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Abstract

We use exceptional field theory as a tool to work out the full non-linear reduction

ansaetze for the AdS5 ˆ S5 compactification of IIB supergravity and its non-compact

counterparts in which the sphere S5 is replaced by the inhomogeneous hyperboloidal

space Hp,q. The resulting theories are the maximal 5D supergravities with gauge groups

SOpp, qq. They are consistent truncations in the sense that every solution of 5D super-

gravity lifts to a solution of IIB supergravity. In particular, every stationary point and

every holographic RG flow of the scalar potentials for the compact and non-compact 5D

gaugings directly lift to solutions of IIB supergravity.



1 Introduction

It is a notoriously difficult problem to establish the consistency of Kaluza-Klein truncations.

Consistency requires that any solution of the lower-dimensional theory can be lifted to a so-

lution of the original higher-dimensional theory [1]. While this condition is trivially satisfied

for torus compactifications, the compactification on curved manifolds is generically inconsis-

tent except for very specific geometries and matter content of the theories. Even in the case

of maximally symmetric spherical geometries, consistency only holds for a few very special

cases [2] and even then the proof is often surprisingly laborious. An example for a Kaluza-Klein

truncation for which a complete proof of consistency was out of reach until recently is that

of type IIB supergravity on AdS5 ˆ S5, which is believed to have a consistent truncation to

the maximal SOp6q gauged supergravity in five dimensions constructed in [3–5]. In general

not even the form of the non-linear Kaluza-Klein reduction ansatz for the higher-dimensional

fields is explicitly known, in which case it is not even known how to perform the Kaluza-Klein

reduction in principle. If the reduction ansatz is known it remains the task to show that the

internal coordinate dependence of the higher-dimensional field equations factors out such that

these equations consistently reduce to those of the lower-dimensional theory. Despite these

complications, consistency proofs have been obtained over the years for various special cases.

The maximal eleven-dimensional supergravity admits consistent Kaluza-Klein truncations on

AdS4 ˆ S7 [6] and AdS7 ˆ S4 [7]. Subsectors of truncations of type IIB to five dimensions have

been shown to be consistent in [8–10,13–17]. More recently, a consistent truncation of massive

type IIA supergravity on S6 has been found [18].

In this paper we will present the explicit and complete reduction formulas for a large class

of truncations of type IIB supergravity to maximal five-dimensional gauged supergravity, by

working out the details of the general construction of [19]. This includes the famous reduction

on AdS5 ˆ S5 to the maximal D “ 5 SOp6q gauged supergravity of [5], but also reductions to

non-compact gaugings, corresponding to truncations with non-compact (hyperboloidal) inter-

nal manifolds. Consistency of the latter has first been conjectured in [20] and more recently

been discussed in [21, 22]. The crucial new ingredient that makes our construction feasible is

the recently constructed ‘exceptional field theory’ (EFT) [23–26] and its associated extended

geometry, see [27–30], and [31–34] for the closely related double field theory. Within this

framework, the complicated geometric IIB reductions can very conveniently be formulated as

Scherk-Schwarz reductions on an exceptional space-time.

In order to illustrate this point, it is useful to compare it with the toy example of an S2

compactification of the D-dimensional Einstein-Maxwell theory, whose volume form provides

the source for the Up1q field strength. With a particular dilaton coupling, this theory not

only permits a vacuum solution with S2 as the compact space but also a consistent Kaluza-

Klein truncation around this vacuum to a pD´ 2q-dimensional theory [2]. The required dilaton

couplings are precisely those that follow from embedding the original theory as the S1 reduction

of pure gravity in D` 1 dimensions. While the consistency of this reduction can be shown by a

direct computation, a far more elegant proof relies on this geometric origin. As shown in [35],

from the point of view of pD`1q dimensional Einstein gravity, the original S2 reduction takes the

form of a Scherk-Schwarz (or DeWitt) reduction on a three-dimensional SOp3q group manifold
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via the Hopf fibration S1 ãÑ S3 Ñ S2 . For Scherk-Schwarz reductions, however, consistency

is guaranteed from symmetry arguments [36], which then implies the consistency of the S2

reduction of the Einstein-Maxwell theory. In this sense, the consistency of the S2 reduction

hinges on the fact that the original theory is secretly a ‘geometric’ theory in higher dimensions

(namely pure Einstein gravity).

Similarly, in exceptional field theory maximal supergravity is reformulated on an extended

higher-dimensional space that renders the theory covariant w.r.t. the exceptional U-duality

groups in the series Edpdq, 2 ď d ď 8. In this case, the higher-dimensional theory is not

simply Einstein gravity, but EFT is subject to a covariant constraint that implies that only

a subspace of the extended space is physical. Solving the constraint accordingly one obtains

either type IIB or eleven-dimensional supergravity. Importantly, the gauge symmetries of EFT

are governed by ‘generalized Lie derivatives’ that unify the usual diffeomorphism and tensor

gauge transformations of supergravity into generalized diffeomorphisms of the extended space.

Specifically, for the E6p6q EFT that will be employed in this paper the generalized Lie derivative

for vector fields VM ,WM ,M,N “ 1, . . . , 27, in the fundamental representation 2̄7 reads [28,37]

`
LVW

˘M ” V NBNWM ´WNBNV M ` 10 dMNP dKLP BNV K WL , (1.1)

where dMNK is a (symmetric) invariant tensor of E6p6q. Here the first two terms represent the

standard Lie bracket or derivative on the extended 27-dimensional space, while the new term

encodes the non-trivial modification of the diffeomorphism algebra.

It was shown in [19] how sphere compactifications of the original supergravities and their

non-compact cousins can be realized in EFT through generalized Scherk-Schwarz compactifi-

cations, which are governed by Edpdq valued ‘twist’ matrices. In terms of the duality covariant

fields of EFT the reduction formulas take the form of a simple Scherk-Schwarz ansatz (see

(2.1) below), proving the consistency of the corresponding Kaluza-Klein truncation. Although

this settles the issue of consistency it may nevertheless be useful to have the explicit reduc-

tion formulas in terms of the conventional supergravity fields. This requires the dictionary for

identifying the original supergravity fields in the EFT formulation. In this paper we work out

the explicit reduction formulas for the complete set of type IIB supergravity fields, using the

general embedding of type IIB supergravity into the E6p6q EFT given in [38]. In particular,

this includes all components of the IIB self-dual four form. Results for the scalar sector in the

compact case have appeared in [11, 12, 39, 40]. The components of the twist matrix give rise

to various conventional tensors, including for instance the Killing vectors in the case of S5 but

also various higher Killing-type tensors. We analyze the identities satisfied by these tensors by

decomposing the Lie derivatives (1.1), which can be thought of as giving generalized Killing

equations on the extended space. Various identities that appear miraculous from the point

of view of standard geometry but are essential for consistency of the Kaluza-Klein ansatz are

thereby explained in terms of the higher-dimensional E6p6q covariant geometry of EFT.

This paper is not completely self-contained in that we assume some familiarity with the

E6p6q EFT of [24]. Our recent review [38], which also gives the complete embedding of type IIB,

can serve as a preparatory article. In particular, we use the same conventions. The rest of this

paper is organized as follows. In sec. 2 we briefly review the generalized Scherk-Schwarz ansatz

and the consistency conditions for the E6p6q EFT and give the twist matrices. The twist matrix
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gives rise to a set of generalized vectors of the extended space satisfying an algebra of generalized

Lie derivatives (1.1) akin to the algebra of Killing vector fields on a conventional manifold. In

sec. 3 we analyze the various components of this equation and give the explicit solutions in terms

of various Killing-type tensors. In sec. 4 we review the class of D “ 5 gauged supergravities

that will be embedded into type IIB. Finally, in sec. 5 we work out the complete Kaluza-

Klein ansatz by using the general embedding of type IIB established in [38]. In particular, we

show how to reconstruct the self-dual 4-form of type IIB from the EFT fields. Along the way,

we show that the reduction ansatz reduces the ten-dimensional self-duality equations to the

equations of motion of the D “ 5 theory. While this is guaranteed by the general argument, its

explicit realization requires an impressive interplay of Killing vector/tensor identities and the

E6p6q{USpp8q coset space structure of the five-dimensional scalar fields. In sec. 6 we summarize

the final results, the full set of reduction formulas, and comment on the fermionic sector. Some

technically involved computations are relegated to an appendix.

2 Generalized Scherk-Schwarz reduction

We begin by giving the generalized Scherk-Schwarz ansatz in terms of the variables of excep-

tional field theory. This ansatz is governed by a group-valued twist matrix U P E6p6q and a

scale factor ρ, both of which depend only on the internal coordinates Y . For the bosonic EFT

fields, the general reduction ansatz reads [19]

MMN px, Y q “ UM
KpY qUN

LpY qMKLpxq ,

gµνpx, Y q “ ρ´2pY q gµνpxq ,

Aµ
M px, Y q “ ρ´1pY qAµ

N pxqpU´1qNM pY q ,

Bµν M px, Y q “ ρ´2pY qUM
N pY qBµν N pxq . (2.1)

Here, indices M,N label the fundamental representation 27 of E6p6q, and the four lines refer to

the internal metric, external metric, vector fields and two-forms, respectively, see [24] for details.

In order for the ansatz (2.1) to be consistent, U and ρ need to factor out homogeneously of all

covariant expressions defining the action and equations of motion. This is the case provided

the following two consistency equations (‘twist equations’) are satisfied:

BN pU´1qKN ´ 4 pU´1qKN ρ´1BNρ “ 3 ρϑK ,

“
pU´1qMKpU´1qNLBKUL

P
‰
351

“ 1

5
ρΘM

αtαN
P . (2.2)

Here the constant tensors are ϑK , which defines the embedding tensor of ‘trombone’ gaugings,

and ΘM
α, which defines the embedding tensor of conventional gaugings.

For the subsequent analysis it is convenient to reformulate these consistency conditions by

rescaling the twist matrix by ρ,

pU´1 ” ρ´1 U´1 . (2.3)

This rescaling is such that pU´1 can be viewed as a generalized vector of the same density weight

as the gauge parameters. Accordingly, one can define generalized Lie derivatives w.r.t. this
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vector. The consistency conditions can then be brought into the compact form

L pU´1
M

pU´1

N ” ´XMN
K pU´1

K , (2.4)

where XMN
K are constants related to the D “ 5 embedding tensor by

XMN
K “

ˆ
ΘM

α ` 9

2
ϑLptαqML

˙
ptαqNK ´ δN

K ϑM . (2.5)

This implies in particular that the first equation in (2.2) can be written as

L pU´1
M
ρ “ ´ϑM ρ . (2.6)

In [19], the consistency equations (2.2) were solved for the sphere and hyperboloid com-

pactifications, with gauge groups SOpp, 6 ´ pq and CSOpp, q, 6 ´ p ´ qq, explicitly in terms of

SLp6q group-valued twist matrices. Specifically, with the fundamental representation of E6p6q
decomposing as

 
YM

(
ÝÑ tY ab, Yaαu , (2.7)

into p15, 1q ‘ p61, 2q under SLp6q ˆ SLp2q, we single out one of the fundamental SLp6q indices

a Ñ p0, iq to define the SLp6q matrix Ua
b as

U0
0 ” p1 ´ vq´5{6 p1 ` uKpu, vqq ,

U0
i ” ´ηijyj p1 ´ vq´1{3Kpu, vq ,

Ui
0 ” ´ηijyj p1 ´ vq´1{3 ,

Ui
j ” p1 ´ vq1{6 δij , (2.8)

with the combinations

u ” yiδijy
j , v ” yiηijy

j . (2.9)

