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Abstract

We use exceptional field theory as a tool to work out the full non-linear reduction
ansaetze for the AdSs x S° compactification of IIB supergravity and its non-compact
counterparts in which the sphere S° is replaced by the inhomogeneous hyperboloidal
space HP9. The resulting theories are the maximal 5D supergravities with gauge groups
SO(p, q). They are consistent truncations in the sense that every solution of 5D super-
gravity lifts to a solution of IIB supergravity. In particular, every stationary point and
every holographic RG flow of the scalar potentials for the compact and non-compact 5D

gaugings directly lift to solutions of IIB supergravity.



1 Introduction

It is a notoriously difficult problem to establish the consistency of Kaluza-Klein truncations.
Consistency requires that any solution of the lower-dimensional theory can be lifted to a so-
lution of the original higher-dimensional theory [1]. While this condition is trivially satisfied
for torus compactifications, the compactification on curved manifolds is generically inconsis-
tent except for very specific geometries and matter content of the theories. Even in the case
of maximally symmetric spherical geometries, consistency only holds for a few very special
cases [2] and even then the proof is often surprisingly laborious. An example for a Kaluza-Klein
truncation for which a complete proof of consistency was out of reach until recently is that
of type IIB supergravity on AdSs x S°, which is believed to have a consistent truncation to
the maximal SO(6) gauged supergravity in five dimensions constructed in [3-5]. In general
not even the form of the non-linear Kaluza-Klein reduction ansatz for the higher-dimensional
fields is explicitly known, in which case it is not even known how to perform the Kaluza-Klein
reduction in principle. If the reduction ansatz is known it remains the task to show that the
internal coordinate dependence of the higher-dimensional field equations factors out such that
these equations consistently reduce to those of the lower-dimensional theory. Despite these
complications, consistency proofs have been obtained over the years for various special cases.
The maximal eleven-dimensional supergravity admits consistent Kaluza-Klein truncations on
AdS, x ST [6] and AdS7 x S* [7]. Subsectors of truncations of type IIB to five dimensions have
been shown to be consistent in [8-10,13-17]. More recently, a consistent truncation of massive
type IIA supergravity on S® has been found [18].

In this paper we will present the explicit and complete reduction formulas for a large class
of truncations of type IIB supergravity to maximal five-dimensional gauged supergravity, by
working out the details of the general construction of [19]. This includes the famous reduction
on AdSs x S° to the maximal D = 5 SO(6) gauged supergravity of [5], but also reductions to
non-compact gaugings, corresponding to truncations with non-compact (hyperboloidal) inter-
nal manifolds. Consistency of the latter has first been conjectured in [20] and more recently
been discussed in [21,22]. The crucial new ingredient that makes our construction feasible is
the recently constructed ‘exceptional field theory’ (EFT) [23-26] and its associated extended
geometry, see [27-30], and [31-34] for the closely related double field theory. Within this
framework, the complicated geometric IIB reductions can very conveniently be formulated as
Scherk-Schwarz reductions on an exceptional space-time.

In order to illustrate this point, it is useful to compare it with the toy example of an S?
compactification of the D-dimensional Einstein-Maxwell theory, whose volume form provides
the source for the U(1) field strength. With a particular dilaton coupling, this theory not
only permits a vacuum solution with S? as the compact space but also a consistent Kaluza-
Klein truncation around this vacuum to a (D — 2)-dimensional theory [2]. The required dilaton
couplings are precisely those that follow from embedding the original theory as the S* reduction
of pure gravity in D + 1 dimensions. While the consistency of this reduction can be shown by a
direct computation, a far more elegant proof relies on this geometric origin. As shown in [35],
from the point of view of (D+1) dimensional Einstein gravity, the original S reduction takes the
form of a Scherk-Schwarz (or DeWitt) reduction on a three-dimensional SO(3) group manifold



via the Hopf fibration S' < 83 — S2. For Scherk-Schwarz reductions, however, consistency
is guaranteed from symmetry arguments [36], which then implies the consistency of the S2
reduction of the Einstein-Maxwell theory. In this sense, the consistency of the S? reduction
hinges on the fact that the original theory is secretly a ‘geometric’ theory in higher dimensions
(namely pure Einstein gravity).

Similarly, in exceptional field theory maximal supergravity is reformulated on an extended
higher-dimensional space that renders the theory covariant w.r.t. the exceptional U-duality
groups in the series Eg4q), 2 < d < 8. In this case, the higher-dimensional theory is not
simply Einstein gravity, but EFT is subject to a covariant constraint that implies that only
a subspace of the extended space is physical. Solving the constraint accordingly one obtains
either type IIB or eleven-dimensional supergravity. Importantly, the gauge symmetries of EFT
are governed by ‘generalized Lie derivatives’ that unify the usual diffeomorphism and tensor
gauge transformations of supergravity into generalized diffeomorphisms of the extended space.
Specifically, for the Egg) EFT that will be employed in this paper the generalized Lie derivative
for vector fields VM, WM M, N =1,...,27, in the fundamental representation 27 reads [28,37]
)M

Lyw)" = VvNoOWM —wNoyv™ + 10d NP dgpponVE W, (1.1)

where dMNE is a (symmetric) invariant tensor of Eg(6). Here the first two terms represent the
standard Lie bracket or derivative on the extended 27-dimensional space, while the new term
encodes the non-trivial modification of the diffeomorphism algebra.

It was shown in [19] how sphere compactifications of the original supergravities and their
non-compact cousins can be realized in EFT through generalized Scherk-Schwarz compactifi-
cations, which are governed by Egj4) valued ‘twist’” matrices. In terms of the duality covariant
fields of EFT the reduction formulas take the form of a simple Scherk-Schwarz ansatz (see
(2.1) below), proving the consistency of the corresponding Kaluza-Klein truncation. Although
this settles the issue of consistency it may nevertheless be useful to have the explicit reduc-
tion formulas in terms of the conventional supergravity fields. This requires the dictionary for
identifying the original supergravity fields in the EFT formulation. In this paper we work out
the explicit reduction formulas for the complete set of type IIB supergravity fields, using the
general embedding of type IIB supergravity into the Ege) EFT given in [38]. In particular,
this includes all components of the IIB self-dual four form. Results for the scalar sector in the
compact case have appeared in [11,12,39,40]. The components of the twist matrix give rise
to various conventional tensors, including for instance the Killing vectors in the case of S° but
also various higher Killing-type tensors. We analyze the identities satisfied by these tensors by
decomposing the Lie derivatives (1.1), which can be thought of as giving generalized Killing
equations on the extended space. Various identities that appear miraculous from the point
of view of standard geometry but are essential for consistency of the Kaluza-Klein ansatz are
thereby explained in terms of the higher-dimensional Eg ) covariant geometry of EFT.

This paper is not completely self-contained in that we assume some familiarity with the
Eg6) EFT of [24]. Our recent review [38], which also gives the complete embedding of type I1B,
can serve as a preparatory article. In particular, we use the same conventions. The rest of this
paper is organized as follows. In sec. 2 we briefly review the generalized Scherk-Schwarz ansatz
and the consistency conditions for the Egg) EFT and give the twist matrices. The twist matrix



gives rise to a set of generalized vectors of the extended space satisfying an algebra of generalized
Lie derivatives (1.1) akin to the algebra of Killing vector fields on a conventional manifold. In
sec. 3 we analyze the various components of this equation and give the explicit solutions in terms
of various Killing-type tensors. In sec. 4 we review the class of D = 5 gauged supergravities
that will be embedded into type IIB. Finally, in sec. 5 we work out the complete Kaluza-
Klein ansatz by using the general embedding of type IIB established in [38]. In particular, we
show how to reconstruct the self-dual 4-form of type IIB from the EFT fields. Along the way,
we show that the reduction ansatz reduces the ten-dimensional self-duality equations to the
equations of motion of the D = 5 theory. While this is guaranteed by the general argument, its
explicit realization requires an impressive interplay of Killing vector/tensor identities and the
Eg(6)/USp(8) coset space structure of the five-dimensional scalar fields. In sec. 6 we summarize
the final results, the full set of reduction formulas, and comment on the fermionic sector. Some
technically involved computations are relegated to an appendix.

2 Generalized Scherk-Schwarz reduction

We begin by giving the generalized Scherk-Schwarz ansatz in terms of the variables of excep-
tional field theory. This ansatz is governed by a group-valued twist matrix U € Eg;) and a
scale factor p, both of which depend only on the internal coordinates Y. For the bosonic EFT
fields, the general reduction ansatz reads [19]

Mun(x,Y) = Uy™S(Y)UNH(Y) Mgp(2)
guw(@,Y) = p2(Y) gu(2),
AM@,Y) = p7 (MA@ M (Y),
Bum(@,Y) = p2(YV)Uu™(Y) Buyn(2) . (2.1)

Here, indices M, N label the fundamental representation 27 of Eg(g), and the four lines refer to
the internal metric, external metric, vector fields and two-forms, respectively, see [24] for details.
In order for the ansatz (2.1) to be consistent, U and p need to factor out homogeneously of all
covariant expressions defining the action and equations of motion. This is the case provided
the following two consistency equations (‘twist equations’) are satisfied:

oN(U DN =4 HNptonp = 3pVk,

1
[(Uil)MK(Uil)ELaKULE]%l = 5P®Mataﬁ£- (2.2)

Here the constant tensors are ¥, which defines the embedding tensor of ‘trombone’ gaugings,
and ©/%, which defines the embedding tensor of conventional gaugings.

