can

contribute to the soft limit, we will argue generally that amplitudes for both bosonic and

super open string theory satisfy the soft theorems. Whereas supersymmetric closed string

theory satisfies the soft theorems, and sub-sub-leading term in soft theorem for bosonic

closed-string amplitudes needs corrections.

We confirm the above analysis for general multiplicity from a world-sheet perspective.

We will show that the soft behaviour is captured by the perator product expansion (OPE)

of the soft vertex operator with adjacent vertex operators in the open string case and with

any hard vertex operator in the closed string case. BRST symmetry will play a crucial

role in the identification of the relevant terms in the OPE and in the choice of the picture

for the colliding vertex operators. We will argue that soft theorems hold both in D = 10

and in lower dimension where gauge boson and graviton vertex operator simply involve the

identity operator of the CFT2 governing the dynamics of the internal space.

Finally, we will also examine loop-level soft theorem using the prescription of [26]. In

section 5, we will argue that for gauge theories in the planar limit, loop-level soft gluon

theorems can be made manifest already at the integrand level. In particular, we will show

that the planar integrands for N = 4 super Yang-Mills theory (SYM), determined by loop-

level BCFW recursion relations [29], satisfy the soft theorem to all loop orders, exactly as

the tree amplitudes. For 1 ≤ N < 4 SYM, we show explicitly that the same is true for one-

loop MHV amplitudes in the CSW representation. In practice, our analysis is simplified

significantly by using momentum-twistor variables [30] and choosing to solve momentum

conservation in a canonical way for the planar case.

For non-supersymmetric Yang-Mills theory or theories of gravity, no such representa-

tion of the integrands is known, thus one has to verify the soft theorems in the same way

as in [26], i.e. performing the integrals after the soft expansion of the integrand. In section

5.2, we will carefully examine the integrals from the soft expansion of all-plus one-loop in-

tegrands in both Yang-Mills and gravity, and show that both soft theorems are respected,

i.e. the all-plus integrand has the interesting property that taking the soft-parameter and

IR-regulator to zero in different orders commute. This is no longer the case for the single-

minus amplitude as observed in [25]. For the latter, we demonstrate that the violation of

tree-level soft theorem can be tied to the presence of conformal anomalies at loop level.

Added Note: In the completion of this manuscript, the work by Schwab [31] appeared

on the arXiv which has some overlap with the results in section 3.1 and Appendix B.
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1.1 Review

We begin with a brief review of soft theorems for tree-level amplitudes in gauge and gravity

theories. The n-point amplitude involving the emission of a soft photon can be expanded

in terms of the soft momentum s. The leading and sub-leading terms in this expansion

are given by universal operators acting on the (n−1)-point amplitude, a fact that is well

understood ever since the work of Low [2] who recognized this as a simple consequence of

gauge invariance. To see this, separate the Feynman diagrams into two classes:

(a) (b) .

Diagram (a) has the soft photon connected to an external line which contributes to

the leading divergence in the soft limit, proportional to
∑

i ei(ε·ki)/(s·ki) multiplied by the

remaining hard amplitude with one leg slightly off-shell. Sub-leading terms are distributed

between diagram (a) and (b) where the soft photon is connected to an internal line of

the Feynman diagram. Using the fact that the sub-leading contribution from diagram (a)

violates the Ward identity, which is generated by expanding the (n−1)-point amplitude

near s = 0, gauge invariance requires the sub-leading contribution from diagram (b) to be

given by differential operators acting on the (n−1)-point amplitude.

This observation allowed Low to express the sub-leading soft limit as a universal soft

operator acting on the (n−1)-point amplitude. For further extension of Low’s result see [3].

Generalizing Low’s argument to gravity, Gross and Jackiw [4] obtained soft theorems for

gravity accurate up to terms of order O(s2), to be compared with O(s) for gauge theory.

Thus the tree-level soft theorems for gravity is universal up to sub-sub-leading in s. For a

more recent analysis see [9].

An alternative way to derive the soft theorems is by using BCFW recursion relations

for Yang-Mills and gravity, as was done in [5, 6]. Consider the BCFW representation for

tree-level gravity amplitude and choose the soft leg to be one of the shifted lines. If the

soft graviton has positive helicity, shift the spinors holomorphically,

λŝ = λs + zλn , λ̃n̂ = λ̃n − zλ̃s , (1.1)

the BCFW representation is given by:

Mn+1(1, 2, . . . , n, s+) =
∑

1≤i<n
M3(ŝ+, i,−K̂is)

1

K2
is

Mn(K̂is, . . . , n̂) +R , (1.2)

where K̂is = ki + kŝ, and R represents terms arising from factorization poles 1/(ks +K)2

with K a non-null momentum. The holomorphic soft limit is achieved by scaling λs → δλs.

It was shown explicitly in [5] that the function R is finite under the holomorphic soft limit,

thus

Mn+1(1, 2, . . . , n, {δλs, λ̃s}+)

∣∣∣∣
div

=
∑

1≤i<n
M3(ŝ+, i,−K̂is)

1

K2
is

Mn(K̂is, · · · , n̂)

∣∣∣∣
div

, (1.3)
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where each term on the RHS can be written as:

M3(ŝ+, i,−K̂is)
1

K2
is

Mn(K̂is, . . . , n̂) = SsiMn({λi, λ̃i + δ
〈sn〉
〈in〉

λ̃s}, . . . , {λn, λ̃n + δ
〈si〉
〈ni〉

λ̃s}) ,

(1.4)

where “. . .” indicate un-shifted {λ , λ̃}, and Ssi is the “inverse-soft-function” that is inde-

pendent of the helicity of the i-th leg:

Ssi =
1

δ3

〈ni〉2[is]

〈ns〉2〈is〉
. (1.5)

Expanding Mn(K̂is, · · · , n̂) in δ, it is straight forward to obtain the divergent part of the

holomorphic soft-limit

Mn+1(1, . . . , n, {δλs, λ̃s}+)

∣∣∣∣
div

=

(
1

δ3
S

(0)
G +

1

δ2
S

(1)
G +

1

δ
S

(2)
G

)
Mn (1.6)

where the operator S
(k)
G is defined as:

S
(k)
G =

n−1∑
i=1

1

k!
Ssi
(
〈sn〉
〈in〉

λ̃s ·
∂

∂λ̃i
+
〈si〉
〈ni〉

λ̃s ·
∂

∂λ̃n

)k
. (1.7)

Note that here, Mn is still subject to the (n+1)-pt amplitude momentum conservation,

which is solved by expressing two λ̃’s in terms of the remaining (n−1) ones.

Now we turn to the soft gluon theorem. Throughout the paper, we will consider color-

ordered, partial amplitudes for gluons (in any gauge theories and open-string theories):

An({1a1 , 2a2 , . . . , nan}) =
∑

σ∈Sn/Zn

Tr(T a1σT a2σ · · ·T anσ )An(1σ, 2σ . . . nσ) (1.8)

where A denotes the full, color-dressed amplitude and A the corresponding color-ordered

amplitude. This is the color-decomposition at tree level, but as we will restrict to gauge

theories in the planar limit whereby Nc →∞, eq. (1.8) applies to loop amplitudes as well.

The soft gluon theorem can be derived in a parallel fashion with gravity by using the

BCFW representation of tree-level color-ordered amplitudes: the divergent term in the

holomorphic soft limit is again isolated into the two particle channel (only one term i = 1

contributes because of the color ordering), and we find

An+1({λ1, λ̃1} , . . . , {λn, λ̃n} , {δλs, λ̃s}+)

∣∣∣∣
div

=
∑
k=0,1

1

δ2−kS
(k)
YM(n s 1)An({λ1, λ̃1} , . . . , {λn, λ̃n}) (1.9)

with

S
(k)
YM(n s 1) =

1

k!

〈n1〉
〈ns〉〈s1〉

(
〈sn〉
〈1n〉

λ̃s ·
∂

∂λ̃1

+
〈s1〉
〈n1〉

λ̃s ·
∂

∂λ̃n

)k
. (1.10)
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So for tree-level amplitudes in Yang-Mills theories, only S
(0)
YM and S

(1)
YM are universal. Note

that if we choose to solve momentum conservation by expressing λ̃1, λ̃n in terms of linear

combinations of the remaining anti-holomorphic spinors, the sub-leading soft terms actu-

ally vanishes! This prescription is more natural for planar amplitudes, especially when

expressed using momentum twistors, as we will see in section 2. In fact, in momentum

twistors representation it is often convenient to consider anti-holomorphic soft limits of a

positive helicity gluons. The corresponding soft behaviour can be straightforwardly ob-

tained from eq.(1.9) and eq.(1.10) via little group rescaling:

An+1({λ1, λ̃1} , . . . , {λn, λ̃n} , {λs, δλ̃s}+)

=
〈n1〉
〈ns〉〈s1〉

An({λ1, λ̃1} , . . . , {λn, λ̃n}) + 0× δ +O(δ2) , (1.11)

where the 0 comes from our convention of solving momentum conservation through λ̃1, λ̃n.

The derivation of the soft theorem from the recursion relation mirrors the work by

Low, in that the contribution stems from two-particle channels that involve the soft leg.

While in Low’s work the sub-leading contribution also stems from diagrams where the

soft leg is attached to an internal line, they are controlled by the leading contribution via

Ward identities. Since the representation based on recursion relations uses gauge invariant

building blocks, it is not a surprise that only the aforementioned two-particle channels

contribute.

2 Soft theorems for higher-derivative interactions

In this section, we would like to consider to which extent the soft theorem is universal

for tree-level scattering amplitudes of Yang-Mills and gravity theories coupled matter, or

effective field theories with higher-dimensional operators. For the later, it can be viewed

as posing the same question for tree-level string-theory amplitudes in the α′ expansion.

Recall that from Low’s work the soft gluon/graviton behavior of perturbative scattering

amplitudes is determined by the three-point interaction of the theory and gauge invari-

ance, thus one expects that only higher-dimensional operators that modify the three-point

interaction is relevant to the discussion. While such interactions are generically suppressed

in the soft limit by extra power of soft invariants, this does not rule out the possibility of

modification in the sub-leading behaviors.

Here we will only consider higher-dimensional operators that involve massless fields.

For massive fields, the soft behavior is non-trivial at orders beyond that under discussion

for soft theorems. With that in mind we will consider amplitudes arising from F 3, R3 and

R2φ, where the scalar field is a massless dilaton.

2.1 Amplitudes from F 3

We first consider amplitudes that are generated by the self-dual contribution of a single

F 3 operator, which have been studied for general multiplicity in [32]. Here, by self-dual we

are referring to the part of the F 3 that produces an all-minus three-point amplitude.
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CSW representation of F 3 Amplitudes

Using a CSW representation, the n-point k-minus helicity amplitude is given by a single

F 3
SD vertex connected with k−3 YM MHV vertices [47]. Thus there are two types of vertices

in the CSW rule: (1) a white vertex representing a F 3
SD vertex, with its associated “MHV”

building block given by:

j

k l

:
〈jk〉2〈kl〉2〈lj〉2∏n

i=1〈ii+ 1〉
(2.1)

where the lines j, k, l are the negative helicity legs, while the dots represent positive helicity

legs. (2) a black vertex representing the usual YM MHV vertices:

j

k

:
〈jk〉4∏n

i=1〈ii+ 1〉
. (2.2)

Here we will consider diagrams with only one white vertex. For example the NMHV

amplitude consists of two diagrams (here, NkMHV refers to k + 3 minus helicity legs):

(a) :

m

mm1

2

3

i

j

m 4

, (b) :

m

m

m

m1

2

3

4

i

j

(2.3)

where the arrows on the propagator indicate to which vertex the negative helicity is associ-

ated. The dotted lines simply represents the legs that are adjacent to the propagator, and

can be one of the minus legs. It is convenient to pull out an overall Parke-Taylor factor,

so that the contributions from the above two diagrams are given by:

(a) :
1∏n

l=1〈ll+1〉

(
〈m1m4〉4

〈i−1P 〉〈Pj〉
〈i−1i〉〈j−1j〉

P 2

〈m2m3〉2〈m3P 〉2〈Pm2〉2

〈Pi〉〈j−1P 〉

)
(b) :

1∏n
l=1〈ll+1〉

(
〈m1P 〉4

〈i−1P 〉〈Pj〉
〈i−1i〉〈j−1j〉

P 2

〈m2m3〉2〈m3m4〉2〈m4m2〉2

〈Pi〉〈j−1P 〉

)
. (2.4)

where 〈P | = P |µ] for some reference spinor |µ].