Here ηij is the metric

ηij “ diag p 1, . . . , 1,looomooon
p´1

´1, . . . ,´1looooomooooon
6´p

q , (2.10)

and we define similarly the SOpp, 6´pq invariant metric ηab with signature pp, 6´pq. Note that
in (2.9) we use two different metrics, one Euclidean, the other pseudo-Euclidean. The function

Kpu, vq is the solution of the differential equation

2p1 ´ vq pu BvK ` v BuKq “ pp7 ´ 2pqp1 ´ vq ´ uqK ´ 1 , (2.11)

which can be solved analytically. For instance, for p “ 6, i.e., for gauge group SO(6) relevant

for the S5 compactification, the solution reads

p “ 6 : Kpuq “ 1

2
u´3

´
upu ´ 3q `

a
up1 ´ uq

`
3 arcsin

?
u` c0

˘¯
, (2.12)
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with constant c0 . We refer to [19] for other explicit forms. The inverse twist matrix is given by

pU´1q00 “ p1 ´ vq5{6 ,

pU´1q0i “ ηijy
j p1 ´ vq1{3Kpu, vq ,

pU´1qi0 “ ηijy
j p1 ´ vq1{3 ,

pU´1qij “ p1 ´ vq´1{6
´
δij ` ηikηjl y

kylKpu, vq
¯
. (2.13)

Finally, the density factor ρ is given by

ρ “ p1 ´ vq1{6 . (2.14)

Upon embedding the SLp6q twist matrix (2.8) into E6p6q, one may verify that it satisfies the

consistency equations (2.2) with an embedding tensor that describes the gauge group SOpp, qq,
where the physical coordinates are embedded into the EFT coordinates via (2.7) according to

yi “ Y r0is . (2.15)

With the above form of the generalized Scherk-Schwarz ansatz and the explicit form of the

twist matrix and the scale factor we have given the complete embedding of the correspond-

ing sphere and hyperboloid compactifications into the E6p6q EFT. It is instructive, however, to

clarify this embedding by analyzing it in terms of more conventional geometric objects. There-

fore, in the next section we will analyze the consistency conditions (2.4) under the appropriate

decomposition (that embeds, for instance, the standard algebra of Killing vector fields on a

sphere) and thereby reconstruct the above solution in a more conventional language. In par-

ticular, this will clarify the geometric significance of the function K, which is related to the

four-form whose exterior derivative defines the volume form on the five-sphere.

3 Untangling the twist equations

3.1 General analysis

We now return to the ‘twist equations’ (2.4) and decompose them w.r.t. the subgroup appro-

priate for the type IIB solution of the section constraint, i.e.

E6p6q ÝÑ GLp5q ˆ SLp2q ,

27 ÝÑ p5,1q ‘ p51,2q ‘ p10,1q ‘ p1,2q . (3.1)

Accordingly, the fundamental index on the generalized vector pU´1 decomposes as

ppU´1qMM “
 
KM

m , RM mα , ZM mnk , SM n1...n5α

(
, (3.2)

in terms of GLp5q indices m,n “ 1, . . . , 5 and SL(2) indices α, β “ 1, 2. In order to give

the decomposition of the twist equations (2.4) in terms of these objects we use the definition
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(1.1) of the generalized Lie derivative and the decomposition of the d-symbol (3.28) in [38]. A

straightforward computation, largely analogous to those in, e.g., sec. 3.3 of [38], then yields

´XMN
K KK

m “ LKM
KN

m , (3.3)

´XMN
K RKmα “ LKM

RN mα ´ LKN
RM mα ` Bm

`
KN

nRM nα

˘
, (3.4)

´XMN
K ZK kmn “ LKM

ZN kmn ´ LKN
ZM kmn ` 3 Brk

´
KN

lZM mnsl
¯

` 3
?
2 εαβ BrkRM m|α|RN nsβ , (3.5)

´XMN
K SK n1...n5α “ LKM

SN n1...n5α

` 20
?
2
`
ZN rn1n2n3

Bn4
RM n5sα ´ Brn1

ZM n2n3n4
RN n5sα

˘
. (3.6)

We will now successively analyze these equations. We split the index as M Ñ tA, uu, where
A,B denote the ‘gauge group directions’ and u, v the remaining ones, and assume that the only

non-vanishing entries of XMN
K are

XAB
C “ ´fAB

C , XAu
v “ pDAquv , (3.7)

given in terms of structure constants and representation matrices of the underlying Lie algebra

of the gauge group, c.f. [41]. Let us emphasize that XMN
K is not assumed to be antisymmetric.

In particular, for this ansatz we have, e.g., XuA
v “ 0. Let us also stress that this ansatz is not

the most general, but it is sufficient for the purposes in this paper.

The first equation (3.3), specialized to external indices pA,Bq, implies that the vector fields

KA satisfy the Lie bracket algebra

“
KA,KB

‰m ” LKA
KB

m “ fAB
C KC

m . (3.8)

In view of standard Kaluza-Klein compactifications it is natural to interpret these vector fields

as the Killing vectors of some internal geometry. We now define a metric w.r.t. which the KA

are indeed Killing vectors by setting for the inverse metric

G̃mn ” KA
mKB

n ηAB , (3.9)

with the Cartan-Killing metric ηAB ” fAC
DfBD

C . The internal metric G̃mn exists provided the

Cartan-Killing metric is invertible and that there are sufficiently many vectors fields KA
m to

make G̃mn invertible. This assumption, which we will make throughout the following discussion,

is satisfied in the examples below. Since by (3.8) the KA transform under themselves according

to the adjoint group action, under which the Cartan-Killing metric is invariant, it follows that

the vectors are indeed Killing:

LKA
G̃mn ” ∇mKAn ` ∇nKAm “ 0 , (3.10)

where here and in the following ∇m denotes the covariant derivative w.r.t. the metric (3.9),

which is used to raise and lower indices. The other non-trivial components of (3.3), with external

indices pA, uq, pu,Aq and pu, vq, imply that the remaining vector fields Ku
m satisfy

LKA
Ku

m “ ´pDAquv Kv
m “ 0 , LKuKv

m ”
“
Ku,Kv

‰m “ 0 . (3.11)
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For non-vanishing Ku the first equation can only be satisfied if the representation encoded by

the pDAquv includes the trivial (singlet) representation. In the following we will analyze the

remaining equations under the assumption that the representation does not contain a trivial

part, which then requires

Ku
m “ 0 . (3.12)

We next consider the second equation (3.4), specialized to external indices pA, uq and pu,Aq
to obtain

LKA
Rumα “ ´pDAquv Rv mα “ Bm pKA

nRunαq . (3.13)

Writing out the Lie derivative on the left-hand side we obtain in particular

KA
n pBmRunα ´ BnRumαq “ 0 . (3.14)

With the above assumption that the metric (3.9) is invertible it follows that the curl of R is

zero. Hence we can write it in terms of a gradient,

Rumα ” BmYuα . (3.15)

As we still have to solve the first equation of (3.13), we must demand that the function Y

transforms under the Killing vectors in the representation DA,

LKA
Yuα “ ´pDAquv Yv α , (3.16)

for then (3.13) follows with the covariant relation (3.15). Finally, specializing (3.4) to external

indices pA,Bq, we obtain

fAB
CRCmα “ LKA

RBmα ´ LKB
RAmα ` Bm

`
KB

nRAnα

˘
. (3.17)

This equation is solved by RAmα “ 0, and the latter indeed holds for the SLp6q valued twist

matrix to be discussed below. In addition, we will find that for these twist matrices also the

components Zu and SA are zero, and therefore in the following we analyze the equations for

this special case,

RAmα “ Zumnk “ SAn1...n5 α “ 0 . (3.18)

Let us now turn to the third equation (3.5), which will constrain the Z tensor. Specializing

to external indices pA,Bq, we obtain

fAB
C ZC kmn “ LKA

ZB kmn ´ LKB
ZAkmn ` 3 Brk

`
KB

lZAmnsl
˘
, (3.19)

where we used (3.18). Writing out the second Lie derivative on the right-hand side, this can be

reorganized as

LKA
ZB kmn ´ 4KB

p BrpZAkmns “ fAB
C ZC kmn . (3.20)

In order to solve this equation we make the following ansatz

ZAklm ” ´1

4

?
2KAklm ´ 1

8

?
2KA

p C̃pklm , (3.21)
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in terms of a four-form C̃, where we chose the normalization for later convenience, and we

defined the Killing tensor

KAklm ” 1

2
ω̃klmpq KA

pq , KAmn ” 2∇rmKAns , (3.22)

with the volume form ω̃klmpq ” |G̃|1{2 εklmpq. We recall that all internal indices are raised and

lowered with G̃mn defined in (3.9).

It remains to determine C̃pklm from the above system of equations. In order to simplify

the result of inserting (3.21) into (3.20) we can use that the Killing tensor term transforms

‘covariantly’ under the Lie derivative,

LKA
KBmnk “ fAB

C KC mnk , (3.23)

which follows from the corresponding property (3.8) of the Killing vectors. For the second term

on the left-hand side of (3.20), however, we have to compute,

KB
p∇rpKAkmns “ KB

p∇rp
`

1

2
ω̃kmnslq KA

lq
˘

“ KB
p ω̃lqrkmn∇ps∇

rlKA
qs

“ ´1

2
KB

p ω̃kmnpl∇q∇
rlKA

qs “ 1

2
KB

p ω̃kmnpl∇q∇
qKA

l .
(3.24)

Here we used the D “ 5 Schouten identity ω̃rlqkmn∇ps ” 0 and that the Killing tensor written

as KAmn “ 2∇mKAn is automatically antisymmetric as a consequence of the Killing equations

(3.10). Using the latter fact again, the last expression simplifies as follows

∇q∇
qKA

l “ ´∇q∇
lKA

q “ ´
“
∇q,∇

l
‰
KA

q “ ´ R̃lpKAp . (3.25)

We will see momentarily that (3.20) can be solved analytically by the above ansatz (3.21) if

the metric G̃ is Einstein. We thus assume this to be the case, so that the Ricci tensor reads

R̃mn “ λ G̃mn, for some constant λ. Using this in (3.25) and inserting back into (3.24) we

obtain

KB
p∇rpKAkmns “ λ

2
ω̃kmnplKA

pKB
l . (3.26)

Next, insertion of the second term in (3.21) into (3.20) yields the contribution

LKA

`
KB

p C̃pkmn

˘
`4KB

p Brp
`
KA

q C̃kmnsq
˘

“ fAB
CKC

p C̃pkmn`5KA
pKB

q BrpC̃qkmns . (3.27)

Here we used (3.8) and combined the terms from LKA
C̃pkmn with those from the second term

on the left-hand side. Employing now (3.26) and (3.27) we find that insertion of (3.21) into

(3.20) yields

0 “ KA
pKB

q
`
5 BrpC̃qkmns ´ 4λ ω̃pqkmn

˘
. (3.28)

Thus, we have determined C̃, up to closed terms, to be

5 BrpC̃qkmns “ 4λ |G̃|1{2εkmnpq , (3.29)

which can be integrated to solve for C̃klmn, since in five coordinates the integrability condition

is trivially satisfied. In total we have proved that the pA,Bq component of the third equation

(3.5) of the system is solved by (3.21). We also note that the remaining components of (3.5) are

identically satisfied under the assumption (3.18). (For the pu, vq component this requires using
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that the exterior derivative of Rumα vanishes by (3.15).) For the subsequent analysis it will be

important to determine how C̃ transforms under the Killing vectors. To this end we recall that

in the definition (3.21) C̃ is the only ‘non-covariant’ contribution, which therefore accounts for

the second term on the left-hand side of the defining equation (3.20). From this we read off

LKA
C̃mnkl “ ´16

?
2 BrmZAnkls . (3.30)

Finally, we turn to the last equation (3.6), which determines Su. Under the assumptions

(3.12), (3.18), the pu, vq and pu,Aq components trivialize, while the pA, uq component implies

LKA
Sun1...n5α “ ´pDAquvSv n1...n5α ` 20

?
2 Brn1

ZAn2n3n4
R|u|n5sα . (3.31)

We will now show that this equation is solved by

Sun1...n5α “ a ω̃n1...n5
Yuα ´ 5

4
C̃rn1...n4

Bn5sYuα , (3.32)

in terms of the volume form of G̃mn, the function defined in (3.15) and the four-form defined

via (3.29). Here, a is an arbitrary coefficient, while we set the second coefficient to the value

that is implied by the following analysis. We first note that LKA
ω̃n1...n5

“ 0, which follows

from the invariance under the Killing vectors of the metric G̃ defining ω̃. Second, we recall

(3.16), which states that the function Yu transforms ‘covariantly’ under LKA
(i.e., w.r.t. the

representation matrices DA). Thus, all terms in (3.32) transform covariantly, except for the

four-form C̃, whose ‘anomalous’ transformation must therefore account for the second term in

LKA
Su on the right-hand side of (3.31). Using the anomalous transformations of C̃ given in

(3.30), it then follows that (3.32) solves (3.31) for arbitrary coefficient a. This concludes our

general discussion of the system of equations (3.3)–(3.6).