For the subsequent analysis it is convenient to reformulate these consistency conditions by
rescaling the twist matrix by p,

~

vl = ptutt. (2.3)

This rescaling is such that U~! can be viewed as a generalized vector of the same density weight
as the gauge parameters. Accordingly, one can define generalized Lie derivatives w.r.t. this



vector. The consistency conditions can then be brought into the compact form
Lo Uyt = —Xun®Ug", (2.4)
where X MK are constants related to the D = 5 embedding tensor by
Xa® = (0% + 5 020%)us% ) o) — 0" 0 25)
This implies in particular that the first equation in (2.2) can be written as

Lf]&1p = —ﬂMp . (26)

In [19], the consistency equations (2.2) were solved for the sphere and hyperboloid com-
pactifications, with gauge groups SO(p,6 — p) and CSO(p, q,6 — p — q), explicitly in terms of
SL(6) group-valued twist matrices. Specifically, with the fundamental representation of Egg)
decomposing as

{YM} — (Y Y.}, (2.7)

into (15,1) @ (6',2) under SL(6) x SL(2), we single out one of the fundamental SL(6) indices
a — (0,4) to define the SL(6) matrix U," as

U = (1—-v)"5(1+uK(u,v)) ,
U(]i = —’I’]ij] (1 — ’U)_l/3 K(’LL,’U) 5
U0 = -y’ (1—0)7 ',
U7 = (1—0v)/069, (2.8)
with the combinations
u = Yoy, vo= yngy . (2.9)
Here 7;; is the metric
ni; = diag (1,...,1,—-1,...,—-1), (2.10)
—_———
p—1 6—p

and we define similarly the SO(p, 6 — p) invariant metric 7., with signature (p,6 —p). Note that
in (2.9) we use two different metrics, one Euclidean, the other pseudo-Euclidean. The function
K (u,v) is the solution of the differential equation

21 —v) (wd K +vd,K) = (T—2p)(1—v)—uw) K -1, (2.11)

which can be solved analytically. For instance, for p = 6, i.e., for gauge group SO(6) relevant
for the S° compactification, the solution reads

p=6 : K(u) = %u_?’ (u(u —3) + vu(l — u) (3arcsiny/u + co)) , (2.12)



with constant co. We refer to [19] for other explicit forms. The inverse twist matrix is given by

(U™" = (10",
(

U_l)oi = mjyj (1-— 1))1/3 K(u,v) ,
O = ngy’ 1—v)?,
O™ = A=) (67 + ity K (w,v)) (2.13)
Finally, the density factor p is given by
p = (1-v)l/s. (2.14)

Upon embedding the SL(6) twist matrix (2.8) into Egg), one may verify that it satisfies the
consistency equations (2.2) with an embedding tensor that describes the gauge group SO(p, q),
where the physical coordinates are embedded into the EFT coordinates via (2.7) according to

gy = vl (2.15)

With the above form of the generalized Scherk-Schwarz ansatz and the explicit form of the
twist matrix and the scale factor we have given the complete embedding of the correspond-
ing sphere and hyperboloid compactifications into the Eg) EFT. It is instructive, however, to
clarify this embedding by analyzing it in terms of more conventional geometric objects. There-
fore, in the next section we will analyze the consistency conditions (2.4) under the appropriate
decomposition (that embeds, for instance, the standard algebra of Killing vector fields on a
sphere) and thereby reconstruct the above solution in a more conventional language. In par-
ticular, this will clarify the geometric significance of the function K, which is related to the
four-form whose exterior derivative defines the volume form on the five-sphere.

3 Untangling the twist equations

3.1 General analysis

We now return to the ‘twist equations’ (2.4) and decompose them w.r.t. the subgroup appro-
priate for the type IIB solution of the section constraint, i.e.

EG(G) — GL(5)XSL(2),
27 — (5,1)®(5,2)®(10,1) D (1,2) . (3.1)

Accordingly, the fundamental index on the generalized vector U1 decomposes as

~

(U_l)MM = {ICMm7 RMWOH Zank7 SMnl---nsoé} ’ (3'2)

in terms of GL(5) indices m,n = 1,...,5 and SL(2) indices o, = 1,2. In order to give
the decomposition of the twist equations (2.4) in terms of these objects we use the definition



(1.1) of the generalized Lie derivative and the decomposition of the d-symbol (3.28) in [38]. A
straightforward computation, largely analogous to those in, e.g., sec. 3.3 of [38], then yields

~Xun®Kr™ = LiyKn™, (3.3)
—XUNERKma = LiyRNma — LiyRarma + 0m (KN"Rarna) (3.4)
XN Z k= Lxcay 2k — Lk 201 kmn + 301 (Kﬂlemn]l)
+3vV2% 03 Ras mia| R n)s - (3.5)
—XuN" Sknimsa = LkpSNni nsa

+20V2 (ZE [mnznsamRMns)]a o a[nlenznwleﬁns]a) - (3.6)

We will now successively analyze these equations. We split the index as M — {A,u}, where
A, B denote the ‘gauge group directions’ and u, v the remaining ones, and assume that the only

non-vanishing entries of Xz NE are

Xap® = —faB", Xa" = (Da)u”, (3.7)

given in terms of structure constants and representation matrices of the underlying Lie algebra
of the gauge group, c.f. [41]. Let us emphasize that X Mﬁ is not assumed to be antisymmetric.
In particular, for this ansatz we have, e.g., X, 4" = 0. Let us also stress that this ansatz is not

the most general, but it is sufficient for the purposes in this paper.

The first equation (3.3), specialized to external indices (A, B), implies that the vector fields
KC 4 satisfy the Lie bracket algebra

[ICA,ICB]m = L, K™ = fan® Ko™ . (3.8)

In view of standard Kaluza-Klein compactifications it is natural to interpret these vector fields
as the Killing vectors of some internal geometry. We now define a metric w.r.t. which the K4
are indeed Killing vectors by setting for the inverse metric

émn = ICAm ICBn nAB 7 (39)

with the Cartan-Killing metric nag = fac” fgp®. The internal metric G exists provided the
Cartan-Killing metric is invertible and that there are sufficiently many vectors fields 4™ to
make G™" invertible. This assumption, which we will make throughout the following discussion,
is satisfied in the examples below. Since by (3.8) the 4 transform under themselves according
to the adjoint group action, under which the Cartan-Killing metric is invariant, it follows that

the vectors are indeed Killing:

EICAGmn = VpKan + VoKam = 0, (310)

where here and in the following V,,, denotes the covariant derivative w.r.t. the metric (3.9),
which is used to raise and lower indices. The other non-trivial components of (3.3), with external
indices (A, u), (u, A) and (u,v), imply that the remaining vector fields K, satisfy

Lic ™ = —(Da),"KC,™ = 0, L, K™ = [Ku. K] = 0. (3.11)



For non-vanishing IC,, the first equation can only be satisfied if the representation encoded by
the (D4)," includes the trivial (singlet) representation. In the following we will analyze the
remaining equations under the assumption that the representation does not contain a trivial
part, which then requires

K, = 0. (3.12)

We next consider the second equation (3.4), specialized to external indices (A,u) and (u, A)

to obtain
LxsRuma = —(Da)u’Roma = 0m (Ka"Runa) - (3.13)
Writing out the Lie derivative on the left-hand side we obtain in particular
Ka"™ (0mRuna — 0nRuma) = 0. (3.14)

With the above assumption that the metric (3.9) is invertible it follows that the curl of R is
zero. Hence we can write it in terms of a gradient,

Ruma = Omdua - (315)

As we still have to solve the first equation of (3.13), we must demand that the function )

transforms under the Killing vectors in the representation D 4,

ﬁ’CAyUOé = _<DA)uvyva7 (316)

for then (3.13) follows with the covariant relation (3.15). Finally, specializing (3.4) to external
indices (A, B), we obtain

fABCRCma = EICARBma - £KBRAma + am(lCBnRAna) . (317)

This equation is solved by R4 ma = 0, and the latter indeed holds for the SL(6) valued twist
matrix to be discussed below. In addition, we will find that for these twist matrices also the
components Z, and Sy are zero, and therefore in the following we analyze the equations for

this special case,
Rama = umnk — SAnl...n5a = 0. (318)

Let us now turn to the third equation (3.5), which will constrain the Z tensor. Specializing
to external indices (A, B), we obtain

fABC ZCkmn = ﬁICAZBkmn - ﬁICBZAkmn + 3a[k (ICBIZAmn]l) ) (319)

where we used (3.18). Writing out the second Lie derivative on the right-hand side, this can be

reorganized as
£ICAZB kmn — 4 Kg? a[pZA kmn| = fABC Z¢ kmn - (320)

In order to solve this equation we make the following ansatz
1 1 p A
ZAkim = 1 V2 KA kim — 3 V2K 4?7 Cppim (3.21)
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in terms of a four-form C, where we chose the normalization for later convenience, and we
defined the Killing tensor

1.
Kakim = 5 Whimpq KaP, Kamn = 2V[mKan) (3.22)
with the volume form Oypmp, = |G|/2 Ekimpg- We Tecall that all internal indices are raised and

lowered with G, defined in (3.9).

It remains to determine épklm from the above system of equations. In order to simplify
the result of inserting (3.21) into (3.20) we can use that the Killing tensor term transforms
‘covariantly’ under the Lie derivative,

Lx, Kgmnk = faB Kcmnk » (3.23)

which follows from the corresponding property (3.8) of the Killing vectors. For the second term
on the left-hand side of (3.20), however, we have to compute,

K" VipKakmn = K5"Vip(5Bkmniig Ka™) = K" Gtgftann Vy VA" (3.24)
= _% ’CBP a}kmnpl qu[lICAq] = % ’CBP ‘kanpl quqICAl . '

Here we used the D = 5 Schouten identity wgimnVp) = 0 and that the Killing tensor written
as KaAmn = 2V Kap is automatically antisymmetric as a consequence of the Killing equations
(3.10). Using the latter fact again, the last expression simplifies as follows

VVIKs' = =V, VIK4T = —[V,, VK4 = —RPKap. (3.25)

We will see momentarily that (3.20) can be solved analytically by the above ansatz (3.21) if
the metric G is Einstein. We thus assume this to be the case, so that the Ricci tensor reads
Run = A Gy, for some constant A. Using this in (3.25) and inserting back into (3.24) we
obtain

| >

ICpr[pICA kmn] — a’kmnpl ICAp]CBl . (326)

Next, insertion of the second term in (3.21) into (3.20) yields the contribution
L, (/CBp épkmn) +4KgP a[p (’CAq ékmn]q) = fABC’CCp épkmn+5 KAPK g4 a[péqkmn] . (3.27)

Here we used (3.8) and combined the terms from Lx , épkmn with those from the second term
on the left-hand side. Employing now (3.26) and (3.27) we find that insertion of (3.21) into
(3.20) yields

0 = Ka?Kp(50,Cqmn] — 4 A Dpghmn) - (3.28)

