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We argue that the anomalous power asymmetry observed in the cosmic microwave background
(CMB) may have originated in a cosmic bounce preceding inflation. In loop quantum cosmology
(LQC) the big bang singularity is generically replaced by a bounce due to quantum gravitational
effects. We compute the spectrum of inflationary non-Gaussianity and show that strong correlation
between observable scales and modes with longer (super-horizon) wavelength arise as a consequence
of the evolution of perturbations across the LQC bounce. These correlations are strongly scale
dependent and induce a dipole-dominated modulation on large angular scales in the CMB, in agree-
ment with observations.

PACS numbers: 04.60.Pp, 98.80.Qc

I. INTRODUCTION

The Planck team has reported evidence of anoma-
lous features in the large-scale cosmic microwave back-
ground (CMB) which point towards violations of statisti-
cal isotropy [1]. Some of these anomalies were already ob-
served by WMAP [3–5], and have been now re-confirmed
[2], hence reducing the possibility of instrumental origin
or systematics. Although the associated statistical sig-
nificances are still inconclusive, the intriguing possibil-
ity that these features are traces of fundamental physics
beyond the simplest inflationary models have attracted
considerable attention in the theoretical community.

Among the different anomalies detected, the power
asymmetry—unequal power in different regions of the
sky—has received significant attention, and it is also the
main target of this paper. This asymmetry was first mod-
eled by adding a modulating factor to an otherwise sta-
tistically isotropic temperature distribution [6]

δT (n̂) =
(
1 +A(n̂)

)
δTiso(n̂) (1)

where A(n̂) =
∑
LM ALM YLM (n̂) is the modulating

function. Planck has reported no evidence for ALM dif-
ferent from zero for L ≥ 2, but a statistically significant
(about 3σ) L = 1, dipolar modulation has been found
[1]. Furthermore, the effect of this dipole on the angu-
lar power spectrum C` has been detected only for low
multipoles with ` < 64. More precisely, after separat-
ing the `-range into bins of size ∆` = 64, only the first
bin shows a non-vanishing signal, with average amplitude
AL=1 = 0.07 ± 0.02. Observations are compatible with
AL=1 = 0 for larger values of `. This scale dependence
implies that the simple parametrization (1) is insufficient
to account for the observed modulation. The theoretical
challenge is therefore to find a mechanism able to produce
a dipolar modulation present only on large scales, with
negligible contribution to the quadrupole, octupole, etc,
and furthermore respecting the existing constraints on
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the CMB: a remarkably Gaussian, almost-scale invariant
spectrum of adiabatic perturbations. Not surprisingly, it
has been difficult to find a completely satisfactory model
[7].

One of the first and most compelling ideas to gener-
ate such a power asymmetry was introduced by Erick-
cek, Carroll, and Kamionkowski in [8]. It relies on the
fact that the presence of a very long wavelength, super-
Hubble perturbation of a curvaton field will induce a
dipole modulation in the observed spectrum, provided its
wavelength is still short enough that its amplitude shows
a gradient across the sky. This long mode could originate,
for instance, as a remnant of the pre-inflationary epoch.
This idea has been implemented by several authors and
improved in different directions (see e.g. [9–11]).

Another interesting proposal, introduced in [12], works
instead in a single-field inflationary model, and generates
the power modulation through a non-Gaussian coupling
between observable scales in the CMB and even larger,
super-Hubble scales. The reason why non-Gaussianity
can induce anisotropies in the observed spectrum, even
if the underlying statistics is isotropic, is simply because
a typical realization looks significantly more anisotropic
if the underlying distribution is non-Gaussian. Or in
other words, because observable modes couple to the par-
ticular realization of the long wavelength modes in our
Universe, which is generically anisotropic. This model,
therefore, requires a mechanism to generate large cor-
relations between very different scales. The consistency
relation proposed in [13] tell us that it is difficult to find
a realistic single field model producing that type of non-
Gaussianity.