3.2 Explicit tensors

We now return to the explicit twist matrices and read off the tensors whose general structure

we discussed in the previous subsection. To this end we have to split the E6p6q indices further

in order to make contact with the twist matrices given in (2.8), (2.13). As it turns out, for

these twist matrices the split of indices VM ” pVA, Vuq discussed before (3.7), coincides with

the split 27 “ 15 ` 12 of (2.7)

VM ” pVA, Vuq ” pVrabs, V
aαq , a, b “ 0, . . . , 5 , α, β “ 1, 2 . (3.33)

In several explicit formulas we will have to split rabs further,

rabs ” pr0is, rijsq , i, j “ 1 . . . , 5 . (3.34)

Similarly, we perform the same index split for the fundamental index M under E6p6q Ñ SLp6q
(and then further to GLp5q ˆ SLp2q according to (3.1)), thus giving up in the following the

distinction between bare and underlined indices. Let us note that we employ the convention

V 0i ” 1?
2
V i , (3.35)
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in agreement with the summation conventions of ref. [24]. In order to read off the various

tensors from the twist matrices let us first canonically embed the SL(6) matrix Ua
b into E6p6q.

Under the above index split we have

UM
N “

˜
Urabs

rcds Urabs
cα

Uaα,rcds Uaα,
bβ

¸
“

˜
Ura

cUbs
d 0

0 δαβ pU´1qba

¸
. (3.36)

With this embedding, and recalling the convention (3.35), we can identify the Killing vector

fields with components of the twist matrices as follows,

Krabs
m ”

?
2 ppU´1qabm0 , (3.37)

which yields

Kr0is
mpyq “ ´1

2

?
2 p1 ´ vq1{2 δmi , Krijs

mpyq “
?
2 δmri ηjsky

k . (3.38)

It is straightforward to verify that these vectors satisfy the Lie bracket algebra (3.8). Specifically,

“
Kab,Kcd

‰m “ ´
?
2fab ,cd

efKef
m , fab ,cd

ef ” 2 δra
reηbsrcδds

fs , (3.39)

with the SOpp, 6 ´ pq metric ηab. The Killing tensors defined in (3.22) are then found to be

Kr0ismnk “ ´
?
2 εmnkij y

j ,

Krijsmnk “ ´
?
2p1 ´ vq´ 1

2 εmnkpq

`
δi

p δj
q ´ 2 δri

pηjsl y
qyl

˘
.

(3.40)

We can now define the metric G̃ as in (3.9) w.r.t. which these vectors are Killing, using the

Cartan-Killing form ηab,cd “ ηarcηdsb. This yields for the metric and its inverse

G̃mn “ ηmn ` p1 ´ vq´1ηmpηnqy
pyq ,

G̃mn “ ηmn ´ ymyn .
(3.41)

One may verify that this metric describes the homogeneous space SOpp, qq{SOpp´ 1, qq with

R̃mn “ 4 G̃mn , (3.42)

determining the constant above, λ “ 4. The associated volume form is given by

ω̃mnklp “ p1 ´ vq´ 1
2 εmnklp . (3.43)

Next we give the function defining R in (3.15) w.r.t. the above index split,

Rumα “ Raβ
mα “ BmYaβ

α , (3.44)

for which we read off from the twist matrix

Yaβ
α “ Yaδβα with Yapyq ”

#
p1 ´ vq1{2 a “ 0

yi a “ i
. (3.45)
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In agreement with (3.16) this transforms in the fundamental representation of the algebra of

Killing vector fields (3.38). Specifically,

LKrabs
Yc “ Krabs

m BmYc “
?
2 δcra Ybs , (3.46)

where Ya is obtained from Ya by means of ηab. Let us also emphasize that the Ya can be viewed

as ‘fundamental harmonics’, satisfying

lYa “ ´5Ya , (3.47)

in that all higher harmonics can then be constructed from them. For instance, the Killing

vectors themselves can be written as

Krabsm “
?
2
`
BmYra

˘
Ybs . (3.48)

Next we compute the four-form C̃mnkl by integrating (3.29). An explicit solution can be

written in terms of the function K from (2.11) as

C̃mnkl “ λ p1 ´ vq´1{2 εmnklq

`
Kδqrηrs ` δqs

˘
ys , (3.49)

whose exterior derivative is indeed proportional to the volume form (3.43) for the metric G̃mn.

Together with the Killing vectors and tensors defined above, the Z tensor is now uniquely

determined according to (3.21). Moreover, it is related to the twist matrix according to

Zrabsmnk “ 1

2
εmnkpq

`pU´1
˘

rabs
rpqs “ 1

2
εmnkpq ρ

´1 pU´1qra
p pU´1qbs

q , (3.50)

which agrees with (3.21) for λ “ 4 .

Finally, let us turn to the tensor Su whose general form is given in (3.32). Under the above

index split it is convenient to write this tensor as

Sun1...n5 β ” Saα
n1...n5 β ” Sa εn1...n5

δαβ , (3.51)

which is read off from the twist matrix as

Saα
n1...n5 β “ εn1...n5

ppU´1qaα0β “ εn1...n5
ρ´1 δαβ U0

a , (3.52)

leading with (2.8) to

Sa “
#

p1 ´ vq´1 p1 ` uKq a “ 0

´ηijyj p1 ´ vq´1{2K a “ i
. (3.53)

One may verify that this agrees with (3.32) for

a “ 1 , λ “ 4 . (3.54)
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3.3 Useful identities

In this final paragraph we collect various identities satisfied by the above Killing-type tensors.

These will be useful in the following sections when explicitly verifying the consistency of the

Kaluza-Klein truncations. We find

Krabs
mnKrcds

n “ ´
?
2 fcd,ef

abKrefs
m ` 2 Bm

´
δrc

raYbsYds
¯
, (3.55)

Krabs
nKrcds

n “ 2 δrc
ra YbsYds , (3.56)

Krabs
kZrcds kmn ` Krcds

kZrabs kmn “ ´1

8
εabcdef K

refs
mn , (3.57)

Krabs
mnKrcds

mKrefs
n “ 4

?
2 δrc

ra YdsYre δfs
bs , (3.58)

Krcds
mKrabs

nKrefs
l BlKrabs

mn “ ´8 ηerc YdsYf ` 8 ηfrc YdsYe , (3.59)

which can be verified using the explicit tensors determined above.
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4 The D “ 5 supergravity

TheD “ 5 gauged theory with gauge group SOpp, qq was originally constructed in [3–5]. For our

purpose, the most convenient description is its covariant form found in the context of general

gaugings [41] to which we refer for details.1 In the covariant formulation, the D “ 5 gauged

theory features 27 propagating vector fields Aµ
M and up to 27 topological tensor fields Bµν M .

The choice of gauge group and the precise number of tensor fields involved is specified by the

choice of an embedding tensor ZMN “ ZrMNs in the 351 representation of E6p6q. E.g. the full

non-abelian vector field strengths are given by

Fµν
M “ 2 BrµAνs

M `
?
2XKL

MArµ
KAνs

L ´ 2
?
2ZMNBµν N , (4.2)

with the tensor XKL
M carrying the gauge group structure constants and defined in terms of

the embedding tensor ZMN as

XMN
P “ dMNQZ

PQ ` 10 dMQSdNRT d
PQRZST . (4.3)

The SOpp, qq gaugings preserve the global SLp2q subgroup of the symmetry group E6p6q of

the ungauged theory, more specifically the centralizer of its subgroup SLp6q . Accordingly, the

vector fields in the 27 of E6p6q can be split as

Aµ
M ÝÑ

!
Aµ

ab, Aµ aα

)
, a, b “ 0, . . . , 5 , α “ 1, 2 , (4.4)

into 15 SLp2q singlets and 6 SLp2q doublets, c.f. (3.33). The 27 two-forms Bµν M split accord-

ingly, with only the 6 SLp2q doublets Bµν
aα entering the supergravity Lagrangian. In the basis

(4.4), the only non-vanishing components of the embedding tensor ZMN are

Zaα,bβ ” ´1

2

?
5 εαβηab , (4.5)

where the normalization has been chosen such as to match the later expressions. With (4.3),

we thus obtain2

XMN
K :

#
Xab,cd

ef “ fab,cd
ef

Xab
cα

dβ “ ´δra
cηbsd δ

α
β

, (4.7)

with the SOpp, 6 ´ pq structure constants fab,cd
ef from (3.39).

The form of the field strength (4.2) is the generic structure of a covariant field strength in

gauged supergravity, with non-abelian Yang-Mills part and a Stückelberg type coupling to the

1To be precise, and to facilitate the embedding of this theory into EFT, we choose the normalization of [24]

for vector and tensor fields which differs from [41] as

Aµ
M

r1312.0614s “ 1?
2
Aµ

M
rhep´th{0412173s , Bµν M r1312.0614s “ ´1

4
Bµν M rhep´th{0412173s , (4.1)

together with a rescaling of the associated symmetry parameters. Moreover, we have set the coupling constant

of [41] to g “ 1 .
2The totally symmetric cubic d-symbol of E6p6q in the SLp6q ˆ SLp2q basis (4.4) is given by

d
MNK : d

ab
cα,dβ “ 1?