Thus, we have determined C, up to closed terms, to be
5a[péqkmn] = 4\ ‘é‘l/2gkmnpq 5 (329)

which can be integrated to solve for C’klmn, since in five coordinates the integrability condition
is trivially satisfied. In total we have proved that the (A, B) component of the third equation
(3.5) of the system is solved by (3.21). We also note that the remaining components of (3.5) are
identically satisfied under the assumption (3.18). (For the (u,v) component this requires using



that the exterior derivative of Ry mq vanishes by (3.15).) For the subsequent analysis it will be
important to determine how C' transforms under the Killing vectors. To this end we recall that
in the definition (3.21) C is the only ‘non-covariant’ contribution, which therefore accounts for
the second term on the left-hand side of the defining equation (3.20). From this we read off

Lic,Crnit = —16V2 0,24 ppay - (3-30)

Finally, we turn to the last equation (3.6), which determines S,. Under the assumptions
(3.12), (3.18), the (u,v) and (u, A) components trivialize, while the (A, u) component implies

EICASunl...ng,a = _(DA)uUSUnl...ng,a + 20\/5 a[n1 ZAn2n3n4 R\u|n5]a : (331)
We will now show that this equation is solved by
. 5 ~
Sunl...nsa = QWny..n; yuoz - Z C[nl...n4 ang,]yua ) (332)

in terms of the volume form of G\, the function defined in (3.15) and the four-form defined
via (3.29). Here, a is an arbitrary coefficient, while we set the second coefficient to the value
that is implied by the following analysis. We first note that Li,@y,..ns = 0, which follows
from the invariance under the Killing vectors of the metric G defining &. Second, we recall
(3.16), which states that the function ), transforms ‘covariantly’ under Lx, (i.e., w.r.t. the
representation matrices Dy4). Thus, all terms in (3.32) transform covariantly, except for the
four-form C, whose ‘anomalous’ transformation must therefore account for the second term in
Lx , S, on the right-hand side of (3.31). Using the anomalous transformations of C given in
(3.30), it then follows that (3.32) solves (3.31) for arbitrary coefficient a. This concludes our
general discussion of the system of equations (3.3)—(3.6).

3.2 Explicit tensors

We now return to the explicit twist matrices and read off the tensors whose general structure
we discussed in the previous subsection. To this end we have to split the Eg) indices further
in order to make contact with the twist matrices given in (2.8), (2.13). As it turns out, for
these twist matrices the split of indices Viy = (Va,V,) discussed before (3.7), coincides with
the split 27 = 15 + 12 of (2.7)

Vi = (Va,Vu) = (Viay, V), a,b = 0,....5, af = 1,2. (3.33)

In several explicit formulas we will have to split [ab] further,

[ab] = ([0],[if]) . dj=1....5. (3.34)

Similarly, we perform the same index split for the fundamental index M under Egg) — SL(6)
(and then further to GL(5) x SL(2) according to (3.1)), thus giving up in the following the
distinction between bare and underlined indices. Let us note that we employ the convention

Vo = =V, (3.35)



in agreement with the summation conventions of ref. [24]. In order to read off the various
tensors from the twist matrices let us first canonically embed the SL(6) matrix U,° into Eé(6)-

Under the above index split we have

U, [ed] Upa©® U, U, d 0
Tur [ab] fab] _( UUy | (3.36)
Uaa,[cd] Uaa,bﬁ 0 5016 (U—l)ba

With this embedding, and recalling the convention (3.35), we can identify the Killing vector

fields with components of the twist matrices as follows,

~

K™ = vV2(U Ha™ (3.37)
which yields
Kion™ () = —gV2OA -0, Ky"w) = VRt (339
It is straightforward to verify that these vectors satisfy the Lie bracket algebra (3.8). Specifically,
[Kab, Kea|™ = —V2fab ca® Kes™ fab ™ = 201007 (3.39)
with the SO(p, 6 — p) metric 74. The Killing tensors defined in (3.22) are then found to be

K[Oz]mnk = - 25mnkij yj ’
. (3.40)
Kiijimnk = —\/5(1 —v) 2 amnkpq(éip 0;1 — 25[ip77j]l yqyl) .

We can now define the metric G as in (3.9) w.r.t. which these vectors are Killing, using the
Cartan-Killing form n<? = palepdld This yields for the metric and its inverse

Gmn = Nmn + (1 - v)_lnmpnnqypyq )

3 (3.41)
Gmn — nmn _ ymyn )

One may verify that this metric describes the homogeneous space SO(p, ¢)/SO(p — 1, q) with
Rom = 4Gomn (3.42)
determining the constant above, A = 4. The associated volume form is given by
Srmktp = (1= 0) 7 Epmiap - (3.43)
Next we give the function defining R in (3.15) w.r.t. the above index split,
Ruma = R%ma = 0%, . (3.44)

for which we read off from the twist matrix

Yh, =yl with  Y'y) = { (3.45)

10



In agreement with (3.16) this transforms in the fundamental representation of the algebra of
Killing vector fields (3.38). Specifically,

EIC[ab]yc = /C[ab]mamyc = \/§5c[ayb], (3.46)

where ), is obtained from Y by means of n,,. Let us also emphasize that the ), can be viewed

as ‘fundamental harmonics’, satisfying
Y = —=5Yy*, (3.47)

in that all higher harmonics can then be constructed from them. For instance, the Killing

vectors themselves can be written as
Kiapym = V2(0mda) Vi - (3.48)

Next we compute the four-form C,i by integrating (3.29). An explicit solution can be
written in terms of the function K from (2.11) as

Cmnkl = A (1 - U)_1/2 Emnklq (K(Sqr'r/rs + 53)3/8 ’ (3'49)

whose exterior derivative is indeed proportional to the volume form (3.43) for the metric G,.
Together with the Killing vectors and tensors defined above, the Z tensor is now uniquely
determined according to (3.21). Moreover, it is related to the twist matrix according to

1 ~ 1 _ _ _
Z[ab]mnk = §€mnkpq (U 1)[ab][pq] = §5mnkpqp l(U 1)[ap (U l)b]q7 (350)

which agrees with (3.21) for A = 4.

Finally, let us turn to the tensor S, whose general form is given in (3.32). Under the above

index split it is convenient to write this tensor as
Sum---nsﬁ = Saam---nsﬁ = & €ny..ns 5a5 ’ (3'51)

which is read off from the twist matrix as

S mss = Enpms(UH) %5 = enyms p L85 U, (3.52)
leading with (2.8) to
S0 = { A=) (@ +uK) a=0 (3.53)
=iy’ (1 —v) 2K a=1
One may verify that this agrees with (3.32) for
a =1, A=4. (3.54)

11



3.3 Useful identities

In this final paragraph we collect various identities satisfied by the above Killing-type tensors.
These will be useful in the following sections when explicitly verifying the consistency of the

Kaluza-Klein truncations. We find

K Ko™ = —V2 foaes K 4+ 20, (5[c[ayb]yd]> . (3.55)

Kl K™ = 26120y (3.56)

Kot Zedy kmn + Kiea" 2 kmn = —é Eavedes KT (3.57)
K Ko™ Ko™ = 4V201 YV 00 (3.58)
Kiea " Kran)"Kiep)' Ak = =87 Yy Vs + 8nye YayJe » (3.59)

which can be verified using the explicit tensors determined above.
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4 The D =5 supergravity

The D = 5 gauged theory with gauge group SO(p, ¢) was originally constructed in [3-5]. For our
purpose, the most convenient description is its covariant form found in the context of general
gaugings [41] to which we refer for details.! In the covariant formulation, the D = 5 gauged
theory features 27 propagating vector fields A“M and up to 27 topological tensor fields B,,, y/.
The choice of gauge group and the precise number of tensor fields involved is specified by the

ZMN _ 7[MN]

choice of an embedding tensor in the 351 representation of Eg). E.g. the full

non-abelian vector field strengths are given by
EM = 20, A0M + V2 X M A KA —2v2 2B, N (4.2)

with the tensor Xg ™ carrying the gauge group structure constants and defined in terms of
the embedding tensor ZM¥ as

XMNP = dMNQZPQ + 10 dMQstRTdPQRZST . (4.3)

The SO(p, q) gaugings preserve the global SL(2) subgroup of the symmetry group Eg) of
the ungauged theory, more specifically the centralizer of its subgroup SL(6). Accordingly, the
vector fields in the 27 of Egg) can be split as

AM {Au“b,Awa}, ab=0,....5, a=1,2, (4.4)

into 15 SL(2) singlets and 6 SL(2) doublets, c.f. (3.33). The 27 two-forms B, s split accord-
ingly, with only the 6 SL(2) doublets B,,,** entering the supergravity Lagrangian. In the basis
(4.4), the only non-vanishing components of the embedding tensor ZM" are

1
Zaa,bﬁ = _5 5Eaﬁnaba (45)

where the normalization has been chosen such as to match the later expressions. With (4.3),

we thus obtain?2

Xabed™ = favea®
K . ab,c ab,c
Xan® { e (4.7)
ab  dp [a Tb]d 98

with the SO(p,6 — p) structure constants fab,cdef from (3.39).

