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Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently
suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta
should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles,
or a “quantum wormhole.” We demonstrate within low-energy effective field theory that there is
a precise sense in which electric fields can also thread such quantum wormholes. We define a non-
perturbative “wormhole susceptibility” that measures the ease of passing an electric field through
any sort of wormhole. The susceptibility of a quantum wormbhole is suppressed by powers of the
U(1) gauge coupling relative to that for a classical wormhole but can be made numerically equal
with a sufficiently large amount of entangled matter.

I. INTRODUCTION

The past decade has seen accumulating evidence of
a deep connection between classical spacetime geome-
try and the entanglement of quantum fields. In the
AdS/CFT context, there appears to be a precise holo-
graphic sense in which a classical geometry is “emergent”
from quantum entanglement in a dual field theory (see
e.g. [1-10]).

Recently, Maldacena and Susskind have made a
stronger statement: that the link between entangle-
ment and geometry exists even without any holographic
changes of duality frame [11]. They propose that any en-
tangled perturbative quantum matter in the bulk of a dy-
namical theory of gravity, such as an entangled Einstein-
Podolsky-Rosen (EPR) [12] pair of electrons, is connected
by a “quantum wormbhole,” or some sort of Planckian,
highly fluctuating, version of the classical Einstein-Rosen
(ER) [13] bridge that connects the two sides of an eternal
black hole. Notably, while it clearly resonates well with
holographic ideas [14-29], this “ER = EPR” proposal
is more general in that it makes no reference to gauge-
gravity duality. The entangled quantum fields here exist
already in a theory of dynamical gravity rather than in
a holographically dual field theory.

It is not at all obvious that quantum wormbholes so de-
fined — i.e. just ordinary entangled perturbative matter
— exhibit properties similar to those of classical worm-
holes. For example, if we have dynamical electromag-
netism, then the existence of a smooth geometry in the
throat of an Einstein-Rosen bridge means that there exist
states with a continuously tunable' electric flux thread-
ing the wormhole, as shown in Figure 1. Wheeler has
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1 Note that here and throughout the rest of the paper, the word
“tunable” means only that there exists a family of states where

described such states as “charge without charge” [31].

On the other hand, the two ends of a quantum worm-
hole may be entangled but are not connected by a smooth
geometry. One might naively expect that Gauss’s law
would then preclude the existence of states with a contin-
uously tunable electric flux through the wormhole. The
main point of this paper is to demonstrate that this intu-
ition is misleading: we will show that a quantum worm-
hole, made up of only entangled (and charged) pertur-
bative matter, also permits electric fields to thread it in
a manner that to distant observers with access to infor-
mation about both sides appears qualitatively the same
as that for a classical ER bridge. As we will show, for
this equivalence to hold, it is crucial that there exist suf-
ficiently light perturbative matter that is charged under
the U(1) gauge field. It is interesting to note that similar
constraints on the charge spectrum in theories of quan-
tum gravity have been conjectured on different grounds
[32].

FIG. 1. Left: a classical Einstein-Rosen bridge with an ap-
plied potential difference has a tunable electric field threading
it. Right: A “quantum wormhole”, — i.e. charged perturba-
tive matter prepared in an entangled state, with no explicit
geometric connection between the two sides also has a quali-
tatively similar electric field threading it.

the expectation value of the flux is continuously tunable. The
flux cannot actually be tuned by any local observer, as the two
sides of the wormhole are causally disconnected. There does exist
a quantum tunneling process in which such flux-threaded black
holes can be created from the vacuum in the presence of a strong
electric field [30].



To quantify this, for any state |¢) of either system
we define a dimensionless quantity called the wormhole
electric susceptibility x a,

Xa = (V|24 |v)

with ®a the electric flux through the wormhole. This
quantity clearly measures fluctuations of the flux, and
we show below that through linear response it also de-
termines the flux obtained when a potential difference is
applied across the wormhole. This susceptibility is a par-
ticular measure of electric field correlations across the two
sides that can be interpreted as measuring how easily an
electric field can penetrate the wormhole. We note that it
is a global quantity that requires knowledge of the entire
state: as we show explicitly below, measuring the worm-
hole susceptibility requires access to information about
the flux on both sides, and therefore no information is
transmitted across the wormhole with this electric field.

In Section IT we compute this susceptibility for a classi-
cal ER bridge and in Section III for EPR entangled mat-
ter and compare the results. In Section IV we discuss
how one might pass a Wilson line through a quantum
wormhole. In Section V we discuss what conditions the
quantum wormbhole should satisfy for its throat to satisfy
Gauss’s law for electric fields and conclude with some
implications and generalizations of these findings.

Our results do not depend on a holographic description
and rely purely on considerations from field theory and
semiclassical relativity.

(1.1)

II. CLASSICAL EINSTEIN-ROSEN BRIDGE

We first seek a precise understanding of what it means
to have a continuously tunable electric flux through a
classical wormhole. We begin with the action

S= [ day=g(——r- L) . 2.1
Il )
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where gr denotes the U(1) gauge coupling. On general
grounds we expect that in any theory of quantum grav-
ity all low-energy gauge symmetries, including the U(1)
above, should be compact [32, 33]. This implies that the
specification of the theory requires another parameter:
the minimum quantum of electric charge, q. Throughout
this paper we will actually work on a fixed background,
not allowing matter to back-react: thus we are working
in the limit? Gy — 0.