F 3 amplitudes in momentum twistor space and recursions

To facilitate the analysis, we will now convert the expressions into momentum twistor

space [30]. This will allow us to reveal the fact that amplitudes of F 3 operator with at

least one plus helicity leg respects a BCFW recursion. We write these (super) momentum

twistors (with 4|N components) as Za = (ZIa |ηAa ) = (λαa , µ
α̇
a |χAa ) for a = 1, . . . , n, where

for the bosonic part ZIa , the first two components are the holomorphic spinors λα and
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the remaining two components can be used to express the anti-holomorphic spinors λ̃α̇ as

follows:

λ̃α̇a =
µα̇a−1

〈a a+1〉
+
〈a−1 a+1〉µα̇a
〈a−1 a〉〈a a+1〉

+
µα̇a+1

〈a−1 a〉
, (2.5)

for a = 1, . . . , n with a± 1 modulo n. The Grassmann variables ηA can be written as the

same linear combination of the Grassmann part of the twistors χA as λ̃α̇ of µα̇.

The momentum twistor space CSW prescription for on-shell spinors are as follows.

Consider a propagator connecting two vertices defined by two regions (i,j). In momentum

twistor space, they are given by:

i

j

: 〈aP 〉 ≡ 〈a[i〉〈i−1]jj−1∗〉
〈ii−1〉〈jj−1〉

= −〈a[j〉〈j−1]ii−1∗〉
〈ii−1〉〈jj−1〉

(2.6)

where the equality holds due to the fact that the reference twistor Z∗ = (0, µ, 0). If two

propagators are connected to the same vertex and adjacent, one then has:

i

j k

P P1 2 〈P1P2〉 =
〈ii−1 (∗jj−1) ∩ (∗kk−1)〉
〈ii−1〉〈jj−1〉〈kk−1〉

≡ −〈∗jj−1[i〉〈i−1]kk − 1∗〉
〈ii−1〉〈jj−1〉〈kk−1〉

=
〈∗kk−1î−1〉

〈ii−1〉〈jj−1〉〈kk−1〉
(2.7)

where in the final line î−1 ≡ (ii−1)∩(∗jj−1). These will be the fundamental identifications

used throughout.

Using these identities, we find that the amplitudes in eq.(2.4) can be rewritten in the

following succinct form:

(a) :
1∏n

l=1〈ll+1〉
〈m1m4〉4 [ii−1jj−1∗] 〈m2m3〉2〈m3î−1〉2〈î−1m2〉2

(b) :
1∏n

l=1〈ll+1〉
〈m1î−1〉4 [ii−1jj−1∗] 〈m2m3〉2〈m3m4〉2〈m4m2〉2 , (2.8)

where [ii−1jj−1∗] is defined as:

[abcde] ≡ 1

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (2.9)

Thus for any CSW diagram, one simply replace each propagator by a factor of [∗ii−1jj−1],

while each black or white vertex is dressed with:

j

k l

: 〈jk〉2〈kl〉2〈lj〉2,

j

k

: 〈jk〉4 . (2.10)

Equipped with the momentum twistor space representation, we will now show that if

there is at least one plus helicity leg, the result from CSW construction satisfies the BCFW
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recursion relation similar to that in Yang-Mills theory (we use R to represent amplitudes

with an overall (
∏
i〈ii+ 1〉)−1 stripped off):

RF
3

k, n = RF
3

k, n−1 +
∑
j

[n−1, n, 1, j−1, j]RF
3

k′, j(1, · · · , Ij)RF
2

k−1−k′, n+2−j(−Ij , · · · , n̂j)

+ (F 3 ↔ F 2) , (2.11)

where 2 < j < n, Ij = (j − 1j) ∩ (n−1, n, 1), n̂j = (n−1, n) ∩ (1, j−1, j), and similar to

above, we have assumed leg n to be positive-helicity. Note that in momentum space this

corresponds to the [n−1n〉 shift, for which we have explicitly checked that up to six points,

the amplitudes listed in [32] indeed vanish at z →∞.

The proof proceeds exactly as in N = 4 SYM [33], namely by judiciously choosing the

reference twistor, one can show that the difference between the n+1- and n-point CSW

representation, RF
3

k, n − RF
3

k, n−1, is given by the last two terms in eq.(2.11). First note

that as the twistor Zn is a positive helicity leg, it generically does not appear in the two

expressions, and hence most of the terms cancel immediately. Let us first consider NMHV

tree, where the mismatch is given simply by

RF
3

k, n −RF
3

k, n−1 =

∑
j

[∗, n−1, n, j − 1, j]X̄(n−1, n, j) +
∑
j

[∗, n, 1, j − 1, j]X̄(n, 1, j)

−
∑
j

[∗, n−1, 1, j − 1, j]X̄(n−1, 1, j)

 , (2.12)

where X̄ simply denote the vertex factors for each diagram. Now if we take Z∗ = Z1, the

last two terms vanish. To be more precise, while the denominator of [∗, n−1, 1, j − 1, j]

contains three zeroes, the factor X̄ contains four factors of 〈aiP 〉 = 〈ai[j〉〈j−1]n1∗〉 which

vanishes as ∗ = 1. Thus the CSW representation for the NMHV tree-level amplitude is

simply given as

RF
3

k, n = RF
3

k, n−1 +
∑
j

[n−1, n, 1j − 1, j]X̄(n−1, n, j) . (2.13)

Note that the factors in X̄ which involves the propagator leg |P 〉 is evaluated at (j− 1j)∩
(n−1, n, 1), i.e. it is given by Ij . Furthermore, since leg n has positive helicity, it does not

appear explicitly in the above representation and we are free to make the identification for

n̂j .

For general NkMHV amplitude, the proof of equivalence again simply follows that of

N = 4 SYM given in [33]. The classification of all CSW digram is given by a collection of 2k

set of region momenta, separated into k non-crossing pairs. The difference RF
3

k, n−RF
3

k, n−1 is

given by CSW diagrams where one of the non-crossing pairs are (2, i).The remaining pairs

factorize. Distinct choices of i can then be mapped into distinct helicity distributions in

the BCFW recursion. Again the only difference between the N = 4 and the present case

is the presence of the X̄ factors arising from each vertex.
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Soft limits of F 3 amplitudes

We now consider the soft limits of F 3 amplitudes. Note that the recursion formula derived

from above assumes that there is at least one plus helicity leg, n. This is no longer valid for

the all-minus amplitude that is also generated by F 3
SD. We will first treat such amplitudes

separately. The limit to analyze is the anti-holomorphic soft limit, whose tree-level behavior

is simply the complex conjugate of eq.(1.9), and thus starts at δ−2.

Fortunately, it is straight-forward to study the anti-holomorphic soft minus gluon limit

in the CSW representation, since the only place where anti-holomorphic spinors appear in

the CSW representation is in the propagators and 〈P |. With generic reference spinor, the

only singularities that appear are associated with the soft leg attached to a three-point

vertex with another external leg. If the three-point vertex is an F 3, then one has (with the

propagator included):

P

1

i

:
〈1P 〉〈Pi〉

[i1]
→ 〈1i〉[iη][η1]〈1i〉

[i1]

which is finite for the soft leg 1 and thus does not contribute to the leading or subleading

soft behaviour. This is just a reflection of the fact that F 3 operator is higher dimensional

and suppresses the soft divergence. If the three-point vertex is the usual MHV vertex, then

the soft theorem simply follows from Low’s analysis (or by expanding MHV diagrams to

the subleading order).

Now consider the recursion in eq.(2.11), and take the positive helicity leg-n to be soft.

We approach the soft limit by deforming

Zn → αZn−1 + βZ1 + δZs (2.14)

where δ is the soft parameter. To see why this corresponds to the soft limit, from eq. (2.5),

observe that the deformation in eq.(2.14) leads to

λ̃n = δ
〈n−11〉µs + 〈1s〉µn−1 + 〈sn−1〉µ1

〈1n−1〉2αβ
, (2.15)

and thus implies that this corresponds to the anti-holomorphic soft limit. Furthermore,

since λ̃a is determined by the twistors (Za−1, Za, Za+1), the deformation in eq.(2.14) cor-

responds to deforming λ̃n−1 and λ̃1 as well, i.e. the momentum conservation is preserved

by having all a 6= (n−1, 1) λ̃a’s fixed and solving λ̃n−1 and λ̃1 in terms of them. This is

precisely the prescription that leads to vanishing sub-leading soft corrections, as discussed

in sec.1.1, which can now be written in momentum-twistor space:

n points : {Z1, . . . , Zn−1, Zn = αZn−1+βZ1+δZs}; (n−1) points : {Z1, . . . , Zn−1}.
(2.16)

In the soft-limi the shifted momentum twistor Ij behave as Ij → δ (j−1j) ∩ (n−1, s, 1),

while all other variables remain unchanged.2 Let us first look at the factorization terms in

2Except for n̂j = (n−1, n) ∩ (1, j−1j) +O(δ). But n̂j never explicitly appear in the expression.
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eq.(2.11). The pre-factor [n, 1, 2, j−1, j] behaves as δ−2:

[n−1, n, 1, j−1, j] = − 1

δ2αβ〈n−1 1 s j−1〉〈n−1 1 s j〉〈n−1 1 j−1 j〉3
+O(δ−1) . (2.17)

On the other hand, Ij appears in the tree amplitude on both sides as 〈Ijx〉 with degree 4

in 〈Ij |. Thus the overall result of the factorization terms is of degree O(δ2). Thus in the

anti-holomorphic soft limit, we find

RF
3

k, n = RF
3

k, n−1 +O(δ2) . (2.18)

Putting back the stripped Park-Taylor factor (
∏
i〈ii+1〉), we see the above result is exactly

the tree-level Yang-Mills soft theorem in eq.(1.11).

2.2 Higher-derivative gravitational interactions and their soft limits

From the previous discussion, we have seen both via heuristic arguments and explicit anal-

ysis that higher derivative operators do not modify soft theorems due to their suppression

at small momenta. Extending the argument to gravity, one would reach the same conclu-

sion as gravity operators are further suppressed. However, it is easy to see that this is not

always true. Consider the tensoring of two F 3 scattering amplitudes via KLT relations [28].

The explicit amplitude up to six-point was given in [32]. Take for example

M(1−, 2−, 3−, 4−, 5+) = is12s34A
F 3

(1−, 2−, 3−, 4−, 5+)AF
3
(2−, 1−, 4−, 3−, 5+) + P(2, 3)

(2.19)

It is straightforward to verify that

M(1−, 2−, 3−, 4−, 5+)

∣∣∣∣
λ5→δλ5

=
2∑
i=0

1

δ3−iS
(i)
G (5)M4 +O(δ0) , (2.20)

where M4 = M4(1−, 2−, 3−, 4−). However, taking the anti-holomorphic soft limit on leg 1,

we find:

M(1−, 2−, 3−, 4−, 5+)

∣∣∣∣
λ̃1→δλ̃1

=

2∑
i=0

1

δ3−iS
(i)
G (1)M4 +

1

δ
∆(2) +O(δ0) , (2.21)

where, now, M4 = M4(2−, 3−, 4−, 5+), and ∆(2) is an unknown correction to S
(2)
G for now.

The fact that S
(2)
G is violated can be traced back to the presence of a dilaton exchange

induced by the higher-dimensional operator φR2. Using string theory language the operator

F 3 is of order α′, and thus via KLT one obtains an amplitude that is of order α′2 in the

effective field theory. This receives contribution form R3, which is of order α′2, and two

insertions of φR2, each of order α′. Let’s consider the exchange of a dilaton between a

φR2 vertex and a tree-diagram associated with a single φR2 operator. In the mostly minus

amplitude, the two gravitons on the φR2 vertex must be of negative helicity, and the

contribution is proportional to:
〈12〉3

[12]
×Mn(φ̃) , (2.22)
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where Mn(φ̃) is a tree-level diagram with the dilaton leg off-shell. As one can see taking

either leg to be soft, one finds a 1
δ contribution proportional to the tree-level amplitude

generated by φR2. The latter can be easily obtained by KLT tensoring F 3 amplitude with

usual YM F 2 amplitude. Indeed the modification for S
(2)
G is precisely given by:

∆(2) =
∑
j

−2
〈1j〉3

[1j]
Mn(φ, i−1 , i

−
2 , · · · , i

−
n−2, n

+) , (2.23)

where j runs over all remaining minus helicity legs, and (i−1 , · · · , i
−
n−2) 6= j. With this

modification we indeed reproduce the correct δ−1 term in eq.(2.21)3. Note that this also

explains why the plus-helicity soft limit of the amplitude in eq.(2.19) does not require

modification: for the presence of φR2 to appear in the positive helicity soft channel, there

must be at least two positive heliclity legs. Such corrections to the sub-leading term is very

similar to the corrections present in the single-minus amplitude of QCD [25], where the

correction term is proportional to a lower-point amplitude with one of the states replaced

due to the presence of a new effective vertex.

