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Recent results in the construction of anomaly-free models of loop quantum gravity have shown
obstacles when local physical degrees of freedom are present. Here, a set of no-go properties is
derived in polarized Gowdy models, raising the question whether these systems can be covariant
beyond a background treatment. As a side product, it is shown that normal deformations in classical
polarized Gowdy models can be Abelianized.

PACS numbers: 11.15.-q, 04.60.-m, 04.60.Pp

I. INTRODUCTION

Covariance is important in cosmological models be-
cause it controls the form of partial differential equa-
tions for inhomogeneous modes and ensures consistency
of the coupled set of equations for a smaller number of
free fields. It considerably restricts possible choices of un-
derlying theories, for instance of the dynamics of matter
ingredients or higher-derivative corrections to Einstein’s
equation.

The latter are expected also in effective equations of
canonical quantum gravity, but in such approaches co-
variance is not manifest. In proposed models of loop
quantum gravity, as one class of rather widely studied
examples, it is then not always clear whether covari-
ance is realized, and to what detriment covariance might
unwittingly be broken. The main example of poten-
tially covariance-breaking effects is the replacement of
connection components in Hamiltonians by holonomies,
a widely studied procedure which captures one of the
key ingredients of loop quantizations and gives rise to
postulated physical implications such as bounded energy
densities. In [1], a systematic analysis of covariance in
spherically symmetric or black-hole models with modi-
fications from loop quantum gravity has been started.
Partial no-go results have been obtained for covariant
holonomy-modified models with local matter degrees of
freedom, and to date no such model is known to exist.

Here, we extend the same methods and results to po-
larized Gowdy models. Also in this context, partial no-go
results will be obtained, of a form which resembles those
found in spherically symmetric models and can there-
fore be taken as a sign of genericness. There seem to be
obstacles to an implementation of covariant holonomy-
modified models with local degrees of freedom, from mat-
ter or gravity. In a background treatment, local degrees
of freedom can be coupled as inhomogeneous modes to
a holonomy-modified homogeneous model. However, ir-
respective of whether back-reaction on the homogeneous
background is included, non-trivial covariance conditions
are present but have not been analyzed yet in existing
constructions. We will comment on hybrid models [2–4]
as one example. Our statements are about holonomy-
modified models characteristic of loop quantum cosmol-
ogy. They do not apply to Wheler–DeWitt type quan-

tizations of Gowdy models as considered for instance in
[5–14].
Covariance cannot be seen in homogeneous models, the

traditional setting of loop quantum cosmology [15, 16].
At the level of effective equations, there are only ordi-
nary differential equations which are not subject to addi-
tional consistency conditions from covariance. And also
an equation for a wave function, although it may be a par-
tial differential or difference equation, requires no such
restrictions. Dynamical equations of homogeneous cos-
mological models can therefore be modified at will by any
putative quantum effects, but not all versions can be min-
isuperspace reductions of covariant inhomogeneous mod-
els (or of a covariant full theory of modified or quantum
gravity).
In this paper we consider polarized Gowdy systems

[17] as a class of models with 1-dimensional spatial in-
homogeneity and applications to cosmology. As in [1],
the canonical definition of covariance we use for modified
theories is based on the general form of this condition
in classical models: Instead of considering transforma-
tions generated by Lie derivatives along space-time vector
fields, one has such derivatives only for vector fields Ma

tangential to spatial hypersurfaces used for the canon-
ical decomposition of fields. These spatial diffeomor-
phisms, acting on phase-space variables, are generated by
the diffeomorphism constraint D[Na]. For the remaining
transformations it is sufficient to have a generator of nor-
mal deformations of spatial hypersurfaces, given by the
Hamiltonian constraint H [N ], the spatial function N de-
termining the extent Nna of the deformation along the
normal vector field na. These generators have Poisson
brackets

{D[Ma
1 ], D[Ma

2 ]} = D[LM1
Ma

2 ] (1)

{H [N ], D[Ma]} = −H [LMN ] (2)

{H [N1], H [N2]} = D[qab(N1∂bN2 −N2∂bN1)] (3)

with structure functions in the last line, given by the
inverse spatial metric qab [18, 19].
A modified or quantized canonical theory must have at

least a classical limit in which (1)–(3) are realized. For
non-classical solutions, the brackets may be subject to
quantum corrections but must still close for an anomaly-
free theory: Since the constraints generate gauge trans-
formations, there must be analogs of the classical con-
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straints D[Ma] and H [N ] with brackets which are closed
under all circumstances (not just in the classical limit).
As discussed in [1], there are therefore two conditions
for a covariant theory: (i) Anomaly-free gauge genera-
tors and (ii) a classical limit in which the hypersurface-
deformation brackets (1)–(3) are obtained. As shown in
[1], building on results of [20], condition (ii) is not neces-
sarily a consequence of condition (i). (Conditions (i) and
(ii) have been shown to be satisfied in suitable holonomy-
modified models of cosmological perturbations [21, 22].
Here, we analyze the question of covariance for inhomo-
geneity which is not perturbative, but restricted by some
symmetry and polarization conditions. The situation we
find in this context, regarding holonomy modifications,
appears to be qualitatively different from the case of per-
turbative inhomogeneity.)
An important part of the conditions for covariance is

that they refer to the off-shell brackets when the con-
straints are not necessarily zero. This feature is anal-
ogous to the usual space-time definition of a covariant
theory as one with a Lagrangian covariant under tensor
transformations. The conceptual reason for the promi-
nence of off-shell structures is the classical picture of
space-time as a background on which different kinds of
matter fields can be put. Even if back-reaction is in-
cluded and one does not restrict equations to those for a
field on a fixed background, one thinks of space-time as
an independent ingredient which is covariant in its own
right, irrespective of the matter fields coupled to it. After
all, the Einstein tensor of any space-time, independently

of solutions to field equations or the inclusion of back-
reaction, obeys the contracted Bianchi identity, which in
canonical form is equivalent to a version of (1)–(3) [23].
For a consistent matter coupling, one therefore requires
the local conservation law for the matter stress-energy
tensor, again independently of solutions to field equa-
tions. Also the local conservation law is equivalent to a
version of (1)–(3) for matter Hamiltonians [24]. In both
cases, the form of off-shell brackets is crucial, which we
will analyze for modified Gowdy models in the present
paper.