The form of the field strength (4.2) is the generic structure of a covariant field strength in
gauged supergravity, with non-abelian Yang-Mills part and a Stiickelberg type coupling to the

ITo be precise, and to facilitate the embedding of this theory into EFT, we choose the normalization of [24]

for vector and tensor fields which differs from [41] as

1
A 12,0614 = EAuM[hep—ch/ouzns] s Buv m1312.0614] = _ZBHV M [hep—th/0412173] > (4.1)

together with a rescaling of the associated symmetry parameters. Moreover, we have set the coupling constant
of [4]] tog=1.
*The totally symmetric cubic d-symbol of Eg(s) in the SL(6) x SL(2) basis (4.4) is given by

1
d]VINK dab,cd,ef _ Eabcdef . (46)

dab ap = L(Saﬁs s
ca, \/5 cd €ap \/@
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two-forms. In the present case, we can make use of the tensor gauge symmetry which acts by
shift 04, 4o = e on the vector fields, to eliminate all components A, 4 from the Lagrangian
and field equations. This is the gauge we are going to impose in the following, which brings
the theory in the form of [5].> As a result, the covariant object (4.2) splits into components
carrying the SO(p, ¢) Yang-Mills field strength, and the two-forms B, **, respectively,

u Fw,ab = 9 a[uAy]ab + ﬁfcd,efab A“chyef
F M = - . (4.9)
Fw/aa = V10 EapBMab Buu

In particular, fixing of the tensor gauge symmetry implies that the two-forms B, ** turn into
topologically massive fields, preserving the correct counting of degrees of freedom, [42]. The
Lagrangian and field equations are still conveniently expressed in terms of the combined object
F WM . E.g. the first order duality equation between vector and tensor fields is given by

1
3Dy B, " = 2—\/170«/|g|5w,p0TM“O‘NF”N, (4.10)

which upon expanding around the scalar origin and with (4.9) yields the first order topologically
massive field equation for the two-form tensors. The full bosonic Lagrangian reads

1 1
L= Vgl R =7 VIgl Mun F MEWN 51 Vel Dy My D*MMN
5 1
e <Z €ap Tab BMVaaDPB‘”bB + ﬂ \/igabcdef Auab aVApCd aaA'ref>

1 |
+ 1_6 EMVPUTEabcdef fgh,ijab AMCdAVghApU (aUATef + %\/ifkl,mneanklATmn)

—/]g| V(M) (4.11)

Here, the 42 scalar fields parameterize the coset space Eg)/USp(8) via the symmetric Eg )
matrix My;n which can be decomposed in the basis (4.4) as

Mab,cd Mabcv
MMN = ( Maabc Macey ) (412)

with the SO(p,6 — p) covariant derivatives defined according to
D,X* = 0, X" +V2A,% e X7, (4.13)

and similarly on the different blocks of (4.12). The scalar potential V' in (4.11) is given by the
following contraction of the generalized structure constants (4.7) with the scalar matrix (4.12)

1
V(Mun) = 30 MMN X p@ (5 Xnot + Xygr®° MPRMQS) ) (4.14)

3To be precise: this holds with a rescaling of p-forms according to
A his2.0614) = —V2 A" Grw V5B “ is12.0614) = Buv““arw (4.8)

and with their coupling constant set to garw = 2.
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For later use, let us explicitly state the vector field equations obtained from (4.11) which
take the form

0 = Euvpor (Uc[a DTMb]d,NMN’Cd + \@D)\ <FT>\ NMNyab))

3
+ 5 Eabede f F[;U/Cdea] ef + 60 €ap Nacllbd B[;u/caBpU]dB : (415)

We will also need part of the scalar field equations that are obtained by varying in (4.11) the
scalar matrix (4.12) with an SL(6) generator X,

1 1 1
0 = Z Dﬂ(MadKDMMKbd) o 5 My, 5 F/WacFuuN + Z /10 Tbe Ead Mo BWCBF“”N
4 : 1
+ (2 pNpaesfe + 1_5 Mde,h(aMC)Lngd%hj + 1_5 Mdah(aMC)ﬁvfaMda’hB) TbeTle

2
- <Mde,k(aMC)adngafg + Mde’h(aMc)gdaMfahg) TefThe — [trace],® .  (4.16)

5 The IIB reduction ansatz

In terms of the Eg) EFT fields, the reduction ansatz is given by the simple factorization (2.1)
with the twist matrix U given by (2.13). In order to translate this into the original IIB theory,
we may first decompose the EFT fields under (3.1), according to the IIB solution of the section
constraint, and collect the expressions for the various components. We do this separately for
EFT vectors, two-forms, metric, and scalars, and subsequently derive the expressions for three-
and four-forms from the IIB self-duality equations, as outlined in the general case in [38]. In a
second step, we can then recombine the various EFT components into the original IIB fields,
upon applying the explicit dictionary [24,38] from IIB into EFT.

In particular, the explicit expression for the full IIB metric allows one to determine the
background metric, i.e. the IIB metric at the point where all D = 5 scalar fields are set to
zero. This metric may or may not extend to a solution of the IIB field equations, depending
on whether the scalar potential of the D = 5 theory has a stationary point at its origin. It is
known [5] that this is the case for the D = 5 theories with gauge group SO(6) and SO(3, 3),
with AdS and dS vacuum, respectively. Accordingly, the internal manifolds S° and H>?3 extend
to solutions of the full IIB field equations, with the external geometry given by AdSs or dSs,
respectively.

5.1 IIB supergravity

Let us briefly review our conventions for the D = 10 IIB supergravity [43-45]. The IIB field
equations can be most compactly obtained from the pseudo-action

1 ) 1. L
S = fdloft V|G| <R+ Zaﬂmagc?“mo‘ﬁ — _Fﬂ1ﬂ2ﬂ30Fu1M2u35maﬁ

12
1 F [ ez fafis
- % i1 iz fu3 fia fis
1 10 4, (i1...[0 7 7
- @ -z €ap et “10Cﬂ1ﬂ2ﬂ3ﬂ4Fﬂ6ﬂ7ﬁ8aFﬂ8ﬂ9ﬂ10ﬁ : (5-1)
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Here, D = 10 coordinates are denoted by z/, and the action carries the field strengths
Fupp® = 30Copn”
Fpypis = 50 Cpa.is] — 4 CaB Clisio* Fsuaisl” (5.2)
of two- and four-form gauge potential. After variation, the field equations derived from (5.1)
have to be supplemented with the standard self-duality equations for the 5-form field strength

~ 1 —~ s s

Fivpor = 5 VGl epopotmpoppaps £ (5.3)
Finally, the symmetric SL(2) matrix mqs3 parametrizes the coset space SL(2)/SO(2) and carries
dilaton and axion. In the notation of [44] it is parametrized by a complex scalar B as

_ w1 [ 1=B)1=B*)  i(B-BY)
Mag = (1= BB 1( i(B — B¥) (1+B)(1+B*)> ' (5.4)

As a first step for the reduction ansatz, we perform the 5 + 5 Kaluza-Klein decomposition of
coordinates {z#} = {z*,y™} and fields, starting from the ten-dimensional vielbein
. detp)" V3¢ 2 A mp «
By = | (et et Ay om® ) (5.5)
0 qu_

but keeping the dependence on all 10 coordinates. Decomposition of the p-forms in standard
Kaluza-Klein manner then involves the projector PMD = EuQEJ together with a further redef-
inition of fields due to the Chern-Simons contribution in (5.2), see [38] for details. This leads
to the components

a A a
Cmn = Cmn )

a A « «
Cum® = Cum™ = AL Cpp®

Cuw® = Cu® =240, PCp™ + AP AIC,™
Crinkt = Crnnit
Cnkt = Cpunkt = AP Conrt — 220 Cun*Crry”
Covit = Chut — 24, Clpppet + AP AV Cpit — L €05 C®Ci®
Cuvpm = C'me - 3A[upé\p\vp] m T 3A[upAvqé\pq\p]m - AupAVqurépqrm
— §€ap Cu " Cpm”
Cuvps = éuvm - 4A[upé\p\1/p0] + 6A[up‘4”qé|pq|p0] - 4‘Ll[/ipAquprCA'IJDqTIU]

+ APATAT AL Crrs - (5.6)
in terms of which the reduction ansatz is most naturally given in the following.

5.2 Vector and two-form fields

Breaking the 27 EFT vector fields according to (3.1) into

{A,umyA,umaaAukmmA,ua} ) (57)
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we read off the reduction ansatz from (2.1), (3.2), which in particular gives rise to

A"(2y) = Kan™ () A (@)
-A,u,kmn<x7y) = Z[ab] kmn(y) Azb(a:) : (58)

The Kaluza-Klein vector field A4,™ = A,™ thus reduces in the standard way with the 15
Killing vectors IC[ab]m(y) whose algebra defines the gauge group of the D = 5 theory. Note,
however, that these extend to Killing vectors of the internal space-time metric only in case of
the compact gauge group SO(6). In the general case, as discussed above, the K. (y) are the
Killing vector fields of an auxiliary homogeneous Lorentzian metric (3.9), compare also [20-22].
The vector field components A, ., are expressed in terms of the same 15 D = 5 vector fields.
Their internal coordinate dependence is not exclusively carried by Killing vectors and tensors,
but exhibits via the tensor Z{4) mn(y) an inhomogeneous term carrying the four-form Crnnkl
according to (3.21).% This is similar to reduction formulas for the dual vector fields in the S*
reduction of D = 11 supergravity [46], which, however, in the present case already show up

among the fundamental vectors.

For the remaining vector field components, the ansatz (2.1), (3.2), at first yields the reduc-

tion formulas
Auma(-xv y) = Raﬁma (y) A,uaﬁ (x) = amya<y) Auaa(x) s
Aua(xyy) = Sa(y) A,uaa($) (59)

~ 5 mnp a
= %|G‘1/2 <5|ya<y) - Zwkl kalmn apy (y)) Auaa(x) )

in terms of the 12 vector fields A, ., in D = 5 and the tensors defined in (3.32) and (3.44).
However, as discussed in the previous section, for the SO(p, ¢) gauged theories, a natural gauge
fixing of the two-form tensor gauge transformations allows to eliminate these vector fields in
exchange for giving topological mass to the two-forms. As a result, the final reduction ansatz
reduces to

Apma = 0 = Ao - (5.10)

For the two-forms, upon breaking them into GL(5) components
{B,uuaag,uumnylguumaylguum} ) (511)

similar reasoning via (2.1) and evaluation of the twist matrix p=2 Up/~Y gives the following
ansatz for the SL(2) doublets

Buua($ay) = Va(y) Buvm(ﬂj) )
Buuma($ay) = Zam(y) B,uuaa(x) ’ (5'12)

“This seems to differ from the ansatz derived in [40]. The precise comparison should take into account that
the A,, B, are non-gauge-invariant vector potentials. In the present discussion, the inhomogeneous term in
Zlab] kmn (y) Played a crucial role in the verification of the proper algebraic relations.
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in terms of the 12 topologically massive two-form fields of the D = 5 theory. Here, Z,™(y) is
the vector density, given by*

- - 1 -
Zzm = |G|1/2 (Gmnanya_l_%a}mklpqcklpqya) ’ (5‘13)

in terms of the Lorentzian metric émn, vector field ),, and four-form Chimn. As is obvious
from their index structure, the fields B, contribute to the dual six-form doublet of the IIB
theory, but not to the original IIB fields. Accordingly, for matching the EFT Lagrangian to the
IIB dynamics, these fields are integrated out from the theory [24,38]. For the IIB embedding
of D = 5 supergravity, we will thus only need the first line of (5.12).