5
δ
ab
cd εαβ , d

ab,cd,ef “ 1?
80

ε
abcdef

. (4.6)
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two-forms. In the present case, we can make use of the tensor gauge symmetry which acts by

shift δAµ aα “ Ξµaα on the vector fields, to eliminate all components Aµaα from the Lagrangian

and field equations. This is the gauge we are going to impose in the following, which brings

the theory in the form of [5].3 As a result, the covariant object (4.2) splits into components

carrying the SOpp, qq Yang-Mills field strength, and the two-forms Bµν
aα, respectively,

Fµν
M “

#
Fµν

ab ” 2 BrµAνs
ab `

?
2 fcd,ef

abAµ
cdAν

ef

Fµν aα ”
?
10 εαβηabBµν

bβ
. (4.9)

In particular, fixing of the tensor gauge symmetry implies that the two-forms Bµν
aα turn into

topologically massive fields, preserving the correct counting of degrees of freedom, [42]. The

Lagrangian and field equations are still conveniently expressed in terms of the combined object

Fµν
M . E.g. the first order duality equation between vector and tensor fields is given by

3DrµBνρs
aα “ 1

2
?
10

a
|g| εµνρστMaα

N F
στ N , (4.10)

which upon expanding around the scalar origin and with (4.9) yields the first order topologically

massive field equation for the two-form tensors. The full bosonic Lagrangian reads

L “
a

|g|R ´ 1

4

a
|g|MMN Fµν

MFµν N ` 1

24

a
|g|DµMMND

µMMN

` εµνρστ
ˆ
5

4
εαβ ηabBµν

aαDρBστ
bβ ` 1

24

?
2 εabcdef Aµ

ab BνAρ
cd BσAτ

ef

˙

` 1

16
εµνρστ εabcdef fgh,ij

abAµ
cdAν

ghAρ
ij
´

BσAτ
ef ` 1

5

?
2 fkl,mn

efAσ
klAτ

mn
¯

´
a

|g| V pMMN q . (4.11)

Here, the 42 scalar fields parameterize the coset space E6p6q{USpp8q via the symmetric E6p6q
matrix MMN which can be decomposed in the basis (4.4) as

MMN “
˜

Mab,cd Mab
cγ

Maα
bc Maα,cγ

¸
, (4.12)

with the SOpp, 6 ´ pq covariant derivatives defined according to

DµX
a ” BµXa `

?
2Aµ

ab ηbdX
d , (4.13)

and similarly on the different blocks of (4.12). The scalar potential V in (4.11) is given by the

following contraction of the generalized structure constants (4.7) with the scalar matrix (4.12)

V pMMN q “ 1

30
MMNXMP

Q
`
5XNQ

P `XNR
SMPRMQS

˘
. (4.14)

3To be precise: this holds with a rescaling of p-forms according to

Aµ
ab

r1312.0614s “ ´
?
2Aµ

ab
GRW ,

?
5Bµν

aα
r1312.0614s “ Bµν

aα
GRW , (4.8)

and with their coupling constant set to gGRW “ 2 .
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For later use, let us explicitly state the vector field equations obtained from (4.11) which

take the form

0 “ εµνρστ

´
ηcraD

τMbsd,NM
N,cd `

?
2Dλ

´
F τλNMN,ab

¯¯

` 3

2
εabcdef Frµν

cdFρσs
ef ` 60 εαβ ηacηbdBrµν

cαBρσs
dβ . (4.15)

We will also need part of the scalar field equations that are obtained by varying in (4.11) the

scalar matrix (4.12) with an SLp6q generator Xa
b

0 “ 1

4
DµpMadKDµMK bdq ´ 1

2
MbcN Fµν

acFµν N ` 1

4

?
10 ηbc εαβ M

aα
N Bµν

cβFµν N

`
ˆ
2Mae,fc ` 4

15
Mde,hpaM cqj,fgMdg,hj ` 1

15
Mde,hpaM cqβ,fαMdα,hβ

˙
ηbcηef

´ 2

15

´
Mde,kpaM cqα

dgMkα
fg `Mde,hpaM cqg

dαM
fα

hg

¯
ηefηbc ´ rtracesba . (4.16)

5 The IIB reduction ansatz

In terms of the E6p6q EFT fields, the reduction ansatz is given by the simple factorization (2.1)

with the twist matrix U given by (2.13). In order to translate this into the original IIB theory,

we may first decompose the EFT fields under (3.1), according to the IIB solution of the section

constraint, and collect the expressions for the various components. We do this separately for

EFT vectors, two-forms, metric, and scalars, and subsequently derive the expressions for three-

and four-forms from the IIB self-duality equations, as outlined in the general case in [38]. In a

second step, we can then recombine the various EFT components into the original IIB fields,

upon applying the explicit dictionary [24,38] from IIB into EFT.

In particular, the explicit expression for the full IIB metric allows one to determine the

background metric, i.e. the IIB metric at the point where all D “ 5 scalar fields are set to

zero. This metric may or may not extend to a solution of the IIB field equations, depending

on whether the scalar potential of the D “ 5 theory has a stationary point at its origin. It is

known [5] that this is the case for the D “ 5 theories with gauge group SOp6q and SOp3, 3q,
with AdS and dS vacuum, respectively. Accordingly, the internal manifolds S5 and H3,3 extend

to solutions of the full IIB field equations, with the external geometry given by AdS5 or dS5,

respectively.

5.1 IIB supergravity

Let us briefly review our conventions for the D “ 10 IIB supergravity [43–45]. The IIB field

equations can be most compactly obtained from the pseudo-action

S “
ż
d10x̂

a
|G|

´
R̂ ` 1

4
Bµ̂mαβBµ̂mαβ ´ 1

12
F̂µ̂1µ̂2µ̂3

αF̂ µ̂1µ̂2µ̂3βmαβ

´ 1

30
F̂µ̂1µ̂2µ̂3µ̂4µ̂5

F̂ µ̂1µ̂2µ̂3µ̂4µ̂5

¯

´ 1

864

ż
d10x̂ εαβ ε

µ̂1...µ̂10Cµ̂1µ̂2µ̂3µ̂4
F̂µ̂6µ̂7µ̂8

αF̂µ̂8µ̂9µ̂10

β . (5.1)
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Here, D “ 10 coordinates are denoted by xµ̂, and the action carries the field strengths

F̂µ̂ν̂ρ̂
α ” 3 Brµ̂Ĉν̂ρ̂s

α ,

F̂µ̂1...µ̂5
” 5 Brµ̂1

Ĉµ̂2...µ̂5s ´ 5

4
εαβ Ĉrµ̂1µ̂2

αF̂µ̂3µ̂4µ̂5s
β , (5.2)

of two- and four-form gauge potential. After variation, the field equations derived from (5.1)

have to be supplemented with the standard self-duality equations for the 5-form field strength

F̂µ̂ν̂ρ̂σ̂τ̂ “ 1

5!

a
|G| εµ̂ν̂ρ̂σ̂τ̂ µ̂1µ̂2µ̂3µ̂4µ̂5

F̂ µ̂1µ̂2µ̂3µ̂4µ̂5 . (5.3)

Finally, the symmetric SLp2q matrix mαβ parametrizes the coset space SLp2q{SOp2q and carries

dilaton and axion. In the notation of [44] it is parametrized by a complex scalar B as

mαβ ” p1 ´BB˚q´1

˜
p1 ´Bqp1 ´B˚q ipB ´B˚q

ipB ´B˚q p1 `Bqp1 `B˚q

¸
. (5.4)

As a first step for the reduction ansatz, we perform the 5 ` 5 Kaluza-Klein decomposition of

coordinates txµ̂u “ txµ, ymu and fields, starting from the ten-dimensional vielbein

Eµ̂
â “

˜
pdetφq´1{3 eµa Aµ

mφm
α

0 φm
α

¸
, (5.5)

but keeping the dependence on all 10 coordinates. Decomposition of the p-forms in standard

Kaluza-Klein manner then involves the projector Pµ
ν̂ “ Eµ

aEa
ν̂ together with a further redef-

inition of fields due to the Chern-Simons contribution in (5.2), see [38] for details. This leads

to the components

Cmn
α ” Ĉmn

α ,

Cµm
α ” Ĉµm

α ´Aµ
pĈpm

α ,

Cµν
α ” Ĉµν

α ´ 2Arµ
pĈ|p|νs

α `Aµ
pAν

qĈpq
α ,

Cmnkl ” Ĉmnkl ,

Cµnkl ” Ĉµnkl ´Aµ
pĈpnkl ´ 3

8
εαβ Cµ rn

αCkls
β ,

Cµν kl ” Ĉµνkl ´ 2Arµ
pĈ|p|νskl `Aµ

pAν
qĈpqkl ´ 1

8
εαβ Cµν

αCkl
β ,

Cµνρm ” Ĉµνρm ´ 3Arµ
pĈ|p|νρsm ` 3Arµ

pAν
qĈ|pq|ρsm ´Aµ

pAν
qAρ

rĈpqrm

´ 3

8
εαβ Crµν

αCρs m
β ,

Cµνρσ ” Ĉµνρσ ´ 4Arµ
pĈ|p|νρσs ` 6Arµ

pAν
qĈ|pq|ρσs ´ 4Arµ

pAν
qAρ

rĈ|pqr|σs

`Aµ
pAν

qAρ
rAσ

sĈpqrs . (5.6)

in terms of which the reduction ansatz is most naturally given in the following.

5.2 Vector and two-form fields

Breaking the 27 EFT vector fields according to (3.1) into

tAµ
m,Aµmα,Aµkmn,Aµαu , (5.7)
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we read off the reduction ansatz from (2.1), (3.2), which in particular gives rise to

Aµ
mpx, yq “ Krabs

mpyqAab
µ pxq ,

Aµkmnpx, yq “ Zrabs kmnpyqAab
µ pxq . (5.8)

The Kaluza-Klein vector field Aµ
m “ Aµ

m thus reduces in the standard way with the 15

Killing vectors Krabs
mpyq whose algebra defines the gauge group of the D “ 5 theory. Note,

however, that these extend to Killing vectors of the internal space-time metric only in case of

the compact gauge group SOp6q. In the general case, as discussed above, the Krabs
mpyq are the

Killing vector fields of an auxiliary homogeneous Lorentzian metric (3.9), compare also [20–22].

The vector field components Aµkmn are expressed in terms of the same 15 D “ 5 vector fields.

Their internal coordinate dependence is not exclusively carried by Killing vectors and tensors,

but exhibits via the tensor Zrabs kmnpyq an inhomogeneous term carrying the four-form C̃mnkl

according to (3.21).4 This is similar to reduction formulas for the dual vector fields in the S7

reduction of D “ 11 supergravity [46], which, however, in the present case already show up

among the fundamental vectors.

For the remaining vector field components, the ansatz (2.1), (3.2), at first yields the reduc-

tion formulas

Aµmαpx, yq “ Raβ
mαpyqAµaβpxq “ BmYapyqAµ aαpxq ,

Aµαpx, yq “ SapyqAµ aαpxq (5.9)

“ 1

5!
|G̃|1{2

ˆ
5!Yapyq ´ 5

4
ω̃klmnpC̃klmn BpYapyq

˙
Aµaαpxq ,

in terms of the 12 vector fields Aµ aα in D “ 5 and the tensors defined in (3.32) and (3.44).

However, as discussed in the previous section, for the SOpp, qq gauged theories, a natural gauge

fixing of the two-form tensor gauge transformations allows to eliminate these vector fields in

exchange for giving topological mass to the two-forms. As a result, the final reduction ansatz

reduces to

Aµmα “ 0 “ Aµα . (5.10)

For the two-forms, upon breaking them into GLp5q components

tBµν
α,Bµν mn,Bµν

mα,Bµν mu , (5.11)

similar reasoning via (2.1) and evaluation of the twist matrix ρ´2 UM
N gives the following

ansatz for the SLp2q doublets

Bµν
αpx, yq “ YapyqBµν

aαpxq ,

Bµν
mαpx, yq “ Za

mpyqBµν
aαpxq , (5.12)

4This seems to differ from the ansatz derived in [40]. The precise comparison should take into account that

the Aµ, Bµν are non-gauge-invariant vector potentials. In the present discussion, the inhomogeneous term in

Zrabs kmnpyq played a crucial role in the verification of the proper algebraic relations.
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in terms of the 12 topologically massive two-form fields of the D “ 5 theory. Here, Za
mpyq is

the vector density, given by4

Za
m “ |G̃|1{2

ˆ
G̃mnBnYa ` 1

96
ω̃mklpqC̃klpqYa

˙
, (5.13)

in terms of the Lorentzian metric G̃mn, vector field Ya, and four-form C̃klmn. As is obvious

from their index structure, the fields Bµν
mα contribute to the dual six-form doublet of the IIB

theory, but not to the original IIB fields. Accordingly, for matching the EFT Lagrangian to the

IIB dynamics, these fields are integrated out from the theory [24, 38]. For the IIB embedding

of D “ 5 supergravity, we will thus only need the first line of (5.12).

