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We compute the radiation emitted by a particle on the innermost stable circular orbit of a rapidly
spinning black hole both (a) analytically, working to leading order in the deviation from extremality
and (b) numerically, with a new high-precision Teukolsky code. We find excellent agreement between
the two methods. We confirm previous estimates of the overall scaling of the power radiated, but
show that there are also small oscillations all the way to extremality. Furthermore, we reveal
an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the
dominant scaling. The scaling of each mode is controlled by its conformal weight, a quantity that
arises naturally in the representation theory of the enhanced near-horizon symmetry group. We find
relationships to previous work on particles orbiting in precisely extreme Kerr, including detailed
agreement of quantities computed here with conformal field theory calculations performed in the
context of the Kerr/CFT correspondence.

I. INTRODUCTION

Unlike its simple Newtonian counter-part, the general
relativistic two-body problem is a sprawling collection of
different regimes, each with its own special techniques,
where it becomes possible to precisely define and solve
the problem. In recent years this two-body landscape has
been explored in impressive detail, driven primarily by
the need for accurate theoretical models of gravitational-
wave sources. Well-separated masses are treated with
high-order post-Newtonian expansions, large mass-ratio
cases are treated with point particle perturbation theory,
and close orbits of comparable mass systems are han-
dled with numerical simulations. Non-trivial checks in
overlapping domains of validity [1] give confidence that
these diverse efforts are converging towards what could
be called a complete solution of the relativistic two-body
problem.

One corner just beginning to be filled in [2–4] is that of
a particle orbiting in the near-horizon region of a near-
extreme Kerr black hole. From a theoretical perspective,
this is one of the most interesting regimes since it en-
joys an enhanced isometry group as well as an infinite-
dimensional asymptotic symmetry group [5, 6]. For prac-
tical purposes, calculations at extremes of parameter
space can provide useful calibration points for approxi-
mation schemes, such as the effective one-body formalism
[7], aiming to be uniform over parameter space. Finally,
thought experiments showing naive violation of the cos-
mic censorship conjecture by throwing particles into a
near-extreme black hole [8, 9] provide additional motiva-
tion to study near-horizon, near-extreme orbits.

In this article we compute the radiation from a particle
on the innermost stable circular orbit (ISCO) of a rapidly
spinning Kerr black hole. This radiation plays an impor-
tant role in the transition from inspiral to plunge [10, 11]
and also informs studies of the validity of the cosmic cen-

sorship conjecture [12–14]. Previous work [11, 14, 15] has
estimated the scaling near extremality to be p = 2/3,
where the total energy radiated per unit time is expressed
as

Ė = Cεp, ε ≡
√

1− a2/M2, (1)

with M and Ma the mass and spin of the black hole.
Our calculations confirm p = 2/3 but also reveal some

interesting details. First, the coefficient C is not a con-
stant, and instead exhibits oscillations in ε about its
mean value. Second, there is an intricate structure in
the `,m angular modes of the radiation. While all modes
have p = 2/3 for the flux down the horizon, the same is
not true for the flux at infinity. Instead, the exponent for
the power at infinity is given by

p∞ =
4

3
Re[h], (2)

where h is the conformal weight of the mode, given in
terms of the angular eigenvalues {K,m} (spheroidal and
azimuthal) by

h ≡ 1

2
+

√
K − 2m2 +

1

4
. (3)

The notion of a conformal weight arises in the repre-
sentation theory of the near-horizon symmetry group
(App. A 4) and is a key entry in the Kerr/CFT dictio-
nary. The weight h should be thought of as fundamental,
with the formula (3) depending on conventional choices
like the definition of K. The appearance of the conformal
weight in the radiation at infinity can be interpreted as
a far-field signature of the near-field symmetry enhance-
ment.

The conformal weight controls the character of each
mode. Modes with complex weight (K − 2m2 + 1/4 < 0)
have Re[h] = 1/2 and hence the dominant scaling p =
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FIG. 1. Diagram indicating the scaling (1) of energy radiated
to infinity for each mode. Blue dots indicate the dominant
scaling p = 2/3 in the gravitational case, while red stars indi-
cate the dominant scaling p = 2/3 in the scalar case. Yellow
dots indicate subdominant scaling p > 2/3. The flux down
the horizon always has dominant scaling p = 2/3.