II. MODIFIED THEORIES WITH LOCAL

DEGREES OF FREEDOM?

Since the algebraic structure of modified Gowdy mod-
els is closely related to the one of spherically symmetric
models discussed in [1], we will begin with a brief review
of these existing results.

A. Spherical symmetry

Using triad variables Ex and Eϕ with canonically con-
jugate extrinsic-curvature components Kx and Kϕ, the
gravitational contribution to the spherically symmetric
Hamiltonian constraint is

H [N ] = − 1

2G

∫

dxN(x)
(

|Ex|− 1

2EϕK2

ϕ + 2|Ex| 12KϕKx + |Ex|− 1

2 (1− Γ2

ϕ)E
ϕ + 2Γ′

ϕ|Ex| 12
)

(4)

where Γϕ = −(Ex)′/2Eϕ (see [25, 26]). If one adds to
this the matter Hamiltonian, for instance

Hφ[N ] =
1

8G

∫

dxN(x)
1

√

|Ex|Eϕ

(

P 2

φ + 4(Ex)2(φ′)2
)

(5)
for a scalar field φ with momentum Pφ, the hypersurface-
deformation brackets are realized in combination with
the diffeomorphism constraint

D[M ] =
1

G

∫

dxM(x)

(

−1

2
(Ex)′Kx +K ′

ϕE
ϕ +GPφφ

′

)

.

(6)

Instead of the full spatial metric qab, the structure func-
tions are given by the radial component |Ex|/(Eϕ)2 of a
spherically symmetric inverse spatial metric.

In order to eliminate the structure functions, [20] in-
troduced a linear combination of the constraints so that
the normal part of hypersurface deformations is replaced
by an Abelian bracket. In this process, H [N ] is replaced
by a new constraint

C[N ] =
1

G

∫

dxN(x)

(

−1

2

(Ex)′
√

|Ex|
(1 +K2

ϕ)− 2
√

|Ex|KϕK
′

ϕ (7)
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+
(Ex)′

8
√

|Ex|(Eϕ)2

(

4Ex(Ex)′′ + ((Ex)′)2
)

− 1

2

((Ex)′)2
√

|Ex|(Eϕ)′

(Eϕ)3

+2πG
(Ex)′

√

|Ex|(Eϕ)2

(

P 2

φ + (Ex)2(φ′)2
)

− 8πG
√

|Ex|Kϕ

Eϕ
Pφφ

′

)

.

While the pair (C[N ], D[M ]) does not obey the
hypersurface-deformation brackets (1)–(3), it has a re-
duced phase space equivalent to the one of the origi-
nal system. Quantizing the partially Abelianized system
should be easier, as proposed in [20] in combination with
a background treatment.
As part of the loop quantization performed in [20], one

modifies the dependence of (7) onKϕ by replacing it with
some bounded function f(Kϕ) in order to model the ap-
pearance of holonomies in loop quantum gravity. How-
ever, as there are three different terms in (7) depending
on Kϕ, there could in general be three replacement func-
tions which need not be equal but should be related in
some way for a consistent theory in which the brackets

still close and implement covariance. In [20], this ques-
tion has been circumvented by the background treatment
in which one first considers only the gravitational part of
C[N ], which happens to be a total derivative. Upon in-
tegrating by parts, there is only one term depending on
Kϕ, which can easily be modified by a single function
f(Kϕ) while keeping the constraint bracket Abelian.
However, as shown in [1], the modification is consistent

with covariance only if the different Kϕ-dependent terms
in the original constraint are modified in strictly related
ways, of a form equivalent to what had been found earlier
by effective methods [27, 28]: The gravitational part of
the modified Hamiltonian constraint then has to be of
the form

H [N ] = − 1

2G

∫

dxN(x)
(

|Ex|− 1

2Eϕf1 (Kϕ) + 2|Ex| 12 f2 (Kϕ)Kx (8)

+ |Ex|− 1

2 (1− Γ2

ϕ)E
ϕ + 2Γ′

ϕ|Ex| 12
)

with

2f2 =
df1
dKϕ

. (9)

As a consequence, the hypersurface-deformation brack-
ets are modified at large curvature and show signature
change [29–31]: The classical structure function is multi-
plied with

β =
df2
dKϕ

=
1

2

d2f1
dK2

ϕ

(10)

which is negative around a local maximum of the modi-
fication function f1(Kϕ).

Moreover, while the classical system is still Abelian
in the presence of a non-zero matter Hamiltonian, no
consistent modification has been found. It is therefore
unclear whether modified combined systems of gravity
and matter can be covariant. We now turn to Gowdy
models in order to test whether the problem rests with
the form of matter terms or is implied by the general
presence of local degrees of freedom.

B. Polarized Gowdy models

In contrast to spherically symmetric models, polarized
Gowdy models have local physical degrees of freedom
even if there is no matter. At the kinematical level, on
which off-shell questions about constraints are addressed,
the local degree of freedom is included by an additional
canonical pair of fields. Nevertheless, the structure of
the constraints and their algebraic properties are closely
related to those of spherically symmetric models, so that
a comparison can easily be done and is quite instructive.