For the remaining two-form fields, the reduction ansatz (2.1) yields the explicit expressions

Z[ab]m (y) B,ul/ ab(x) )

B/u/m<x7y)
1
B,uumn(xyy) = _Z\@’C[ab]mn(y)B/u/ab(:E), (514)

with the Killing tensor K] =2 6[mIC[“b] n]» and the tensor density 2 [ab] | given by

[ab] _ ~(1/2 [ab]
21, |G| (lC m+ 193

L gl Cynpq> : (5.15)
Here, the 15 D = 5 two-forms B,,, 4 are in fact absent in the SO(p, q) supergravities, described
in the previous section. In principle, they may be introduced on-shell, employing the formulation
of these theories given in [41,47], however, subject to an additional (three-form tensor) gauge
freedom, which subsequently allows one to set them to zero. Hence, in the following we adopt
By ap(x) = 0, such that (5.14) reduces to

Buwm = 0 = Bumn - (5.16)

Within EFT, consistency of this choice with the reduction ansatz (5.14) can be understood by
the fact that the fields B, ., (related to the IIB dual graviton) do not even enter the EFT
Lagrangian, while the fields By, ., enter subject to gauge freedom

58“,,mn = Qa[mAn] (5.17)

T2

(descending from tensor gauge transformations of the IIB four-form potential), which allows us
to explicitly gauge the reduction ansatz (5.14) to zero.

Combining the reduction formulas for the EFT fields with the explicit dictionary given
in sec. 5.2 of [38], we can use the results of this section to give the explicit expressions for
the different components (5.6) of the type IIB form fields. This gives the following reduction

formulae
Cuua<x7y) = mya(:g) BMVaa(‘T) ’ (518)
Cuma<x7 y) = 0,
\/§ a ¢
C/u/ mn (LE, y) = T ]C[ab]k(y)z[cd] kmn (y) A[u b(x)Au] d<x) )
V2 a
C,ukmn (x, y) = T Z[ab] kmn (y) Au b<x) ) (519)
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for two- and four form gauge potential in the basis after standard Kaluza-Klein decomposition.
In the next subsection, we collect the expressions for the scalar components C,,,% and Crinn,
and in subsection 5.5 we derive the reduction formulas for the last missing components C),,,m,
and C\,pe of the four-form.

Let us finally note that with the reduction formulas given in this section, also the non-abelian
EFT field strengths of the vector fields factorize canonically, as can be explicitly verified with
the identities given in (3.8), (3.19). Explicitly, we find

Fu™ = 200 A" — ASOnA™ + A0 AT
= K™ () (2 O™ (x) + \@fcd,efabA,quAuef(:E))
= K" () Fuu™ (),
Fuvkmn = 200 A kmn = 2 AR QA ki — 3 0pAR Ay gt + 3 AL Ay manyi
= Zla)kmn () ™ (@) | (5.20)

in terms of the non-abelian SO(p, ) field strength F},,%°(z) from (4.9).

5.3 EFT scalar fields and metric

Similar to the discussion of the form fields, the reduction of the EFT scalars can be read off
from (2.1) upon proper parametrization of the matrix M. We recall from [24,38] that M/
is a real symmetric Eg) matrix parametrized by the 42 scalar fields

{Gmmcmnaacklmmma } ; (5'21)
B

where Cipn® = Cpyn)®, and Crimn = Clpimn) are fully antisymmetric in their internal indices,
Grn = G(mp) is the symmetric 5 x 5 matrix, representing the internal part of the IIB metric,
and map = m(yp) is the unimodular symmetric 2 x 2 matrix parametrizing the coset space
SL(2)/SO(2) carrying the IIB dilaton and axion. Decomposing the matrix M,y into blocks
according to the basis (5.7)

M ME™ My MP
MKM _ Mkam Mka,mﬁ Mkamn Mka,ﬁ (5 22)
Mt M™ Myggn Mi® |

Mam Moe,mﬁ Mamn Ma,ﬁ

the scalar fields (5.21) can be read off from the various components of Mj;n and its inverse
MMN “We refer to [38] for the explicit formulas and collect the final result

G = (det G)Y3 MM (5.23)
m® = (detG)¥3M*B

Con® = V2e%8(det O)Bmp, MYy = — e (det G)3 G Mong" |

Crimn = 2 (det G)2/3 Eklmnp Mad MOPB = /2 (det G)1/3Eklmanq7“ MPET
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where G and m®® denote the inverse matrices of Gy, and mqg from (5.21). The last two lines
represent examples how the C,,,* and Climy can be obtained in different but equivalent ways
either from components of M or MMY | This of course does not come as a surprise but is a
simple consequence of the fact that the 27 x 27 matrix M,y representing the 42-dimensional

coset space Egg) /USp(8) is subject to a large number of non-linear identities.

With (5.23), the reduction formulas for the EFT scalars are immediately derived from (2.1).
For the IIB metric and dilaton/axion, this gives rise to the expressions

G xyy) = AP (r,y) Ky ™ @)K () M (@)

AY3(2,y) YValy) Vo (y) MO (z) | (5.24)

m® (z,y)
with the function A(x,y) defined by
Alz,y) = p*(y) [det G)? = (1-0)"2(det G)'/? (5.25)

and the 42 five-dimensional scalar fields parameterizing the symmetric Egg) matrix My y de-
composed into an SL(6) x SL(2) basis as (4.12).

Similarly, the reduction formula for the internal components of the two-form C,,,“ is read
off as

Conn®(w,y) = —*PAY3(2,y) Gur(2,y) 0 (y) Kpany (y) MPes()

= _% 5aﬁA4/3<xv Y) mﬁv(xa y) Ve(y) ]C[ab]mn(y) My () , (5.26)
featuring the inverse matrices of (5.24), with the two alternative expressions corresponding to
using the different equivalent expressions in (5.23). To explicitly show the second equality in
(5.26) requires rather non-trivial quadratic identities among the components (4.12) of an Egg)
matrix, together with non-trivial identities among the Killing vectors and tensors. In contrast,
this identity simply follows on general grounds from the equivalence of the two expressions in
(5.23), i.e., it follows from the group property of Mysy and the twist matrix Up/~Y. Let us
also stress, that throughout all indices on the Killing vectors Ky, and tensors are raised and
lowered with the Lorentzian xz-independent metric G,y (y) from (3.9), not with the space-time

metric Gpp(z,y).

Eventually, the same reasoning gives the reduction formula for C,,,x
Cklmn (:Ea y) = 2 Eklmnp A4/3 (:Ea y) Map (:Ea y) yfl (y) pr(y) Maa,bﬁ (:E) 9 (527)
with ZP(y) from (5.13). Explicitly, this takes the form

Chtmn(#,5) = rtmnp AV (2, 9) mas (2,9) GP1(y) 0, (A, 5) m (2,y)

+ Cltmnn(y) - (5.28)
On the other hand, using the last identity in (5.23) to express Ckjmn, the reduction formula is
read off as
Crtmn (,9) = AV2 DY (2,9) Z1at) (i (1) G (2, 9) Koy (9) M ()

= C~’mnkl (y) -2 A2/3 (337 y) ’C[ab]p(y) IC[cd] [Eim (y) Gn]p (337 y) Mebed (:E) 7(529)
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where we have used the explicit expression (3.21) for 24 kim- Again, the equivalence between
(5.28) and (5.29) is far from obvious, but a consequence of the group property of My and
the twist matrix Uy, For the case of the sphere S°, several of these reduction formulas have
appeared in the literature [11-13,39,40]. Here we find that they naturally generalize to the
case of hyperboloids, inducing the D = 5 non-compact SO(p, q) gaugings.

Let us finally spell out the reduction ansatz for the five-dimensional metric which follows
directly from (2.1) as

g (@,Y) = p7*(y) gu () . (5.30)

Putting this together with the parametrization of the IIB metric in terms of the EFT fields,
and the reduction (5.8) of the Kaluza-Klein vector field, we arrive at the full expression for the
IIB metric

ds? = AB(z,y) guv () dat da”
+ Grn(w,9) (dy™ + Ky ™ () A3 (@)da ) (dy™ + Kpoay" (9) A (2)da” ) (5.31)

in standard Kaluza-Klein form [48], with G,,,, given by the inverse of (5.24).

5.4 Background geometry

It is instructive to evaluate the above formulas at the particular point where all D = 5 fields
vanish, i.e. in particular the scalar matrix M;y reduces to the identity matrix

Myn(x) = dyn - (5.32)

This determines the background geometry around which the generalized Scherk-Schwarz re-
duction ansatz captures the fluctuations. Depending on whether or not the scalar potential of
D = 5 gauged supergravity has a stationary point at the origin — which is the case for the
SO(6) and SO(3,3) gaugings [5] — this background geometry will correspond to a solution of
the IIB field equations.

With (5.32) and the vanishing of the Kaluza-Klein vector fields, the IIB metric (5.31) reduces
to

ds* = GppdXFdX"” (5.33)

o maling byl m 3, n
(14 u—uv)/? 9y () datdx” + (1 + u — v) "2 (5mn + %) dy™dy"

where we have used the relations

58" Kiat) ™ W)Kpea" () = (1 +u—0)8"™" = noimnsy'y’

[e]

A = (Q+u—v)"1, (5.34)

The internal metric of (5.33) is conformally equivalent to the hyperboloid HP®~P defined by
the embedding of the surface
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in R%. This is a Euclidean five-dimensional space with isometry group SO(p) x SO(6 — p), inho-
mogeneous for p = 2,3, 4. Except for p = 6, this metric differs from the homogeneous Lorentzian
metric defined in (3.9) with respect to which the Killing vectors and tensors parametrizing the

reduction ansatz are defined.