2/3, while modes with real weight (K − 2m2 + 1/4 > 0)
have Re[h] > 1/2 and hence subdominant scaling p >
2/3.1 Only the dominant modes display the oscillations
in the prefactor C. At each `, modes with higher values of
|m| are dominant (Fig. 1). The transition is increasingly
sharp as extremality is approached, and (e.g.) already
at ε = .1 (a = .995M), the 2-2 mode dominates the 2-1
mode by four orders of magnitude (Fig. 3). An observa-
tion of a huge difference in power between the 2-2 and
2-1 modes would signal the presence of a near-extreme
black hole.2

We compute the radiation both analytically (to lead-
ing order in ε) and numerically (at small, finite ε). Com-
paring the results, we begin seeing agreement (to about
10%) at ε = .01 (a = .99995M) and we achieve eight
digits of accuracy by the time we reach ε = 10−13,
the smallest value we simulate. Historically, the near-
extremal region of parameter space has been difficult
to access numerically. Our new codes mark a sub-
stantial improvement over previous work and can accu-
rately calculate the radiated fluxes for spins as high as
a = .999999999999999999999999995M .

Our analytic solution of the Teukolsky equation uses
the method of matched asymptotic expansions, a tech-
nique used in [18–20] and many times since. Our con-
sideration of a particle on the ISCO complicates matters
because this orbit is in a sense intermediate between the
near-horizon and far regions (Fig. 2). The proper way
to think of the extremal ISCO has been the subject of

1 An analogous mode structure was previously observed in the
study of near-extremal quasi-normal modes [16, 17].

2 A detector at a fixed position cannot probe angular dependence,
but for a circular orbit the difference between m = 1 and m = 2
is visible in the associated time-dependence eimΩt.

some discussion over the years, and our calculations af-
ford an opportunity to chime in. The fate of the ISCO is
discussed in Sec. II and App. A.

Previous work involving one of us [2] considered the
physically distinct problem of a particle on a circular
orbit in the near-horizon region of an exactly extremal
Kerr black hole, working to leading order in the devia-
tion from the horizon. After performing the calculation
in the case of a scalar charge in this paper, we find that
the power radiated is identical to that of [2] with pa-
rameters identified in the natural way. The agreement is
not completely surprising since the geometry in the vicin-
ity of the near-extremal ISCO is the same as the near-
horizon geometry of exactly extremal Kerr (the “NHEK”
geometry, App. A 3). On the other hand, the agreement
is highly nontrivial since the near-extremal Kerr throat
contains an entire near-horizon region with a curved ge-
ometry, which is absent in extremal Kerr. (This region
is the bottom section of Fig. 2 and is described by the
“near-NHEK” metric, App. A4.)

One can expect the analogous agreement to hold in
the gravitational case. We therefore do not repeat the
detailed calculation of the scalar case but instead rely
on the gravitational results of [2].3 Identifying the two
problems in the same manner as before produces ana-
lytic expressions for the power radiated by a particle on
the ISCO. We confirm these expressions numerically. We
have not identified the precise reason for the agreement
(in this particular observable) between the two different
problems, but we think it is a manifestation of the action
of the infinite-dimensional conformal group, which can
relate extremal to near-extremal physics [3, 4].

In Sec. II we give an overview of near-extremal physics
and establish notation. In Sec. III we perform the ana-
lytic calculation in the scalar case. In Sec. IV we present
analytic results for the gravitational case. In Sec. V we
present the new numerical codes and compare the results
with the analytic expressions. An appendix reviews near-
horizon limits, placing our computation in the context of
this rich structure. Our metric has signature −+++ and
we use units with G = c = 1.

II. NEAR-EXTREMAL PHYSICS

The non-extremal Kerr black hole is invariantly char-
acterized by two parameters a and M satisfying M > 0
and a < M . We will work with M > 0 and ε > 0, where ε
is the near-extremality parameter defined in Eq. (1). It is

also useful to introduce r± = M ±
√
M2 − a2, the Boyer-

Lindquist (BL) coordinate radii of the horizons, and the
(outer) horizon angular frequency ΩH = a/(r2

+ + a2).
We restrict attention to r > r+, which we call the Kerr
exterior.