In this work we introduce a scenario which has features
in common with both of the previous ideas. We consider
a single field inflationary model preceded by a bounce
described by loop quantum cosmology (LQC). This sce-
nario has been analyzed in great detail, both for the back-
ground space-time and for perturbations (see [14–17] for
reviews). In short, the evolution of perturbations across
the bounce excites quanta out of an initial vacuum, and
as a consequence the onset of inflation is reached in an
excited state, rather than in the Bunch-Davies vacuum.
The presence of those perturbations, remnants of the
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pre-inflationary phase, have an important impact on the
non-Gaussianity generated during inflation. We compute
those non-Gaussianity and the modulation they produce
on observable scales, and show that the observed power
asymmetry can have an origin on the quantum bounce
preceding inflation, while still respecting all observational
constraints. We set c=1 but keep G and ~ explicitly. Nu-
merical values are given in Planck units.

II. LQC AND THE POWER SPECTRUM

In LQC, the mean effective space-time geometry is de-
scribed by equations which incorporate the leading quan-
tum corrections to general relativity. For instance, the
Friedmann equation reads [14, 18]

H2 =
8πG

3
ρ

(
1− ρ

ρmax

)
, (2)

where H is the Hubble rate, ρ the energy density, and
ρmax ≈ 0.4ρPl its upper bound, which is a fraction of the
Planck energy density ρPl. In this paper the matter sec-
tor is assumed to be a single scalar field with mass m.
More complicated potentials can be incorporated. How-
ever, the effects we are seeking have a quantum grav-
ity origin, and the form inflaton potential produces sub-
leading contributions. At low energies ρ � ρmax, Eq.
(2) becomes indistinguishable from the general relativis-
tic Friedmann equation. However, close to the Planck
scale quantum gravitational effects break the linear re-
lation between H2 and ρ, and bring H to zero while ρ
attaints its maximum value. This is a quantum bounce
that ‘bridges’ a contracting and an expanding phase of
the universe.

The theory of cosmological perturbations in LQC that
we use in this paper was developed in [19], and has
been used in [19, 21] to study the evolution of pertur-
bations across the bounce through the end of inflation,
and to compute the primordial power spectrum of tensor
and scalar perturbations. This scenario is based on first
principles, and trans-Planckian issues can be addressed
squarely. The free parameters relevant for phenomeno-
logical studies are the value of the inflaton field at some
arbitrary reference time, e.g. the bounce, φ(tB) := φB ,
its mass m, and the initial state of perturbations at some
initial time. Refs. [19, 21] have explored the predictions
for the power spectrum across the parameter space and
contrasted the results with observations.

From the viewpoint of inflation, the effect of the pre-
ceding bounce translates to an excited state |β〉 for per-
turbations at the onset of slow-roll. Therefore, the LQC
pre-inflationary evolution can be conveniently encoded in
the Bogoliubov coefficients αk and βk relating |β〉 and the
Bunch-Davies vacuum, i.e. relating the mode functions
of curvature perturbations Rk(t) that result from the
pre-inflationary evolution, and the Bunch-Davies modes
RBD
k (t). These coefficients can computed numerically for

a choice of the free parameters. For φB = 1.22 and

m = 1.10× 10−6, both in Planck units, and “Minkowski-
like” vacuum initial condition1 for perturbations at one
Planck second before the bounce, we obtain that the av-
erage number of quanta present at the onset of inflation,
given by |βk|2, is approximately 10−3 for the reference
mode k? which today corresponds to 0.002 Mpc−1. For
the longest wavelength mode we can directly measure,
kmin ≈ k?/8.9, we obtain |βkmin |2 = 1.2, and |βk|2 ∼ 1/k
for lower values of k [21]. Other choices of initial data
give similar results (see [19, 21] for details).

The inflationary scalar power spectrum in the presence
of an excited state |β〉 is given by PR(k) = PBD

R (k) |αk +
βk|2, where PBD

R (k) is the Bunch-Davies result. Fig. 1
shows the numerically computed PR(k) for the choice of
parameters mentioned above. Two energy scales play an
important role in the power spectrum. First, LQC intro-
duces a new energy scale kLQC/a(tB) :=

√
RB/6 ≈ 3.21,

that is directly related to the space-time scalar curvature
at the bounce RB = 48πρmax ≈ 62. A second scale is
provided by the value of curvature at the onset of acceler-
ated expansion kI/a(tI) :=