1. Variables

In Gowdy models, the inhomogeneous coordinate is
traditionally called θ, while x, used in spherically sym-
metric models for the radial coordinate, is part of a pair
(x, y) of coordinates along two independent homogeneous
directions. In a real connection formulation [32] (see [9]
for complex variables), there are three triad variables
(ǫ, Ex, Ey) and canonical momenta (A,Kx,Ky). They
appear in the diffeomorphism constraint in standard form

D[Nθ] =
1

8πG

∫

dθNθ(θ)
(

K ′

xE
x +K ′

yE
y − ε′A

)

(11)
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while the Hamiltonian constraint is

H [N ] =
−1

8πG

∫

dθN(θ)

[

f(Kx,Ky)(E
x)1/2(Ey)1/2ε−1/2 + g1(Kx,Ky)A(Ex)1/2(Ey)−1/2ε1/2

+g2(Kx,Ky)A(Ex)−1/2(Ey)1/2ε1/2 − 1

4
(Ex)−1/2(Ey)−1/2ε−1/2(ε′)2

−1

4
(Ex)−1/2(Ey)−5/2ε3/2(Ey′)2 − 1

4
(Ex)−5/2(Ey)−1/2ε3/2(Ex′)2

+
1

2
(Ex)−3/2(Ey)−3/2ε3/2(Ex′)(Ey′) +

1

2
(Ex)−3/2(Ey)−1/2ε1/2(Ex′)ε′

+
1

2
(Ex)−1/2(Ey)−3/2ε1/2(Ey′)ε′ − (Ex)−1/2(Ey)−1/2ε1/2ε′′

]

. (12)

Classically, f(Kx,Ky) = KxKy, g1(Kx,Ky) = Kx and
g2(Kx,Ky) = Ky but as before, the dependence may be
modified based on quantum-geometry effects such as the
use of holonomies in loop quantum gravity. The classical
structure function in the bracket of two normal deforma-
tions is ǫ2/ExEy.

2. Structure of modification functions

The question of consistent deformations of the classical
brackets can be split in two: (a) What are the conditions
on modification functions f , g1 and g2 for the brackets to
be closed? And (b), what are the possible modifications
of the classical structure function? In order to address
(b), (a) must be solved since meaningful structure func-

tions require a consistent set of brackets. However, at
a purely formal level one may analyze (b) without first
solving (a), in order to study possible features of interest
in deformations of the brackets. The main effect seen in
this way is signature change [29–31], given by a change of
sign of the structure function, which would always be pos-
itive in a classical Lorentzian theory. In the first part of
this subsection, we analyze (b) for Gowdy models, post-
poning detailed derivations of Poisson brackets to the
subsequent consideration of (a).

a. Deformations and the ubiquity of signature
change. From the relations to be presented soon, it fol-
lows that an anomaly-free modification of the Hamilto-
nian constraint (12) requires the following equation to
hold for all values of the canonical fields: We must have

[

1

2
(Ey)−2εEy′ − 1

2
(Ey)−1ε′ − 1

2
(Ex)−1(Ey)−1εEx′

]

(f,Ky
− g1)

+

[

1

2
(Ex)−2εEx′ − 1

2
(Ex)−1ε′ − 1

2
(Ex)−1(Ey)−1εEy′

]

(f,Kx
− g2)

+

[

1

2
A(Ex)−2(Ey)−1ε2Ex′ − 1

2
A(Ex)−1(Ey)−2ε2Ey′

]

(g1,Kx
− g2,Ky

)

+
1

2
Aε2

[

Ex′

Ex
− Ey′

Ey

] [

g2,Kx

E2
x

− g1,Ky

E2
y

]

= 0 (13)

for all terms in the {H,H}-bracket that cannot con-
tribute to a diffeomorphism constraint to cancel out. (As
usual, commas in subscripts indicate partial derivatives
by the appended variable(s).) All lines must vanish in-
dividually since their coefficients are composed of differ-
ent functions of the canonical variables and their deriva-

tives. (Otherwise, additional constraints on the phase-
space variables would be imposed.) Requiring the first
two lines in (13) to be zero gives two conditions,

g1(Kx,Ky) =
∂f(Kx,Ky)

∂Ky
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g2(Kx,Ky) =
∂f(Kx,Ky)

∂Kx
, (14)

for two of the three free modification functions. These
conditions automatically make the third line in (13) van-
ish, owing to the equality of mixed partial derivatives.
The last line in (13) is zero if and only if

∂2f

∂K2
x

=
1

(Ex/Ey)2
∂2f

∂K2
y

, (15)

providing some kind of wave equation for the remaining
modification function.
At this stage, we note the first important difference to

the spherically symmetric case where it is possible to have
modification functions depending only on the curvature
variables. In polarized Gowdy models, by contrast, any

function f , which solves condition (15) and differs from
the classical limit by cubic or higher-order terms in cur-
vature variables, must also depend on some of the triad
variables. (Spherically symmetric models can be seen as
reductions of polarized Gowdy models with Ex = Ey,
so that the triad dependence disappears from (15).) We
must therefore go back and rederive brackets of (12), be-
cause in (13) we have assumed that f depends only on
curvature variables.

However, we may proceed further without rederiv-
ing the more-complete brackets, addressing question (b)
without solving problem (a) introduced in the beginning
discussion of this subsection. If (13) is assumed to hold,
the remaining terms of the {H,H}-bracket, containing
factors that appear in the diffeomorphism constraint, are

− 1

8πG

∫

dθ(MN ′ −NM ′)
ε2Aε′

ExEy

[

∂2f

∂Kx∂Ky
+

1

2

∂2f

∂K2
y

Ex

Ey
+

1

2

∂2f

∂K2
x

Ey

Ex

]

(16)

+
1

8πG

∫

dθ(MN ′ −NM ′)
ε2

ExEy

[

∂2f

∂Kx∂Ky
(K ′

xE
x +K ′

yE
y) +

∂2f

∂K2
y

ExK ′

y +
∂2f

∂K2
x

EyK ′

x

]

,

where we have already used condition (14) to simplify the terms. If we insert (15) in (16), we can simplify the structure
function in front of terms contributing to the diffeomorphism constraint. The resulting expression is

1

8πG

∫

dθ(MN ′ −NM ′)
ε2

ExEy

[

∂2f

∂Kx∂Ky
+

∂2f

∂K2
y

Ex

Ey

]

[

K ′

xE
x +K ′

yE
y −Aε′

]

(17)

where, in addition to the classical structure function
ε2/(ExEy), we have a deformation function

β =
∂2f

∂Kx∂Ky
+

∂2f

∂K2
y

Ex

Ey
. (18)