While the above operators can be ruled out at tree level for supersymmetric theories,

such operators can still be generated via anomalies at loop level in supergravity theories.

Indeed the U(1) anomaly in N = 4 supergravity is known to generate a term in the

effective action that is of the form (R+)2t̄ [27], where R+ is the anti-self-dual part of the

(linearized) Riemann tensor and t̄ is the scalar that lies in the same on-shell multiplet as

h++. Again amplitudes involving insertion of (R+)2t̄ and (R−)2t will also encounter the

same sub-leading soft corrections as mentioned before. This would imply, among other

things, that the two-loop four-point MHV amplitude will require corrections to S
(2)
G due

to the presence of this term in the effective action, on top of those necessary due to the

presence of IR-divergences.

3 Soft theorems for tree-level amplitudes in string theory

In this section, we will discuss the soft theorem for superstring amplitudes. We will begin

with explicit four and five-point examples in both open and closed string theories. After

establishing the soft theorem for lower-point amplitudes, we will give a general argument

based on BCFW recursion relations of string amplitudes. Furthermore in section 4, we will

present yet another independent analysis of the soft theorems in string amplitudes based

on the OPE of world-sheet vertex operators.

3.1 Soft theorem for open-string amplitudes: four and five-point example

A general n-point color-ordered open string gluon amplitude at tree level can be expressed

in terms of a basis of (n−3)! functions [34, 35],

A(1, 2, . . . , n) =
∑

σ∈Sn−3

F (2σ ,...,(n−2)σ)AYM(1, 2σ, . . . , (n−2)σ, n−1, n) (3.1)

3We will find the same conclusion in section 3.3 for bosonic closed-string amplitudes via BCFW recursion

relations.
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where multiple hypergeometric functions are given by

F (2,...,n−2) = (−1)n−3

∫
zi<zi+1

n−2∏
j=2

dzj

(∏
|zil|sil

)[n/2]∏
k=2

k−1∑
m=1

smk
zmk

 n−2∏
k=[n/2]+1

n−1∑
m=k+1

skm
zkm

 ,

where the Mandelstam variables are defined as sij ≡ α′(ki+kj)2. Here we have fixed SL(2)

symmetry by choosing z1 = 0, zn−1 = 1 and zn = ∞. From the general expression (3.1),

we find the four-point amplitude

A(1, 2, 3, 4) = F (2)AYM(1, 2, 3, 4) , (3.2)

with

F (2) = s12

∫ 1

0
dz2 z

s12−1
2 (1− z2)s23 =

Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)
. (3.3)

Use the fact that, in soft limit k2 → δk2 with δ → 0,

Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)
= 1 +O(δ2) , (3.4)

it is easy to see that A(1, 2, 3, 4) satisfies the soft theorem, since S
(1)
YM(123)A(134) = 0.

Let us now move on to the study of the soft limit for the five-point amplitude that can

be written as

A(1, 2, 3, 4, 5) = F (2,3)AYM(1, 2, 3, 4, 5) + F (3,2)AYM(1, 3, 2, 4, 5) , (3.5)

where

F (2,3) = s12s34

∫ 1

0
dz2

∫ 1

z2

dz3z
s12−1
2 zs133 zs2332 (1− z2)s24(1− z3)s34−1 ,

F (3,2) = s13s24

∫ 1

0
dz2

∫ 1

z2

dz3z
s12
2 zs13−1

3 zs2332 (1− z2)s24−1(1− z3)s34 , (3.6)

with z32 = z3 − z2.

In D = 4, we can take kn−2 = k3 to be soft and solve for λ̃4 and λ̃5 using momentum

conservation,

λ̃4 =
〈5|(1 + 2)

〈45〉
+ δ
〈5|3
〈45〉

, λ̃5 =
〈4|(1 + 2)

〈54〉
+ δ
〈4|3
〈54〉

, (3.7)

from which we can conveniently define

k′4 =
|4〉〈5|(1 + 2)

〈45〉
, p4 =

|4〉〈5|3
〈45〉

, (3.8)

k′5 =
|5〉〈4|(1 + 2)

〈54〉
, p5 =

|5〉〈4|3
〈54〉

. (3.9)

Integrating over z3 and keeping terms up to sub-leading order we obtain

F
(2,3)
S = s12

∫ 1

0
dz2 z

s12−1
2 (1− z2)s24′ [1 + δ(s23 + s34′ + s2p4) log(1− z2)] . (3.10)
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The leading term simply gives F (1, 2, 4′, 5′), that appears in the four-point amplitude, and

leads to 4

1

δ2
S

(0)
YM(234)A(1, 2, 4′, 5′) . (3.11)

Whereas the sub-leading term, denoted by F
(2,3)

S(1) , reads

F
(2,3)

S(1) =
〈34〉〈51〉[31]

〈45〉
s12

∫ 1

0
dz2 z

s12−1
2 (1− z2)s24′ log(1− z2) , (3.12)

here the identity s23+s34′+s2p4 = 〈34〉〈51〉[31]
〈45〉 has been used. The above integral can be com-

puted straight-forwardly, however this is not necessary for our purposes as we will compare

its expression with S
(1)
YM(234)A(1, 2, 4′, 5′) at the level of integrands. Similar consideration

applies to F (3,2), which has a sub-leading contribution only, given by

F
(3,2)

S(1) = −s13s24′

∫ 1

0
dz2z

s12
2 (1− z2)s24′−1 log(z2) . (3.13)

Combining the two contributions and expanding A(1, 2, 3, 4′, 5′), we find the sub-leading

term

AYM(1, 2, 4′, 5′)
1

δ

(
〈24〉
〈23〉〈34〉

F
(2,3)

S(1) +
〈12〉
〈13〉〈32〉

F
(3,2)

S(1)

)
(3.14)

Now we are ready to compare this with the result of the soft operator acting on the four-

point string amplitude,

S
(1)
YM(234)A(1, 2, 4′, 5′) =

(
1

〈23〉
λ̃3 ·

∂

∂λ̃2

+
1

〈34〉
λ̃3 ·

∂

∂λ̃4

)
A(1, 2, 4′, 5′)

=

(
〈24〉〈51〉[31]

〈23〉〈45〉
∂

∂s24′
+
〈12〉[13]

〈23〉
∂

∂s12

)
A(1, 2, 4′, 5′) , (3.15)

where it is understood that λ̃4 and λ̃5 are solved by momentum conservation, and thus the

result of the action of ∂
∂λ̃4

on the amplitude vanishes. Now it is straightforward to see that

〈24〉
〈23〉〈34〉

F
(2,3)

S(1) =
〈24〉〈51〉[31]

〈23〉〈45〉
∂

∂s24′
F (2)(1, 2, 4′, 5′)

〈12〉
〈13〉〈32〉

F
(3,2)

S(1) =
〈12〉[13]

〈23〉
∂

∂s12
F (2)(1, 2, 4′, 5′) , (3.16)

where F (2)(1, 2, 4′, 5′) is given in (3.3). In order to check the validity of the second line in

the above equation, it is convenient to use

F (2)(1, 2, 4′, 5′) = s24′

∫ 1

0
dz2z

s12
2 (1− z2)s24′−1 . (3.17)

This thus establishes the soft theorem for the five-point open superstring amplitude. Similar

direct analysis can be applied to higher-point amplitudes, we have checked analytically that

(3.1) satisfies the soft theorem for six points, see Appendix B.

4The leading soft-limit term for n-point amplitudes was analysed in [34].
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3.2 Soft theorem for closed-string amplitudes: four and five-point examples

The tree-level closed-string amplitude can be written in terms of open-string tree ampli-

tudes via KLT relations [28, 36],

Mn = π3−nAn(1, 2, . . . , n)
∑
{i},{j}

f(i1, . . . , ibn
2
c−1)f̄(j1, . . . , jbn

2
c−2)]An({i}, 1, n−1, {j}, n)

+ Perm(2, . . . , n−2) (3.18)

where the sum inside the bracket is over {i} ∈ Perm(2, . . . , bn2 c), {j} ∈ Perm(bn2 c+1, . . . , n−2),

and the functions f and f̄ are defined as

f(i1, . . . , im) = sin(πs1 im)

m−1∏
k=1

sinπ

(
s1 ik+

m∑
l=k+1

g(ik, il)

)
,

f̄(j1, . . . , jm) = sin(πsj1 n−1)
m∏
k=2

sinπ

(
sjk n−1+

k−1∑
l=1

g(jl, jk)

)
, (3.19)

with g(i, j) = sij for i > j and 0 otherwise. For four points, we have

M4({1, 2, 3, 4}) = π−1 sin(πs12)A4(1, 2, 3, 4)A4(2, 1, 3, 4) . (3.20)

Consider the soft limit k2 → δk2, δ → 0, we find

M4({1, 2, 3, 4})
∣∣
div

=
1

δ3
S

(0)
YM(123)S

(0)
YM(421)A2

3(1, 3, 4)
(
s12 − δ2ζ2s

2
12(s12 + s23 + s24)

)
=

1

δ3
s12S

(0)
YM(123)S

(0)
YM(421)M3(1, 3, 4) , (3.21)

where momentum conservation has be used in the last step. Thanks to

s12S
(0)
YM(123)S

(0)
YM(421) = S

(0)
G (2), S

(1)
G (2)M3(1, 3, 4) = S

(2)
G (2)M3(1, 3, 4) = 0 ,

we find that the closed string four-point amplitude satisfies the soft theorem.

We then study the closed string amplitude at five points, which again can be expressed

via KLT relations

M5({1, 2, 3, 4, 5}) = π−2
(
A5(1, 2, 3, 4, 5)A5(2, 1, 4, 3, 5) sin(πs12) sin(πs34)

+ A5(1, 3, 2, 4, 5)A5(3, 1, 4, 2, 5) sin(πs13) sin(πs24)
)
. (3.22)

We will take leg 3 to be soft, and with four-dimensional kinematics solve λ̃4 and λ̃5 using

momentum conservation, with k′4, k
′
5 and p4, p5 defined as in (3.8).

At the leading order, we have sin(πs3i) = πs3i+O(δ3), and using the leading soft-

theorem for open-string amplitudes we have (if we take the holomorphic limit)

M5 = δ−3s34′S
(0)
YM(2, 3, 4′)S

(0)
YM(4′, 3, 5′)

[
π−1 sin(πs12)A4(1, 2, 4′, 5′)A4(2, 1, 4′, 5′)

]
+ δ−3s13S

(0)
YM(1, 3, 2)S

(0)
YM(5′, 3, 1)

[
π−1 sin(πs24′)A4(1, 2, 4′, 5′)A4(4′, 2, 5′, 1)

]
+O(δ−2),

(3.23)
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where we recognize that the two combinations inside square brackets are two KLT repre-

sentations of the same four-point amplitude,M4({1, 2, 4′, 5′}), and the prefactors combine

to the leading gravity soft-factor

S
(0)
G (3) =

5∑
i=1

[3i]

〈3i〉
〈xi〉〈yi〉
〈x3〉〈y3〉

=
∑
i=1,4

s3i
〈i2〉〈i5〉

〈i3〉2〈32〉〈35〉
, (3.24)

where we have used the four-dimensional form of S
(0)
G and the gauge choice choose x =

2, y = 5.