√
RI/6 ≈ 10−5, which occurs

at time tI—notice that tI is not the onset of slow-roll,
which happens at later times. Modes k > kLQC are ‘in-
side’ the curvature radius—i.e. its wavelength is shorter
than the curvature radius—during the bounce, and exit
during the slow-roll era. These perturbations reach the
onset of slow-roll in the Bunch-Davies vacuum, and their
power spectrum is indistinguishable from standard re-
sults. Modes kI < k < kLQC exit the curvature radius
soon before the bounce and re-enter after it, to exit again
during slow-roll. The crossing process around the bounce
time amplifies the amplitude of those modes, which then
reach inflation in an excited states. Finally, modes k < kI
are outside the Hubble radius during the entire evolution,
even at the onset of inflation, and their spectrum is sig-
nificantly suppressed. The reference mode k?, that today
corresponds to 0.002 Mpc−1, is approximately one third
of kLQC , k? = 0.36 kLQC . Consequently, the LQC cor-
rections to the observable power spectrum only appear
for the largest angular scales in the sky, that correspond
to multiples ` . 30, and are only significant for the low-
est multiples. Furthermore, the LQC corrections signif-
icantly increases the power for modes with wavelengths
larger than the Hubble radius today. This power en-
hancement conveniently reaches a maximum around kI ,
at which perturbation theory is still well under control.

1 As explained in [19], although Minkowski-like initial conditions
do not produce a state with the desired ultraviolet behavior—
i.e. a Hadamard or fourth adiabatic order state—one can always
modify the initial data for sufficiently ultraviolet modes to make
the state ultraviolet-regular. Since such modification do not af-
fect observable predictions, we do not describe the details in this
paper, which can be found in [19, 20]
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FIG. 1: Scalar power spectrum at the end of inflation for φB =
1.22 and m = 1.10 × 10−6, and “Minkowski-like” vacuum
initial conditions at one Planck second before the bounce [21].
Gray points show the numerical result for individual modes.
The spectrum is rapidly oscillatory, and its average is shown in
black. The spectrum is amplified for low wave-numbers kI <
k < kLQC , but the enhancement is only significant for the
very low multipoles in the CMB, for which the observational
error bars are large because cosmic variance. Therefore, this
power spectrum is compatible with current observations.

III. BACK-REACTION ON THE
INFLATIONARY GEOMETRY

An important question is whether the energy in the
quanta present at the onset of slow-roll produces signifi-
cant back-reaction on the inflationary space-time geom-
etry which cannot be neglected. The energy density on
the perturbations can be computed and compared to the
vacuum result. The difference in energy density between
the state |β〉 and the Bunch-Davies vacuum can be writ-
ten as

∆ρ(t) =
~ ε

4πG

∫
d3k

(2π)3

{
|βk|2

(
|ṘBDk |2 +

k2

a2
|RBDk |2

)
+ Re

[
αkβ

?
k [(ṘBDk )2 +

k2

a2
(RBDk )2]

]}
, (3)

where the integral in k is extended from −∞ to ∞. It
is well known that the difference of expectation values of
the energy-momentum tensor between states that are at
least of fourth adiabatic order is always finite, hence no
renormalization is required in (3). Numerical evaluation
shows that the ratio of ∆ρ with the background energy
density ρ0, is ∆ρ/ρ0 ≈ 10−3 at the onset of slow-roll,
and decreases exponentially with cosmic time. Therefore,
since the energy density in the Bunch-Davies vacuum is
known to be negligible small, the back-reaction of the
state |β〉 on the inflationary geometry can be neglected.

IV. THE BISPECTRUM

At leading order in perturbation theory, non-
Gaussianity is characterized by the bispectrum
BR(k1, k2, k3), defined in terms of the three-point
function:

〈R~k1R~k2R~k3〉 = (2π)3δ3(~k1 + ~k2 + ~k3) BR(~k1,~k2,~k3) .

The non-Gaussianity generated from excited states in in-
flation has been analyzed by several authors (see e.g.
[22–25]). It was pointed out in [23] that the main charac-
teristic of the associated bispectrum is an enhancement
in ‘squeezed’ configurations which involve very different
scales, k1 ≈ k2 � k3. These non-Gaussian correlations
originate from quantum interactions between particles
that are present at the onset of slow-roll. In realistic
models, including the scenario presented in this paper,
the conclusions of the consistency relation proposed in
[13] are still satisfied in the limit k1/k3 → 0, but never-
theless there are important effects for small, but finite,
values of k1/k3.