Although this function is more complicated than its
spherically symmetric analog (10), it is still possible to
show that for any modification function f with a lo-
cal maximum, the modified structure function has neg-
ative values, β < 0. In order to do so, we solve (15)
by requiring f to have the form f(Kx,Ky, E

x, Ey) =
f1(E

xKx + EyKy) + f2(E
xKx − EyKy) with two free

functions f1 and f2 of one variable. The positions of
local maxima of f are determined by properties of the
following derivatives:

f,KxKx
= (Ex)2

[

f̈1 + f̈2

]

f,KyKy
= (Ey)2

[

f̈1 + f̈2

]

f,KxKy
= ExEy

[

f̈1 − f̈2

]

, (19)

where a dot over a function denotes a derivative with re-
spect to its argument. At a local maximum, the standard

conditions f,KxKx
< 0 and f,KxKx

f,KyKy
−(f,KxKy

)2 > 0
imply

f̈1 + f̈2 < 0 and f̈1f̈2 > 0 . (20)

Therefore, both f̈1 and f̈2 have to be negative.
The deformation function β in (18) is proportional to

the first of these expressions,

β = 2ExEy f̈1, (21)

so that it turns negative around a local maximum of f .
The formal aspects of deformation functions, disregard-
ing full anomaly-freedom for now, is therefore in com-
plete agreement with previous investigations in spheri-
cally symmetric models [27] and for cosmological pertur-
bations [22]. (See also [33].) Around local maxima of
modification functions, the modified structure function
in the bracket of normal hypersurface deformations is
negative, as it is for Euclidean space. Hyperbolic wave
equations are then replaced by elliptic equations which
do not allow deterministic propagation through such a
region, typically at large curvature. Implications have
been studied for cosmological [31] and black-hole models
[34].
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b. Closure? We have seen that we have to gener-
alize the dependence of modification functions on the
canonical variables in order to solve part (a) of the ques-
tion of consistent deformations of the bracket of Hamil-
tonian constraints. The class of solutions we will find has

the classical dependence on curvature variables, so that
holonomy modifications are ruled out in modified models
as assumed here.

Our more-general ansatz is

H [N ] =
−1

8πG

∫

dθN(θ)

[

f(Kx,Ky, E
x, Ey, ε) + g(Kx,Ky, E

x, Ey, ε)A

−1

4
(Ex)−1/2(Ey)−1/2ε−1/2(ε′)2 − 1

4
(Ex)−1/2(Ey)−5/2ε3/2(Ey′)2

−1

4
(Ex)−5/2(Ey)−1/2ε3/2(Ex′)2 +

1

2
(Ex)−3/2(Ey)−3/2ε3/2(Ex′)(Ey′)

+
1

2
(Ex)−3/2(Ey)−1/2ε1/2(Ex′)ε′ +

1

2
(Ex)−1/2(Ey)−3/2ε1/2(Ey′)ε′

−(Ex)−1/2(Ey)−1/2ε1/2ε′′

]

. (22)

At this stage, we only assume that the modified Hamiltonian constraint is linear in A, motivated by the result
that a non-linear dependence on the connection component in the inhomogeneous direction is difficult to achieve
in spherically symmetric models even if a derivative expansion is allowed for [28]. We are therefore considering
only point-wise holonomy corrections with angular curvature or connection components, setting aside the question of
possible non-local modifications that holonomies in the inhomogeneous direction are expected to entail.
As before, only the first and second terms give non-zero contributions to the {H,H}-bracket. Providing more details

than before, we list the integrands of all of them, not writing the common factor of smearing functions (M ′N−N ′M).
The first term gives rise to

1

2
f,Ky

(Ex)−1/2(Ey)−5/2ε3/2Ey′ +
1

2
f,Kx

(Ex)−5/2(Ey)−1/2ε3/2Ex′

−1

2
f,Ky

(Ex)−3/2(Ey)−3/2ε3/2Ex′ − 1

2
f,Kx

(Ex)−3/2(Ey)−3/2ε3/2Ey′

−1

2
f,Kx

(Ex)−3/2(Ey)−1/2ε1/2ε′ − 1

2
f,Ky

(Ex)−1/2(Ey)−3/2ε1/2ε′ , (23)

whereas the various commutators with the second term yield

1

2
g(Ex)−1/2(Ey)−1/2ε−1/2ε′ +

1

2
g,Ky

A(Ex)−1/2(Ey)−5/2ε3/2Ey′

+
1

2
g,Kx

A(Ex)−5/2(Ey)−1/2ε3/2Ex′ − 1

2
g,Ky

A(Ex)−3/2(Ey)−3/2ε3/2Ex′

−1

2
g,Kx

A(Ex)−3/2(Ey)−3/2ε3/2Ey′ − 1

2
g,Kx

A(Ex)−3/2(Ey)−1/2ε1/2ε′

−1

2
g(Ex)−3/2(Ey)−1/2ε1/2Ex′ − 1

2
g(Ex)−1/2(Ey)−3/2ε1/2Ey′

−1

2
g,Ky

A(Ex)−1/2(Ey)−3/2ε1/2ε′ − 1

2
g(Ex)−3/2(Ey)−1/2ε1/2Ex′

−1

2
g(Ex)−1/2(Ey)−3/2ε1/2Ey′ +

1

2
g(Ex)−1/2(Ey)−1/2ε−1/2ε′

+g(Ex)−3/2(Ey)−1/2ε1/2Ex′ + g(Ex)−1/2(Ey)−3/2ε1/2Ey′ − g(Ex)−1/2(Ey)−1/2ε−1/2ε′

+
[

g,Kx
K ′

x + g,Ky
K ′

y + g,ExEx′ + g,EyEy′ + g,εε
′
]

(Ex)−1/2(Ey)−1/2ε1/2 . (24)

Several of these terms cancel each other so that the combined expression can be simplified. For the bracket to be
proportional to the diffeomorphism constraint, terms in (23) and (24) not proportional to Aε′, K ′

x or K ′

y must vanish:

Ey′

[

1

2
f,Ky

(Ex)−1/2(Ey)−5/2ε3/2 − 1

2
f,Kx

(Ex)−3/2(Ey)−3/2ε3/2 + g,Ey(Ex)−1/2(Ey)−1/2ε1/2
]



7

+Ex′

[

1

2
f,Kx

(Ex)−5/2(Ey)−1/2ε3/2 − 1

2
f,Ky

(Ex)−3/2(Ey)−3/2ε3/2 + g,Ex(Ex)−1/2(Ey)−1/2ε1/2
]