For the remaining two-form fields, the reduction ansatz (2.1) yields the explicit expressions

Bµν mpx, yq “ Zrabs
mpyqBµν abpxq ,

Bµν mnpx, yq “ ´1

4

?
2Krabs

mnpyqBµν abpxq , (5.14)

with the Killing tensor Krabs
mn “ 2 BrmKrabs

ns, and the tensor density Zrabs
m given by

Zrabs
m “ |G̃|1{2

ˆ
Krabs

m ` 1

192
ω̃klnpqKrabs

mk C̃lnpq

˙
. (5.15)

Here, the 15 D “ 5 two-forms Bµν ab are in fact absent in the SOpp, qq supergravities, described

in the previous section. In principle, they may be introduced on-shell, employing the formulation

of these theories given in [41, 47], however, subject to an additional (three-form tensor) gauge

freedom, which subsequently allows one to set them to zero. Hence, in the following we adopt

Bµν abpxq “ 0, such that (5.14) reduces to

Bµν m “ 0 “ Bµν mn . (5.16)

Within EFT, consistency of this choice with the reduction ansatz (5.14) can be understood by

the fact that the fields Bµν m (related to the IIB dual graviton) do not even enter the EFT

Lagrangian, while the fields Bµν mn enter subject to gauge freedom

δBµν mn “ 2 BrmΛnsµν , (5.17)

(descending from tensor gauge transformations of the IIB four-form potential), which allows us

to explicitly gauge the reduction ansatz (5.14) to zero.

Combining the reduction formulas for the EFT fields with the explicit dictionary given

in sec. 5.2 of [38], we can use the results of this section to give the explicit expressions for

the different components (5.6) of the type IIB form fields. This gives the following reduction

formulae

Cµν
αpx, yq “

?
10YapyqBµν

aαpxq , (5.18)

Cµm
αpx, yq “ 0 ,

Cµν mnpx, yq “
?
2

4
Krabs

kpyqZrcds kmnpyqArµ
abpxqAνs

cdpxq ,

Cµkmnpx, yq “
?
2

4
Zrabs kmnpyqAµ

abpxq , (5.19)
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for two- and four form gauge potential in the basis after standard Kaluza-Klein decomposition.

In the next subsection, we collect the expressions for the scalar components Cmn
α and Cklmn,

and in subsection 5.5 we derive the reduction formulas for the last missing components Cµνρm,

and Cµνρσ of the four-form.

Let us finally note that with the reduction formulas given in this section, also the non-abelian

EFT field strengths of the vector fields factorize canonically, as can be explicitly verified with

the identities given in (3.8), (3.19). Explicitly, we find

Fµν
m ” 2 BrµAνs

m ´ Aµ
nBnAν

m ` Aν
nBnAµ

m

“ Krabs
mpyq

´
2 BrµAνs

abpxq `
?
2 fcd ,ef

abAµ
cdAν

ef pxq
¯

“ Krabs
mpyqFµν

abpxq ,

Fµν kmn ” 2 BrµAνs kmn ´ 2Arµ
lBlAνskmn ´ 3 BrkArµ

lAνsmnsl ` 3Arµ
lBrkAνsmnsl

“ Zrabs kmnpyqFµν
abpxq , (5.20)

in terms of the non-abelian SOpp, qq field strength Fµν
abpxq from (4.9).

5.3 EFT scalar fields and metric

Similar to the discussion of the form fields, the reduction of the EFT scalars can be read off

from (2.1) upon proper parametrization of the matrix MMN . We recall from [24,38] that MMN

is a real symmetric E6p6q matrix parametrized by the 42 scalar fields

tGmn, Cmn
α, Cklmn,mαβu , (5.21)

where Cmn
α “ Crmns

α, and Cklmn “ Crklmns are fully antisymmetric in their internal indices,

Gmn “ Gpmnq is the symmetric 5 ˆ 5 matrix, representing the internal part of the IIB metric,

and mαβ “ mpαβq is the unimodular symmetric 2 ˆ 2 matrix parametrizing the coset space

SLp2q{SOp2q carrying the IIB dilaton and axion. Decomposing the matrix MMN into blocks

according to the basis (5.7)

MKM “

¨
˚̊
˚̋

Mk,m Mk
mβ Mk,mn Mk

β

Mkα
m Mkα,mβ Mkα

mn Mkα,β

Mkl,m Mkl
mβ Mkl,mn Mkl

β

Mα
m Mα,mβ Mα

mn Mα,β

˛
‹‹‹‚ , (5.22)

the scalar fields (5.21) can be read off from the various components of MMN and its inverse

MMN . We refer to [38] for the explicit formulas and collect the final result

Gmn “ pdetGq1{3 Mm,n , (5.23)

mαβ “ pdetGq2{3Mα,β ,

Cmn
α “

?
2 εαβpdetGq2{3mβγ M

γ
mn “ ´ εαβpdetGq1{3Gnk Mmβ

k ,

Cklmn “ 2 pdetGq2{3 εklmnpmαβ M
α,pβ “ ´

?
2 pdetGq1{3εklmnpGqr M

pq,r ,
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where Gmn andmαβ denote the inverse matrices of Gmn andmαβ from (5.21). The last two lines

represent examples how the Cmn
α and Cklmn can be obtained in different but equivalent ways

either from components of MMN or MMN . This of course does not come as a surprise but is a

simple consequence of the fact that the 27 ˆ 27 matrix MMN representing the 42-dimensional

coset space E6p6q{USpp8q is subject to a large number of non-linear identities.

With (5.23), the reduction formulas for the EFT scalars are immediately derived from (2.1).

For the IIB metric and dilaton/axion, this gives rise to the expressions

Gmnpx, yq “ ∆2{3px, yqKrabs
mpyqKrcds

npyqMab,cdpxq ,

mαβpx, yq “ ∆4{3px, yqYapyqYbpyqMaα,bβpxq , (5.24)

with the function ∆px, yq defined by

∆px, yq ” ρ3pyq pdetGq1{2 “ p1 ´ vq1{2 pdetGq1{2 , (5.25)

and the 42 five-dimensional scalar fields parameterizing the symmetric E6p6q matrix MMN de-

composed into an SLp6q ˆ SLp2q basis as (4.12).

Similarly, the reduction formula for the internal components of the two-form Cmn
α is read

off as

Cmn
αpx, yq “ ´εαβ∆2{3px, yqGnkpx, yq BmYcpyqKrabs

kpyqMab
cβpxq

“ ´1

2
εαβ∆4{3px, yqmβγpx, yqYcpyqKrabs

mnpyqMab
cγpxq , (5.26)

featuring the inverse matrices of (5.24), with the two alternative expressions corresponding to

using the different equivalent expressions in (5.23). To explicitly show the second equality in

(5.26) requires rather non-trivial quadratic identities among the components (4.12) of an E6p6q
matrix, together with non-trivial identities among the Killing vectors and tensors. In contrast,

this identity simply follows on general grounds from the equivalence of the two expressions in

(5.23), i.e., it follows from the group property of MMN and the twist matrix UM
N . Let us

also stress, that throughout all indices on the Killing vectors Krabs
m and tensors are raised and

lowered with the Lorentzian x-independent metric G̃mnpyq from (3.9), not with the space-time

metric Gmnpx, yq.
Eventually, the same reasoning gives the reduction formula for Cmnkl

Cklmnpx, yq “ 2 εklmnp ∆
4{3px, yqmαβpx, yqYapyqZb

ppyqMaα,bβpxq , (5.27)

with Zb
ppyq from (5.13). Explicitly, this takes the form

Cklmnpx, yq “ ω̃klmnp∆
4{3px, yqmαβpx, yq G̃pqpyq Bq

´
∆´4{3px, yqmαβpx, yq

¯

` C̃klmnpyq . (5.28)

On the other hand, using the last identity in (5.23) to express Cklmn, the reduction formula is

read off as

Cklmnpx, yq “ 4
?
2∆2{3px, yqZrabs rklmpyqGnsrpx, yqKrcds

rpyqMab,cdpxq

“ C̃mnklpyq ´ 2∆2{3px, yqKrabs
ppyqKrcds rklmpyqGnsppx, yqMab,cdpxq ,(5.29)
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where we have used the explicit expression (3.21) for Zrabs klm. Again, the equivalence between

(5.28) and (5.29) is far from obvious, but a consequence of the group property of MMN and

the twist matrix UM
N . For the case of the sphere S5, several of these reduction formulas have

appeared in the literature [11–13, 39, 40]. Here we find that they naturally generalize to the

case of hyperboloids, inducing the D “ 5 non-compact SOpp, qq gaugings.

Let us finally spell out the reduction ansatz for the five-dimensional metric which follows

directly from (2.1) as

gµνpx, Y q “ ρ´2pyq gµνpxq . (5.30)

Putting this together with the parametrization of the IIB metric in terms of the EFT fields,

and the reduction (5.8) of the Kaluza-Klein vector field, we arrive at the full expression for the

IIB metric

ds2 “ ∆´2{3px, yq gµνpxq dxµdxν

`Gmnpx, yq
´
dym ` Krabs

mpyqAab
µ pxqdxµ

¯´
dyn ` Krcds

npyqAcd
ν pxqdxν

¯
, (5.31)

in standard Kaluza-Klein form [48], with Gmn given by the inverse of (5.24).

5.4 Background geometry

It is instructive to evaluate the above formulas at the particular point where all D “ 5 fields

vanish, i.e. in particular the scalar matrix MMN reduces to the identity matrix

MMN pxq “ δMN . (5.32)

This determines the background geometry around which the generalized Scherk-Schwarz re-

duction ansatz captures the fluctuations. Depending on whether or not the scalar potential of

D “ 5 gauged supergravity has a stationary point at the origin — which is the case for the

SOp6q and SOp3, 3q gaugings [5] — this background geometry will correspond to a solution of

the IIB field equations.

With (5.32) and the vanishing of the Kaluza-Klein vector fields, the IIB metric (5.31) reduces

to

ds2 “
˝
Gµ̂ν̂ dX

µ̂dX ν̂ (5.33)

” p1 ` u´ vq1{2 ˝
gµνpxq dxµdxν ` p1 ` u´ vq´1{2

ˆ
δmn ` ηmiηnjy

iyj

1 ´ v

˙
dymdyn ,

where we have used the relations

δacδbd Krabs
mpyqKrcds

npyq “ p1 ` u´ vq δmn ´ ηmiηnjy
iyj ,

˝
∆ “ p1 ` u´ vq´3{4 . (5.34)

The internal metric of (5.33) is conformally equivalent to the hyperboloid Hp,6´p defined by

the embedding of the surface

z21 ` ¨ ¨ ¨ ` z2p ´ z2p`1 ´ ¨ ¨ ¨ ´ z26 ” 1 , (5.35)
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in R
6 . This is a Euclidean five-dimensional space with isometry group SOppqˆSOp6´pq, inho-

mogeneous for p “ 2, 3, 4. Except for p “ 6, this metric differs from the homogeneous Lorentzian

metric defined in (3.9) with respect to which the Killing vectors and tensors parametrizing the

reduction ansatz are defined.

Using that YaYb δ
ab “ 1 ` u ´ v, it follows from (5.24) that the IIB dilaton and axion are

constant

˝
mαβ “ δαβ , (5.36)

while the internal two-form (5.26) vanishes due to the fact that (5.32) does not break the SLp2q .
Eventually, the four-form Cklmn is most conveniently evaluated from (5.28) as

˝
Cklmn “ C̃klmn ´ 8

3
ω̃klmnp G̃

pq
˝
∆´1Bq

˝
∆

“ 4 εklmnp η
pqyq p1 ´ vq´1{2 `

Kpu, vq ` p1 ` u ´ vq´1
˘
, (5.37)

which can also be confirmed from (5.29). In particular, its field strength is given by

5 Brk
˝
C lmnps “ 8 εklmnp

p´ 4 ` pp´ 3qpu ´ vq
p1 ´ vq1{2 p1 ` u´ vq2 , (5.38)

where we have used the differential equation (2.11) for the function Kpu, vq. Again, it is only

for p “ 6, that the background four-form potential
˝
Cklmn coincides with the four-form C̃klmn

that parametrizes the twist matrix UM
N .