The sub-leading order of eq. (3.22) receives contribution from the sub-leading order of

A5’s: for the first term, we have ∂
∂λ̃2

in S
(1)
YM(2, 3, 4′)A4(1, 2, 4′, 5′), and for the second term,

∂
∂λ̃1,2

in S
(1)
YM(1, 3, 2)A4(1, 2, 4′, 5′) and ∂

∂λ̃1
in S

(1)
YM(5′, 3, 1)A4(4′, 2, 5′, 1). Combining these

terms and the sub-leading term from sin(πs24) = sin(πs24′) + δπ cos(πs24′)s2p4 , we find

M5|O(δ−2) = π−1 1

〈23〉
λ̃3 ·

∂A4(1, 2, 4′, 5′)

∂λ̃2

(
sin(πs12)

[34′]〈4′5′〉
〈35′〉

A4(2, 1, 4′, 5′)

− sin(πs24′)
[13]〈5′1〉
〈5′3〉

A4(4′, 2, 5′, 1)

)
+ π−1 sin(πs24′)

1

〈13〉
λ̃3 ·

∂A4(1, 2, 4′, 5′)

∂λ̃1

[13]〈5′1〉
〈5′3〉

A4(4′, 2, 5′, 1)

+ π−1 sin(πs24′)
1

〈13〉
λ̃3 ·

∂A4(4′, 2, 5′, 1)

∂λ̃1

[1, 3]〈21〉
〈23〉

A4(1, 2, 4′, 5′)

− cos(πs24′)λ̃3 ·
∂s2,4′

∂λ̃1

[13]〈12〉
〈13〉〈32〉

A4(1, 2, 4′, 5′)A4(4′, 2, 5′, 1). (3.25)

where on the last line we have rewritten s2p4S
(0)
YM(132)S

(0)
YM(5′31) as a derivative operator

acting on s24′ .

Now we compare this with S
(1)
G (3)M4, which is given by

1

2

5∑
i=1,i 6=3

[3i]

〈3i〉

(
〈xi〉
〈x3〉

+
〈yi〉
〈y3〉

)
λ̃α̇3

∂

∂λ̃α̇i
M4 . (3.26)

The crucial step in dealing with the big bracket in (3.25) is the use of the monodromy

relation

sin(πs12)A4(2, 1, 4′, 5′) = sin(πs24′)A4(4′, 2, 5′, 1), (3.27)

in order to simplify it to [32]〈25′〉
〈5′3〉 sin(πs24′)A4(4′, 2, 5′, 1). This in turn can be combined with

the third line to produce (S
(1)
G (3)A4(1, 2, 4′, 5′)) sin(πs1,2)A5(4′, 2, 5′, 1) with the gauge-

choice x = y = 5. Since S
(1)
G (3) is gauge-invariant, we can make a different choice x = y = 2,

and in this form the result is simplify S
(1)
G (3) acting on the second KLT representation of

M4 in eq. (3.23):

M5|O(δ−2) =
[13]〈12〉
〈13〉〈32〉

λ̃3 ·
∂

∂λ̃1

[π−1 sin(πs24′)A4(1, 2, 4′, 5′)A4(4′, 2, 5′, 1)]

= S
(1)
G (3)M4({1, 2, 4′, 5′}) . (3.28)

– 16 –



Finally we move to the order O(δ−1), where one needs to consider: the product of

sub-leading contributions from A5’s, the sub-sub-leading contribution from the sin factors,

and the sub-sub-leading contribution from either of the A5’s. We have worked out all

contributions analytically (the details can be found in Appendix C), and checked against

S
(2)
G (3)M4({1, 2, 4′, 5′}) numerically, we found perfect agreement.

Two comments regarding closed-string soft theorems are in order. First, we believe

that the pattern we observed in the proof for S
(0)
G and S

(1)
G at five-points can be generalized

to higher points. It would be desirable to explicitly check these first two orders of the soft

graviton theorem, by KLT relations and repeated use of monodromy relations.

Besides, we want to stress that the agreement at sub-sub-leading order, unlike the first

two orders, is not a direct consequence of KLT and monodromy relations. In particular, in

KLT representation it involves non-universal sub-sub-leading soft behavior of open-string

amplitudes, and it would be interesting to understand better how they combine nicely into

the universal S
(2)
G acting on the lower-point amplitude.

3.3 Soft theorems of string amplitudes from BCFW recursion relations

In this section we will give a general argument for the soft theorems in string theories based

on BCFW recursion relations. BCFW recursion relations for scattering amplitudes in filed

theories [7, 8] have been generalized to open- and closed-string amplitudes [37, 38]5. For

instance for the color-ordered open string amplitudes, one has

A(1, 2, . . . , n−1, n) =
∑
i

∑
states I

AL(1̂, 2, . . . , i, I)
1

k2
I +m2

I

AR(−I, i+1, . . . , n̂) . (3.29)

In practice, since the sum runs over an infinite number of states, the recursion may not

be so useful for computing scattering amplitudes in string theories (See papers [39, 40]

for recent development on application of BCFW recursion relations in string amplitudes.).

However, the above recursion relation is very useful for our purpose of proving the soft

theorems. Here we take holomorphic soft limit on leg 1. First of all, for the terms with

i > 2 in the recursion relation (3.29) are regular, just as the recursion relations for field

theories. As for the case when i = 2, the crucial observation is that only massless states

can contribute to the soft limit, since the singularity arises from 1
k2I+m2

I
. Thanks to the

recursion relation, in the soft limit, the divergent part of an open superstring amplitude

reduces to

A(1, 2, . . . , n−1, n)
∣∣∣
div

= A3(1̂, 2, I)
1

k2
I

An−1(−I, 3, . . . , n̂) , (3.30)

note that the internal state is a massless gluon now. Since the three-point open superstring

amplitude is identical to the one in SYM, we see that the result of this particular BCFW

channel takes the same form as for Yang-Mills amplitudes, i.e. eq.(1.9),

A(1, 2, . . . , n−1, n)
∣∣∣
div

=

(
1

δ2
S

(0)
YM(n12) +

1

δ
S

(1)
YM(n12)

)
An−1(2, 3, . . . , n) , (3.31)

5We are aware that the recursion relation has only been explicitly checked to be correct for a few

examples.
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which are universal parts of the amplitude. The same argument applies to closed super-

string amplitudes.

The BCFW argument can also apply to bosonic string amplitudes. For the case of

open strings, the conclusion is the same since there is no other massless state, except for

the gluon. Whereas for bosonic closed strings, as well as for heterotic strings, besides the

graviton we have also the massless dilaton (Kalb-Ramond field does not contribute since

there is no three-point amplitude with two gravitons and a Kalb-Ramond field), which

could contribute to Mn

∣∣
div

. The contribution of the dilaton φ is of order O(δ−1), and

spoils the S
(2)
G Mn−1 term by a factor of

Mφ(1+, 2, . . . , n−1, n)
∣∣
div

=
∑
i

M3(1̂+, i+, I)
1

k2
I

Mn−1(−I, 3, . . . , n̂)

= −2

δ

∑
i

[1i]3

〈1i〉
Mn−1(φ, 3, . . . , n̂) , (3.32)

where we have emphasized the fact that only the amplitude with helicity (h++, h++, φ) (or

its conjugate) is non-vanishing by making helicity dependence explicit.

4 Soft limit of superstring amplitudes: world-sheet analysis

We here discuss how to derive soft theorems for string amplitudes from the perspective

of world-sheet OPE in the NS-R approach. The analysis can be systematised and even in

principle one can derive further sub-leading terms and investigate their universality.

4.1 Preliminaries

The Euclidean world-sheet is parameterized by the coordinates z = ew, w = τ + iσ, where

for open strings σ ∈ [0, π], τ ∈ (−∞,+∞), while for closed strings we have σ ∈ [0, 2π],

τ ∈ (−∞,+∞). For convenience, we will use units such as 2α′ = 1 for open strings and

α′ = 2 for closed strings [43].

We will analyze both the bosonic string and the superstring. For the open bosonic

string, the vertex operator for a massless vector boson is

VA = (ε·∂X)eikX (4.1)

where k2 = ε · k = 0. Similarly, for the closed bosonic string, the graviton vertex operator

is

VG = Eµν∂X
µ∂̄XνeikX (4.2)

where Eµν = Eνµ, k2 = kµEµν = gµνEνµ = 0. In explicit computations, it is often

convenient to set Eµν = εµεν and factorise the vertex into two chiral parts.

In the Neveu-Schwarz (NS) sector of the superstring, the vertex operator for a gauge

boson in the (-1) super-ghost picture is

V
(−1)
A = (ε·ψ)e−ϕeikX , (4.3)
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where ϕ is the boson for the super-ghosts. For the graviton one has

V
(−1,−1)
G = Eµνψ

µψ̃νe−ϕe−ϕ̃eikX (4.4)

The vertex operators in the (0) picture are:

V
(0)
A = (iε·∂X + k·ψ ε·ψ)eikX (4.5)

and

V
(0,0)
G = Eµν(i∂Xµ + k·ψ ψµ)(i∂̄Xµ + k·ψ̃ ψ̃µ)eikX . (4.6)

We will use the following normalization for the correlators:

〈Xµ(z1)Xν(z2)〉 = −α′gµν ln |z1−z2|2, 〈ψµ(z1)ψν(z2)〉 =
gµν

z1−z2
. (4.7)

In the following, we will need the generators of the Lorentz group. In the open bosonic

strings they are

Jµν =
1

π

∫ π

0
dσ[Xµ∂τX

ν −Xν∂τX
µ] , (4.8)

while for the open superstring in the q = 0 super ghost picture, we have:

Jµν(0) =
1

π

∫ π

0
dσ[Xµ∂τX

ν −Xν∂τX
µ + ψµψν ] . (4.9)

The commutator of Jµν with the gauge boson vertex operator takes the form:

[Jµν , VA(k)] =

(
ε[µ

∂

∂εν]
+ k[µ

∂

∂kν]

)
VA(k) (4.10)

This analysis extends directly to the open superstring (or the other open fermionic strings)

and to the closed bosonic and super- (or fermionic) strings. In the latter cases one should

keep in mind that there is a single conserved center of mass momentum Pµ = pµ0 and a

single conserved angular momentum

Jµνcl = xµ0p
ν
0 − xν0p

µ
0 + ĴµνL + ĴµνR (4.11)

where ĴµνL,R denote the contribution of the oscillators including fermionic zero-modes ψµ0ψ
ν
0

or ψ̄µ0 ψ̄
ν
0 when present (Ramond sector of the superstring). With some effort one can check

that

[Jcl µν , VG(k)] =

(
2ε[µ

∂

∂εν]
+ k[µ

∂

∂kν]

)
VG(k) . (4.12)

for the graviton with Eµν = εµεν . An important property that will be relevant to our

discussion is that Jµν is BRST invariant, and thus the commutator of V and J remains

BRST invariant. Note also that the leading term in the gluon vertex operator contains

the world-sheet current J µP = ∂zX
µ = ∂τX

µ = Πµ (momentum conjugate to Xµ) for the

space-time momentum operator Pµ, while the sub-leading term contains the world-sheet

current J µνJ = Xµ∂zX
ν −Xµ∂zX

µ + ψµψν for angular momentum Jµν .

This is in line with the fact that the on-shell vertex operator for a massless vector at

k = 0 i.e. with a constant field-strength is precisely VF = Fµν
∫
dz[Xµ∂Xν − Xν∂Xµ +

ψµψν ]. Indeed, when VF is inserted in the action it changes the boundary conditions from

Xµ∂σX
µ|σ=0,π = 0 to Xµ∂σX

µ|σ=0,π = XµF
µ
ν∂τX

ν |σ=0,π and similarly for fermions (when

present).

– 19 –



4.2 Open superstring amplitudes on the disk

Color ordered disk amplitudes are given by:

A(1, 2, . . . , n) = ign−2
s

∫
0≤z2≤...zn−2≤1

dz2 . . . dzn−2〈cV (1)V (2) . . . cV (n− 1)cV (n)〉(4.13)

where V denote the vertex operators and c the conformal ghost. In order to saturate the

super-ghost charge one needs
∑

i qi = −2. This can be satisfied taking two vertices in the

q = −1 picture and the remaining n−2 in the q = 0 picture. In order to make the analysis

of the soft limit transparent, it is convenient to take the vertex that goes ‘soft’ in the q = 0

picture and the two neighboring ones in the q = −1 picture. We will follow our previous

convention where the soft leg is in the last position labelled by n+1.

We now consider the OPE between the soft vertex V
(0)
A and its adjacent vertices V

(−1)
A

at z1 and zn:

V
(0)
A (zs)V

(−1)
A (zn) ≈ |zs−zn|ks·kn−1e−ϕ(zn)ei(ks+kn)X(zn)

× (εs·kn εn·ψ − εn·ks εs·ψ + εn·εs ks·ψ) (zn) + . . . (4.14)

where . . . indicate terms sub-leading in |zs−zn|. The integral over zs can be done using

the identity6 ∫ ε

0
xs−1f(x) =

f(0)

s
+O(s0) , (4.15)

thus the leading term in the expansion of ks is simply (εs·kn/ks·kn)V
(−1)
A (n).