−ε′
[

1

2
f,Kx

(Ex)−3/2(Ey)−1/2ε1/2
1

2
f,Ky

(Ex)−1/2(Ey)−3/2ε1/2 + g,ε(E
x)−1/2(Ey)−1/2ε1/2

]

+AEy′
[

g,Ky
(Ex)−1/2(Ey)−5/2ε3/2 + g,Kx

(Ex)−3/2(Ey)−3/2ε3/2
]

+AEx′
[

g,Kx
(Ex)−5/2(Ey)−1/2ε3/2 + g,Ky

(Ex)−3/2(Ey)−3/2ε3/2
]

= 0 . (25)

As before, all lines in (25) must vanish individually when
they have different coefficients. We obtain four indepen-
dent conditions on the correction functions:

∂g

∂ε
=

1

Ex

∂f

∂Kx
+

1

Ey

∂f

∂Ky
(26)

∂g

∂Kx
=

1

Ey/Ex

∂g

∂Ky
(27)

∂g

∂Ey
= − ε

(Ey)2
∂f

∂Ky
+

ε

ExEy

∂f

∂Kx
(28)

∂g

∂Ex
= − ε

(Ex)2
∂f

∂Kx
+

ε

ExEy

∂f

∂Ky
. (29)

From (27), g has to be of the form

g(Kx,Ky, E
x, Ey, ε) = g1(E

xKx + EyKy) g2(E
x, Ey, ε) .(30)

Using this form of the correction function in (28) and
(29), respectively, gives

− 1

Ey

∂f

∂Ky
+

1

Ex

∂f

∂Kx
=

Ey

ε

[

g1
∂g2
∂Ey

+Kyg2ġ1

]

(31)

1

Ey

∂f

∂Ky
− 1

Ex

∂f

∂Kx
=

Ex

ε

[

g1
∂g2
∂Ex

+Kxg2ġ1

]

.(32)

Combining (31) and (32),

g1

[

Ey ∂g2
∂Ey

+ Ex ∂g2
∂Ex

]

+ g2ġ1 [E
xKx + EyKy] = 0 .(33)

We can try to solve the final differential equation by
employing separation of variables. Abbreviating Θ :=
ExKx + EyKy, we have

1

g2

[

Ey ∂g2
∂Ey

+ Ex ∂g2
∂Ex

]

= −Θ

g1

dg1
dΘ

. (34)

The left-hand side is a function of the triad components
alone whereas the right-hand side depends on a particular
combination of triads and connection coefficients. Thus,
they must both be equal to some constant, say, c. The
functions g1, g2 then satisfy the differential equations

dg1
g1

= c
dΘ

Θ
(35)

Ey ∂g2
∂Ey

+ Ex ∂g2
∂Ex

= −cg2 (36)

with solutions

g1 (E
xKx + EyKy) = c1 [E

xKx + EyKy]
c , (37)

g2 (E
x, Ey, ε) = c2(ε, E

x/Ey) (ExEy)
−c/2

.(38)

Here, c1 is an integration constant while c2 can be a func-
tion of ε and the ratio Ex/Ey at most. If c2 is not
constant, we have a version of inverse-triad corrections
with a restriction on the triad dependence analogous to
what has been found in spherically symmetric models
[27]. (The two expressions ǫ and Ex/Ey or functions
of them are the only combinations of triad components
without density weight.) The curvature dependence is
not fully determined yet, but from (37) it could only be
of power-law form, already ruling out the usual choice of
periodic holonomy-modification functions. We will now
show that only the classical case c = 1 of a linear depen-
dence of g1 on curvature components is allowed.
We insert our solution for the correction function g in

(26) and obtain

1

Ex

∂f

∂Kx
+

1

Ey

∂f

∂Ky
= c1

∂c2
∂ε

[
√

Ex

Ey
Kx +

√

Ey

Ex
Ky

]c

.(39)

Doing the same in (31) yields

1

Ex

∂f

∂Kx
− 1

Ey

∂f

∂Ky
=

cc1c2
2ε

[
√

Ex

Ey
Kx +

√

Ey

Ex
Ky

]c

(40)

×
[

EyKy − ExKx

ExKx + EyKy
− 2

c

Ex

(Ey)2
1

c2

∂c2
∂(Ex/Ey)

]

.



8

From these two relations, we identify the partial derivatives

∂f

∂Kx
=

c1E
x

2

[
√

Ex

Ey
Kx +

√

Ey

Ex
Ky

]c

×
[

∂c2
∂ε

+
cc2
2ε

EyKy − ExKx

ExKx + EyKy
− c2

ε

Ex

(Ey)2
1

c2

∂c2
∂(Ex/Ey)

]

, (41)

∂f

∂Ky
=

c1E
y

2

[
√

Ex

Ey
Kx +

√

Ey

Ex
Ky

]c

×
[

∂c2
∂ε

+
cc2
2ε

ExKx − EyKy

ExKx + EyKy
+

c2
ε

Ex

(Ey)2
1

c2

∂c2
∂(Ex/Ey)

]

. (42)

At this point, we still have a consistent system of equations. We can calculate the left-hand side of (32) using the
expressions above in (41) and (42) and verify that it gives the same result as the right-hand side of (32).
We now calculate the second-order mixed partial derivative by operating on (41) with ∂/∂Ky:

∂2f

∂Ky∂Kx
=

cc1
2

[{
√

Ex

Ey
Kx +

√

Ey

Ex
Ky

}c−1 √
ExEy

{

∂c2
∂ε

− 1

ǫ

Ex

(Ey)2
∂c2

∂(Ex/Ey)

+
cc2
2ε

[−ExKx + EyKy

ExKx + EyKy

]}

+
c2E

x

ε

{
√

Ex

Ey
Kx +

√

Ey

Ex
Ky

}c
{

EyExKx

(ExKx + EyKy)2

}

]

. (43)

We operate on (42) with ∂/∂Kx to obtain

∂2f

∂Kx∂Ky
=

cc1
2

[{
√

Ex

Ey
Kx +

√

Ey

Ex
Ky

}c−1 √
ExEy

{

∂c2
∂ε

+
1

ǫ

Ex

(Ey)2
∂c2

∂(Ex/Ey)

+
cc2
2ε

[

ExKx − EyKy

ExKx + EyKy

]}

+
c2E

y

ε

{
√

Ex

Ey
Kx +

√

Ey

Ex
Ky

}c
{

ExEyKy

(ExKx + EyKy)2

}

]

. (44)

Requiring that these two quantities must be equal to each
other results in one fixed value of the constant, c = 1.
(Also, ∂c2/∂(E

x/Ey) = 0, so that c2 depends only on ǫ.)