Using that Y, 50 =1 4y — v, it follows from (5.24) that the IIB dilaton and axion are

constant
meP = 5P (5.36)

while the internal two-form (5.26) vanishes due to the fact that (5.32) does not break the SL(2) .
Eventually, the four-form Cjyyy,y, is most conveniently evaluated from (5.28) as

o ~ 8 - o o
Ck‘lmn = Cklmn — g (Dklmnp qu Ailan
= 4€klmnp npqu (1 - U)_1/2 (K(’LL, U) + (1 tu— U)_l) ) (537)

which can also be confirmed from (5.29). In particular, its field strength is given by

2 p—4+(—3)(u—v)
58 O = 8 mn 9
[k~ Imnp] Eklmnp (1 — 1))1/2 (1 Tu— ’U)2

(5.38)

where we have used the differential equation (2.11) for the function K (u,v). Again, it is only

[0} ~
for p = 6, that the background four-form potential Cyjp,y, coincides with the four-form Clipn

that parametrizes the twist matrix UpL.

With this ansatz, the type IIB field equations reduce to the Einstein equations, which in

this normalization take the form

[e] o

o 2 o o, o o
Ryn = Tmn g a[mc’lflpq]a[nc’rstu] GkrGlstthu ) (539)

and similar for R, . With (5.33) and (5.38), the energy-momentum tensor takes a particularly
simple form for p = 6 and p = 3:

: 4G —6
Trn = P . (5.40)

(1+u—v)_5/2émn p=3

For the z-dependent background metric f] L () the most symmetric ansatz assumes an Einstein
space (dS, AdS, or Minkowski)

o

R[g],u,u = k.g]py ) (541)

upon which the IIB Ricci tensor associated with (5.33) turns out to be blockwise proportional
to the IIB metric for the same two cases p =6 and p = 3

ﬁ _ 4émn p:6
(1+u—v)"2GCpn, p=3

o ko v —

Ry = G = s
—(1+u—w) 5/2(1+(2—k‘)(1~|—u—v)2)GW =3



Together it follows that (5.33), (5.37), (5.41) solve the IIB field equations for p = 3,k = 2 and
p = 6,k = —4, c.f. [20]. The resulting backgrounds are AdSs x S° and dS; x H®3 and the
induced D = 5 theories correspond to the SO(6) and the SO(3,3) gaugings of [5], respectively.
For 3 = p = 6, the background geometry is not a solution to the IIB field equations. Let us
stress, however, that also in these cases the reduction ansatz presented in the previous sections
describes a consistent truncation of the I1B theory to an effectively D = 5 supergravity theory,
just this theory does not have a simple ground state with all fields vanishing.

5.5 Reconstructing 3-form and 4-form

We have in the previous sections derived the reduction formulas for all EFT scalars, vectors,
and two-forms. Upon using the explicit dictionary into the IIB fields [24, 38], this allows to
reconstruct the major part of the original IIB fields. More precisely, among the components
of the fundamental IIB fields only éu,,pm and é/wmf with three and four external legs of the
1IB four-form potential remain undetermined from the previous analysis. These in turn can
be reconstructed from the IIB self-duality equations, which are induced by the EFT dynamics.
We refer to [38] for the details of the general procedure, which we work out in the following
with the generalized Scherk-Schwarz reduction ansatz.

The starting point is the duality equation between EFT vectors and two-forms that follows

from the Lagrangian
/ 1 or N
e \ Hypwplmn] = 5 € Ming, v F77 7 Supor | = 0, (5.43)

where .FMVN is the non-abelian field strength associated with the vector fields .AMN , and 7:l| pvp| mn
carries the field strength of the two-forms By, p,. Taking into account the reduction ansatz
(5.10), (5.16), it takes the explicit form

Hyuwpmn = _a[uAVkAp] kmn — A[ukaVAp] kmn — | [uvap] kmn — A[ukf vp] kmn
+ 200, <A[u’fAJAp] n]kl) : (5.44)

in terms of the remaining vector fields and field strengths from (5.20). Since (5.43) is of the
form of a vanishing curl, the equation can be integrated in the internal coordinates up to a curl

OmCh]

uvp Telated to the corresponding component of the IIB four-form, explicitly

1 oT 1 )/
a[mC’n] uvp E\/Eee,uupm— an,N F N g\/nguypmn . (545)

It is a useful consistency test of the present construction, that with the reduction ansatz de-
scribed in the previous sections, the r.h.s. of this equation indeed takes the form of a curl in
the internal variables. Let us verify this explicitly. Since the reduction ansatz is covariant, the
first term reduces according to the form of its free indices [mn], c.f. (5.14)

1
ean,N -FUTN = _5 \/Ea[mlc[ab]n] <V ‘g| Mab,N FUTN) ) (546)

which indeed takes the form of a curl. We recall that the D = 5 field strength FH,,N com-
bines the 15 non-abelian field strengths FH,,ab and the 12 two-forms B,,, 4 according to (4.9).
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The reduction of the second term on the r.h.s. of (5.45) is less obvious, since ﬂuypmn is not
a manifestly covariant object, and we have computed it explicitly by combining its defining
equation (5.44) with the reduction of the vector fields (5.8) and field strengths (5.20). With the
identity (3.57) among the Killing vectors and tensors, the second term on the r.h.s. of (5.45)
then reduces according to

/ 1 abed kgl
,H;u/pmn = g Eabcdef IC[ ] Quup + 2(9[ (‘A[M A, Ap]n]kl) . (547)
with the non-abelian SO(p, ¢) Chern-Simons form defined as
abed ab cd ab cd
Qvp = AT A"+ A (5.48)

in terms of the SO(p,6 — p) Yang-Mills field strength ijab. Again, (5.47) takes the form of a
curl in the internal variables, such that equation (5.45) can be explicitly integrated to

1

Cm;u/p = _ﬁ IC ( V |g Epvpor Mab NFJTN + \/_Eabcdef ijp )

- _\/71C ab cd [ef] mkl <A[uabAVCdAp]6f> : (549)

This yields the full reduction ansatz for the component Cy, ... Obviously, Cy, 1, is determined
by (5.45) only up to a gradient d,,A,., in the internal variables, which corresponds to a gauge
transformation of the IIB four-form. Choosing the reduction ansatz (5.49), we have thus made
a particular choice for this gauge freedom.

In a similar way, the last missing component C),,,, can be reconstructed by further manip-
ulating the equations and comparing to the IIB self-duality equations [38]. Concretely, taking
the external curl of (5.45) and using Bianchi identities and field equations on the r.h.s. yields a
differential equation that can be integrated in the internal variable to

1

kpqrs 9\ a
57 CEhpor € U5 (det G) ' Gk Depgrs = 16 D1 Cpoln — 30 €05 Bl 0nBpot”

[w
+6 V2 Fpu " AL A ik + 400Cluvpo . (5.50)

up to an external gradient 0,,C}, s Which carries the last missing component of the IIB four-
form. Here, DEK denotes the Kaluza-Klein covariant derivative

D C, = 0,Cp — A0, — 0, 4,5Cr,  ete., (5.51)

and Zsucpqrs is a particular combination of scalar covariant derivatives [38], which is most
compactly defined via particular components of the scalar currents as

DMy NMNT = —%(d t G) ! G €75 Dyypgrs (5.52)

where D), refers to the full EF'T derivative, covariant under generalized diffeomorphisms. Again,
it is a useful consistency check of the construction that with the reduction ansatz developed so
far, equation (5.50) indeed turns into a total gradient, from which we may read off the function
Clivpo - For the Lh.s. this is most conveniently seen by virtue of (5.52) and the reduction ansatz
(2.1) for Mpsn, giving rise to

e (det G)il Gk gkpqrs ﬁﬂcpqrs = 3 |g| IC[ab] mn’C[cd]nDuMab,NMN «d

6+/]gl (x@ KL, e — am(ybya)> DF Mgy MN % (5.53)
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where we have used (3.55). The derivatives D,, on the r.h.s. now refer to the SO(p,6 — p)
covariant derivatives (4.13). For the terms on the r.h.s. of (5.50), we find with (5.8), (5.12),
and (3.48)

—30€08 B “onBr” = 15V2e0s B " Bo)™ Kby n »
6vV2 iy A Agyin = —6V2 Fp, Ay Ay Kpan)*Kpea) Zpepyoma . (5.54)
as well as
16 DELK Copolm = % clabl (\/@ Euvpor D (Mab,NFT’\N> + \/§€abcdef D[uQiiiD

+AV2 F P AL A i + 2V2 AL A TF oy
+ \/iA[Mk.A,,l (2 ApnawAa] klm + 3 8[mAp"AU] kln — 3 Ap"c?[mAU] kl]n)
= 2V2 AL Ay ) (A0 Ao ) = V20 (ALF A A Ay ) (5.55)

where we have explicitly evaluated the Kaluza-Klein covariant derivative D, on C,,m, the
latter given by (5.49). Moreover, we have arranged the A% terms such that they allow for
a convenient evaluation of their reduction formulae. Namely, in the last two lines we have
factored out the quadratic polynomials that correspond to the A? terms in the non-abelian
field strengths (5.20) and thus upon reduction factor in analogy to the field strengths, leaving
us with the A* terms

AAAA —> =2 fer g Kby (Zpearmmilyy) + Kl Zigmn ) A A AT A"
~ V20 (AQFAS A A )

1 .
= - Z \/5 fab,uvxyfef,ghw Eedijzy K%U]A[uabAVCdApean] gh
1 i U a c e
+ 5 fef,gh J Ecdijau am (y yb) A[u bAl/ dAp on]gh
= V20 (APAS A Ay ) (5.56)

upon using the identities (3.57), (3.55). While the last two terms are total gradients, the first

term cancels against the corresponding contribution from the derivative of the Chern-Simons
form Qabed in (5.55)

pvp
d 3 1
Dy 20 capedes = 1 h fr“ Fpo) ! €atodes — 3 V2 AL AT F )™ fabes™ cdghun
1 ..
— 5 A[“chyeprghAo]zy fcd7efrsfgh,ijuv5abrsuv . (557)

Similarly, the FAA terms in (5.55) combine with those of (5.54) according to

FAA — —2v2F,, A, 94, ’Cl[cd] (’leab] Zlefimrl + ’C]fef] Z[ab] mkl) (5.58)