At the next order, from the terms appearing in eq.(4.14) we obtain:

2

ks · kn
e−ϕ(zn)eiknX(zn) (iεs·kn εn·ψ ks·X + εn·ks εs·ψ − εn·εs ks·ψ) (zn) . (4.16)

The term proportional to ks·X is responsible for the logarithms that appear in the explicit

expansion of the amplitudes in the soft limit (see e.g. (3.10) ) and can be decomposed into

a symmetric and anti-symmetric piece under the exchange ks ↔ εs. The symmetric piece

is BRST exact. To see this note that the term we are interested in, εs·knks·X + ks·knεs·X,

can be written as:

εsµksνX
(µkν)

n =
εsµksν
π

∫ π

0
dσ∂τX

(µXν) =
εsµksν
π

∫ π

0
dσ{QBRST , bXµXν} . (4.17)

where b is the anti-ghost. Thus only the anti-symmetric piece is in the BRST cohomology.

Putting everything together, we find that the sub-leading soft term is given by:

(Fs)µν
ks · kn

(ikµnX
νεn·ψ + εµnψ

ν) e−ϕei(kn)X(zn)

=
(Fs)µν
ks · kn

(
kµn

∂

∂knν
+ εµn

∂

∂εnν

)
V

(−1)
A (zn) ,

6This is a consequence of δ(x) = lims→0 sx
s−1
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where Fs ≡ ks[µεsν]. In other words, the two terms combined neatly produce:

(Fs)µν
ks · kn

[Jµν , V
(−1)
A (zn)] (4.18)

where Jµν is the total angular momentum, defined before, that acts on both polarisation

(spin) and momentum (orbital). Thus we find that in the soft-limit, the sub-leading contri-

bution is given by the commutator of a BRST invariant operator with its adjacent vertex

operators:

(Fs)µν
ks · kn

〈[Jµν , V (−1)
A (zn)]V

(−1)
A (z1) · · · 〉 − (Fs)µν

ks · k1
〈V (−1)
A (zn)[Jµν , V

(−1)
A (z1)] · · · 〉 . (4.19)

Let us stress that the final results, derived with a specific choice of super-ghost pictures

and position of the soft gluon, are very general and do not depend on these choices at all.

In particular, had we chosen one of the ‘hard’ vertices to be in the q = 0 picture or the

‘soft’ vertex to be in the q = −1 picture, the leading singularity in the OPE would have

contained terms like

|zs − z|ks·k−2εs·ε ei(ks+k)X ×
(
1 or e−2ϕ

)
(4.20)

that would have not contributed to the leading term in the soft limit since it would have

produced a ‘pole’ 1/(ks·k − 1) upon integration over zs around z. The sub-leading terms

in the OPE such as

|zs − z|ks·k−1ei(ks+k)X [εs·ε(ks − k)·∂X + εs·ψ ε·ψ]×
(
1 or e−2ϕ

)
(4.21)

would have then produced the desired ‘pole’ 1/ks·k in the soft limit. With some effort, one

could check that the leading and sub-leading terms in the ‘soft’ expansion be the same as

in our analysis.

Moreover our analysis applies to superstring gluon amplitudes at tree level in any

dimension D ≤ 10. Indeed, even after compactification the vertex operator for a massless

gluon remains unchanged. One should simply restrict momentum and polarisation to

have non-zero components only along the non-compact directions. In other words the

vertex operator involves the ‘identity’ operator of the CFT2 governing the dynamics of

the internal space. In particular, in D = 4 there are only two physical polarisations and

one can conveniently switch to the spinor helicity basis, whereby a generic massless vector

polarisation is the sum of plus and minus helicities.

4.3 Closed superstring amplitudes on the sphere

In order to derive the behaviour of graviton (in fact any NS-NS massless state) amplitudes

for closed superstrings on the sphere we start from the standard definition

M(1, 2, . . . , n) = ig2(n−2)
s

∫
S2

dz2 . . . dzn−2〈cc̄V (1)V (2) . . . cc̄V (n− 1)cc̄V (n)〉 (4.22)

where V = VLVR denote closed-string vertex operators and c the conformal ghost.

As in the open superstring case, in order to saturate the super-ghost charge on the

sphere one needs
∑

i qi = −2 both for left- and right-movers. The simplest way to satisfy
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this condition is to take two vertices in the q = −1 picture and the remaining n− 2 in the

q = 0 picture. In order to make the analysis of the soft limit transparent, it is convenient

to take the closed-string vertex that becomes ‘soft’ in the q = 0 picture.

In the soft limit, k → 0, V
(0,0)
G (zs) becomes a total derivative and the integral over

zs only receives contribution from the boundary points zs = zi, where the ‘soft’ vertex in

the q = 0 picture collides with non-soft ones. If the latter is in the q = −1, the result is

completely determined by the OPE

V
(0,0)
G (zs)V

(−1,−1)
G (zi) ≈ |zs−zi|2ks·ki−2e−ϕ(zi)−ϕ̃(z̄i)ei(ks+ki)X(zi,z̄i) ×

(ε̃s·ki ε̃i·ψ − ε̃i·F̃s·ψ̃)(z̄i) (εs·ki εi·ψ − εi·Fs·ψ) (zi) + . . .

Integration over zs produces a pole π/ks·ki from the most singular term in the OPE and,

up to an overall operator e−ϕ(zi)−ϕ̃(z̄i)eikiX(zi,z̄i), the numerator can be expanded in ks as:

O(k0
s) : (ε̃s·ki ε̃i·ψ̃)(εs·ki εi·ψ)

O(k1
s) : {i(ks·X)(ε̃s·ki ε̃i·ψ̃)(εs·ki εi·ψ)− εs·ki εi·ψ(εi·F̃s·ψ̃)

−ε̃s·ki ε̃i·ψ̃(εi·Fs·ψ)}
O(k2

s) : {i(ks·X)[(ε̃s·ki ε̃i·ψ̃)εi·Fs·ψ + (εs·ki εi·ψ)ε̃i·F̃s·ψ̃]

−(ks·X)2(ε̃s·ki ε̃i·ψ̃)(εs·ki εi·ψ)/2 + ε̃i·F̃s·ψ̃εi·Fs·ψ} (4.23)

At O(k0
s), this gives the leading soft behavior as:

O(k−1
s ) : π

(ε̃s·ki)(εs·ki)
ks·ki

V
(−1,−1)
G (zi) . (4.24)

From the open string analysis, we have seen that it is convenient to rewrite the relevant

terms in the form

εi·Fs·ψ = Fµνs εiµ
∂

∂ενi
εi·ψ , i(X·[ks)(ε̃s]·ki ε̃i·ψ̃)eiki·X = F̃µνs kiν

∂

∂kµi
ε̃i·ψ̃ eiki·X . (4.25)

Using these identifications and taking into account the symmetrization of the polarization

vectors on leg s, for the sub-leading term we find,

O(k0
s) :

1

2ks·ki

[
(εs·ki ε̃s·ki)kµs

∂

2∂kµi
− (εs·ki ks·ki)ε̃µs

∂

2∂kµi
− εs·ki F̃µνs (ε̃iµ·∂ε̃νi )

+ (ε↔ ε̃)
]
V

(−1,−1)
G (zi) = π

kiµE
µρ
s

ks·ki

[
kνsJ

total
ρν , V

(−1,−1)
G (zi)

]
(4.26)

where J total = J + J̃ and Eµνs = ε(µε̃ν)/2. Similar analysis for the sub-siub-leading order

contribution yields:

O(k1
s) : π

Eµνs
2ks·ki

[ks·J totalµ ks·J totalν , V
(−1,−1)
G (zi)] . (4.27)

Thus we see that by soft expanding the result of the OPE between the soft and hard-vertex

operators, we recover the field theory soft theorem, written in BRST invariant operator

language.
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For closed bosonic and heterotic strings, the presence at tree level of the higher deriva-

tive φR2 coupling spoils the universality of the sub-sub-leading terms. The the higher

derivative R3, present in the bosonic string but not in the heterotic string, doesn’t affect

the soft theorem, as already observed earlier on.

Finally, notice that if one replaces the ‘soft’ graviton with a ‘soft’ dilaton or a ‘soft’

Kalb-Ramond B-field the leading term vanishes. It is well known that the soft-dilaton limit

of the n+1-pt amplitude gives the derivative of the amplitude wrt the string tension, since

the zero-momentum dilaton vertex operator is essentially the world-sheet action [41, 42].

In general the dilaton in D = 10 and the other moduli fields in lower dimensions

are governed by a non-linear σ-model and decouple at zero momentum like soft pions.

An n + 1-point amplitude with a soft modulus field is finite and given by the sum of n

contributions that represent the derivative with respect to the constant VEV of the modulus

field of the n-point amplitude without modulus field. Following this line of argument, many

threshold corrections to (higher-derivative) terms in the effective superstring actions have

been computed. See e.g. [43] for a pedagogical presentation and references therein.

A slightly different story can be told for the insertion of a soft dilaton in the bulk of

a disk with open string insertions on the boundary. The soft dilaton tadpole captures the

divergence of the loop amplitude on a cylinder in the limit where it becomes infinitely long

and thin. This divergence studied in detail in the early days of ‘dual’ models [44] is absent

in any consistent superstring background since it is related by super-symmetry to tadpoles

in the R-R sector which, in turn, cancel in anomaly-free theories [45].

5 The soft-theorems for loop integrands

As discussed in the introduction, the loop-level soft theorem can be formulated in two

distinct prescriptions: (1) taking ε → 0 before expanding in the soft parameter δ, or (2)

first expand the integrand in the soft parameter δ, and then perform the integration with

the regularization. For general integrands the two limits do not commute as was pointed

out in [26]. That this is the case can be simply understood from the fact that soft expansion

of the integrand assumes that the loop momentum is hard compared to the soft external

momenta. This assumption becomes untenable in the region where the loop-momentum

itself is soft, which is precisely the region to be regulated by ε. For the purpose of obtaining

the correct infrared physics, one should take prescription (1), as discussed in detail in [24].

On the other hand, it is still interesting to ask whether or not the soft-behaviour is

modified in the context of prescription (2), as it may yield non-trivial constraint for the in-

tegrand of the theory. As we’ll see, the planar-integrand of N ≤ 4 SYM manifestly respects

the tree-level soft theorems prior to integration. For all plus YM and gravity amplitudes,

we will show that the soft-behaviour of one-loop amplitudes are non-renormalized in both

prescriptions, in other words the relevant integrands enjoy the property that the two limits

commute. The tree-level soft theorem is known to be violated for the single minus one-loop

amplitudes [24, 25].
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5.1 Soft-Limits of planar integrand of SYM

In this subsection, we consider supersymmetric Yang-Mills theories in the planar limit.

The advantage of working in the planar limit is that the four-dimensional integrand is well

defined. We will argue that, the Yang-Mills soft theorem works directly at the level of the

integrand, and can be derived in essentially the same way as the BCFW derivation at tree

level.

For color-ordered amplitudes in the planar limit, we find it convenient to choose the

momenta adjacent to the soft particle for solving momentum conservation, in which case

the soft theorem states that the sub-leading term should vanish. We will show that this is

indeed the case for loop integrands of amplitudes in planar SYM theories with N super-

charges. For convenience, let us strip off an overall MHV pre-factor

A0 ≡
δ4|2N (

∑n
a=1 λ

α
a (λ̃α̇a |ηAa ))

〈12〉 . . . 〈n−1n〉〈n1〉
, (5.1)

with α = 1, 2, α̇ = 1̇, 2̇ Lorentz indices, and A = 1, . . . ,N the SU(N ) R-symmetry index.

Note that by definition, MHV tree amplitudes is given by 〈a, b〉4−N where a, b are the two

negative-helicity particles (for N = 4 it is simply unity).

For the n-point, NkMHV amplitude at L loops, A
(L)
n,k , let us denote the integrand (after

stripping-off A0) by R
(L)
n,k :

A
(L)
n,k = A0 ×

∫
dD`1 · · · dD`LR(L)

n,k(1, · · · , n; `1, · · · , `L), (5.2)

where `1, · · · `L denotes the loop variables, and D = 4−2ε with ε being the dimensional

regulator.

We will again consider the loop integrand in momentum twistor space. The new

ingredient is that the loop variables are given by L bi-twistors `i = (Ai, Bi) for i = 1, · · · , L.

In terms of these variables, R
(L)
n,k is a degree-(4k−8) polynomial of χA’s and a rational

function of the totally anti-symmetric contractions 〈abcd〉 ≡ εIJKLZIaZJb ZKc ZLd of external

and loop (bosonic) twistors. Note that the two-bracket of holomorphic spinors are given

by 〈ab〉 ≡ 〈abI〉 where I is the infinity (bi)twistor projecting any twistor to its first two

components.