Therefore, all modification functions that are consis-
tent with anomaly freedom have the classical dependence
on curvature variables. It is impossible to include holon-
omy modifications for these models with the parame-
terization used. The only possibility left is to include
holonomy-correction functions modifying the dependence
on all three variables, Kx,Ky and A. It is not possible to
factorize the holonomy function to give separate point-
wise correction functions and non-local ones. Moreover,
obstructions to this last possibility have been found in
the related expressions of spherically symmetric models
[28].

It is instructive to look back at the spherically sym-
metric models and ask how it is possible to introduce
point-wise holonomy modifications in that case. The an-
swer lies in additional symmetries that ensure Ex = Ey.

The obstructions noted here can then be by-passed, but,
as it appears, only as an artifact of the more-symmetric
nature of this model. Quantizing a symmetry-reduced
model is different from symmetry-reducing a more gen-
eral quantum system, and accordingly we find addi-
tional obstructions to covariance in our less-symmetric
holonomy-modified models.

3. Abelianization of normal deformations

In the vacuum spherically symmetric model, an
Abelianization of normal hypersurface deformations has
been found, making it easier to see consistent modifica-
tions of the constraint [35]: One can use the construction
to eliminate most derivatives in the constraint, so that no
non-zero Poisson brackets remain with or without modi-
fied dependence on the angular curvature component. If
there is scalar matter, it is no longer possible to elimi-
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nate as many spatial derivatives, and finding consistent
modifications is more complicated; in fact, so far only
obstructions to consistent modification have been seen
[1]. We now demonstrate the analogous features for po-

larized Gowdy models: Classical Abelianization of nor-
mal deformations is possible, but no consistent holonomy
modification seems to exist.
We write the constraints as

H [N ] = − 1

8πG

∫

dθ N

[

KxKyε
−1/2

√
ExEy + ε1/2

(
√

Ex

Ey
Kx +

√

Ey

Ex
Ky

)

A

+
1

4
√
εExEy



[ε′]
2 −

[

ε

(

ln
Ey

Ex

)

′

]2


 −
(

ε1/2ε′√
ExEy

)′
]

(45)

D[Nθ] =
1

8πG

∫

dθ Nθ
[

K ′

xE
x +K ′

yE
y − ε′A

]

. (46)

They can be combined to the total constraint

HT[N,Nθ] =
1

κ

∫

dθ
[

−N(θ)H(θ) +Nθ(θ)D(θ)
]

,

(47)
where H and D are the unsmeared local versions of the
gravitational constraints (45).

We keep D as a constraint but replace H by the linear
combination

C =
ǫ′√

ExEy
H+

√
ǫ

(

Kx

Ey
+

Ky

Ex

)

D , (48)

smeared to a new constraint

C[L] = − 1

8πG

∫

dθ L

[

KxKyε
−1/2ε′ + ε1/2

(

KxK
′

y +KyK
′

x +

[

Ex

Ey

]

KxK
′

x +

[

Ey

Ex

]

KyK
′

y

)

+
ε′

4
√
εExEy



[ε′]
2 −

[

ε

(

ln
Ey

Ex

)

′

]2


−
(

ε1/2ε′√
ExEy

)′
]

. (49)

As in Abelianizations of normal deformations in spheri-
cally symmetric models [20, 35], an important feature of
the new constraint is that the inhomogeneous curvature
component, here A, has been eliminated.
Computing the brackets of constraints (C[L], D[Nθ]),

it is clear that the {D,D}-bracket has the original form.
Also the {C,D}-bracket has the same form as the origi-
nal {H,D}-bracket because C has the same spatial den-
sity weight as H. The {C,C}-bracket must be computed
explicitly, and turns out to be zero as shown in App. A.
See also [36] for a related result. The set of brackets of
the constraints takes the form

{

D[Nθ], D[Mθ]
}

= D[LNθMθ]
{

C[L], D[Mθ]
}

= −C[LMθL]

{C[L1], C[L2]} = 0 . (50)

As in spherically symmetric models, one cannot con-
sistently modify the curvature dependence of the con-

straints without destroying properties relevant for closure
of the brackets.

C. Relation to hybrid models

A Gowdy system has been proposed and analyzed in
the context of loop quantum gravity in a hybrid version
[2–4]: There is a homogeneous background with modifi-
cations suggested by loop quantum cosmology, coupled to
inhomogeneous Gowdy modes quantized in the standard
way on a Fock space. Concrete realizations make use of
gauge fixings of space-time transformations, but never-
theless the framework should be expected to be covariant:
It is an example of a covariant quantum-field theory (the
Fock-represented Gowdy modes) on a Riemannian back-
ground (the loop-modified homogeneous model). Since
quantum-field theory has an established covariant for-
mulation on any curved background, not just on those
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satisfying Einstein’s equation, there is no reason why co-
variance should be broken in hybrid models, interpreted
as systems of quantum fields on a background. Indeed,
different choices of gauge fixings have been shown to lead
to compatible results [37].
However, going beyond the background setting is more