1 y 1
= 5 fcd,ijgh ]C[U]mF[MuabApCdAa] ef Eabefgh — 5 \/iF[uuabAPCdAa] ef Eabefch Om (yhyd)

Again, the first term cancels against the corresponding contribution from the derivative of the

Qabcd

Chern-Simons form €777

, given in (5.57).
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Collecting all the remaining terms, equation (5.50) takes the final form
0 = % KLl /lel € wpor <% V2n4a D" Mg MY + Dy, <Mab,NFT)\N)>
+ g V2Kl <€abcde  Flw“Fpo) + 40 €08 Nactba B Bpo) ™ >
+ ! fef,ghij Ecdijay Om (V' Vs) A" Al AL T AT
- - \/Equm (V°Y4) D™ My y MY 24 — ﬁF[HV“bApCdAU] F eapesen Om (V" Va)

= V20 (AQEAS A Ag i) + 40mCrapo (5.59)

Now the first two lines of the expression precisely correspond to the vector field equations (4.15)
of the D = 5 theory, which confirms that on-shell this equation reduces to a total gradient in the
internal variables. Although guaranteed by the consistency of the generalized Scherk-Schwarz
ansatz and the general analysis of [38], it is gratifying that this structure is confirmed by explicit
calculation based on the D = 5 field equations and the non-trivial identities among the Killing
vectors. We are thus in position to read off from (5.59) the final expression for the 4-form as

1
Cy,l/pcr = —3x yayb (\/ |g| 5,ul/poTDTMbc,NMNca +2 \/igcdefgb F[Muchpean]ga >

(\f’C ab] cd ’C[ef]nz[gh kin — yhy Eabcegyj ndf) A[“abAychpefAU]gh
+ Npvpo (2) (5.60)

in terms of the D = 5 fields, up to an y-independent term A, - (), left undetermined by
equation (5.50) and fixed by the last component of the IIB self-duality equations (5.3). This
equation translates into

4DELK Cypm_] 30 Eap B[wjaD;(K Bm—]ﬁ + Bf[,ul/kaUT]k
1

~ 0 €€y por €M (det G) Y3 X g (5.61)

where Xpimnp is @ combination of internal derivatives of the scalar fields, c.f. [38], that is most
compactly given by

1 1
makwskam = —2—0\/5 (det G) G™ My NMN™ (5.62)

in analogy to (5.52). It can be shown that equation (5.61) can be derived from the external
curl of equations (5.50) upon using the EFT field equations and Bianchi identities, up to a
y-independent equation that defines the last missing function A, ,,. For the general case this
has been worked out in [38]. Alternatively, it can be confirmed by explicit calculation with the
Scherk-Schwarz reduction ansatz, that equation (5.61) with the components C,,pm and Cpypo
from (5.49) and (5.60), respectively, decomposes into a y-dependent part, which vanishes due
to the D = 5 scalar equations of motion, and a y-independent part, that defines the function
Avpo. The calculation is similar (but more lengthy) than the previous steps, requires the same
non-trivial identities among Killing vectors derived above, but also some non-trivial algebraic
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identities among the components of the scalar Eg) matrix Myy. We relegate the rather
lengthy details to appendix A and simply report the final result from equation (A.20)

1

vpor) = 755 V18l Supor Da (MY D Mocv )

A
480

D[u

1 1 —
* 240 ‘g| Epvpor FrAN (Mab,NF“)‘ab 9 10€ap Nap M™% N BHAbB)

1

+ @ V |g| Euvpor (10 5;‘553 + 2Mfd7gaMgh,fe - MeagaMghda) Mbhﬁc NecdTlab

1 1
+ 35 V2 eapedef Fluw ™ FpoAn + T Fr ™ Ay AT A eapedennyn

1 .
+ 4—0 \/5 A[uabA,,CdApengghAT]w Eabcegi Ndf Mhj - (563)

Since there is no non-trivial Bianchi identity for (5.63), this equation can be integrated and
yields the last missing term in the four-form potential (5.60). This completes the reduction
formulae for the full set of fundamental IIB fields.

6 Summary

We have in this paper derived the explicit reduction formulae for the full set of IIB fields in the
compactification on the sphere S® and the inhomogeneous hyperboloids HP6~P. The fluctua-
tions around the background geometry are described by a D = 5 maximal supergravity, with
gauge group SO(p,6 — p). The dependence on the internal variables is explicitly expressed in
terms of 1) a set of vectors K™ which are Killing vectors of a homogeneous metric Gmn
(3.9), and 2) a four-form C),,,, whose field-strength yields the Lorentzian volume form (3.29).
Only for the compact case of S°, the metric Gy and four-form Clypmy, coincide with the space-
time background geometry. In the non-compact case, they refer to a (virtual) homogeneous
Lorentzian geometry which encodes the inhomogeneous space-time background geometry via
the formulas provided. This is in accordance with the ansatz proposed and tested for some
stationary points of the non-compact D = 4 gaugings in [22], see also [20,21] for earlier work.
Only for p = 6 and p = 3 does the background geometry provide a solution to the IIB field
equations. We stress, that also in the remaining cases, the reduction ansatz describes a consis-
tent truncation of the IIB theory to an effectively D = 5 supergravity theory, just this theory
does not have a simple ground state with all fields vanishing. Still, any stationary point or
holographic RG flow of these non-compact gaugings as well as any other solution to their field
equations lifts to a IIB solution by virtue of the explicit reduction formulas.

The explicit reduction formulas are derived via the EFT formulation of the IIB theory
by evaluating the formulas of the generalized Scherk-Schwarz reduction ansatz for the twist
matrices obtained in [19]. The Scherk-Schwarz origin also proves consistency of the truncation
in the sense that all solutions of the respective D = 5 maximal supergravities lift to solutions
of the type IIB fields equations. By virtue of the explicit embedding of the IIB theory into
EFT [24, 38] these formulas can be pulled back to read off the reduction formulas for the
original type IIB fields. Upon some further computational effort we have also derived the
explicit expressions for all the components of the IIB four-form. Along the way, we explicitly
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verified the IIB self-duality equations. Although their consistency is guaranteed by the general
construction, we have seen that their validation by virtue of non-trivial Killing vector identities
still represents a rewarding exercise.

We have in this paper restricted the construction to the bosonic sector of type IIB supergrav-
ity. In the EFT framework, consistency of the reduction of the fermionic sector follows along the
same lines from the supersymmetric extension of the Eg() exceptional field theory [49] which
upon generalized Scherk-Schwarz reduction yields the fermionic sector of the D = 5 gauged
supergravities [19]. In particular, compared to the bosonic reduction ansatz (2.1), the EFT
fermions reduce as scalar densities, i.e. their y-dependence is carried by some power of the scale
factor, such as ¢, (z,y) = /f% (y) ¢, (), etc.. A derivation of the explicit reduction formulas
for the original IIB fermions would require the dictionary of the fermionic sector of EFT into
the IIB theory, presumably along the lines of [40]. The very existence of a consistent reduction
of the fermionic sector can also be inferred on general grounds [2] combining the bosonic results
with the supersymmetry of the IIB theory.

We close by recollecting the full set of IIB reduction formulas derived in this paper. The
IIB metric is given by

ds?> = A75(z,y) g () dat dz”
+ Gun(@,) (dy™ + Kpay ™ () A (@) ) (dy" + Kpeg " (1) AL (@)da” ), (6.1)

in standard Kaluza-Klein form, in terms of vectors Ky, from (3.38) that are Killing for the
(Lorentzian) metric Gy, from (3.9), and the internal block Gy, of the metric (6.1) given by
the inverse of

G"(wyy) = AP (2,y) Kiay™ () Kpea" (y) M (@) . (6.2)
The IIB dilaton and axion combine into the symmetric SL(2) matrix
m®(z,y) = AV (w,y) Va(y)Vs(y) M (2) (6.3)

in terms of the harmonics ), from (3.45). Since det m®’ = 1, this equation can also be used as
a defining equation for the function A(z,y). The different components of the two-form doublet

are given by

1
Cmna (337 y) = _5 6aﬁA4/3 (337 y) mp~ (337 y) yc(y) K[ab] mn (y) Mabcv (33) ;
Cﬂma<x7 y) = O 9
C,uua(xy y) = \/Eya(y) Buuaa($) . (64)

Next, we give the uplift formulas for the four-form components in terms of the Killing vectors
Kian)™(y), Killing tensors K44 mn (y), the sphere harmonics Y, (y) given in (3.45), the function
Z[ab] kmn (y) given by (3.21), and the four-form Chipn(y) from (3.49). In order not to clutter
the formulas, in the following we do not display the dependence on the arguments x and y as it
is always clear from the definition of the various objects whether they depend on the external
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or internal coordinates or both. The final result reads

Chtmn = Chtmn + Dty A s G710, (AT me?)
Cukmn = g Zap] ko A
Cowmn = g Krat)" Zied) kmn Ap A
Cowp = —3—12 Kiab)m (2 Vgl euvpor Map NFTTN + V2 €qpede s Q,ic,lfpf)

1
~ 3V2 K Kiea Zregy s (A, A4, )
1
C,ul/po = _E yayb < V |g| €,ul/poTDTMbc,NMN “+2 \/Eecdefgb F[chdApeon]ga)

1 .
+3 <\/5 Krat)*Krea)' Kre 1" Z1gny kin — Y1 €abeeg 77df> A A AT A
+ A po () - (6.5)

We recall, that the curved indices on these objects are raised and lowered with the z-independent
metric G (y) from (3.9) and not with the background metric Gy,,. The function A, . ()
is defined by equation (5.63). All p-form components are given in the basis after standard
Kaluza-Klein decomposition, explicitly related to the original I1IB fields by (5.6).