2 If we studied finite G, allowing for the back-reaction of the
electric field on the geometry, then at the non-linear level in p we
would find instead the two-sided Reissner-Nordstrom black hole.
For the purposes of linear response about p = 0 this reduces to
the Schwarzschild solution studied here.

A. Wormbhole electric susceptibility

This action admits the eternal Schwarzschild black hole
as a classical solution. It has two horizons which we
henceforth distinguish by calling one of them “left” and
the other “right”. They are connected in the interior by
an Einstein-Rosen bridge [13]. On each side the metric
is

dr?
(1)
(2.2)

and at ¢ = 0 the two sides join at the bifurcation sphere
at 7 = rp. The inverse temperature of the black hole is
given by 8 = 4mry.

We now surround each horizon with a spherical shell
of (coordinate) radius a > rp. Consider the net electric
field flux through each of these spheres:

ds® = — (1 — T—h) dt? + + 7r2dQs > Th,

r
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where the orientation for the electric field on the left and
right sides is shown in Figure 2.

—

FIG. 2. Electric fluxes for Einstein-Rosen bridge. Black
arrows indicate sign convention chosen for fluxes. Elec-
tric field lines thread the wormhole, changing the value of
da = (Pr — P1)/2, when a potential difference is applied
across the two sides.

There is an important distinction between the total
flux and the difference in fluxes, defined as
by, =g + P, dp =

(br—®r) . (2.4)

2
Via Gauss’s law, the total flux @5 simply counts the to-
tal number of charged particles inside the Einstein-Rosen
bridge. It is “difficult” to change, in that changing it
actually requires the addition of charged matter to the
action (2.1). Furthermore it will always be quantized in
units of the fundamental electric charge gq.

On the other hand, ® measures instead the electric
field through the wormhole. It appears that it can be
continuously tuned.

We present a short semiclassical computation to
demonstrate what we mean by this. We set up a poten-
tial difference V' = 2u between the left and right spheres



by imposing the boundary conditions A;(rg = a) = pu,
A¢(rp = a) = —p. This is a capacitor with the two plates
connected by an Einstein-Rosen bridge. The resulting
electric field in this configuration can be computed by
solving Maxwell’s equations, which are very simple in
terms of the conserved flux
1 2 2

5 d QQ T Frt
9F

d = ,®=0. (2.5)

As there is no charged matter all the different fluxes are
equivalent: ®p = —®; = Po. By symmetry we have
A¢(rp) =0, and so we have

M—At(rR—a)—/adrFM—cbg% (11> . (2.6)
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We now take a — oo for simplicity to find:
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As we tune the parameter pu, ®a changes continuously
as we pump more electric flux through the wormhole.
There is thus a clear qualitative difference between ®a
and the quantized total flux ®x. In this system the differ-
ence arose entirely from the fact that there is a geometric
connection between the two sides.

We now seek a quantitative measure of the strength of
this connection. The prefactor relating the flux to small
fluctuations of p away from zero in (2.7) is a good candi-
date. To understand this better, we turn now to the full
quantum theory of U(1) electromagnetism on the black
hole background. The prefactor is actually measuring
the fluctuations of the flux ® around the p = 0 ground
state of the system and is equivalent to the wormhole
electric susceptibility defined in (1.1):

Xa = (Y|PAlY) -

To see this, recall that we are studying the Hartle-
Hawking state for the Maxwell field. When decomposed
into two halves this state takes the thermofield double
form [1, 34]:

W= g S hnes (<55

Here L and R denote the division of the Cauchy slice
at t = 0 into the left and right sides of the bridge, n
labels the exact energy eigenstates of the Maxwell field,
E,, denotes the energy with respect to Schwarzschild time
t, and |n*) is the CPT conjugate of |n) 3.

The two-sided black hole has a non-trivial bifurcation
sphere S2. The electric flux through this S? is a quantum

(2.7)

(2.8)

(2.9)

3 The pairing of a state |n) with its CPT conjugate |n*) can be
understood as following from path-integral constructions of the
thermofield state by evolution in Euclidean time.

degree of freedom that can fluctuate. In the decomposi-
tion above we have two separate operators ®;, g, both of
which are conserved charges with discrete spectra, quan-
tized in units of q: ® = ¢Z. Each energy eigenstate can
be picked to have a definite flux ®,: |n,®,). Impor-
tantly, CPT preserves the energy but flips the sign of the
flux. Schematically, we have:

CPT|n,®,,) = |n,—P,) . (2.10)
This means that each L state in the sum (2.9) is paired
with an R state of opposite flux, and so the state is an-
nihilated by ®;, + ®5:

(®L + PR)[Y) =0 (2.11)

This relation is Gauss’s law: every field line entering the
left must emerge from the right.

¥0a) U(@;)
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FIG. 3. Wavefunction of Maxwell state as a function of dis-
crete fluxes A and Px;. The spread in @ is measured by the
wormhole susceptibility xa. The wavefunction has no spread
in ‘13'2.