The full expression for the bispectrum BR(k1, k2, k3)
as a function of the state |β〉 was obtained in [23–25],
and is given in the appendix. We have used those re-
sults to numerically computed BR(k1, k2, k3) at the end
of inflation. The main difference with previous analysis
is that the state |β〉 is now computed from a quantum
gravity framework, rather than postulated. The result-
ing bispectrum, therefore, carries information about the
pre-inflationary evolution. Those effects are more clearly
displayed by plotting the ratio with the standard Bunch-
Davies bispectrum BBD

R (k1, k2, k3) (see Fig. 2). As ex-
pected, the Bispectrum is strongly peaked in squeezed
triangles, where the ratio BR/BBD

R shows a growth pro-

portional to
k2LQC

k1k3
—i.e. proportional to product of the

number of quanta in the modes k1 and k3, as expected for
an enhancement originated from particle interactions. As
for the power spectrum, the enhancement only appears
for modes kI . k . kLQC . Therefore, there are strong
correlations between the largest wavelengths we can di-
rectly observe (k ≈ kLQC) and super-Hubble modes with
k values in the range kI . k . kLQC . The bispectrum
becomes negligibly small when the three momenta are
in observable scales, hence respecting current constraints
on non-Gaussianity. This scale dependence of the bispec-
trum will play an important role in the next section.

Recall that the three modes involved in bispectrum
must form a triangle, so it is really a function of two

momenta, e.g. BR(~k1,~k3). The shape of the bispectrum,
shown in Fig. 2, can be understood by writing its domi-
nant contribution in the squeezed limit x := k3/k1 � 1:
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BR ≈ 4ε∆R(k1)∆R(k3) × Re
[
ft

1− eik̃tη0
1 + (1 + µ)x

+

f1
1− eik̃1η0
(1 + µ)x

+ f2
1− eik̃2η0
(1− µ)x

+ f3
1− eik̃3η0

1 + (−1 + µ)x

]
(4)

where µ = k̂1 · k̂3, kt = k1 + k2 + k3, k̃i = kt − 2ki, and

∆R(k) = ~ 2π2

k3

(
H
φ̇

)2 (
H
2π

)2
evaluated at Hubble-crossing

during inflation. The functions fi contain the informa-
tion of the state |β〉 and are defined in the appendix.
The parameter η0 is the value of the conformal time at
the onset of slow-roll. For the example φB = 1.22 and
m = 1.1 × 10−6 we obtain η0k? ≈ 103, so all observable
modes are deeply inside the Hubble radius at the onset
of slow-roll.

The largest contribution to (4) comes from very

squeezed configurations for which k̃3η0 � 1. In that limit
BR is dominated by the terms proportional to ft and f3.
This contrasts with the example considered in [23, 25] of
a scale invariant excited state |β〉, and where additionally
the analysis was restricted to observable scales for which
η0ki � 1 for all i. In that case the leading contributions
come from the terms proportional to f1 and f2.

BR/BBD
R

k2/k?

k3/k?

Friday, June 5, 15

FIG. 2: Ratio of the inflationary bispectrum for the excited
initial state arising from the LQC pre-inflationary evolution
versus the Bunch-Davies bispectrum, as a function of k2 and
k3 for a fixed k1 = 0.22k?. The plot shows the range of

k2 and k3 allowed by the triangle condition ~k1 + ~k2 + ~k3 =
0. The bispectrum BR is highly scale dependent and shows
a prominent enhancement for squeezed configurations k3 �
k2 ≈ k1.

It is important to note that the non-Gaussianity com-
puted here are generated during slow-roll inflation. Ex-
tra contributions to the bispectrum will certainly arise
from the evolution across the bounce. However, since
the state of perturbations is very close to vacuum at the
bounce time, those contributions are expected to be sub-
dominant. This expectation is indeed borne out in ex-
plicit computations in bouncing models [26, 27], where it
is shown that the non-Gaussianity generated across the
bounce are much smaller than the bispectrum shown in
Fig. 2, particularly for squeezed triangles, which are the
relevant configurations for this paper. It is therefore rea-

sonable to assume that the leading contributions to the
bispectrum in squeezed configurations are dominated by
inflationary non-Gaussianity.