difficult. (See [1] for a detailed discussion of the differ-
ence between background treatments and background-
independent models in the context of modified or quan-
tized canonical theories.) To do so, one would have to
show that the modified background can be part of a co-
variant inhomogeneous model of Gowdy type. Our no-go
results show that this condition is difficult to achieve.
It therefore seems unlikely that hybrid models can be
reductions of a covariant background-independent sys-
tem with the same symmetries (leaving aside the much
harder question of a reduction from a covariant full the-
ory). Such an extension would be important not just
on conceptual grounds, but also for a uniform treat-
ment of modifications: In hybrid models, the background
dynamics is modified by loop effects (holonomies), but
inhomogeneous mode equations have no such modifica-
tions (except indirect ones via background variables in
their coefficients). When holonomy effects are signifi-
cant for the background dynamics (near a “bounce” at
large curvature), they should be expected to contribute
to the dynamics of inhomogeneities as well. (Interest-
ingly, numerical investigations in hybrid models have re-
vealed instabilities [38] reminiscent of some effects related
to signature change [29–31], an apparently generic con-
sequence of consistent holonomy modifications of inho-
mogeneous gravitational equations [22, 27, 33].) Consis-
tently including these terms in inhomogeneous equations
requires a covariant Gowdy model with holonomy modi-
fications, which has failed to materialize in our attempts
shown here. Using our partial no-go results, several non-
trivial modifications would be required to ensure covari-
ance, which go well beyond those included in our already
rather general functions f , g1 and g2.

III. CONCLUSIONS

In this paper, we have continued the discussion of co-
variance in holonomy-modified models with local degrees
of freedom, started in [1] for spherically symmetric mod-
els with matter. Also here, partial no-go results but no
consistent covariant versions have been found. One can-
not draw final conclusions from partial no-go results, but
they do show that holonomy modifications in inhomo-
geneous models cannot be as simple as they had been
anticipated in homogeneous models. In the models stud-
ied here and in [1], covariance is therefore shown to be a
restrictive criterion, capable of limiting the quantization
choices that exist without the condition (as emphasized
for instance in [39]). However, at present it is not clear
whether holonomy modifications in models with local de-
grees of freedom can lead to covariant theories at all.

Further study into this question and the related prob-
lem of anomalies in canonical quantum gravity is needed
before the effects proposed in homogeneous models can
be considered generic. As in [1], it is encouraging that
the analysis of Poisson brackets of modified constraints
leads to the same result as attempts to Abelianize the
generators of normal hypersurface deformations, which
has been shown in Sec. II B 3 to be possible for classi-
cal polarized Gowdy models, but not for the proposed
modified ones.
At present, no consistent holonomy-modified model of

non-perturbative inhomogeneity is known, while pertur-
bative inhomogeneity has led to consistent modified ver-
sions [21, 22] which are being analyzed for their pos-
sible phenomenology [40]. A consistent fundamental
theory should produce covariant models with all kinds
of ingredients, including local degrees of freedom with
non-perturbative inhomogeneity, and one may wonder
whether the obstructions found by us could mean that
perturbative cosmological models, along with their phe-
nomenology, cannot be embedded within a consistent
more-general theory. However, we do not think that in-
vestigations of the anomaly problem in loop quantum
gravity, by effective or operator methods, are advanced
enough to make such a statement at the present stage.
Even though the modifications used here did not lead

to fully covariant models, we were able to confirm certain
structural properties of constraint brackets in the exten-
sion to Gowdy systems. If conditions for anomaly free-
dom are only partially solved so as to allow for non-trivial
modifications, as analyzed in the first part of Sec. II B 2,
the multiplier of the diffeomorphism constraint in the
bracket of two modified Hamiltonian constraints receives
a factor (18) which is negative around a local maximum
of the holonomy-modification function. The presence of
anomalies means that this statement cannot be a physical
one as long as no consistent set of modified constraints
has been found. Nevertheless, the dependence of modifi-
cation functions on two independent variables makes the
behavior of local maxima less trivial than in the case of
spherically symmetric models. The fact that the same
formal behavior is found is an indication that the sign of
the multiplier around local maxima may be generic, as
would be the consequence of signature change.
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Appendix A: Abelian constraints

In order to confirm the Abelian nature of (49), we
list all non-trivial terms in the {C,C}-bracket, split in
different types according to the “kinetic” terms in C
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(that is, those containing extrinsic curvature compo-
nents). The non-zero Poisson brackets from terms of
the form {Ki, E

i} cancel out by antisymmetry. The
only remaining non-zero terms come from the {Ki, E

i′},

{K ′

i, E
i} and {K ′

i, E
i′}-types of brackets, where i can be

either x or y.

Terms of the first kind are:

ε(ε′)2KxE
y′

2Ex(Ey)3
+

ε(ε′)2KyE
x′

2(Ex)3Ey
− ε(ε′)2KyE

y′

2(Ex)2(Ey)2
− ε(ε′)2KxE

x′

2(Ex)2(Ey)2
− (ε′)3Ky

2(Ex)2Ey

− (ε′)3Kx

2Ex(Ey)2
+

(ε)2ε′K ′

yE
x′

2(Ex)3Ey
−

(ε)2ε′K ′

yE
y′

2(Ex)2(Ey)2
−

ε(ε′)2K ′

y

2(Ex)2Ey
+

(ε)2ε′K ′

xE
y′

2Ex(Ey)3

− (ε)2ε′K ′

xE
x′

2(Ex)2(Ey)2
− ε(ε′)2K ′

x

2Ex(Ey)2
+

(ε)2ε′K ′

xE
x′

2(Ex)2(Ey)2
− (ε)2ε′K ′

xE
y′

2Ex(Ey)3
− ε(ε′)2K ′

x

2Ex(Ey)2

+
(ε)2ε′K ′

yE
y′

2(Ex)2(Ey)2
−

(ε)2ε′K ′

yE
x′

2(Ex)3Ey
−

ε(ε′)2K ′

y

2(Ex)2Ey
. (A1)

Terms of the second kind are:

−εK2

xK
′

xE
x

(Ey)2
+

εKxKyK
′

y

Ex
+

(ε′)3Kx

4Ex(Ey)2
+

3(ε)2ε′(Ey′)2Kx

4Ex(Ey)4
+

(ε)2ε′(Ex′)2Kx

4(Ex)3(Ey)2

− (ε)2ε′Ex′Ey′Kx

(Ex)2(Ey)3
− ε(ε′)2Ex′Kx

2(Ex)2(Ey)2
− ε(ε′)2Ey′Kx

Ex(Ey)3
+

εε′ε′′Kx

Ex(Ey)2

+
εKyKxK

′

x

Ey
−

εEyK2

yK
′

y

(Ex)2
+

(ε′)3Ky

4(Ex)2Ey
+

(ε)2ε′(Ey′)2Ky

4(Ex)2(Ey)3
+

3(ε)2ε′(Ex′)2Ky

4(Ex)4Ey

− (ε)2ε′Ex′Ey′Ky

(Ex)3(Ey)2
− ε(ε′)2Ey′Ky

2(Ex)2(Ey)2
− ε(ε′)2Ex′Ky

(Ex)3Ey
+

εε′ε′′Ky

(Ex)2Ey

+
εK2

xK
′

xE
x

(Ey)2
−

εKxKyK
′

y

Ex
+

(ε′)3Kx

4Ex(Ey)2
+

3(ε)2ε′(Ex′)2Kx

4(Ex)3(Ey)2
+

(ε)2ε′(Ey′)2Kx

4Ex(Ey)4

− (ε)2ε′Ex′Ey′Kx

(Ex)2(Ey)3
− ε(ε′)2Ex′Kx

(Ex)2(Ey)2
− ε(ε′)2Ey′Kx

2Ex(Ey)3
+

εε′ε′′Kx

Ex(Ey)2

−εKyKxK
′

x

Ey
+

εEyK2

yK
′

y

(Ex)2
+

(ε′)3Ky

4(Ex)2Ey
+

3(ε)2ε′(Ey′)2Ky

4(Ex)2(Ey)3
+

(ε)2ε′(Ex′)2Ky

4(Ex)4Ey

− (ε)2ε′Ex′Ey′Ky

(Ex)3(Ey)2
− ε(ε′)2Ey′Ky

(Ex)2(Ey)2
− ε(ε′)2Ex′Ky

2(Ex)3Ey
+

εε′ε′′Ky

(Ex)2Ey
. (A2)

And finally, the most complicated terms come from brackets of the form {K ′

i, E
i′}. Since there are many terms of

this form, we first list those from the contributions proportional to KxK
′

y and KyK
′

x:

−ε(ε′)2Ey′Kx

2Ex(Ey)3
− (ε)2ε′Ey′K ′

x

2Ex(Ey)3
+

(ε)2ε′′Ey′Kx

2Ex(Ey)3
+

(ε)2ε′Ey′′Kx

2Ex(Ey)3
+

(ε)2ε′Ex′Ey′Kx

2(Ex)2(Ey)3

−3(ε)2ε′(Ey′)2Kx

2Ex(Ey)4
+

(ε)2ε′Ex′K ′

x

2(Ex)2(Ey)2
− (ε)2ε′′Ex′Kx

2(Ex)2(Ey)2
− (ε)2ε′Ex′′Kx

2(Ex)2(Ey)2
+

(ε)2ε′(Ex′)2Kx

(Ex)3(Ey)2

+
ε(ε′)2K ′

x

2Ex(Ey)2
− εε′ε′′Kx

Ex(Ey)2

−ε(ε′)2Ex′Ky

2Ey(Ex)3
−

(ε)2ε′Ex′K ′

y

2Ey(Ex)3
+

(ε)2ε′′Ex′Ky

2Ey(Ex)3
+

(ε)2ε′Ex′′Ky

2Ey(Ex)3
+

(ε)2ε′Ex′Ey′Ky

2(Ey)2(Ex)3

−3(ε)2ε′(Ex′)2Ky

2Ey(Ex)4
+

(ε)2ε′Ey′K ′

y

2(Ey)2(Ex)2
− (ε)2ε′′Ey′Ky

2(Ex)2(Ey)2
− (ε)2ε′Ey′′Ky

2(Ex)2(Ey)2
+

(ε)2ε′(Ey′)2Ky

(Ey)3(Ex)2

+
ε(ε′)2K ′

y

2Ey(Ex)2
− εε′ε′′Ky

Ey(Ex)2
. (A3)
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The other two kinetic terms proportional to KxK
′

x and KyK
′

y also give contributions via the {K ′

i, E
i′}-bracket:

2ε(ε′)2Ex′Kx

(Ex)2(Ey)2
− 2(ε)2ε′(Ex′)2Kx

(Ex)3(Ey)2
+

3(ε)2ε′Ex′Ey′Kx

2(Ex)2(Ey)3
− (ε)2ε′Ex′K ′

x

2(Ex)2(Ey)2
+

(ε)2ε′′Ex′Kx

2(Ex)2(Ey)2

+
(ε)2ε′Ex′′Kx

2(Ex)2(Ey)2
− ε(ε′)2Ey′Kx

2Ex(Ey)3
+

(ε)2ε′(Ey′)2Kx

2Ex(Ey)4
+

(ε)2ε′Ey′K ′

x

2Ex(Ey)3
− (ε)2ε′′Ey′Kx

2Ex(Ey)3

− (ε)2ε′Ey′′Kx

2Ex(Ey)3
+

ε(ε′)2K ′

x

2Ex(Ey)2
− εε′ε′′Kx

Ex(Ey)2

2ε(ε′)2Ey′Ky

(Ex)2(Ey)2
− 2(ε)2ε′(Ey′)2Ky

(Ey)3(Ex)2
+

3(ε)2ε′Ex′Ey′Ky

2(Ey)2(Ex)3
−

(ε)2ε′Ey′K ′

y

2(Ex)2(Ey)2
+

(ε)2ε′′Ey′Ky

2(Ex)2(Ey)2

+
(ε)2ε′Ey′′Ky

2(Ex)2(Ey)2
− ε(ε′)2Ex′Ky

2Ey(Ex)3
+

(ε)2ε′(Ex′)2Ky

2Ey(Ex)4
+

(ε)2ε′Ex′K ′

y

2Ey(Ex)3
− (ε)2ε′′Ex′Ky

2Ey(Ex)3

− (ε)2ε′Ex′′Ky

2Ey(Ex)3
+

ε(ε′)2K ′

y

2Ey(Ex)2
− εε′ε′′Ky

Ey(Ex)2
. (A4)

These are all non-zero terms, and in spite of their large
number it is straightforward to observe that they all can-

cel one another when combined.
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