On the other hand, ®a does not have a definite value
on this state: as ®a does not annihilate |¢), the wave-
function has a spread centered about zero, as shown in
Figure 3. The spread of this wavefunction is measured
by the wormhole susceptibility (2.8). The intuitive differ-
ence between @5, and ® A discussed above can be traced
back to the fact that the wavefunction is localized in the
former case and extended in the latter.

The location of this maximum is not quantized and
can be continuously tuned. For example, let us deform
(2.9) with a chemical potential p:

L\ :
) = 7 S I dslnes (=5 (5, o))

(2.12)
Similarly deformed thermofield states and the existence
of flux through the Einstein-Rosen bridge have been re-
cently studied in [35-37]. Expanding this expression to
linear order in p we conclude that

(I @AI () = Brxa + -

with ya the wormhole susceptibility (2.8) evaluated on
the undeformed state (2.9)*. This expectation value is

(2.13)

4 The discussion in the bulk of the text assumes that we work only



the precise statement of what was computed semiclassi-
cally in (2.7)%: comparing these two relations we see that
the wormhole susceptibility for the black hole is

B = (2.15)

S =

B. Quantization of flux sector on black hole
background

It is instructive to provide a more explicit derivation of
(2.15) by computing the full wavefunction as a function
of ® . This requires the determination of the energy lev-
els B, in (2.12). We study the free Maxwell theory on a
fixed background, neglecting gravitational backreaction.
As we are interested in the total flux, we need only de-
termine an effective Hamiltonian describing the quantum
mechanics of the flux sector. We ignore fluctuations in
Ap.4 and any angular dependence of the fields, integrat-
ing over the S? in (2.1) to obtain the reduced action:

S = 7 /drdt\ﬁg” gt (Fpe)? . (2.16)

To compute the E,, we pass to a Hamiltonian formalism
with respect to Schwarzschild time t. We first consider
the Hilbert space of the right side of the thermofield dou-
ble state (2.9). The canonical momentum conjugate to
A, is the electric flux:

oL 47
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A (2.17)

A; does not have a conjugate momentum. The Hamilto-
nian is constructed in the usual way as H = ®9; A, — L
and is

= / dr( SWF g
+ ©(Ai(r) — Ai(c0))

P2 — (8T<I>)At)
(2.18)

where we have integrated by parts. The equation of mo-
tion for A; is Gauss’s law, setting the flux to a constant:
0r® =0.

There are two boundary terms of different character.
The value of A;(c0) = p at infinity is set by boundary

to linear order in p. If we relax this assumption then (2.13) is
replaced by

((®3) -

where the right-hand side is now the appropriate generalization
of the wormhole electric susceptibility to nonzero u, reducing to
(2.8) in the limit that g — 0.

More precisely: the classical relation (2.7) amounts to a saddle-
point evaluation of a particular functional integral which evalu-
ates expectation values of (2.9).

T @a), = (@4)%),, (2.14)

conditions. If p is nonzero, then the Hamiltonian is de-
formed to have a chemical potential for the flux as in
(2.12). Recall, however, that the susceptibility is defined
in the undeformed state, as in (1.1). For the remainder of
this section we therefore set u to zero. On the other hand,
A¢(rp) is a dynamical degree of freedom. We should thus
combine this Hamiltonian with the corresponding one for
the left side of the thermofield state; demanding that the
variation of the horizon boundary term with respect to
A¢(rp) vanishes then requires that ®; = —®pg, as ex-
pected from (2.11).

As the flux is constant we may now perform the inte-
gral over r to obtain the very simple Hamiltonian

2 > 97 97
H=G®» G=-| d =
/rh 7487r\/fgg’“’“g“ 8mry,
(2.19)

This Hamiltonian describes the energy cost of fluctua-
tions of the electric field through the horizon of the black
hole.

The flux operator in the reduced Hilbert space® of the
flux sector acts as

®|m) = gm|m) m e Z (2.20)

where m € Z denotes the number of units of flux carried
by each state |m). The Hamiltonian (2.19) is diagonal in
this flux basis, with the energy of a state with m units
of flux given by

2
giF(q,n)2

E, =
87T7‘h

meZ (2.21)
Though we do not actually need it, for completeness we
note that the operator that changes the value of the flux
through the S? is a spacelike Wilson line that pierces it

carrying charge ¢:

W = exp (iq/drAT> .

Indeed from the fundamental commutation relation
[Ar(r), ®(r")] = i6(r — r') we find the commutator

(2.22)

(W, @] = —qW, (2.23)

meaning that a Wilson line that pierces the S2? once in-
creases the flux by ¢. In our case any Wilson line that
pierces the left sphere must continue to pierce the right:
thus if it increases the left flux it will decrease the right
flux, and we are restricted to the gauge-invariant sub-
space that is annihilated by ®; + ®g.

Thus we see that the thermofield state (2.9) in the flux
sector takes the simple form:

2 -m

mEZ

i exp (~2qm?) . (220

6 Where, as above, we neglect fluctuations along the angular di-
rections.



where we have used 8 = 4nr,. Since P = P on this
state, the probability of finding any flux ® through the
black hole is simply

(2.25)

This is the (square of the) wavefunction shown in Figure
3: even though ®a has a discrete spectrum, the wave-
function is extended in ®A. In the semiclassical limit
(9rq) — 0 the discreteness of ®a can be ignored and
the spread xa = (®3) is again Yk = g5.?, in agreement
with the result found from the classical analysis (2.15).
This result is exact only for the free Maxwell theory on
a fixed background: if we study an interacting theory
(e.g. by including gravitational backreaction or charged
matter) then the wavefunction will no longer be a pure
Gaussian and (2.25) will receive nonlinear corrections in
Dp.