V. NON-GAUSSIAN MODULATION

We follow some of the ideas presented in Ref. [12] to
compute the CMB power modulation arising from cou-
pling with super-Hubble scales. The statistics of the clas-
sical Bardeen potential Φ for observable scales is modified
in the presence of a given long wavelength perturbation

Φ(~kl) if the spectrum is non-Gaussian. Concretely, the
two-point function acquires off-diagonal contributions of
the form [28, 29]

〈Φ~kΦ~k′〉 = PΦ(k)
[
(2π)3δ(~k + ~k′) +G(~k,~kl) Φ(~kl)

]
(5)

where ~kl = −(~k + ~k′) (i.e. it closes a triangle with ~k

and ~k′), PΦ(k) is the Φ-power spectrum, and we take

G(~k,~kl) = 5
3BR(~k,~kl)[∆R(k)∆R(kl)]

−1. For bispectra
peaked in squeezed configurations the leading contribu-

tions to G(~k,~kl) come from the regime kl � k, for which
k ≈ k′. Therefore, the correlation function is close to be
diagonal. The off-diagonal terms break both homogene-
ity and isotropy. These terms vanish if we average over
Φ~kl , as it must be, since our model respects these sym-
metries at the fundamental level. But in the particular
realization of Φ~kl chosen by our Universe, the modula-
tion term may be important, and may produce deviations
from homogeneity and isotropy in the CMB much larger
than would be expected from a typical realization of a
Gaussian spectrum.

The off-diagonal terms in (5) source analogous terms in
the covariance matrix of temperature spherical harmonic
coefficients

〈a`ma?`′m′〉 = δ``′δmm′C` +
∑
LM

ALM G``
′L
−mm′M (C` +C`′) ,

where G`1`2`3m1m2m3
is a Wigner 3-j symbol, and C` is the

standard angular power spectrum. The momentum de-

pendence of the kernel G(~k,~kl) factorizes for the domi-
nant contributions in a power law for k (except for typical
oscillations which are unimportant for our computations
and can be averaged). The kernel can be expanded in
Legendre Polynomials

G(~k,~kl) =
∑
L

gL(kl)

(
k?
k

)αL

PL(µ) ,

where µ = k̂ · k̂l, and gL(kl) encodes the kl dependence.
Then, the mean value of the modulation amplitude, av-
eraged over M , for a typical realization of the long wave-
length modes can be computed as (see [12] for further
details of the computation)

〈AL(`)〉 =
C`(−αL)

2C`(0)

[∫
dkl k

2
l

(2π)3
|gL(kl)|2PΦ(kl)

]1/2

,

(6)
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FIG. 3: Amplitude 〈AL(`)〉 as a function of ` for L=1,2,3, for parameter values φB = 1.22 and m = 1.10 × 10−6, and
“Minkowski-like” vacuum initial conditions at one Planck second before the bounce.

where the coefficients C`(αL) have been defined as the
CMB temperature power spectrum computed by replac-
ing ns → ns + αL. Therefore, if αL = 0 for all L, i.e. if

G(~k,~kl) does not depend on k, the modulation amplitude
is `-independent.

The value of 〈AL(`)〉 for different multipoles L can
be computed numerically from the bispectrum shown in
Fig. (2), and some of its properties can be qualitative
understood already from equation (4). The leading con-
tribution comes from the terms proportional to ft and
f3, which are dominated by a dipole L = 1. The terms
proportional to f1 and f2 contribute to a subdominant
quadrupole. The octopole L = 3 is subdominant com-
pared to the quadrupole, and this hierarchy continues
for higher multipoles. Since the factors fi in (4) scale
approximately as (kl k)−1 for every i, we have αL ≈ 1
for all L, and therefore the amplitude A(`) is expected
to decrease with `.

Figure 3 shows 〈AL(`)〉 for L = 1, 2, 3 as a function of `.
The amplitudes 〈AL(`)〉 are all scale dependent, and such
that 〈A1〉 & 10 〈A2〉 & 10 〈A3〉. The average value of 〈A1〉
for ` . 64 is in agreement with the observed value Aobs

1 =
0.07± 0.02. Other values of our free parameters φB and
m, and of the initial conditions for perturbations, can
decrease or increase the value of 〈A1〉. For instance, we
find that choosing vacuum initial data for perturbations
far into the past of the bounce, significantly decreases the
amplitudes of all multipoles.

There has been some debate based on symmetry ar-
guments about whether a statistically homogeneous and
isotropic bispectrum can generate a dipole modulation.
Our computation is an example where the answer is in the
affirmative. Furthermore, as shown in [30], a careful anal-
ysis reveals that symmetry arguments restrict AL+1 to be
suppressed with respect to AL for even L. The hierarchy
of multipoles we find here, 〈A0〉 > 〈A1〉 > 〈A2〉 > ...., is
therefore in agreement with those restrictions.