3 Only the flux at infinity was presented in [2]. We compute the
horizon flux using expressions given therein.
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One may now ask the question: “What is the ex-
tremal (ε → 0) limit of the Kerr exterior?” Fixing
Boyer-Lindquist (BL) coordinates, one obtains the space-
time conventionally called extreme Kerr. On the other
hand, fixing alternative coordinates adapted to the near-
horizon region (App. A 2) gives a different spacetime,
normally called NHEK (for near-horizon extremal Kerr).
There is yet a third limit adapted to the ISCO, which
gives a different patch of the maximally extended NHEK
spacetime (App. A 3). The first limit leaves asymptotic
infinity intact but replaces the non-degenerate horizon by
a degenerate one. The second and third limits replace the
asymptotic null infinity with a timelike boundary. The
answer to the question is thus “not enough information”.
There are multiple limits and none is preferred on any
fundamental grounds.

The existence of the various limits is a signal that near-
extremal physics falls into the class of what are generally
called singular perturbation problems. In our ISCO cal-
culation, the singular nature appears as the impossibility
of imposing all the boundary conditions of the differen-
tial equation in a single small-ε approximation. Instead
we must make a far-zone approximation where we can
satisfy the far boundary conditions (no incoming radia-
tion from past null infinity), a near-zone approximation
where we can satisfy the near boundary conditions (no
incoming radiation from the past horizon), and match
the two in their region of overlap.

A. Circular Orbits and the ISCO

We consider a non-extremal (ε > 0) Kerr black hole
and work with the dimensionless radial coordinate x de-
fined by

x =
r − r+

r+
, (4)

which places the event horizon at x = 0. The exterior of
a non-extremal black hole has three important circular
equatorial geodesics picked out by geometric consider-
ations [21]: the ISCO (the marginally stable orbit), the
innermost bound circular orbit (the marginally bound or-
bit) and the photon orbit or light ring. As noted by [21],
the (BL or x) coordinate radii of these orbits approach
that of the horizon as ε→ 0. The marginally bound and
photon orbits go like x ∼ ε, while the ISCO approaches
more slowly, being given to leading order in ε by

x0 = 21/3ε2/3. (5)

Fig. 2 illustrates the properties of these orbits, and a
formal discussion of their ε→ 0 limits is given in App. A.
While our focus is on the ISCO, our analysis holds for any
orbit going like x0 ∼ εk with 0 < k < 1. Except where
explicitly noted, all later formulae in this paper hold for
such orbits.

Two other useful properties of a circular orbit are its
angular velocity Ω and “redshift factor” g = e−Ωl (where

FIG. 2. The well-known diagram of [21] overlaid with cor-
responding regions of the dimensionless coordinate x that we
consider. The dashed lines illustrate the BL radii of the ISCO
rms, the marginally bound orbit rmb, and the photon orbit rph.
Also shown are the horizon r+ and a constant (ε-independent)
BL radius r0. (Note that we use the notation x0 for the ISCO
radius in the main body.) The “cracks” in the throat illustrate
infinite proper radial distance on a BL slice in the extremal
limit. They can also be interpreted as signaling the presence
of three physically distinct extremal limits (App. A).

e and l are the particle’s conserved energy and angular
momentum per unit rest mass). To leading order we have

Ω− ΩH
ΩH

= −3

4
x0, g =

√
3

4
x0. (6)

The physical significance of g is that a photon emitted
by the particle with energy E is observed on the sym-
metry axis at infinity to have energy gE . This thought
experiment illustrates how signals from the near-horizon
region are redshifted away; in the case of the ISCO the
observed energy vanishes as x0 ∼ ε2/3 as extremality is
reached. This is the same scaling as the radiation from
the particle orbit, our focus in this paper.

Note that as ε → 0 the horizon angular velocity and
BL horizon radii go as

ΩH =
1

2M
(1− ε) . (7)

r± = M (1± ε) . (8)

Since ΩH → 1/(2M) faster than εk, one may replace ΩH
with 1/(2M) in Eq. (6).