We would now like to show that the sub-leading soft expansion of momentum-twistor

space integrand begins at O(δ0) for a negative-helicity soft leg, and at O(δ2) for a positive-

helicity soft leg.7 It suffices to focus on the case of a positive-helicity particle, i.e. the

k-preserving soft limit, in which case we will take eq. (2.14) supersymmetrically. Note

that the MHV pre-factor absorbs the leading soft factor S
(0)
YM, thus making the stripped

amplitude behave trivially at leading order. We claim that the following soft theorem holds

for the planar integrand of SYM to any loop order:

R
(L)
n,k(Z1, . . . ,Zn) = R

(L)
n−1,k(Z1, . . . ,Zn−1) + 0× δ +O(δ2). (5.3)

7It is O(δ2) for the positive-helicity leg because we need to rescale the holomorphic soft behavior by δ2

to see the anti-holomorphic soft behavior.
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5.1.1 All-loop integrand of N = 4 SYM

We first consider the N = 4 integrand, which satisfies a BCFW-like recursion relation most

compactly written in momentum-twistor space [29],

R
(L)
n,k = R

(L)
n−1,k +

∑
L′,k′,i

R
(L′)
i,k′ (1, · · · , i−1, Ii)[1, i−1, i, n−1, n]R

(L−L′)
n+2−i,k−1−k′(Ii, i, · · · , n̂i)

+

∫
GL(2)

[1, A,B, n−1, n]R
(L−1)
n+2,k+1(1, · · · , n̂, A, B̂), (5.4)

where we suppress the sum over distributions of loop variables `1, . . . , `L on both factoriza-

tion and forward-limit terms, and for the latter one needs to perform fermionic and GL(2)

integrals. In addition, n̂i = (n−1n)∩ (1i−1i), Ii = (i−1i)∩ (1n−1n), n̂ = (n−1n)∩ (1AB),

B̂ = (AB) ∩ (1n−1n) with the intersection defined as (ab) ∩ (ijk) ≡ Za〈bijk〉 − Zb〈aijk〉,
and the R-invariant of five (super) twistors is defined as

[a, b, c, d, e] ≡ δ0|4(χa〈bcde〉+ cyc)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (5.5)

It is not a coincidence that we choose to shift the momentum-twistor Zn of the soft

particle à la BCFW. For this shift, the first term in the recursion corresponds to the special

BCFW factorization term: the (n−1)-point, k-preserving amplitude, multiplied by three-

point anti-MHV amplitude, and we will show that it is the only term that contributes to

the first two orders of the soft expansion, which is a fact we are familiar with at tree level.

This turns out to be a direct generalization of the BCFW argument for soft theorem at

tree level.

Let us first see how it works in this language for tree amplitudes, L = 0, where only

the first line contributes. In the soft limit, Ii = δ(i−1i) ∩ (1n−1s) ≡ δI ′i, Zn̂i = Z1+O(δ),

thus the two sub-amplitudes are both non-singular as we take δ → 0. The R-invairant,

[1, i−1, i, n−1, n], however, becomes of order δ2:

δ2

αβ
×

δ0|4(χ[i−1〈i]n−1 s 1〉+ χs〈1 i−1 i n〉)
〈1 i−1 i n−1〉3〈n−1 s 1 i−1〉〈n−1 s 1 i〉

+O(δ3) (5.6)

where in the numerator we have used the fact that terms involving χn−1 and χ1 cancel

with each other, and [i−1, i] means antisymmetrization w.r.t. the two labels. Thus we

recovered the soft gluon theorem at tree level,

R
(0)
n,k = R

(0)
n−1,k +O(δ2), (5.7)

Now it becomes clear that the first two orders in the soft expansion of the loop integrand

are identical to those of tree amplitudes. The factorization part works exactly as before,

except that now we need to use the fact that sub-amplitudes are non-singular at the loop

integrand level. For the forward-limit term, the R-invariant, [1, A,B, n−1, n], behaves

exactly as that in the factorization term,

[1, A,B, n−1, n] =
δ2

αβ
×
δ0|4(χ[A〈B]n−1 s 1〉+ χs〈1AB n〉)
〈AB 1n−1〉3〈1An−1 s〉〈1B n−1 s〉

+O(δ3). (5.8)
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In addition, the lower-loop integrand is again non-singular, with Zn̂ = Z1+O(δ) and

B̂ = δ(AB) ∩ (1n−1s) ≡ δB̂′. After performing the fermionic and GL(2) integrals we

find that the entire forward-limit term goes like O(δ2) in the limit, thus we conclude that

the soft-theorem holds for all-loop integrand in N = 4 SYM,

R
(L)
n,k = R

(L)
n−1,k +O(δ2). (5.9)

Note that although the sub-sub-leading (O(δ2)) order is no longer universal, it takes a

relatively simple form: it is given by factorization and forward-limit terms with eq. (5.6),

(5.8), where the dependence on the parameters is always through the prefactor δ2/(αβ).

Before ending the discussion for N = 4 SYM, let us look at the soft behavior of

forward limit terms even more explicitly for the one-loop integrand. One can easily see that

indeed each forward-limit term at one-loop goes like O(δ2) when we take the BCFW-shifted

particle, n, to be soft. For example, forward-limit terms for one-loop MHV integrand, Ki,n

with 2 < i < n, are given by [29]:

Ki,n = − 〈AB(1i−1i) ∩ (1n−1n)〉2

〈AB1i−1〉〈AB1i〉〈ABi−1i〉〈AB1n−1〉〈AB1n〉〈ABn−1n〉

=
δ2

αβ
× 〈AB(1i−1i) ∩ (1n−1s)〉2

〈AB1i−1〉〈AB1i〉〈ABi−1i〉〈AB1n−1〉3
+O(δ3).

(5.10)

5.1.2 Integrands for N < 4 SYM

Now we turn to the soft theorem for N < 4 SYM theories. It is illuminating to first

write down BCFW recursion relations for tree amplitudes in any N < 4 gauge theories, in

terms of momentum-twistor variables [46], from which again the soft gluon theorem follows

immediately.

When taking the BCFW shift of Zn, without loss of generality we assume the helicity

of particle n to be positive, then the recursion relation is almost identical to the N = 4

case:

R
(0)
n,k = R

(0)
n−1,k +

∑
k′,i

R
(0)
i,k′(1, · · · , i−1, Ii) [a, b, c, d, e]N R

(0)
n+2−i,k−1−k′(−Ii, i, · · · , n̂

+),

(5.11)

where the shifted twistors are the same as above, and the helicity of Ii depends on k′ and

i [46], and the general N < 4 five-bracket is defined as,

[a, b, c, d, e]N ≡
δN (ηa〈bcde〉+ cyclic)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
. (5.12)

To see the soft theorem at work, note that although the R-invariant behaves like δN−2

in the soft limit, the two sub-amplitudes will provide the additional powers of δ. This is

because, unlike N = 4 amplitudes in momentum-twistor space, N < 4 amplitudes carry

non-zero weights for negative-helicity particles, which is the case for one of the Ii’s in the

sub-amplitudes. Since Ii ≡ δI ′i, we have

R
(0)
i,k′(1, · · · , i−1, Ii)R

(0)
n+2−i,k−1−k′(−Ii, i, · · · , n̂

+) ∼ O(δ4−N ), (5.13)

– 26 –



thus rendering these factorization terms again vanishing as δ2.

At loop-level, integrands in N < 4 SYM can also be obtained from e.g. CSW dia-

grams [47, 48]. For N = 4 SYM, McLaughlin and one of the authors [33] proved that the

integrand obtained from CSW diagrams are identical to the one from BCFW recursion

relations above (see section 2.1 for generalization to F 3 amplitude). Given the similarity

of the structures of integrands in N = 4 and N < 4, we conjecture that the soft theorem

again holds already at the integrand level.

As an example which provides strong evidence for the conjecture, we now study one-

loop amplitudes explicitly. The integrand for N < 4 SYM amplitudes at one-loop can be

written in terms of the one in N = 4 and a part with N = 1 chiral multiplets, and it

is sufficient to look at the soft behavior of the latter. A compact formula for the N = 1

chiral part of the integrand has been written in momentum-twistor space using CSW dia-

grams [46]: with a, b the negative-helicity particles, the N = 1 chiral part of the integrand,

R
(1)chiral
n,2 , is given by

R
(1),chiral
n,2 −R(1),chiral

n−1,2 = − 〈aB̂〉〈bB̂〉
〈AB〉2〈AB1n−1〉〈ABn−1n〉〈AB1n〉

∑
a<i≤b

〈aIi〉〈bIi〉
〈AB1i−1〉〈ABi−1i〉〈AB1i〉

,

(5.14)

where the hallmark of an N = 1 chiral integrand is the appearance of the prefactor

1/〈AB〉2 = 1/〈ABI〉2.

The soft behavior of R
(1),chiral
n,2 is given by R

(1),chiral
n−1,2 , plus the one of the R.H.S. of

eq. (5.14). Recall that Ii = δI ′i and B̂ = δB̂′, we see that the soft behavior is identical to

the N = 4 case in eq. (5.10):

− 〈aB̂〉〈bB̂〉〈aIi〉〈bIi〉
〈AB〉2〈AB1n−1〉〈ABn−1n〉〈AB1n〉〈AB1i−1〉〈ABi−1i〉〈AB1i〉

=
δ2

αβ
× 〈aB̂′〉〈bB̂′〉〈aI ′i〉〈bI ′i〉
〈AB〉2〈AB1n−1〉3〈AB1i−1〉〈ABi−1i〉〈AB1i〉

, (5.15)

thus the soft theorem holds for one-loop MHV integrand in N < 4 SYM. In addition, to

obtain the N = 1 chiral part for non-MHV amplitudes, one only needs to dress the above

formula with two tree sub-amplitudes, so we conclude that the soft theorem, eq. (5.3),

holds for all one-loop amplitudes in 1 ≤ N < 4 SYM.

Note that although the soft theorem is quite transparent using the BCFW-like re-

cursion (when we shift the soft particle), it can be very non-trivial to see in terms of

other representations of the same integrand, such as the local form based on leading sin-

gularities [49]. For example, in that representation, the sub-leading terms cancel between

different terms in a non-trivial way even for the one-loop integrand.

More importantly, the soft theorem is generally not manifest at the integrand level for

other representations, such as the form in [50] and [51]) for one-loop five-point amplitude in

N = 4 SYM, which is given by scalar boxes and pentagon related to eq. (5.10) by integral

reduction. The soft theorem is expected to hold only when we perform the integrals after

the soft expansion.
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We have not discussed loop integrands in pure Yang-Mills theory, N = 0, because it

is not clear to us how to write down a four-dimensional integrand that manifest the soft

theorem. It is also unclear how to apply our argument to cases where the definition of an

integrand may be ambiguous, e.g. non-planar theories such as gravity. In section 5.2, we

will discuss the soft theorem with the integrals performed, for the case of all-plus amplitudes

in both YM theory and gravity.

5.2 Soft theorems for finite loop amplitudes

We now consider an interesting example where the integrand does not manifestly satisfy

the tree-level soft theorem, but only after integration. These are the finite rational terms

of all plus Yang-Mills and gravity one-loop amplitudes.

5.2.1 All-plus Yang-Mills amplitude

The D-dimensional all-plus integrand can be obtained straightforwardly from the N = 4

SYM integrand by simply multiplying it by extra powers of the regulator mass (µ2)2 [52].

Naively, since we have already shown that the planar integrand vanishes for the sub-

leading term in the kinematic configuration of eq.(5.3), multiplying by an overall factor

would not change this result. However, as one convert the momentum twistor integrand

into momentum space, the non-uniqueness of the identification of ` obscures this property

and integration is necessary to show the vanishing of the sub-leading terms.