The probability distribution exhibited in (2.25) may
be surprising as it shows that an observer hovering out-
side an uncharged eternal black hole nevertheless finds a
nonzero probability of measuring an electric flux through
the horizon. However, due to (2.11) the flux measured by
the right observer will always be precisely anti-correlated
with that measured by the left observer. These observers
are measuring fluctuations of the field through the worm-
hole, not fluctuations of the number of charges inside.
Through (2.13) we see that it is actually the presence of
these fluctuations that makes it possible to tune the elec-
tric field through the wormhole. In the above analysis,
we have computed the fluctuations in the Hartle-Hawking
state; more generally, any nonsingular state of the gauge
fields in the ER background will have correlated fluctua-
tions in the flux, arising from the correlated electric fields
near the horizon.

III. QUANTUM WORMHOLE

We now consider the case of charged matter in an en-
tangled state but with no geometrical, and hence no grav-
itational, connection. We will show below that when we
apply a potential difference, an appropriate pattern of
entanglement between the boxes is sufficient to generate
a non-vanishing electric field even though the two boxes
are completely noninteracting.

The configuration that we study here is that of a
complex scalar field ¢ charged under a U(1) symmetry
(with elementary charge ¢), confined to two disconnected
spherical boxes of radius a, as shown in Figure 4. The
confinement to r < a is implemented by imposing Dirich-
let boundary conditions for the fields. These boundary
conditions still allow the radial electric field to be nonzero
at the boundary, so our main observable, the electric flux,
is not constrained by the boundary conditions.

The action in each box is

S = /d4m\/jg <—|D¢>2 —m2¢lp — 4912F2) . (3.1)
F

FIG. 4. Setup for quantum wormhole. The two boxes are
geometrically disconnected but contain a scalar field in an
entangled state. Correlated charge fluctuations effectively al-
low electric field lines to travel from one box to the other when
a potential difference is applied.

where D, ¢ = 0,,¢ — iqA,¢. This is now an interacting
theory where the perturbative expansion is controlled by
(9rq)*.

Gauss’s law relates the electric flux to the total global
charge ). Thus we have the following operator equation
on physical states:

Bz (V-E)=Q.

o= L (3.2)

9r

At first glance this situation is rather different from the
classical black hole case. ®; and ®p simply measure
the number of particles in the left and right boxes re-
spectively. There appears to be no difference between
®y, and PA and thus no way to thread an electric field
through the boxes. This intuition is true in the vacuum
of the field theory, which is annihilated by both ®; and
®r. As it turns out, it is wrong in an entangled state.

Let us now perform the same experiment as for the
black hole: we will set up a potential difference of 2u
between the two spheres by studying the analog of the
deformed thermofield state (2.12). We will work at weak
coupling: the only effect of the nonzero coupling is to re-
late the flux to the global charge as in (3.2). We are thus
actually studying charge fluctuations of the scalar field.
These charge fluctuations source electric fields which cost
energy, but this energetic penalty can be neglected at
lowest order in the coupling”.

The full state for the combined Maxwell-scalar system
is formally the same as (2.12). We schematically label
the scalar field states by their energy and global charge
as |n, Q). Due to the constraint (3.2), the scalar field
sector of the thermofield state can be written:

1
B = 77 3~ Quieln Qulnesp (=5 (B Q)
(3.3)

7 It is interesting to note that in the black hole case the key dif-
ference is that the energy cost associated to the gauge fields —
which we neglect in this case — is the leading effect.



This state corresponds to having a constant value of A; =
w1 in the right sphere and A; = —p in the left sphere. Note
that we have

(@r + @r)|¥(1)) = (Qr + Qr)[Y(1) = 0.

We now seek to compute (Pa), = (Qa), = (Qr), where
the second equality follows from (3.4). However to com-
pute Qr(p) we can trace out the left side. Tracing out
one side of the thermofield state results in a thermal den-
sity matrix for the remaining side: thus we are simply
performing a standard statistical mechanical computa-
tion of the charge at finite temperature and chemical po-
tential. Details of this computation are in Appendix A,
and the result is:

@) =0 S (g ) 99+ 060 (59

(3.4)

where the w, are the single-particle energy levels. The
sum can be done numerically.

We conclude that the wormhole susceptibility for this
state is:

EP

XA = ¢ f (mB, ma) (3.6)

with f a calculable dimensionless function that is O(1)
in the couplings and is displayed for illustrative purposes
in Figure 5. Crudely speaking it measures the number
of accessible charged states. If we decrease the entan-
glement by lowering the temperature, the susceptibility
vanishes exponentially as f ~ exp(—wof), with wg the
lowest single-particle energy level. Its precise form — be-
yond the fact that it is nonzero in the entangled state —
is not important for our purposes.