VI. DISCUSSION

We have presented an inflationary scenario in which
perturbations start the slow-roll phase in an excited
state, rather than the Bunch-Davies vacuum. This state

arises from the pre-inflationary evolution provided by
loop quantum cosmology, in which the big bang singu-
larity is replaced by a bounce. Two new scales appear
in the problem, kI and kLQC , related to the onset of the
exponential expansion and the bounce, respectively. The
number density of quanta at the onset of slow-roll is sig-
nificant only for the range kI . k . kLQC . During infla-
tion these excitations induce non-Gaussian correlations
which we have computed. To the best of our knowledge,
this is the first computation of non-Gaussianity in LQC.
The result is compatible with existing observational con-
straints. Furthermore, large correlations arise between
the longest modes we can observe, with k ≈ kLQC , and
super-Hubble modes with k & kI . We have shown that
those non-Gaussian correlations, which involve super-
Hubble modes, are able to modify the observed power
spectrum at large scales, inducing correlations between
CMB angular multipoles ` . 30 that differ in ∆` ≈ 1.
These correlations are strongly scale dependent, and pro-
duce a power asymmetry in agreement with observations.

Other observed anomalies at large scales [1]—parity vi-
olation, power suppression for a bunch multipoles around
` = 20, multipole alignments, etc.—seem also to require
correlations between low multipoles qualitatively similar
to the ones obtained in this paper. Whether the agree-
ment is also quantitative will be analyzed in future work.

We emphasize that the fact that the power spec-
trum shown in Fig. 1 is amplified for low wave-numbers
kI < k < kLQC , is not necessarily in conflict with obser-
vations since: i) the enhancement is only significant for
the very low multipoles in the CMB, for which the obser-
vational error bars are large because of cosmic variance;
ii) the observed power suppression is only significant for
a few multipoles around ` = 20, indicating that the ef-
fect is more likely to originate from correlations between
multipoles, rather than a suppression of the primordial
two-point function.

Some of the features appearing in our scenario—
remnants, large amplitude perturbations associated to
an infrared scale kI , correlations with super-Hubble
modes, etc.—have been identified in previous phe-
nomenological analysis (see e.g. [8, 12]) as ingredients
needed to account for some of the observed anomalies at
large scales. Here, these features arise from a concrete
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quantum gravity proposal based on first principles.
Therefore, our results provide further motivation to
consider the observed anomalies as real physical fea-
tures, which have origin beyond the simplest inflationary
models, rather than statistical flukes or instrumental
noise. Future work will be addressed to provide further
robustness to the model introduced here and to extend
its quantitative predictions.
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Appendix A: Inflationary bispectrum from an
excited state

The expression for the scalar bispectrum generated
during slow-roll inflation when the state of perturbations
|β〉 is given by a Bogoliubov transformation of the Bunch-
Davies vacuum, with coefficient αk and βk, is given by
[22–25]

BR(k1, k2, k3) = ∆R(k1)∆R(k2)
{1

2

(
3ε− 2η + ε

k2
1 + k2

2

k2
3

)
+ (A1)

+ 4ε
k2

1k
2
2

k3
3

Re

[
ft

1− eiktη0
kt

+ f1
1− eik̃1η0

k̃1

+ f2
1− eik̃2η0

k̃2

+ f3
1− eik̃3η0

k̃3

]}
+ 2 cyclic permut. k1 → k2 → k3 ,

where kt = k1 +k2 +k3, k̃i = kt−2ki, and the parameter
η0 is the value of the conformal time at the onset of slow-
roll. The functions fi contain the information of the state
|β〉:

ft =
[
1 + F (k1) (1 + F (k2)) + cyclic perm.

]
,

f1 = F (k1)?[1 + F (k2) + F (k3)]− F (k2)?F (k3) ,

and f2 and f3 can be obtained by cyclicly permuting
the momenta in f1, and F (k) = |βk|2 + α?kβk. The
star indicates complex conjugation. Also, ∆R(k) =

~ 2π2

k3

(
H
φ̇

)2 (
H
2π

)2
evaluated at Hubble exit during infla-

tion.
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