Let us first consider the one-loop five-point all-plus amplitude. The D-dimensional

integrand is given as [52]:

A+,+,+,+,+
5 =

2∏5
i=1〈ii+ 1〉

(
−1

2

[
µ4s12s23

d1d2d3d5
+ cyclic

]
+

4iµ6ε(1234)

d1d2d3d4d5

)
, (5.16)

where di = `2i and `i = ` +
∑i

j=1 ki, and thus ` is positioned between 5 and 1. In the

soft-limit, the numerators of the above integrand behaves as:

s12s23 = s1′2s23 + δs23s2p1 , s23s34 = s23s34′ + δs23s3p4 ,

s34s45 = δs34′s54′ +O(δ2), s45s51 = O(δ2), s51s12 = δs1′2s51′ +O(δ2)

ε(1, 2, 3, 4) = δε(p1, k2, k3, k4′) + δε(k1′ , k2, k3, p4) +O(δ2) (5.17)

where sipj = (ki + pj)
2 and we have used the notation:

k1 = k′1 + δp1, k′1 = −|1〉
∑
i=2,3

〈4i〉
〈41〉

[i|, p1 = −|1〉〈45〉
〈41〉

[5|

k4 = k′4 + δp4, k′4 = −|4〉
∑
i=2,3

〈1i〉
〈14〉

[i|, p4 = −|4〉〈15〉
〈14〉

[5| . (5.18)

Note that k1′ + k2 + k3 + k4′ = 0. Since the Parke-Taylor prefactor behaves as 1/δ2, the

leading soft contribution comes from, the first two terms in the square bracket in eq.(5.16),

which indeed is S(0)A+,+,+,+,+
4 at the integrand level. For the sub-leading term, again only

for the first two terms in the square bracket does one need to soft expand the integrand.
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Note that since the integrand integrates to a constant, there are no sub-leading contribution

if one follows prescription (1). On the other hand since

Im[µ2r] = −ε(1− ε) · · · (r − 1− ε)(4π)rID=4+2r−2ε
m , (5.19)

the fact that the pre-expanded integral is a constant implies that the ID=4+2r−2ε
m in the

above is logarithmic divergent. The soft expansion then introduces an additional propa-

gator which would render ID=4+2r−2ε
m finite, leading to a vanishing result as well. Thus

to order ε, the two prescriptions agree and the soft-theorem is non-renormalized in both

cases.

The same analysis applies to general n. As N = 4 SYM contains no triangles or

bubbles, dimension shifting formula tells us that the all-plus integrand can be simply

expressed in terms of scalar boxes and pentagons multiplied by (µ2)2. The sub-leading soft

expansion of these integrals vanishes, in agreement with the expansion of the integrated

results. Note that if the integrand includes scalar triangle and bubbles, I3[µ2r] and I2[µ2r],

the two limits may no longer commute. This is due to the fact that the soft expansion can

introduce scale free integrals which strictly integrate to zero in dimension regularization,

but are of order δ if one expands the integrated result. A trivial example would be the

following bubble integral:

s

2

i

which integrates to k2
si, and thus becomes of order δ in prescription (1), while in prescription

(2) it integrates to δ × 0, since in the soft limit, the integrand becomes a massless bubble

integral. Similarly for I3[µ4], if the soft leg is on a massless corner the soft expansion is of

order δ in prescription (1) while vanishes in prescription (2). The possible disagreement

of soft theorems between prescription (1) and (2) for the single minus amplitude can be

traced to the presence of these integrals in the final answer. Indeed already at four-points

A4(−,+,+,+) contains the bubble integrals mentioned above [53].

5.2.2 All-plus Gravity amplitude

We now consider all-plus gravity amplitudes. The integrand is given by dimension-shifting

formulas from one-loop MHV amplitude in N = 8 supergravity [23]. Note that due to

higher powers of µ2, the fact that the two limits commute is rather non-trivial. Consider

M5 = β123(45)I123[(µ2)4] + γ12345I12345[(µ2)10] + Perm (5.20)

where

β123 = − [12]2[23]2[45]

〈14〉〈15〉〈34〉〈35〉〈45〉
, γ12345 = −2

[12][23][34][45][51]

〈12〉〈23〉〈34〉〈45〉〈51〉
(5.21)

one sums over 30 inequivalent box integrals and 12 pentagons. First let’s consider to which

order in δ one should expand the integrals in the above representation. First of all for the

pentagon, since the prefactor begins at order δ−2, for the first sub-leading behavior of the

integrand, we do not need to expand the pentagon integrand. For the box-integrals, there
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are three distinct types to consider in the soft-limit: (I) if the soft leg is on the massive

corner, there are 12 such diagrams. (II) if the soft leg is on the massless corner adjacent to

the massive corner, there are again 12 such diagrams. (III) the soft leg is diagonal to the

massive corner, which consists of 6 diagrams. The coefficient for the last case (III) behaves

as O(δ0) in the soft limit and thus will not participate in the discussion. The pre factor

for case (II) behaves as O(δ2) and thus there is no need to expand the integrand. Finally,

case (I) is of order 1
δ3

, and thus we need the result of the integral expanded to order δ.

Denoting the integrand by its three massless legs I4(i, j, k):

I4(i, j, k) = 420×

j i

k
5

. (5.22)

We list the order O(δ) contribution in the following table

O(δ1)

I4(1′, 2, 3) −2u(p1 · k′4)−(4s+t)(p1 · k2)

I4(3, 1′, 2) −(6s+3u)(p1 · k2)−(6u+3s)(p1 · k3)

I4(3, 4′, 1′)
−(4s+t)(p4 · k3)−(5s+ 12t)(p4 · k′1)−(7s+ 14t)(p1 · k′4)

−2[u(p5 · k3)+(2s+4t)(p5 · k′4)+(s+ 3t)(p5 · k′1)]

I4(1′, 3, 4′) −(6u+3s)(p1 · k3)+2t(p1 · k′4)+2t(p4 · k′1)−(3u+ 6s)(p4 · k3)

while all others are related by symmetry. It is straightforward to check that the above

result is the same as O(δ1) of:

I4(1, 2, 3) = −2s2
12 + 2s2

23 + 2(K2)2 + s12s23 + 2s12K
2 + 2s23K

2

2
, (5.23)

where K is the momenta on the massive leg. Thus we see for the sub-leading soft contribu-

tion, the two prescriptions again commut and the soft theorem is unrenormalized in both

descriptions.

The above analysis should come as no surprise given the fact that the integrals involved

remain finite, whether or not the soft expansion is done before or after the integration and

thus the limits should commute. Again for bubble and triangle integrals, the two-limits

no longer commutes, thus the fact that the soft theorem for the all-plus gravity amplitude

agrees in both prescription can be associated with the fact that the dimension shifting

formula allows only box and pentagon integrals in the representation.

An alternative way of understanding why the tree-level soft theorems are not corrected

for all-plus amplitudes, and fail for single-minus amplitudes, is using symmetry principles.

As discussed in [54], given the leading soft function the sub-leading soft operator is deter-

mined by the conformal symmetry of tree-level amplitude. Thus the tree-level soft-functions

can be viewed as the homogenous solutions to the differential equation implied by the con-

formal boost generators. The all plus one-loop amplitudes are generated by the self-dual

Yang-Mills theory [55], and hence preserves conformal invariance at loop-level. The same

is non-longer true for the single minus. We leave a detailed discussion in Appendix D.
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6 Conclusions

In this paper we addressed two questions regarding soft gluon and graviton theorems. (1)

Are the tree-level soft theorems protected unmodified for effective theories with higher-

dimensional operators or string theory at finite α′? (2) How are tree-level soft theorems

modified (or not) for loop-level integrands and integrated amplitudes? For (1), we found

that soft theorems are respected in a wide range of effective field theories, even for those

with F 3 or R3 interaction vertices; more importantly, they hold for open and closed super-

string tree-level amplitudes, as verified by explicit computations, as well as general analysis

based on BCFW recursion relations and world-sheet OPE. However, the sub-sub-leading

soft graviton theorem is modified at tree level for theories with R2φ vertex, and for closed

bosonic as well as heterotic string theory. Note that while R2φ interaction terms appear

at tree level in heterotic strings, it can be generated at one-loop in Type II superstrings8

For N ≤ 4 supergravity theories it arises as a consequence of U(1) anomalies. Concerning

(2), we have found that for planar N = 4 SYM, the momentum twistor representation

derived from loop-level BCFW recursion indeed manifests the soft behavior dictated by

the unrenormalized (tree) soft-theorem. Similar conclusion can be arrived for one-loop

amplitudes for N < 4 SYM in the CSW representation.

It is highly desirable to generalize our investigations to string amplitudes with higher-

genus. In this respect, it is quite remarkable that the BCFW-like recursion relation (5.4)

derived in [29] closely resembles the three boundary contributions (pinching limits) of the

world-sheet moduli space of an string amplitude at higher genus. The first corresponding to

the collision of two external vertices. The second to the factorisation into two lower genus

amplitudes (separating tube). The third to the degeneration of a tube/strip (pinching

cycle). This analogy strongly suggests that, at least in the maximally supersymmetric

case, superstring loop amplitudes should satisfy the same soft theorems as at tree level.

It would also be interesting to further investigate the role of ‘soft dilaton’ limits in the

renormalization of the string tension and coupling constant.

Regarding (2), one interesting further direction would be turning integrand soft theo-

rems into a constructive way of constraining the form of loop integrands in more general

theories. We have seen that only those exact integrands in planar SYM exhibit manifest

soft behaviour identical to that of tree-level amplitudes; for other cases. As discussed

in [26], it can be worthwhile to interpret not only soft limit but also collinear and factor-

ization limits for loop amplitudes as kinematic limits to be be taken before expanding in

regulators. In this way loop integrands behave very similar to tree-level amplitudes, as we

can see from the BCFW-like recursion in N = 4. It would be fascinating to explore other

formulations of loop integrands resembling those at tree level (e.g. twistor-string [56] or

scattering-equation [12] formulas), in N = 4 and beyond, based on their behaviour in such

kinematic limits.

For integrated soft theorems, we have shown that loop corrections can be easily un-

derstood via the presence of symmetry anomalies, in particular conformal anomalies. Note

that we have only used the conformal anomaly associated with generic kinematics, whose

8M. B. would like to thank I. Antoniadis for discussions on this point.
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analytic form is not well known. On the other hand, the conformal anomaly associated

with collinear kinematics is well studied, and thus it will be interesting to work out what

constraints do these collinear anomalies impose. Finally, the fact that gluon soft theorems

for all-plus amplitude is not renormalized, can be associated with conformal symmetry

being unbroken at loop level for self-dual Yang-Mills. Similarly the all-plus amplitude for

gravity is also unrenormalized. Might there be some hidden symmetry for tree-level gravity

amplitudes that is respected at loop level for self-dual gravity, such that the soft theorems

are protected?
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A Symmetry constraints on soft functions

Here, we will derive the super-soft functions using the special SUSY generator SAa =∑
i

∂2

∂λai ∂η
A
i

, which holds classically for super Yang-Mills theory. Again we impose(
S0 +

1

δ
Ss

)
(

1

δ2
S(0)An +

1

δ
S(1)An) = 0 (A.1)

We will begin with the well known result that S(0) = S(0), then order δ−3 is trivially

satisfied. For δ−2 we have the following constraint:

S0S
(0)An + SsS(1)An = −

(
λn
〈ns〉2

∂

∂ηn
+

λ1

〈1s〉2
∂

∂η1

)
An + SsS(1)An = 0 . (A.2)

Now acting Ss on the bosonic part of S(1) gives 0, thus in order for the above equation to

hold, one must include a fermionic term. Again going through the same analysis, one finds

that the requisite fermionic piece is given by:

ηs
〈s1〉

∂

∂η1
+

ηs
〈sn〉

∂

∂ηn
. (A.3)

Thus we see that the supersymmetrized soft function is given by:

S(1) = S(0)

[
〈sn〉
〈1n〉

(
λ̃s ·

∂

∂λ̃1

+ ηs ·
∂

∂η1

)
+
〈s1〉
〈n1〉

(
λ̃s ·

∂

∂λ̃n
+ ηs ·

∂

∂ηn

)]
(A.4)

that is exactly what was found in [25] via recursion relations.
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B Soft theorem for six-point open string amplitude

The six-point open superstring amplitude can be expressed in terms of (6−3)! = 6 YM am-

plitudes and as many multiple hypergeometric functions, that only depend on the momenta.

We will separate its contributions into two classes according to the color ordering of Yang-

Mills amplitudes. Each class contains three terms. The first class includes terms with color

ordering {1, 2, 3, 4, 5, 6}, {1, 2, 4, 3, 5, 6}, {1, 4, 2, 3, 5, 6}, whereas the second class includes

terms with color ordering {1, 3, 2, 4, 5, 6}, {1, 3, 4, 2, 5, 6}, {1, 4, 3, 2, 5, 6}. We will prove

that in the soft limit k4 → 0, the sum of terms in the first class reduces to the soft factors

multiplying AYM(1, 2, 3, 5, 6)F (2,3), appearing in the five-point amplitude, and the sum of

the terms in the second class reduces to the soft factors multiplying AYM(1, 3, 2, 5, 6)F (3,2).