Log f(mB, ma)
15¢
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FIG. 5. Numerical evaluation of logarithm of dimension-
less function f(mf,ma) appearing in wormhole susceptibil-
ity for complex scalar field. From bottom moving upwards,
three curves correspond to ma = 1,1.5,2. Dashed line shows
asymptotic behavior for ma = 1 of exp (—wo/3).

We see then that as a result of the potential difference
that we have set up between the two entangled spheres,
we are able to measure flux fluctuations across the worm-
hole that are both continuously tunable and fully corre-
lated with each other: this is observationally indistinct
from measuring an electric field through the wormbhole.

This field exists not because of geometry, but rather be-
cause the electric field entering one sphere attempts to
create a negative charge. Due to the entanglement this
results in the creation of a positive charge in the other
sphere, so that the resulting field on that side is the same
electric field as the one entering the first sphere. This ap-
pears rather different from the mechanism at play for a
geometric wormhole, but the key fact is that the wave-
function in the flux basis takes qualitatively the same
form (i.e. that shown in Figure 3) for both classical
and quantum wormholes, meaning that the universal re-
sponse to electric fields is the same for both systems.

Quantitatively, however, there is an important differ-
ence. If the function f that measures the number of
charged states is of O(1), then the wormhole susceptibil-
ity for the quantum wormhole (3.6) is smaller than that
for the classical wormhole (2.15) by a factor of (grq)?.
It is much harder — i.e. suppressed by factors of A —
to push an electric field through a quantum wormbhole.
Alternatively, we can view (2.15) as defining the value
of the U(1) gauge coupling in the wormhole region. In
the quantum wormhole we have succeeded in creating
a putative region through which a U(1) gauge field can
propagate, but its coupling there (as measured by (3.6))
is large, and becomes larger as the entanglement is de-
creased. Notwithstanding these large “quantum fluctua-
tions”, the quantum wormhole does nevertheless satisfy
topological constraints such as Gauss’s law.

Despite this suppression, there is no obstruction in
principle to making f sufficiently large so that the sus-
ceptibilities can be made the same. Increasing the tem-
perature or the size of the box will increase the number
of charged states and thus increase f, as can be seen ex-
plicitly in Figure 5. Thus even the numerical value of
the EPR wormhole susceptibility can be made equal or
even greater than that of the ER bridge, although we will
require a large number of charged particles to do it in a
weakly coupled regime.

IV. WILSON LINES THROUGH THE HORIZON

It was argued above that electric flux measurements
behave qualitatively the same for a classical and for a
quantum wormhole. It is interesting to consider other
probes involving the gauge field. For example, the clas-
sical eternal black hole also allows a Wilson line to be
threaded through it. Such Wilson lines have recently
been studied in a toy model of holography in [37]. For
the black hole, consider extending a Wilson line from the
north pole of the left sphere at » = a through the horizon
to the north pole of the right sphere:

Wen= (e (/A) B

Since we assume that the gauge field is weakly coupled
throughout the geometry, to leading order we can simply
set it to 0, leading to the approximate equality above.

(4.1)



On the other hand, in the entangled spheres case where
there is no geometric connection it is not clear how a Wil-
son line may extend from one box to the other. However,
an analogous object with the same quantum numbers as
(4.1) is

Wgpr = <eXp (iq /LO AL) ¢1(0)¢%(0) exp <iq /OR AR) >

(4.2)
where each Wilson line extends now from the skin of the
sphere to the center of the sphere at » = 0, where it ends
on a charged scalar field insertion.

While the gauge field may be set to zero as in the
black hole case above, we must furthermore account for
the mixed correlator of the scalar field, which is nonzero
only due to entanglement. Details of the computation
and a plot of the results can be found in Appendix A.
The leading large S behavior is

w
Wepr ~ exp <—;B) .

(4.3)
As the temperature is decreased the expectation value
of the Wilson line vanishes, consistent with the idea put
forth above that the gauge field living in the wormhole
is subject to strong quantum fluctuations which become
stronger, washing out the Wilson line, as the entangle-
ment is decreased.

V. CONCLUSION

A classical geometry allows an electric field to be
passed through it. In this paper we have demonstrated
that we can mimic this aspect of a geometric connection
using entangled charged matter alone. We also intro-
duced the wormhole susceptibility, a quantitative mea-
sure of the strength of this connection. For quantum
wormholes this susceptibility is suppressed relative to
that for classical wormholes by factors of the dynami-
cal U(1) gauge coupling, i.e. by powers of h, but, as we
argued in Section III, there is in principle no impediment
for the susceptibilities to be of the same order. The sus-
ceptibility is defined for any state, but for the thermofield
state it directly measures the electric field produced when
a potential difference is applied across the wormhole.

We stress that we are not claiming that there is a
smooth geometry in the quantum wormhole; however,
there is a crude sense in this setup in which a geom-
etry emerges from the presence of entanglement. We
showed that by adjusting the parameters, two boxes of
weakly coupled, entangled charged particles can mimic
an Einstein-Rosen bridge in their response to electric po-
tentials. The structure we have found in this highly ex-
cited state is similar to that of the vacuum of a two-site
U(1) lattice gauge theory, where entanglement between
the sites allows the electric flux between them to fluctu-
ate. This is enough to allow for a nonzero susceptibility

and is somewhat reminiscent of ideas of dimensional de-
construction [38].