With this ansatz, the type IIB field equations reduce to the Einstein equations, which in

this normalization take the form

˝
Rmn “

˝
Tmn ” 25

6
Brm

˝
CklpqsBrn

˝
Crstus

˝
Gkr

˝
Gls

˝
Gpt

˝
Gqu , (5.39)

and similar for
˝
Rµν . With (5.33) and (5.38), the energy-momentum tensor takes a particularly

simple form for p “ 6 and p “ 3:

˝
Tmn “

$
&
%

4
˝
Gmn p “ 6

p1 ` u´ vq´5{2 ˝
Gmn p “ 3

. (5.40)

For the x-dependent background metric
˝
gµνpxq the most symmetric ansatz assumes an Einstein

space (dS, AdS, or Minkowski)

Rr˝
gsµν “ k

˝
gµν , (5.41)

upon which the IIB Ricci tensor associated with (5.33) turns out to be blockwise proportional

to the IIB metric for the same two cases p “ 6 and p “ 3

˝
Rmn “

$
&
%

4
˝
Gmn p “ 6

p1 ` u´ vq´5{2 ˝
Gmn p “ 3

,

˝
Rµν “

$
&
%

k
˝
Gµν p “ 6

´p1 ` u´ vq´5{2 `1 ` p2 ´ kq p1 ` u ´ vq2
˘ ˝
Gµν p “ 3

. (5.42)
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Together it follows that (5.33), (5.37), (5.41) solve the IIB field equations for p “ 3, k “ 2 and

p “ 6, k “ ´4, c.f. [20]. The resulting backgrounds are AdS5 ˆ S5 and dS5 ˆ H3,3 and the

induced D “ 5 theories correspond to the SOp6q and the SOp3, 3q gaugings of [5], respectively.

For 3 �“ p �“ 6, the background geometry is not a solution to the IIB field equations. Let us

stress, however, that also in these cases the reduction ansatz presented in the previous sections

describes a consistent truncation of the IIB theory to an effectively D “ 5 supergravity theory,

just this theory does not have a simple ground state with all fields vanishing.

5.5 Reconstructing 3-form and 4-form

We have in the previous sections derived the reduction formulas for all EFT scalars, vectors,

and two-forms. Upon using the explicit dictionary into the IIB fields [24, 38], this allows to

reconstruct the major part of the original IIB fields. More precisely, among the components

of the fundamental IIB fields only Ĉµνρm and Ĉµνρσ with three and four external legs of the

IIB four-form potential remain undetermined from the previous analysis. These in turn can

be reconstructed from the IIB self-duality equations, which are induced by the EFT dynamics.

We refer to [38] for the details of the general procedure, which we work out in the following

with the generalized Scherk-Schwarz reduction ansatz.

The starting point is the duality equation between EFT vectors and two-forms that follows

from the Lagrangian

Brk

ˆ
H̃|µνρ|mns ´ 1

2
eMmns,N Fστ N εµνρστ

˙
“ 0 , (5.43)

where Fµν
N is the non-abelian field strength associated with the vector fieldsAµ

N , and H̃|µνρ|mn

carries the field strength of the two-forms Bµν mn. Taking into account the reduction ansatz

(5.10), (5.16), it takes the explicit form

H̃µνρmn “ ´BrµAν
kAρskmn ´ Arµ

kBνAρs kmn ´ Frµν
kAρs kmn ´ Arµ

kFνρs kmn

` 2 Brm
´
Arµ

kAν
lAρsnskl

¯
, (5.44)

in terms of the remaining vector fields and field strengths from (5.20). Since (5.43) is of the

form of a vanishing curl, the equation can be integrated in the internal coordinates up to a curl

BrmCnsµνρ related to the corresponding component of the IIB four-form, explicitly

BrmCnsµνρ “ 1

16

?
2 e εµνρστ Mmn,N Fστ N ´ 1

8

?
2 H̃µνρmn . (5.45)

It is a useful consistency test of the present construction, that with the reduction ansatz de-

scribed in the previous sections, the r.h.s. of this equation indeed takes the form of a curl in

the internal variables. Let us verify this explicitly. Since the reduction ansatz is covariant, the

first term reduces according to the form of its free indices rmns, c.f. (5.14)

eMmn,N Fστ N “ ´1

2

?
2 BrmKrabs

ns
´a

|g|Mab,N F στ N
¯
, (5.46)

which indeed takes the form of a curl. We recall that the D “ 5 field strength Fµν
N com-

bines the 15 non-abelian field strengths Fµν
ab and the 12 two-forms Bµν aα according to (4.9).
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The reduction of the second term on the r.h.s. of (5.45) is less obvious, since H̃µνρmn is not

a manifestly covariant object, and we have computed it explicitly by combining its defining

equation (5.44) with the reduction of the vector fields (5.8) and field strengths (5.20). With the

identity (3.57) among the Killing vectors and tensors, the second term on the r.h.s. of (5.45)

then reduces according to

H̃µνρmn “ 1

8
εabcdef K

refs
mn Ω

abcd
µνρ ` 2 Brm

´
Arµ

kAν
lAρsnskl

¯
. (5.47)

with the non-abelian SOpp, qq Chern-Simons form defined as

Ωabcd
µνρ “ BrµAν

abAρs
cd ` Frµν

abAρs
cd , (5.48)

in terms of the SOpp, 6 ´ pq Yang-Mills field strength Fµν
ab. Again, (5.47) takes the form of a

curl in the internal variables, such that equation (5.45) can be explicitly integrated to

Cmµνρ “ ´ 1

32
Krabs

m

´
2
a

|g| εµνρστ Mab,NF
στ N `

?
2 εabcdef Ω

cdef
µνρ

¯

´ 1

4

?
2Krabs

kKrcds
lZrefsmkl

´
Arµ

abAν
cdAρs

ef
¯
. (5.49)

This yields the full reduction ansatz for the component Cmµνρ. Obviously, Cmµνρ is determined

by (5.45) only up to a gradient BmΛµνρ in the internal variables, which corresponds to a gauge

transformation of the IIB four-form. Choosing the reduction ansatz (5.49), we have thus made

a particular choice for this gauge freedom.

In a similar way, the last missing component Cµνρσ can be reconstructed by further manip-

ulating the equations and comparing to the IIB self-duality equations [38]. Concretely, taking

the external curl of (5.45) and using Bianchi identities and field equations on the r.h.s. yields a

differential equation that can be integrated in the internal variable to

1

24
eεµνρσλ ε

kpqrs pdetGq´1Gnk
pDλcpqrs “ 16D

KK

rµ Cνρσs n ´ 30 εαβ Brµν
αBnBρσs

β

` 6
?
2Frµν

kAρ
lAσs lkn ` 4 BnCµνρσ , (5.50)

up to an external gradient BnCµνρσ which carries the last missing component of the IIB four-

form. Here, D
KK

µ denotes the Kaluza-Klein covariant derivative

D
KK

µ Cn ” BµCn ´ Aµ
kBkCn ´ BnAµ

kCk , etc. , (5.51)

and pDµcpqrs is a particular combination of scalar covariant derivatives [38], which is most

compactly defined via particular components of the scalar currents as

DµMmn,NMN n “ ´2
?
2

4!
pdetGq´1Gmn ε

npqrs pDµcpqrs , (5.52)

where Dµ refers to the full EFT derivative, covariant under generalized diffeomorphisms. Again,

it is a useful consistency check of the construction that with the reduction ansatz developed so

far, equation (5.50) indeed turns into a total gradient, from which we may read off the function

Cµνρσ . For the l.h.s. this is most conveniently seen by virtue of (5.52) and the reduction ansatz

(2.1) for MMN , giving rise to

e pdetGq´1Gmk ε
kpqrs pDµcpqrs “ 3

a
|g|Krabs

mnKrcds
nDµMab,NM

N cd

“ 6
a

|g|
´?

2Krcbs
mηac ´ BmpYbYaq

¯
DµMbd,NM

N da ,(5.53)
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where we have used (3.55). The derivatives Dµ on the r.h.s. now refer to the SOpp, 6 ´ pq
covariant derivatives (4.13). For the terms on the r.h.s. of (5.50), we find with (5.8), (5.12),

and (3.48)

´30 εαβ Brµν
αBnBρσs

β “ 15
?
2 εαβ Brµν

aαBρσs
bβ Krabs n ,

6
?
2Frµν

kAρ
lAσs lkn “ ´6

?
2Frµν

abAρ
cdAσs

ef Krabs
kKrcds

lZrefsnkl , (5.54)

as well as

16DKK

rµ Cνρσs m “ 1

2
Krabs

m

´a
|g| εµνρστ Dλ

´
Mab,NF

τλN
¯

`
?
2 εabcdef DrµΩ

cdef
νρσs

¯

` 4
?
2Frµν

kAρ
lAσs mkl ` 2

?
2Arµ

kAν
lFρσs mkl

`
?
2Arµ

kAν
l
`
2Aρ

nB|n|Aσs klm ` 3 BrmAρ
nAσs klsn ´ 3Aρ

nBrmAσs klsn
˘

´ 2
?
2Arµ

kAν |kmn|
´
Aρ

lB|l|Aσs
n
¯

´
?
2 Bm

´
Arµ

kAν
lAρ

nAσs kln
¯
,(5.55)

where we have explicitly evaluated the Kaluza-Klein covariant derivative Dµ on Cµνρm, the

latter given by (5.49). Moreover, we have arranged the A4 terms such that they allow for

a convenient evaluation of their reduction formulae. Namely, in the last two lines we have

factored out the quadratic polynomials that correspond to the A2 terms in the non-abelian

field strengths (5.20) and thus upon reduction factor in analogy to the field strengths, leaving

us with the A4 terms

AAAA ÝÑ ´2 fef,gh
ij Kk

rabs

´
ZrcdsmklK

l
rijs ` Kl

rcdsZrijsmkl

¯
Arµ

abAν
cdAρ

efAσs
gh

´
?
2 Bm

´
Arµ

kAν
lAρ

nAσs kln
¯

“ ´1

4

?
2 fab,uv

xyfef,gh
ij εcdijxy K

ruvs
m Arµ

abAν
cdAρ

efAσs
gh

` 1

2
fef,gh

ij εcdijau Bm pYuYbqArµ
abAν

cdAρ
efAσs

gh

´
?
2 Bm

´
Arµ

kAν
lAρ

nAσs kln
¯
, (5.56)

upon using the identities (3.57), (3.55). While the last two terms are total gradients, the first

term cancels against the corresponding contribution from the derivative of the Chern-Simons

form Ωabcd
µνρ in (5.55)

DrµΩ
cdef

νρσs εabcdef “ 3

4
Frµν

cdFρσs
ef εabcdef ´ 1

2

?
2Arµ

cdAν
efFρσs

gh fab,ef
uv εcdghuv

´ 1

2
Arµ

cdAν
efAρ

ghAσs
ij fcd,ef

rsfgh,ij
uvεabrsuv . (5.57)

Similarly, the FAA terms in (5.55) combine with those of (5.54) according to

FAA ÝÑ ´2
?
2Frµν

abAρ
cdAσs

ef Kl
rcds

´
Kk

rabsZrefsmkl ` Kk
refsZrabs mkl

¯
(5.58)

“ 1

2
fcd,ij

ghKrijs
mFrµν

abAρ
cdAσs

ef εabefgh ´ 1

2

?
2Frµν

abAρ
cdAσs

ef εabefch BmpYhYdq.