It is convenient to solve for λ̃5 and λ̃6 using momentum conservation, and define

k′5 =
|5〉〈6|(1 + 2 + 3)

〈56〉
, p5 =

|5〉〈6|4
〈56〉

, (B.1)

k′6 =
|6〉〈5|(1 + 2 + 3)

〈65〉
, p6 =

|6〉〈5|4
〈65〉

. (B.2)

Let us start with the terms in the first class. From the term with color ordering {1, 2, 3, 4, 5, 6},
we have

F (234) = −
∫
dz2dz3dz4

(∏
i<l

|zil|sil
)
s12

z12

(
s34

z34
+
s35

z35

)
s45

z45
(B.3)

here we use SL(2) to fix z1 = 0, z5 = 1 and z6 = ∞. It is straightforward to see that this

term produces a leading term given by

1

δ2
S

(0)
YM(345)F (2,3)(1, 2, 3, 5′, 6′)AYM(1, 2, 3, 5′, 6′) . (B.4)

Focussing on the sub-leading part, we find∫
dz2dz3

(∏
i<l

|zil|sil
)
s12

z12
F

(234)
δ (B.5)

where the Koba-Nielsen factor
∏
i<l |zil|sil is for five-point kinematics {k1, k2, k3, k

′
5, k
′
6}

and F
(234)
δ , of order O(δ), is given by

F
(234)
δ =

δ

z35

[
(s4′5′ + s34 + s3p5)[1 + s35′ log(1− z3)] + (s24 + s2p5)s35′ log(1− z2)

]
.

Similarly from the terms with color ordering {124356} and {142356}, we find that the

corresponding F
(243)
δ and F

(423)
δ are given by

F
(243)
δ = δ

s35′

z35

[
s14 log(z3) + s24 log(z23)− s24 log(1− z2)

]
F

(423)
δ = −δ s35′

z35
s14 log(z3) . (B.6)
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Combining all the terms and putting back δ-independent terms, we obtain

1

δ2
AYM(1, 2, 3, 5, 6)

∫
dz2dz3

s12

z12

(∏
i<l

|zil|sil
)(

〈35〉
〈34〉〈45〉

F
(234)
δ +

〈23〉
〈24〉〈43〉

F
(243)
δ +

〈12〉
〈14〉〈42〉

F
(423)
δ

)
,

which we find to agree with

1

δ
S

(1)
YM(345)F (2,3)(1, 2, 3, 5′, 6′)AYM(1, 2, 3, 5′, 6′) , (B.7)

at the level of the integrand.

We then consider the expansion of terms in the second class. Firstly we observe that

color orderings {132456} and {134256} both contain leading terms, and they combine to

produce

1

δ2
S

(0)
YM(345)F (3,2)(1, 3, 2, 5′, 6′)AYM(1, 3, 2, 5′, 6′) . (B.8)

Now consider the sub-leading terms. From color ordering {132456}, we get∫
dz2dz3

(∏
i<l

|zil|sil
)
F

(324)
δ

s13

z13
(B.9)

with the sub-leading term F
(324)
δ is given by

F
(324)
δ =

s25′

z25
[(s45′ + s34 + s3p5) log(1− z3) + (s24 + s2p5) log(1− z2)] +

1

z25
(s24 + s2p5) .

Finally from terms with color ordering {134256} and {143256}, we find

F
(342)
δ =

δ

z25
[s25′ (s24 log(z32) + k2 · p5 log(1− z2) + (s34 + s45′ + s3p5) log(1− z3)) + s2p5 ]

F
(432)
δ = − δ

z25
s14 [s25′ log(z3) + 1] . (B.10)

Combining all the relevant terms, we find

1

δ2
AYM(1, 3, 2, 5′, 6′)

∫
dz2dz3

s13

z13

(∏
i<l

|zil|sil
)(

〈25〉
〈24〉〈45〉

F
(324)
δ +

〈32〉
〈34〉〈42〉

F
(342)
δ +

〈13〉
〈14〉〈43〉

F
(432)
δ

)
,

which can be checked to agree with

1

δ
S

(1)
YM(345)F (3,2)(1, 2, 3, 5′, 6′)AYM(1, 3, 2, 5′, 6′) . (B.11)

This ends the proof of the soft theorem for six-point open superstring amplitudes.
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C Soft theorem for five-point closed string amplitudes

In this section we will check the validity of the soft theorem, especially S
(2)
G , for closed

superstring amplitudes at five points. As we discussed in section 3.2, in order to use KLT

formula, we need to expand five-point open superstring amplitudes to sub-sub-leading

order. Here we will again solve for λ̃4 and λ̃5, and take k3 to be the soft leg. Expanding

up to order O(δ2), we obtain the five-point disk integral for open superstring amplitudes

F (2,3) =
Γ(1 + s24′)Γ(1 + s12)

Γ(1 + s24′ + s12)

[
1 + δf

(2,3)
1 + δ2f

(2,3)
2

]
+O(δ3) (C.1)

where the sub-leading and sub-sub-leading terms are given by

f
(2,3)
1 = (s2p4 + s23 + s34′)

[
H(s24′)−H(s24′ + s12)

]
,

f
(2,3)
2 = s13s34′

[
(ψ(0)(s12)− ψ(0)(1 + s24′ + s12))(ψ(0)(1 + s24′)− ψ(0)(1 + s24′ + s12))

− ψ(1)(1 + s24′ + s12) +
s12

(1 + s24′ + s12)
F ({1, 1, 1, 1 + s12}, {2, 2, 2 + s24′ + s12}, 1)

]
+

1

2
(s2p4 + s23 + s34′)

2
[
(ψ(0)(1 + s24′ + s12)− ψ(0)(1 + s24′))

2 + ψ(1)(1 + s24′)

− ψ(1)(1 + s24′ + s12)
]
− s34′(s13 + s23)ζ2 , (C.2)

where H is the Harmonic Number, F is the generalized hypergeometric function, and finally

ψ(m)(z) = dm+1

dzm+1 log(Γ(z)) is the PolyGamma function of order m. Similarly, we find the

result of expanding F (3,2), which now starts from sub-leading order,

F (3,2) = s13
Γ(1 + s24′)Γ(1 + s12)

Γ(1 + s24′ + s12)

[
δf

(3,2)
1 + δ2f

(3,2)
2

]
+O(δ3) , (C.3)

and f
(3,2)
1 , f

(3,2)
2 that are given by

f
(3,2)
1 = H(s24′ + s12)−H(s12) ,

f
(3,2)
2 = s2p4

[
(ψ(0)(1 + s24′ + s12)− ψ(0)(s24′))(ψ

(0)(1 + s12)− ψ(0)(1 + s24′ + s12))

+ ψ(1)(1 + s24′ + s12)− 1

s24′
[ψ(0)(1 + s12)− ψ(0)(1 + s24′ + s12)]

]
+

(1 + s12)(s23 + s34′)

1 + s24′ + s12
F ({1, 1, 1, 2 + s12}, {2, 2, 2 + s24′ + s12}, 1)

− 1

2
(s13 + s23)

[
(ψ(0)(1 + s12)− ψ(0)(1 + s24′ + s12))2 + ψ(1)(1 + s12)

− ψ(1)(1 + s24′ + s12)
]
− (s23 + s34′)ζ2 . (C.4)

We thus obtain the expansion of the five-point open string amplitude up to sub-sub-leading

order by substituting the above expansions into the expression for A5(1, 2, 3, 4, 5),

A5(1, 2, 3, 4, 5) = F (2,3)AYM(1, 2, 3, 4, 5) + F (3,2)AYM(1, 3, 2, 4, 5) .

Similarly one can work out other open superstring amplitudes entering the KLT relation

for the five-point closed superstring amplitude,

M5({1, 2, 3, 4, 5}) = π−2
(
A5(1, 2, 3, 4, 5)A5(1, 4, 3, 5, 2) sin(πs12) sin(πs34)

+ A5(5, 1, 3, 2, 4)A5(2, 5, 3, 1, 4) sin(πs13) sin(πs24)
)
. (C.5)
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With the above results up to the necessary order, we find that M5({1, 2, 3, 4, 5}) satisfies

the soft theorem by numerically comparing it with(
1

δ3
S

(0)
G (3) +

1

δ2
S

(1)
G (3) +

1

δ
S

(2)
G (3)

)
M4({1, 2, 4′, 5′}) . (C.6)

This explicit numerical test of the soft theorem is consistent with the argument based on

BCFW recursion relations and the world-sheet OPE analysis presented in Sections 3 and

4.

D Conformal anomaly and the integrated soft theorems

An alternative way to understand why the integrated soft theorems for all plus amplitude

is not corrected, while the single-minus are is via symmetries. Indeed it was demonstrated

in [54] that given the leading soft function, with suitable assumptions the sub-leading

soft operator is determined by the conformal symmetry of tree-level amplitude. Thus

the tree-level soft-functions can be viewed as the homogenous solutions to the differential

equation implied by the symmetry constraints. From this point of view, the loop-level

corrections can be attributed to the fact that this symmetry becomes anomalous at loop

level. In particular, since the all-plus amplitude is generated by the self-dual sector of

Yang-Mills theory, it is protected and conformal symmetry is preserved implying that the

soft function is not corrected. For single-minus amplitude, this is no longer the case and

potential correction terms arrise, as verified in [24, 25].

To see this, note that conformal symmetry of the (n+1)-point amplitude implies9

(K0 +
1

δ
Ks)(

1

δ2
S

tree(0)
YM An +

1

δ
S

tree(1)
YM An) = 0 (D.1)

where we’ve separated the conformal boost generator into

K0 =
n∑
i=1

∂

∂λi

∂

∂λ̃i
, Ks =

∂

∂λs

∂

∂λ̃s
, (D.2)

where we’ve suppressed the Lorentz indices α, α̇. Now starting with S(0) = 〈n1〉
〈ns〉〈s1〉 , at order

O(δ−3) eq.(D.1) is trivially satisfied, while at O(δ−2) we have the following constraint:

K0S
tree(0)
YM An +KsS

tree(1)
YM An = −

(
λn
〈ns〉2

∂

∂λ̃n
+

λ1

〈1s〉2
∂

∂λ̃1

)
An + (KsS

tree(1)
YM )An = 0 (D.3)

One can check that the tree-level soft function S
tree(1)
YM is the homogenous solution to the

above conformal boost equation. The same analysis applies to the super soft-functions as

we show in appendix A.

9Unlike other sections, here we put a superscript “tree” on S
tree(i)
YM to emphasize they are tree-level

results, and we will consider corresponding loop corrections.
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A consequence of this analysis is that if conformal symmetry becomes anomalous, as

one expects at loop level, then the soft function has to be modified. Let’s consider the

conformal boost equations in the presence of anomalies:

(K0 +
1

δ
Ks)An+1({λi, λ̃i}, δλs, λ̃s) =

∑
i

a
(i)
n+1δ

i (D.4)

where ai’s are the conformal anomaly expanded in the soft parameter. We begin with the

following ansatz for the soft expansion of An+1,

1∑
i=0

1

δi+1
S

tree(i)
YM An + ∆(i) +O(δ0) . (D.5)

From eq.(D.4), we have the following constraints on the unknown function ∆(i):

O(δ−3) Ks(S
tree(0)
YM An + ∆(0)) = a

(−3)
n+1 ,

O(δ−2) K0(S
tree(0)
YM An + ∆(0)) + Ks(S

tree(1)
YM An + ∆(1)) = a

(−2)
n+1 . (D.6)

Now as the all-plus amplitude is associated with the self-dual sector of YM theory which is

exact, this implies that its amplitude is conformally invariant. Thus we expect no correction

to the soft functions, i.e. ∆(i) = 0. For single minus amplitude, this is no-longer true and

potential correction terms may arise. It is straight forward to verify that in the soft limit,

if the soft leg is minus helicity the anomaly is finite, and thus eq.(D.6) reduces to zero on

the RHS, leading to the conclusion that one only has the tree-level soft theorem. For the

negative helicity leg the anomaly begins at δ−2. The absence of a
(−3)
n+1 infers ∆(0) = 0, and

thus ∆(1) must satisfy

Ks(∆
(1)) = a

(−2)
n+1 − a

(0)
n (D.7)

The explicit correction term for the single minus amplitude is given in [25]:

∆(1) = − 〈n1〉4∏n
i=1〈ii+ 1〉

〈n− 1s〉[nn+ 1]

〈n− 1n〉〈ns〉2
(D.8)

We have explicitly verified that the above expression indeed satisfies eq.(D.7).
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