III. SCALAR CALCULATION

We first define the problem at finite ε > 0. We consider
the scalar wave equation,

gab∇a∇bΦ = −4πT, (9)
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with source

T =
qg

r2
0

δ(r − r0)δ(θ − π/2)δ(φ− Ωt). (10)

Here q is a constant called the scalar charge, g is the
redshift factor (6), r0 is the BL coordinate radius of the
ISCO, and Ω is its angular velocity. The source has a
mode expansion,

T =
qg

r2
0

∑
`,m

δ(r − r0)S`m(π/2)S`m(θ)eim(φ−Ωt), (11)

where ` ranges from 0 to ∞ and m ranges from −` to `.
Only these modes will be excited in the field, which we
similarly decompose as

Φ =
∑
`,m

Φ`m =
∑
`,m

R`m(r)S`m(θ)eim(φ−Ωt). (12)

The S`m satisfy the spheroidal harmonic differential
equation,[
∂θ(sin θ∂θ)

sin θ
+K`m −

m2

sin2 θ
− a2m2Ω2 sin2 θ

]
S`m = 0.

(13)
Solutions regular at the poles are labeled by ` and m
with an associated eigenvalue K`m. We normalize them
so that

∫
sin θdθS2 = 1.

In terms of the dimensionless coordinate x (4), the
radial functions satisfy

x(x+ σ)R′′(x)+(2x+ σ)R′(x) + V R(x) = (14)

−2qg

r+
S`m(π/2)δ(x− x0),

with

V =
(r+mΩx(x+ 2) + nσ/2)2

x(x+ σ)
+ 2am2Ω−K, (15)

where we have introduced

σ =
r+ − r−
r+

, n = 4mM
Ω− ΩH

σ
. (16)

We have dropped the mode labels ` and m. Eq. (14) is
also the spin-zero Teukolsky equation [22] with angular
frequency ω = mΩ.

For the non-radiative m = 0 modes, Eq. (14) can be
solved exactly for any value of spin [23]. We focus on
the radiative case, and for the remainder of the paper we
assume m 6= 0. In this case, the solutions to (14) have
asymptotic behaviors given by

R(x)→ C∞eimΩr+xx−1+imΩr+σ/ε

+D∞e−imΩr+xx−1−imΩr+σ/ε, x→∞ (17)

R(x)→ CHx−inr+σ/(4Mε)

+DHxinr+σ/(4Mε), x→ 0, (18)

where C∞, D∞, CH , and DH are (complex) constants.
We impose no incoming radiation from the past horizon
or past null infinity,

D∞ = DH = 0. (19)

From the properties of the differential equation (14), it
is clear that this uniquely fixes the solution. The ob-
servables we are interested in are the power radiated to
infinity and down the event horizon. These are given for
each mode by

Ė∞ =
1

2
r2
+m

2Ω2|C∞|2 (20)

ĖH = Mr+m
2Ω(Ω− ΩH)|CH |2. (21)

This defines the problem for every ε > 0.
The need for a matched expansion to study the ε→ 0

limit can be seen at the level of the differential equation.
Naively setting ε = 0 in (14) and solving, one finds that
the solutions go as xh−1 and x−h near x = 0, rather
than the oscillatory behavior (18) of the finite-ε equa-
tion. Thus the ε = 0 equation cannot satisfy the bound-
ary conditions of the problem, the hallmark of a singular
perturbation problem.

A. Near-extremal Simplification

We first make some simplifications using ε � 1. The
angular equation (13) becomes[

∂θ(sin θ∂θ)

sin θ
+K −m2

(
1

sin2 θ
+

1

4
sin2 θ

)]
S = 0,

(22)
which is independent of the frequency Ω and hence inde-
pendent of ε. To leading order Eq. (16) becomes

σ = 2ε (23)

n = −3

4
mx0ε

−1, (24)

where we have used Eq. (6) to get the second relation. For
the ISCO we see that n diverges as n ∼ ε−1/3. In App. A
n is related to the frequency conjugate to the time of the
near-horizon metric. The radial equation (14) becomes

x(x+ 2ε)R′′ + 2(x+ ε)R′ + V̂ R = Nx0δ(x− x0), (25)

where we introduce

N = −
√

3

2

q

M
S`m(π/2) (26)

and

V̂ =
( 1

2mx(x+ 2)− nε)2

x(x+ 2ε)
+m2 −K. (27)



5

We can also simplify (20), (21) using (6),

Ė∞ =
1

8
m2|C∞|2 (28)

ĖH = − 3

16
x0m

2|CH |2. (29)

Notice that ĖH < 0, indicating that these modes are
superradiant.