Again, the first term cancels against the corresponding contribution from the derivative of the

Chern-Simons form Ωabcd
µνρ , given in (5.57).
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Collecting all the remaining terms, equation (5.50) takes the final form

0 “ 1

2
Krabs

m

a
|g| εµνρστ

ˆ
1

2

?
2 ηdaD

τMcb,NM
N cd `Dλ

´
Mab,NF

τλN
¯˙

` 3

8

?
2Krabs

m

´
εabcdef Frµν

cdFρσs
ef ` 40 εαβ ηacηbdBrµν

cαBρσs
dβ
¯

` 1

2
fef,gh

ij εcdijay Bm pYyYbqArµ
abAν

cdAρ
efAσs

gh

´ 1

4

a
|g| εµνρστ BmpYbYdqDτMab,NM

N ad ´ 1

2

?
2Frµν

abAρ
cdAσs

ef εabefch BmpYhYdq

´
?
2 Bm

´
Arµ

kAν
lAρ

nAσs kln
¯

` 4 BmCµνρσ . (5.59)

Now the first two lines of the expression precisely correspond to the vector field equations (4.15)

of the D “ 5 theory, which confirms that on-shell this equation reduces to a total gradient in the

internal variables. Although guaranteed by the consistency of the generalized Scherk-Schwarz

ansatz and the general analysis of [38], it is gratifying that this structure is confirmed by explicit

calculation based on the D “ 5 field equations and the non-trivial identities among the Killing

vectors. We are thus in position to read off from (5.59) the final expression for the 4-form as

Cµνρσ “ ´ 1

16
YaY

b
´a

|g| εµνρστDτMbc,NM
N ca ` 2

?
2 εcdefgb Frµν

cdAρ
efAσs

ga
¯

` 1

4

´?
2Krabs

kKrcds
lKrefs

nZrghs kln ´ YhY
j εabcegj ηdf

¯
Arµ

abAν
cdAρ

efAσs
gh

` Λµνρσpxq , (5.60)

in terms of the D “ 5 fields, up to an y-independent term Λµνρσpxq, left undetermined by

equation (5.50) and fixed by the last component of the IIB self-duality equations (5.3). This

equation translates into

4D
KK

rµ Cνρστ s “ 30 εαβ Brµν
αD

KK

ρ Bστ s
β ` 8Frµν

kCρστ s k

´ 1

120
eεµνρστ ε

klmnp pdetGq´4{3Xklmnp , (5.61)

where Xklmnp is a combination of internal derivatives of the scalar fields, c.f. [38], that is most

compactly given by

1

120
εkpqrsXkpqrs “ ´ 1

20

?
2 pdetGqGml BlMmn,NMN n , (5.62)

in analogy to (5.52). It can be shown that equation (5.61) can be derived from the external

curl of equations (5.50) upon using the EFT field equations and Bianchi identities, up to a

y-independent equation that defines the last missing function Λµνρσ . For the general case this

has been worked out in [38]. Alternatively, it can be confirmed by explicit calculation with the

Scherk-Schwarz reduction ansatz, that equation (5.61) with the components Cµνρm and Cµνρσ

from (5.49) and (5.60), respectively, decomposes into a y-dependent part, which vanishes due

to the D “ 5 scalar equations of motion, and a y-independent part, that defines the function

Λµνρσ . The calculation is similar (but more lengthy) than the previous steps, requires the same

non-trivial identities among Killing vectors derived above, but also some non-trivial algebraic
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identities among the components of the scalar E6p6q matrix MMN . We relegate the rather

lengthy details to appendix A and simply report the final result from equation (A.20)

DrµΛνρστ s “ ´ 1

480

a
|g| εµνρστDλ

´
MN acDλMac,N

¯

` 1

240

a
|g| εµνρστ F κλN

ˆ
Mab,NFκλ

ab ´ 1

2

?
10 εαβ ηabM

aα
N Bκλ

b β

˙

` 1

600

a
|g| εµνρστ

´
10 δdhδ

a
e ` 2Mfd,gaMgh,fe ´Meα

gaMgh
dα
¯
M bh,ec ηcdηab

` 1

32

?
2 εabcdef Frµν

abFρσ
cdAτ s

ef ` 1

16
Frµν

abAρ
cdAσ

efAτ s
gh εabcdehηfh

` 1

40

?
2 Arµ

abAν
cdAρ

efAσ
ghAτ s

ij εabcegi ηdfηhj . (5.63)

Since there is no non-trivial Bianchi identity for (5.63), this equation can be integrated and

yields the last missing term in the four-form potential (5.60). This completes the reduction

formulae for the full set of fundamental IIB fields.

6 Summary

We have in this paper derived the explicit reduction formulae for the full set of IIB fields in the

compactification on the sphere S5 and the inhomogeneous hyperboloids Hp,6´p. The fluctua-

tions around the background geometry are described by a D “ 5 maximal supergravity, with

gauge group SOpp, 6 ´ pq . The dependence on the internal variables is explicitly expressed in

terms of 1) a set of vectors Krabs
m which are Killing vectors of a homogeneous metric G̃mn

(3.9), and 2) a four-form C̃µνρσ whose field-strength yields the Lorentzian volume form (3.29).

Only for the compact case of S5, the metric G̃mn and four-form C̃klmn coincide with the space-

time background geometry. In the non-compact case, they refer to a (virtual) homogeneous

Lorentzian geometry which encodes the inhomogeneous space-time background geometry via

the formulas provided. This is in accordance with the ansatz proposed and tested for some

stationary points of the non-compact D “ 4 gaugings in [22], see also [20, 21] for earlier work.

Only for p “ 6 and p “ 3 does the background geometry provide a solution to the IIB field

equations. We stress, that also in the remaining cases, the reduction ansatz describes a consis-

tent truncation of the IIB theory to an effectively D “ 5 supergravity theory, just this theory

does not have a simple ground state with all fields vanishing. Still, any stationary point or

holographic RG flow of these non-compact gaugings as well as any other solution to their field

equations lifts to a IIB solution by virtue of the explicit reduction formulas.

The explicit reduction formulas are derived via the EFT formulation of the IIB theory

by evaluating the formulas of the generalized Scherk-Schwarz reduction ansatz for the twist

matrices obtained in [19]. The Scherk-Schwarz origin also proves consistency of the truncation

in the sense that all solutions of the respective D “ 5 maximal supergravities lift to solutions

of the type IIB fields equations. By virtue of the explicit embedding of the IIB theory into

EFT [24, 38] these formulas can be pulled back to read off the reduction formulas for the

original type IIB fields. Upon some further computational effort we have also derived the

explicit expressions for all the components of the IIB four-form. Along the way, we explicitly
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verified the IIB self-duality equations. Although their consistency is guaranteed by the general

construction, we have seen that their validation by virtue of non-trivial Killing vector identities

still represents a rewarding exercise.

We have in this paper restricted the construction to the bosonic sector of type IIB supergrav-

ity. In the EFT framework, consistency of the reduction of the fermionic sector follows along the

same lines from the supersymmetric extension of the E6p6q exceptional field theory [49] which

upon generalized Scherk-Schwarz reduction yields the fermionic sector of the D “ 5 gauged

supergravities [19]. In particular, compared to the bosonic reduction ansatz (2.1), the EFT

fermions reduce as scalar densities, i.e. their y-dependence is carried by some power of the scale

factor, such as ψµ
ipx, yq “ ρ´ 1

2 pyqψµ
ipxq, etc.. A derivation of the explicit reduction formulas

for the original IIB fermions would require the dictionary of the fermionic sector of EFT into

the IIB theory, presumably along the lines of [40]. The very existence of a consistent reduction

of the fermionic sector can also be inferred on general grounds [2] combining the bosonic results

with the supersymmetry of the IIB theory.

We close by recollecting the full set of IIB reduction formulas derived in this paper. The

IIB metric is given by

ds2 “ ∆´2{3px, yq gµνpxq dxµdxν

`Gmnpx, yq
´
dym ` Krabs

mpyqAab
µ pxqdxµ

¯´
dyn ` Krcds

npyqAcd
ν pxqdxν

¯
, (6.1)

in standard Kaluza-Klein form, in terms of vectors Krabs
m from (3.38) that are Killing for the

(Lorentzian) metric G̃mn from (3.9), and the internal block Gmn of the metric (6.1) given by

the inverse of

Gmnpx, yq “ ∆2{3px, yqKrabs
mpyqKrcds

npyqMab,cdpxq . (6.2)

The IIB dilaton and axion combine into the symmetric SLp2q matrix

mαβpx, yq “ ∆4{3px, yqYapyqYbpyqMaα,bβpxq , (6.3)

in terms of the harmonics Ya from (3.45). Since detmαβ “ 1, this equation can also be used as

a defining equation for the function ∆px, yq . The different components of the two-form doublet

are given by

Cmn
αpx, yq “ ´1

2
εαβ∆4{3px, yqmβγpx, yqYcpyqKrabs

mnpyqMab
cγpxq ,

Cµm
αpx, yq “ 0 ,

Cµν
αpx, yq “

?
10YapyqBµν

aαpxq . (6.4)

Next, we give the uplift formulas for the four-form components in terms of the Killing vectors

Krabs
mpyq, Killing tensors Krabs mnpyq, the sphere harmonics Yapyq given in (3.45), the function

Zrabs kmnpyq given by (3.21), and the four-form C̃klmnpyq from (3.49). In order not to clutter

the formulas, in the following we do not display the dependence on the arguments x and y as it

is always clear from the definition of the various objects whether they depend on the external
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or internal coordinates or both. The final result reads

Cklmn “ C̃klmn ` ω̃klmnp∆
4{3mαβ G̃

pq Bq
´
∆´4{3mαβ

¯
,

Cµkmn “
?
2

4
Zrabs kmnAµ

ab ,

Cµν mn “
?
2

4
Krabs

kZrcds kmnArµ
abAνs

cd ,

Cmµνρ “ ´ 1

32
Krabs m

´
2
a

|g| εµνρστ Mab,NF
στ N `

?
2 εabcdef Ω

cdef
µνρ

¯

´ 1

4

?
2Krabs

kKrcds
lZrefs mkl

´
Arµ

abAν
cdAρs

ef
¯
,

Cµνρσ “ ´ 1

16
YaY

b
´a

|g| εµνρστDτMbc,NM
N ca ` 2

?
2 εcdefgb Frµν

cdAρ
efAσs

ga
¯

` 1

4

´?
2Krabs

kKrcds
lKrefs

nZrghs kln ´ YhY
j εabcegj ηdf

¯
Arµ

abAν
cdAρ

efAσs
gh

` Λµνρσpxq . (6.5)

We recall, that the curved indices on these objects are raised and lowered with the x-independent

metric G̃mnpyq from (3.9) and not with the background metric Gmn. The function Λµνρσpxq
is defined by equation (5.63). All p-form components are given in the basis after standard

Kaluza-Klein decomposition, explicitly related to the original IIB fields by (5.6).