The equivalence is only at the coarse level of produc-
ing the same electric flux at the boundary of the boxes;
more detailed observations inside the boxes would quickly
reveal that charged matter rather than black holes are
present. However, the presence of a nonzero wormhole
electric susceptibility already at weak coupling, along
with the fact that the two susceptibilities become sim-
ilar as the coupling is increased, is compatible with the
idea that as we go from weak to strong coupling entan-
gled matter becomes an ER bridge.

It is worth noting that the quantum wormbholes consid-
ered still satisfy Gauss’s law (3.4) in that every field line
entering one side must exit from the other. This is due to
the correlated charge structure of the states considered:

)~ D1 - Q)Q) (5.1)
Q

If we coherently increase the charge of the left sector rel-
ative to the right, then this would correspond to having a
definite number of charged particles inside the wormhole.

Alternatively, we could consider a more generic state,
involving instead an incoherent sum over all charges.
This type of generic quantum wormhole does not satisfy
any analog of Gauss’s law. At first glance, this appears
non-geometric, in agreement with the intuition that a
generic state should not have a simple geometric inter-
pretation [39, 40]. On the other hand, we could also sim-
ply state that we have filled the wormhole with matter
that is not in a charge eigenstate, i.e. a superconducting
fluid. Thus some “non-geometric” features nevertheless
have an interpretation in terms of effective field theory,
and a two-sided analog of the holographic superconduc-
tor [41-43] might capture universal aspects of the gauge
field response of such a state.

We note also that the susceptibility is constructed from
conserved charges, and so it commutes with the Hamilto-
nian. Thus the time-evolved versions of the thermofield
state (which have been the subject of much recent study
as examples of more “generic” states [11, 22, 29, 44—
46]) do not scramble charges: they all have the same
wormbhole susceptibility as the original thermofield state
and precisely satisfy Gauss’s law. We also find that the
wormbhole susceptibility must be conserved if two discon-
nected clouds of entangled matter are collapsed to form
two black holes, which presumably then must have an
Einstein-Rosen bridge between them. This provides a
crude realization of the collapse experiment proposed in
[11].

It is of obvious interest to generalize our considerations
to gravitational fields. In that case the wormhole gravita-
tional susceptibility corresponding to (2.15) directly mea-
sures Newton’s constant in the wormhole throat. Note
also that the form of the “ER = EPR” correspondence
studied here requires the existence of perturbative matter
charged under every low-energy gauge field: e.g. to form



a quantum wormbhole to have a nonzero wormhole mag-
netic susceptibility and thus to admit magnetic fields,
we would require entangled magnetic monopoles. If the
charge spectrum were not complete, one could certainly
tell the difference between an ER bridge and an EPR one.
Precisely such a completeness of the charge spectrum in
consistent theories of quantum gravity has been conjec-
tured on (somewhat) independent grounds [32, 33, 47].

Finally, we find it intriguing that the two computa-
tions performed here result in qualitatively similar an-
swers, but arising from different sources and at different
orders in bulk couplings. One might be tempted to spec-
ulate that in a formulation of bulk quantum gravity that
is truly non-perturbative these two very different compu-
tations could be understood as accessing a more general
concept that reduces in different limits to either pertur-
bative entanglement or classical geometry. It remains to
be seen what this more general concept might be.
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Appendix A: Charged scalar field computations

log{g (r)")

FIG. 6. Numerical evaluation of logarithm of (¢r (O)QﬂR(O)),
which contributes the interesting dependence of the Wilson
line (4.2). From bottom moving upwards, curves correspond
to ma = 1,1.5,2. Dashed line corresponds to asymptotic

behavior for ma = 1 of exp (—ﬂ)

35 with wo the lowest single-

particle energy level.

Here we present some details of the charged scalar field
computations presented in the main text. Similar results

would be obtained for essentially any system in any ge-
ometry, but for concreteness we present the precise for-
mulas for the charged scalar field in a spherical box. The
relevant part of the action is

S, = —/d4z (IDS[2 +m?|6P2) (A1)
The scalar field is confined to a spherical box of radius
a with Dirichlet boundary conditions ¢(r = a) = 0. We
first compute the single-particle energy levels.

Expanding the field in spherical harmonics as ¢ =
> tmp Pp(1)e " Vi (0, ¢) we find the mode equation
for ¢yp(r) to be

I(I+1)

r

dup(r) = ( 2 - W2)¢lp(7")v
(A2)
Here p is a radial quantum number and [ is angular mo-
mentum as usual. The normalizable solutions to the ra-
dial wave equation are spherical Bessel functions of order

l:

1
Tjar (,',,Zar ¢lp (’I")) -

r

. 2 -1
¢lp(7’) = Clpjs(l, )\lpr) Clp = \/ﬁ (Jl-i-% (Alpa))
(A3)
The normalization ¢;, has been picked such that
o(r —r!
3 euen) = 50 (A1)
P

In ¢y, Jo(z) is an ordinary Bessel function of the first
kind. Imposing the Dirichlet boundary condition fixes
Ap = 22 where 2y, is the p-th zero of the I-th spherical
Bessel function. This determines the energy levels to be

2
Wip = \/m2+ (ﬁ) )
a

We are now interested in computing the charge suscepti-
bility at finite temperature 7' and chemical potential p.
From elementary statistical mechanics we have the usual
expression for the charge

1 1
@ =0 @) (st ~ T
P
(A6)

where we have included the degeneracy factor (27 + 1).
Linearizing this in p we obtain (3.5), where it is under-
stood that the sum over single-particle states there in-
cludes a sum over angular momentum eigenstates: > —
> (204 1).