B. Matched Asymptotic Expansions Overview

For x� x0, Eq. (25) becomes

x2R′′ + 2xR′ + [m2(2 + x+ x2/4)−K]R = 0. (30)

(Note that x0 ∼ nε by (24).) This is the “far” equation
and its solutions will carry the label “far”. For x � 1
Eq. (25) instead becomes

x(x+ 2ε)R′′ + 2(x+ ε)R′ (31)

+

[
(mx+ nε)2

x(x+ 2ε)
+m2 −K

]
R = Nx0δ(x− x0),

Eq. (31) is the “near” equation and its solutions will carry
the label “near”. The equations agree when x0 � x� 1,
becoming

x2R′′ + 2xR′ + [2m2 −K]R = 0. (32)

This is the “region of overlap” and the solutions are

Roverlap = Pxh−1 +Qx−h (33)

for constants P and Q, where h is given in (3). This
region corresponds to the x→ 0 behavior of solutions of
the far equation (30) and the x → ∞ behavior of solu-
tions to the near equation (31). Thus each solution of
(30) or (31) is characterized by values of P and Q ob-
tained by looking at the appropriate asymptotic region.
A pair of solutions approximates a single smooth solution
to Eq. (25) (and hence (14)) when the solutions have the
same P and Q.

C. Far Solutions

The far equation (30) is a confluent hypergeometric
equation and its solutions can be written in a number of
equivalent ways. We parameterize the general solution
by P and Q,

Rfar = Pxh−1e−imx/21F1 (h+ im; 2h; imx) (34)

+Qx−he−imx/21F1 (1− h+ im; 2(1− h); imx) .

That is, at small x we have

Rfar → Pxh−1 +Qx−h, x→ 0. (35)

Notice that the two solutions are related by h → 1 − h.
For large x the asymptotic behavior is

Rfar → C∞eimx/2x−1+im

+D∞e−imx/2x−1−im, x→∞. (36)

with

C∞ = P
(im)−h+imΓ(2h)

Γ(h+ im)
+Q

(im)h−1+imΓ(2(1− h))

Γ(1− h+ im)

D∞ = P
(−im)−h−imΓ(2h)

Γ(h− im)
+Q

(−im)h−1−imΓ(2(1− h))

Γ(1− h− im)

To be outgoing at infinity we must have D∞ = 0 or

P/Q = (−im)2h−1 Γ(1− 2h)Γ(h− im)

Γ(2h− 1)Γ(1− h− im)
. (37)

In this case the coefficient C∞ is given by

C∞ = Q
Γ(2− 2h)

Γ(1− h+ im)
(im)h−1+im

×
[
1− (−im)2h−1

(im)2h−1

sin[π(h+ im)]

sin[π(h− im)]

]
(38)

= −Q (−1)−sign(m)hΓ(h− im)

Γ(2h− 1)
eπ|m|(im)h−1+im.

D. Near Solutions

The near equation (31) is a hypergeometric equation.
We will work with the following two linearly independent
homogeneous solutions,4

Rnear
in = x−

in
2

( x
2ε

+ 1
)i(n

2−m)

× 2F1

(
h− im, 1− h− im; 1− in;− x

2ε

)
(39)

Rnear
N = x−h

(
2ε

x
+ 1

)i(n
2−m)

× 2F1

(
h− im, h+ i(n−m); 2h;−2ε

x

)
(40)

The asymptotic behaviors are

Rnear
in → x−in/2 for x→ 0 , (41)

→ Axh−1 +B x−h for x→∞ , (42)

Rnear
N → C x−in/2 +Dxin/2 for x→ 0 , (43)

→ x−h for x→∞ , (44)

4 This choice expedites writing the answer for the horizon flux in
a form that makes manifest the scaling for small ε.
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where

A =
Γ(2h− 1)Γ(1− in)