With the reduction ansatz (6.1)—(6.5), the type IIB field equations reduce to the D = 5
field equations derived from the Lagrangian (4.11). As a consequence, these formulas lift every
solution of D =5, SO(p, q) gauged supergravity to a solution of IIB supergravity.
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Appendix

A Finding A, ),

In order to find the last missing contribution A,,,, in the expression (5.60) for the four-form
component C,,,s let us study the reduction of the different terms of equation (5.61)
1

ﬁ eewjpm—eklmnp (det G)74/3Xklmnp = 30 €af B[MVQD;)(K Bm—]ﬁ + Sf[uukcpa.r] E

—4 DELK Copor] - (A1)

By construction, after imposing the generalized Scherk-Schwarz ansatz this equation should
split into a y-dependent part proportional to the D = 5 scalar field equations (4.16), and a
y-independent part which determines the function A, ).
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The first term on the r.h.s. simply reduces according to the reduction ansatz (5.12)
30208 Buw "Dy Byr)® = 30e0s Yo By "“D,Byn . (A.2)

Note that the Kaluza-Klein covariant derivative turns into the SO(p,6 — p) covariant derivative
by virtue of (3.46). With (5.49) and the identity (3.56), we find for the second term on the
r.h.s. of (A1)

1 €
8f[uukam—] k= _5 ybya F[;u/d) (2 V |g‘ Epor]rA Mac,NFHAN + \/§Qp£€_§t Eacefgh)
+2V/2 F, A" AT A Kia) ™ Kpea)" Kie 1) Z1gn) mit - (A.3)

Next, we have to work out the covariant curl of C),,,,; with the explicit expression (5.60). To this
end, we first note that for all terms with y-dependence proportional to Y*)?, the Kaluza-Klein

covariant derivative reduces to
DS (¥°Y" Xap) = YV DuXa (A4)

in view of the property (3.46) of the harmonics Y*. We thus find

1 / ca
—4 DELK Cypo"[‘] = 2_0 yayb |g| 5,ul/poTD)\ <MN D)\Mbc,N) - 4D[MAVpJT]
1 .
+ 5 \@yby“ Eacdefg D[M <prchUefAT]bg + \/éAVCdAPEhAijAT]bg "7hj)
k l n ab A cd e h
— \/EDE;K <’C[ab] ’C[cd] IC[ef] Z[gh] kinAy Ap A, fAT]g ) . (A.5)

In order to evaluate the last term it is important to note that unlike in (A.4), the Kaluza-
Klein covariant derivative here cannot just be pulled through the (non-covariant) y-dependent
functions but has to be evaluated explicitly leading to

3
k I gn ab cd e h k l n
_\/EDELK (A,, AL ASAL kln) = -3 \@F[;w A, YA, fAT]g Kian)"Kiea) Kien" Z1gh] kin
1 ab g cd 4 e h k ! n
+ 5 V2" A, A, TAN" Klea)" Ko Kign)™ Z1at) kin

3
+ 1—0 \@A[MTSAyuvApCdAcrefAr]ghfcd,rsabgabuvgeyfyh )

after some manipulation of the functions K, Zpap. Putting everything together and again
using once more the identity (3.57), the full r.h.s. of equation (A.1) is given by

(Ad),hs = 2_10 Yo’ \/I8] €por D <MN «“ D/\Mbc,N) — 4D, A, por
S VIV Cuey Dy (FopAg T A 4 V3 A4, A, 400 s, )
- % edfgheeYaVs Flun® A" A" A + 30208 Yo B “DpByr)”’
+ g V2 ecsuvge VaVo Nar A S A" Ay 1Ay ¢ A
- % /% F[;wd’ (2 \/@Epoﬂm\ Mae NFN +1/2 QZ{,‘? Eacefgh> . (A.6)
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Some calculation and use of the Schouten identity shows that all terms carrying explicit gauge
fields add up precisely such that their y-dependence drops out due to J,)*. Specifically, we
find

1
(A‘l)r.h.s FFA = g 2 Eabedef F[uuaprochT]ef 5
1
(A‘l)r.h.s FAAA = Z F[M,/abApCdAoefAT]gh EabedehTfh
1 g
(A'l)r.h.s AAAAA = 1_0 \/EA[uabAVCdApeanghAr]” Eabcegi Ndf 1hj - (A7)

In addition, we use the D = 5 duality equation (4.10) in order to rewrite the BDB term of
(A.1) and arrive at

(A1),,, = —2—10 Vad? \/lg] €pupor D <MN 9 DA My, N) — 4D, oy
+1—10 VI Vel €pwpor FN <Mbc,NFn)\ac - % V10ea5na M@y Bm\aﬁ>
+ é V2 Eapedes Flu ™ Fpo™ A + i Flu ™A, A A9 e apeacnnpn
+ 1% V2 AL DA AT AT AL e gpceqi Napning - (A.8)

Structurewise, the r.h.s. of equation (A.1) is thus of the form

(A‘l)r.h.s = (ya<y)yb(y) - %Tlab> 51 ab(x) + 52(%) . (AQ)

Consistency of the reduction ansatz then implies that also the Lh.s. of (A.1) organizes into the
same structure. The coefficients multiplying the y-dependent factor (ya(y)yb(y) - %nab) must
combine into a D = 5 field equation in order to reduce (A.1) to an y-independent equation
which then provides the defining equation for A, .

In order to see this explicitly, we recall, that the Lh.s. of (A.1) is defined by (5.62), which
together with the reduction ansatz (2.1) for Mjy;n may be used to read off the form of this
term after reduction. After some manipulation of the Killing vectors and tensors and use of
the identities collected in section 3.3, we obtain

1
m € Eklmnp (det G)_4/3Xklmnp = _1_0 \/5 V ‘g| yayb X(ab)Cd’ef (U—l)qu[cd]maquf

2
— 5 Vgl Yadstea Meeht (A.10)
in terms of the SL(6) twist matrix (2.8), and the combination
X(ab)cd,ef _ X(ab)[Cd]’ef =9 Mje,g(aMb)h,chthf o Mfag(aMb)h,chghea 7 (All)

of matrix components of (4.12). At first view, the structure of this expression in no way
ressembles the form of (A.9), with a far more complicated y-dependence in its first term. This
seemingly jeopardizes the consistency of the reduction of equation (A.1), which after all should

be guaranteed by consistency of the ansatz. What comes to the rescue is some additional
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properties of the twist matrix together with some highly non-trivial non-linear identities among
the components of an Eg(g) matrix. Namely the last factor in the first term of (A.10) drastically
reduces upon certain index projections

(Uﬁl)aqK[bc]maquc + (Uﬁl)qu[ac]maquc _\/inab ’

(Uﬁl)aq’C[bc]maqud + (Uﬁl)qu[ca]maqud + (Uﬁl)cq’C[ab]maqud = 0, (A.12)

as may be verified by explicit computation. Moreover, the tensor X (ab)edse ¢ defined in (A.11) is
of quite restricted nature and satisfies

2 2 1
X(ab)cd,ef _ X(ab)[cd,e]f _ g 5f[c X(ab)d]g,eg o E 5f[c X(ab)d]e,gg + § 5fe X(ab)cd,gg , (A13)
implying in particular that
X(ab)e[c,d]e _ _% X(ab)cd,ee ) (A14)

The identity (A.13) is far from obvious and hinges on the group properties of the matrix (4.12).
It can be verified by choosing an explicit parametrization of this matrix (e.g. as given in [38]),
at least with the help of some computer algebra [50-52]. Combining this identity with the
properties (A.12) of the twist matrix, we conclude that the first term on the r.h.s. of (A.10)
simplifies according to

_ m 2 a € o m
X(ab)Cd’ef (U l)eqlc[cd] aquf = —X( b)g(d, )g (U 1)6‘1]C[fd] aquf

t

1
= VXt gy, (A.15)

such that its y-dependence reduces to the harmonics ),)}.

As a consequence, together with (A.12), we conclude that the penultimate term in (A.10)
reduces to

! - 1 ab)ge
T V219 Yadp X0 (U)K e AU, = ~55 Vg Vady X @904 0 (A16)

Together with (A.8), equation (A.1) then eventually reduces to
1
D[,uAupoT] = _% yayb V ‘g| E/M/pO'TD)\ (MN ae DAMbc,N)
1 1
+ 4_0 yayb \V ‘g| E;u/par FH)\N (Mbc,NFn)\ac - 5 \% 10 Eaﬁ Tlab MdaN Bn)\aﬁ>

1
+ ﬁ \/E&uupor yayb (10 Mactd + X(af)667de> Mled!lbf

1

1
+ 3—2 \@ Eabede f F[uyaprUCdAT] el + E F[,uuabApCdAcrefAT]gh €abedeh T fh

1 ..
+ 4—0 \/§ A[“abAVchpeanghAT]lj Eabcegi NdfTIhj » (A17)

such that the y-dependence of the entire equation organizes into the form (A.9). Now the
z-dependent coefficient of the traceless combination (yayb — %nab) precisely reproduces the
D =5 scalar equations of motion (4.16). In particular, the third line of (A.17) coincides with
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the SL(6) variation of the scalar potential (4.14). This match requires an additional non-trivial

relations among the components of an Egg) matrix (4.12)

Nef Mo OMOdeN Iy = o p My e mlesepde (A.18)

nefMdac(aMb)%faMda,c'y - 9 Tef Mde,c(aMb)h,ngdg’ch + nefMdah(aMb)c,derach 7

which can be proven similar to (A.13). From these it is straightforward to deduce that

4 1
X(af)ec,de _ _g Mdac(aMb)h’ngdg,chT/ef _ g nefMde’c(aMb)%faMda,C'y

2 2
+ g ndeMcd,g(aMbachgaef + g nefMde,c(aMb)hdaMfach ’ (A19)

thus matching the expression obtained from variation of the scalar potential in (4.16). As a
consequence, the y-dependent part of equation (A.17) vanishes on-shell, such that the equation

reduces to
1
D[,uAupoT] = _@ V |g‘ EquJTD)\ (MN&C D)\Mac,N)
1 1
+ m V |g| Euvpor FH)\N (Mab,NFn)\ab - 5 V10 EaB MNab MaaN Bn)\bﬁ>

1
+ @ V |g| Euvpor (10 Mac,fd + X(af)ec,dg) Ncdlaf

1 1
+ 35 V2 eapedef Fluw ™ FpoAn + T Fr ™ Ay AT A eapedennyn

1 ..
+ E \/5 A[uabAVCdApeanghAr]w Eabcegi Ndfhj - (AQO)

This equation can be integrated to yield the function A, ,,. This yields the last missing part
in the reduction ansatz of the IIB four form (5.60) and establishes the full type IIB self-duality
equation.
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