Next we compute the correlation function
<¢TL(O)¢R(O)> across the two sides of the thermofield
state (3.3) (with 4 — 0). The fastest way to compute
this is to note that the two sides of the thermofield state
can be understood as being connected by Euclidean time
evolution through 8. Thus the mixed correlator can be

2
calculated by computing the usual Euclidean correlator

(A5)




between two points separated by g in Euclidean time
(see e.g. [1]). If the single-particle energy levels are
given by wp, then the Euclidean correlator between two
general points is

G(T7 T? 07 QS; T/7 Tl) 6/7 d)/) =

1 cosh (wlp (7’ -7 — g))

Imp 2wlp sinh (Bw%)
¢pl (T)¢pl (T/)nm(ea ¢)}/l>:n (0/5 ¢/)7 (A7)

where in this expression the normalization of the mode

functions (A4) is important.

For our application to the Wilson line in (4.2) we care
about the specific case 7 — 7/ = 5 and 7 = r’ = 0. The
spherical Bessel functions with nonzero angular momen-
tum [ # 0 all vanish at the origin 7 = 0. Thus the sum is
only over the [ = 0 modes. The result of performing this
sum numerically is shown in Figure 6, but it is easy to see

Xthat at small temperatures the answer will be dominated

by the lowest energy level and is:

o0 on) ~ e (<47) . a)

[1] J. M. Maldacena, “Eternal black holes in anti-de
Sitter,” JHEP 0304 (2003) 021, arXiv:hep-th/0106112
[hep-th].

[2] S. Ryu and T. Takayanagi, “Aspects of Holographic
Entanglement Entropy,” JHEP 0608 (2006) 045,
arXiv:hep-th/0605073 [hep-th].

[3] S. Ryu and T. Takayanagi, “Holographic derivation of
entanglement entropy from AdS/CFT,” Phys.Reuv.Lett.
96 (2006) 181602, arXiv:hep-th/0603001 [hep-th].

[4] V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A
Covariant holographic entanglement entropy proposal,”
JHEP 0707 (2007) 062, arXiv:0705.0016 [hep-th].

[5] B. Swingle, “Entanglement renormalization and
holography,” Phys. Rev. D 86 (Sep, 2012) 065007,
arXiv:0905.1317 [cond-mat].

[6] T. Faulkner, M. Guica, T. Hartman, R. C. Myers, and
M. Van Raamsdonk, “Gravitation from Entanglement
in Holographic CFTs,” JHEP 1403 (2014) 051,
arXiv:1312.7856 [hep-th].

[7] N. Lashkari, M. B. McDermott, and
M. Van Raamsdonk, “Gravitational dynamics from
entanglement ’thermodynamics’,” JHEP 1404 (2014)
195, arXiv:1308.3716 [hep-th].

[8] M. Van Raamsdonk, “Comments on quantum gravity
and entanglement,” arXiv:0907.2939 [hep-th].

[9] M. Van Raamsdonk, “Building up spacetime with
quantum entanglement,” Gen.Rel. Grav. 42 (2010)
2323-2329, arXiv:1005.3035 [hep-th].

[10] B. Swingle and M. Van Raamsdonk, “Universality of
Gravity from Entanglement,” arXiv:1405.2933
[hep-th].

[11] J. Maldacena and L. Susskind, “Cool horizons for
entangled black holes,” Fortsch.Phys. 61 (2013)
781-811, arXiv:1306.0533 [hep-th].

[12] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum
mechanical description of physical reality be considered
complete?,” Phys.Rev. 47 (1935) 777-780.

[13] A. Einstein and N. Rosen, “The Particle Problem in the
General Theory of Relativity,” Phys.Rev. 48 (1935)
73-77.

[14] L. Susskind, “New Concepts for Old Black Holes,”
arXiv:1311.3335 [hep-thl].

[15] M. Chernicoff, A. Gijosa, and J. F. Pedraza,
“Holographic EPR Pairs, Wormholes and Radiation,”
JHEP 1310 (2013) 211, arXiv:1308.3695 [hep-th].

[16] L. Susskind, “Butterflies on the Stretched Horizon,”
arXiv:1311.7379 [hep-th].

[17] L. Susskind, “Computational Complexity and Black
Hole Horizons,” arXiv:1402.5674 [hep-th].

[18] L. Susskind, “Addendum to Computational Complexity
and Black Hole Horizons,” arXiv:1403.5695 [hep-th].

[19] D. Stanford and L. Susskind, “Complexity and Shock
Wave Geometries,” Phys.Rev. D90 no. 12, (2014)
126007, arXiv:1406.2678 [hep-th].

[20] L. Susskind and Y. Zhao, “Switchbacks and the Bridge
to Nowhere,” arXiv:1408.2823 [hep-th].