With the reduction ansatz (6.1)–(6.5), the type IIB field equations reduce to the D “ 5

field equations derived from the Lagrangian (4.11). As a consequence, these formulas lift every

solution of D “ 5, SOpp, qq gauged supergravity to a solution of IIB supergravity.
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Appendix

A Finding Λµνρσ

In order to find the last missing contribution Λµνρσ in the expression (5.60) for the four-form

component Cµνρσ let us study the reduction of the different terms of equation (5.61)

1

120
eεµνρστ ε

klmnp pdetGq´4{3Xklmnp “ 30 εαβ Brµν
αD

KK

ρ Bστ s
β ` 8Frµν

kCρστ s k

´ 4D
KK

rµ Cνρστ s . (A.1)

By construction, after imposing the generalized Scherk-Schwarz ansatz this equation should

split into a y-dependent part proportional to the D “ 5 scalar field equations (4.16), and a

y-independent part which determines the function Λµνρσ.
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The first term on the r.h.s. simply reduces according to the reduction ansatz (5.12)

30 εαβ Brµν
αD

KK

ρ Bστ s
β “ 30 εαβ YaYbBrµν

aαDρBστ s
bβ . (A.2)

Note that the Kaluza-Klein covariant derivative turns into the SOpp, 6´pq covariant derivative

by virtue of (3.46). With (5.49) and the identity (3.56), we find for the second term on the

r.h.s. of (A.1)

8Frµν
kCρστ s k “ ´1

2
YbY

a Frµν
cb
´
2
a

|g| ερστ sκλMac,NF
κλN `

?
2Ωefgh

ρστ s εacefgh
¯

` 2
?
2Frµν

abAρ
cdAσ

efAτ s
ghKrabs

mKrcds
kKrefs

lZrghsmkl . (A.3)

Next, we have to work out the covariant curl of Cµνρσ with the explicit expression (5.60). To this

end, we first note that for all terms with y-dependence proportional to YaYb, the Kaluza-Klein

covariant derivative reduces to

D
KK

µ

´
YaYbXab

¯
“ YaYbDµXab , (A.4)

in view of the property (3.46) of the harmonics Ya . We thus find

´4DKK

rµ Cνρστ s “ 1

20
YaY

b
a

|g| εµνρστDλ

´
MN caDλMbc,N

¯
´ 4DrµΛνρστ s

` 1

2

?
2YbY

a εacdefgDrµ
´
Fνρ

cdAσ
efAτ s

bg `
?
2Aν

cdAρ
ehAσ

fjAτ s
bg ηhj

¯

´
?
2D

KK

rµ

´
Krabs

kKrcds
lKrefs

nZrghs klnAν
abAρ

cdAσ
efAτ s

gh
¯
. (A.5)

In order to evaluate the last term it is important to note that unlike in (A.4), the Kaluza-

Klein covariant derivative here cannot just be pulled through the (non-covariant) y-dependent

functions but has to be evaluated explicitly leading to

´
?
2D

KK

rµ

´
Aν

kAρ
lAn

σAτ s kln
¯

“ ´3

2

?
2Frµν

abAρ
cdAσ

efAτ s
ghKrabs

kKrcds
lKrefs

nZrghs kln

` 1

2

?
2Frµν

abAρ
cdAσ

efAτ s
ghKrcds

kKrefs
lKrghs

nZrabs kln

` 3

10

?
2Arµ

rsAν
uvAρ

cdAσ
efAτ s

ghfcd,rs
abεabuvgeYfYh ,

after some manipulation of the functions Krabs, Zrabs. Putting everything together and again

using once more the identity (3.57), the full r.h.s. of equation (A.1) is given by

(A.1)
r.h.s “ 1

20
YaY

b
a

|g| εµνρστDλ

´
MN caDλMbc,N

¯
´ 4DrµΛνρστ s

` 1

2

?
2YaY

b εbcdefgDrµ
´
Fνρ

cdAσ
efAτ s

ag `
?
2Aν

cdAρ
ehAσ

fjAτ s
ag ηhj

¯

` 1

2
εdfghceYaYb Frµν

dfAρ
acAσ

beAτ s
gh ` 30 εαβ YaYbBrµν

aαDρBστ s
b β

` 3

5

?
2 εcsuvge YaYb ηdr Arµ

rsAν
uvAρ

cdAσ
aeAτ s

bg

´ 1

2
YbY

a Frµν
cb
´
2
a

|g| ερστ sκλMac,NF
κλN `

?
2Ωefgh

ρστ s εacefgh
¯
. (A.6)

30



Some calculation and use of the Schouten identity shows that all terms carrying explicit gauge

fields add up precisely such that their y-dependence drops out due to YaY
a . Specifically, we

find

(A.1)
r.h.s

ˇ̌
ˇ
FFA

“ 1

8

?
2 εabcdef Frµν

abFρσ
cdAτ s

ef ,

(A.1)
r.h.s

ˇ̌
ˇ
FAAA

“ 1

4
Frµν

abAρ
cdAσ

efAτ s
gh εabcdehηfh ,

(A.1)
r.h.s

ˇ̌
ˇ
AAAAA

“ 1

10

?
2Arµ

abAν
cdAρ

efAσ
ghAτ s

ij εabcegi ηdfηhj . (A.7)

In addition, we use the D “ 5 duality equation (4.10) in order to rewrite the BDB term of

(A.1) and arrive at

(A.1)
r.h.s “ ´ 1

20
YaY

b
a

|g| εµνρστDλ

´
MN acDλMbc,N

¯
´ 4DrµΛνρστ s

`
1

10
YaY

b
a

|g| εµνρστ F κλN

ˆ
Mbc,NFκλ

ac ´ 1

2

?
10 εαβ ηdbM

d α
N Bκλ

a β

˙

` 1

8

?
2 εabcdef Frµν

abFρσ
cdAτ s

ef ` 1

4
Frµν

abAρ
cdAσ

efAτ s
gh εabcdehηfh

` 1

10

?
2Arµ

abAν
cdAρ

efAσ
ghAτ s

ij εabcegi ηdfηhj . (A.8)

Structurewise, the r.h.s. of equation (A.1) is thus of the form

(A.1)
r.h.s “

ˆ
YapyqYbpyq ´ 1

6
ηab

˙
E1 abpxq ` E2pxq . (A.9)

Consistency of the reduction ansatz then implies that also the l.h.s. of (A.1) organizes into the

same structure. The coefficients multiplying the y-dependent factor
`
YapyqYbpyq ´ 1

6
ηab

˘
must

combine into a D “ 5 field equation in order to reduce (A.1) to an y-independent equation

which then provides the defining equation for Λµνρσ.

In order to see this explicitly, we recall, that the l.h.s. of (A.1) is defined by (5.62), which

together with the reduction ansatz (2.1) for MMN may be used to read off the form of this

term after reduction. After some manipulation of the Killing vectors and tensors and use of

the identities collected in section 3.3, we obtain

1

120
e εklmnp pdetGq´4{3Xklmnp “ ´ 1

10

?
2
a

|g|YaYb X
pabqcd,e

f pU´1qeqKrcds
mBmUq

f

´ 2

5

a
|g|YaYb ηcdM

ac,bd . (A.10)

in terms of the SLp6q twist matrix (2.8), and the combination

X pabqcd,e
f “ X pabqrcds,e

f ” 2M je,gpaM bqh,cdMgh,jf ´Mfα
gpaM bqh,cdMgh

eα , (A.11)

of matrix components of (4.12). At first view, the structure of this expression in no way

ressembles the form of (A.9), with a far more complicated y-dependence in its first term. This

seemingly jeopardizes the consistency of the reduction of equation (A.1), which after all should

be guaranteed by consistency of the ansatz. What comes to the rescue is some additional
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properties of the twist matrix together with some highly non-trivial non-linear identities among

the components of an E6p6q matrix. Namely the last factor in the first term of (A.10) drastically

reduces upon certain index projections

pU´1qaqKrbcs
mBmUq

c ` pU´1qbqKracs
mBmUq

c “ ´
?
2 ηab ,

pU´1qaqKrbcs
mBmUq

d ` pU´1qbqKrcas
mBmUq

d ` pU´1qcqKrabs
mBmUq

d “ 0 , (A.12)

as may be verified by explicit computation. Moreover, the tensor X pabqcd,e
f defined in (A.11) is

of quite restricted nature and satisfies

X pabqcd,e
f “ X pabqrcd,es

f ´ 2

5
δf

rc X pabqdsg,e
g ´ 2

45
δf

rc X pabqdse,g
g ` 1

9
δf

eX pabqcd,g
g , (A.13)

implying in particular that

X pabqerc,ds
e “ ´1

6
X pabqcd,e

e . (A.14)

The identity (A.13) is far from obvious and hinges on the group properties of the matrix (4.12).

It can be verified by choosing an explicit parametrization of this matrix (e.g. as given in [38]),

at least with the help of some computer algebra [50–52]. Combining this identity with the

properties (A.12) of the twist matrix, we conclude that the first term on the r.h.s. of (A.10)

simplifies according to

X pabqcd,e
f pU´1qeqKrcds

mBmUq
f “ 2

5
X pabqgpd,eq

g pU´1qeqKrfds
mBmUq

f

“ 1

5

?
2X pabqgd,e

g ηde , (A.15)

such that its y-dependence reduces to the harmonics YaYb.

As a consequence, together with (A.12), we conclude that the penultimate term in (A.10)

reduces to

´ 1

10

?
2
a

|g|YaYbX
pabqcd,e

f pU´1qeqKrcds
lBlUq

f “ ´ 1

25

a
|g|YaYb X

pabqgc,d
g ηcd . (A.16)

Together with (A.8), equation (A.1) then eventually reduces to

DrµΛνρστ s “ ´ 1

80
YaY

b
a

|g| εµνρστDλ

´
MN acDλMbc,N

¯

` 1

40
YaY

b
a

|g| εµνρστ F κλN

ˆ
Mbc,NFκλ

ac ´ 1

2

?
10 εαβ ηdbM

dα
N Bκλ

aβ

˙

` 1

100

a
|g| εµνρστ YaY

b
´
10Mac,fd ` X pafqec,d

e

¯
ηcdηbf

` 1

32

?
2 εabcdef Frµν

abFρσ
cdAτ s

ef ` 1

16
Frµν

abAρ
cdAσ

efAτ s
gh εabcdehηfh

` 1

40

?
2 Arµ

abAν
cdAρ

efAσ
ghAτ s

ij εabcegi ηdfηhj , (A.17)

such that the y-dependence of the entire equation organizes into the form (A.9). Now the

x-dependent coefficient of the traceless combination
`
YaYb ´ 1

6
ηab

˘
precisely reproduces the

D “ 5 scalar equations of motion (4.16). In particular, the third line of (A.17) coincides with
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the SLp6q variation of the scalar potential (4.14). This match requires an additional non-trivial

relations among the components of an E6p6q matrix (4.12)

ηefMdα
hpaM bqc,deMfα

ch “ ηefMgα
deMfc,gpaM bqα

cd , (A.18)

ηefM
de,cpaM bqγ,fαMdα,cγ “ 2 ηef M

de,cpaM bqh,fgMdg,ch ` ηefMdα
hpaM bqc,deMfα

ch ,

which can be proven similar to (A.13). From these it is straightforward to deduce that

X pafqec,d
e “ ´4

3
Mde,cpaM bqh,fgMdg,chηef ´ 1

3
ηefM

de,cpaM bqγ,fαMdα,cγ

` 2

3
ηdeM

cd,gpaM bα
cfMgα

ef ` 2

3
ηefM

de,cpaM bqh
dαM

fα
ch , (A.19)

thus matching the expression obtained from variation of the scalar potential in (4.16). As a

consequence, the y-dependent part of equation (A.17) vanishes on-shell, such that the equation

reduces to

DrµΛνρστ s “ ´ 1

480

a
|g| εµνρστDλ

´
MN acDλMac,N

¯

` 1

240

a
|g| εµνρστ F κλN

ˆ
Mab,NFκλ

ab ´ 1

2

?
10 εαβ ηabM

aα
N Bκλ

b β

˙

` 1

600

a
|g| εµνρστ

´
10Mac,fd ` X pafqec,d

e

¯
ηcdηaf

` 1

32

?
2 εabcdef Frµν

abFρσ
cdAτ s

ef ` 1

16
Frµν

abAρ
cdAσ

efAτ s
gh εabcdehηfh

` 1

40

?
2 Arµ

abAν
cdAρ

efAσ
ghAτ s

ij εabcegi ηdfηhj . (A.20)

This equation can be integrated to yield the function Λµνρρ. This yields the last missing part

in the reduction ansatz of the IIB four form (5.60) and establishes the full type IIB self-duality

equation.
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