[21] L. Susskind, “ER=EPR, GHZ, and the Consistency of
Quantum Measurements,” arXiv:1412.8483 [hep-th].

[22] D. A. Roberts, D. Stanford, and L. Susskind, “Localized
shocks,” JHEP 1503 (2015) 051, arXiv:1409.8180
[hep-th].

[23] L. Susskind, “Entanglement is not Enough,”
arXiv:1411.0690 [hep-th].

[24] K. Jensen and A. Karch, “Holographic Dual of an
Einstein-Podolsky-Rosen Pair has a Wormhole,”
Phys.Rev.Lett. 111 no. 21, (2013) 211602,
arXiv:1307.1132 [hep-th].

[25] J. Sonner, “Holographic Schwinger Effect and the
Geometry of Entanglement,” Phys.Rev.Lett. 111 no. 21,
(2013) 211603, arXiv:1307.6850 [hep-th].

[26] K. Jensen and J. Sonner, “Wormholes and
entanglement in holography,” Int.J.Mod. Phys. D23
no. 12, (2014) 1442003, arXiv:1405.4817 [hep-th].

[27] K. Jensen, A. Karch, and B. Robinson, “Holographic
dual of a Hawking pair has a wormhole,” Phys. Rev.
D90 no. 6, (2014) 064019, arXiv:1405.2065 [hep-th].

[28] H. Gharibyan and R. F. Penna, “Are entangled particles
connected by wormholes? Evidence for the ER=EPR
conjecture from entropy inequalities,” Phys.Rev. D89
no. 6, (2014) 066001, arXiv:1308.0289 [hep-th].

[29] K. Papadodimas and S. Raju, “Comments on the
Necessity and Implications of State-Dependence in the
Black Hole Interior,” arXiv:1503.08825 [hep-th].

[30] D. Garfinkle and A. Strominger, “Semiclassical Wheeler
wormbhole production,” Phys. Lett. B256 (1991)
146-149.

[31] C. W. Misner and J. A. Wheeler, “Classical physics as
geometry: Gravitation, electromagnetism, unquantized
charge, and mass as properties of curved empty space,”
Annals Phys. 2 (1957) 525-603.



[32] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa,
“The String landscape, black holes and gravity as the
weakest force,” JHEP 0706 (2007) 060,
arXiv:hep-th/0601001 [hep-th].

[33] T. Banks and N. Seiberg, “Symmetries and Strings in
Field Theory and Gravity,” Phys.Rev. D83 (2011)
084019, arXiv:1011.5120 [hep-th].

[34] W. Israel, “Thermo field dynamics of black holes,”
Phys. Lett. A57 (1976) 107-110.

[35] T. Andrade, S. Fischetti, D. Marolf, S. F. Ross, and
M. Rozali, “Entanglement and correlations near
extremality: CFTs dual to Reissner-Nordstrm AdSs,”
JHEP 1404 (2014) 023, arXiv:1312.2839 [hep-th].

[36] S. Leichenauer, “Disrupting Entanglement of Black
Holes,” Phys.Rev. D90 no. 4, (2014) 046009,
arXiv:1405.7365 [hep-th].

[37] D. Harlow, “Aspects of the Papadodimas-Raju Proposal
for the Black Hole Interior,” JHEP 1411 (2014) 055,
arXiv:1405.1995 [hep-th].

[38] N. Arkani-Hamed, A. G. Cohen, and H. Georgi,
“(De)constructing dimensions,” Phys. Rev. Lett. 86
(2001) 4757-4761, arXiv:hep-th/0104005 [hep-th].

[39] D. Marolf and J. Polchinski, “Gauge/Gravity Duality
and the Black Hole Interior,” Phys.Rev.Lett. 111 (2013)
171301, arXiv:1307.4706 [hep-th].

10

[40] V. Balasubramanian, M. Berkooz, S. F. Ross, and
J. Simon, “Black Holes, Entanglement and Random
Matrices,” Class.Quant.Grav. 31 (2014) 185009,
arXiv:1404.6198 [hep-th].

[41] S. S. Gubser, “Breaking an Abelian gauge symmetry
near a black hole horizon,” Phys.Rev. D78 (2008)
065034, arXiv:0801.2977 [hep-th].

[42] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz,
“Building a Holographic Superconductor,”
Phys.Rev.Lett. 101 (2008) 031601, arXiv:0803.3295
[hep-th].

[43] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz,
“Holographic Superconductors,” JHEP 0812 (2008)
015, arXiv:0810.1563 [hep-th].

[44] T. Hartman and J. Maldacena, “Time Evolution of
Entanglement Entropy from Black Hole Interiors,”
JHEP 1305 (2013) 014, arXiv:1303.1080 [hep-th].

[45] K. Papadodimas and S. Raju, “Local Operators in the
Eternal Black Hole,” arXiv:1502.06692 [hep-th].

[46] S. H. Shenker and D. Stanford, “Black holes and the
butterfly effect,” JHEP 1403 (2014) 067,
arXiv:1306.0622 [hep-th].

[47] J. Polchinski, “Monopoles, duality, and string theory,”
Int.J.Mod. Phys. A19S1 (2004) 145-156,
arXiv:hep-th/0304042 [hep-th].