Γ(h− im)Γ(h− i(n−m))
(2ε)1−h− in

2 , (45)

B =
Γ(1− 2h)Γ(1− in)

Γ(1− h− im)Γ(1− h− i(n−m))
(2ε)h−

in
2 , (46)

C =
Γ(2h)Γ(in)

Γ(h+ im)Γ(h+ i(n−m))
(2ε)−h+ in

2 , (47)

D =
Γ(2h)Γ(−in)

Γ(h− im)Γ(h− i(n−m))
(2ε)−h−

in
2 . (48)

The “in” solution is purely ingoing at the horizon, while
the “N” solution has only the x−h falloff at large x. Here
“N” stands for Neumann, which is the terminology used
[2].5 The Wronskian W is given by

x(x+ 2ε)W (Rnear
in , Rnear

N ) = (1− 2h)A. (49)

From the properties of the differential equation, the com-
bination on the LHS above is known to be independent
of x and may therefore be easily computed at large x.

E. Up solution

We now consider the solution with pure outgoing radi-
ation at infinity, conventionally called the “up” solution.
The normalization is arbitrary and we will choose

Rnear
up = Rnear

in + αRnear
N (50)

in the near zone. At large x we have Rnear
up = Axh−1 +

(B + α)x−h. Matching to (35), we have P = A and
Q = B + α. We can thus write

α = B

(
A

B

Q

P
− 1

)
= B(1/b− 1), (51)

where B is given in (46), and from (37), (45), and (46)
we can compute b ≡ (B/A)(P/Q) to be

b = (−im)2h−1 Γ(1− 2h)2Γ(h− im)2

Γ(2h− 1)2Γ(1− h− im)2

× Γ(h+ i(m− n))

Γ(1− h+ i(m− n))
(2ε)2h−1. (52)

The up solution in the far zone is given by Eq. (34) with

P = A, Q = B + α = B/b. (53)

The behavior near infinity (which controls the outgoing
radiation) is given by plugging Q = B/b into (38). We
thus have

C∞up = −B
b

(−1)−sign(m)hΓ(h− im)

Γ(2h− 1)
eπ|m|(im)h−1+im.

(54)

5 The reason for this terminology is that for real h the falloff x−h

is subdominant compared to x1−h.

F. Retarded Solution

To construct the retarded solution we demand pure
ingoing at the horizon, pure outgoing at infinity, and the
proper match at the delta-function source at x = x0 in
Eq. (31). This is given by

Rnear
ret (x) = Nx0

Rnear
in (x<)Rnear

up (x>)

x(x+ 2ε)W [Rnear
in (x), Rnear

up (x)]

=
Nx0

αA(1− 2h)
Rnear

in (x<)Rnear
up (x>), (55)

where x< and x> are the lesser and greater of x and x0,
respectively. We have used (50) and (49) to evaluate the
Wronskian.

G. Large-n Asymptotics

Thus far we have considered exact solutions of the near
equation (31), where ε (and hence x0 and n) is treated
as finite.We now simplify further using the smallness of
ε, which by (24) corresponds to large n.

We first simplify the expressions for A, B, α, and b.
For this we need the following asymptotic approximation,

Γ(p+ z)

Γ(q + z)
= zp−q, z →∞, (56)

which holds for any complex p, q, z. From (45) and (46)
we have

A =
Γ(2h− 1)

Γ(h− im)
(−in)−im(2ε)−in/2

(
3
2 imx0

)1−h
(57)

B =
Γ(1− 2h)

Γ(1− h− im)
(−in)−im(2ε)−in/2

(
3
2 imx0

)h
, (58)

and from (51) and (52) we have

α = B(1/b− 1) (59)

b =
Γ(1− 2h)2

Γ(2h− 1)2

Γ(h− im)2

Γ(1− h− im)2
(3m2x0/2)2h−1. (60)

(We repeat Eq. (51) for convenience.) In obtaining
these equations we have used that nε = −3mx0/4 from
Eq. (24).

When the radial functions are evaluated at x = x0,
the 2F1 hypergeometrics in Eqs. (39) and (40) reduce to
Whittaker W and M functions via the confluence iden-
tities:

Wν,µ(z) = lim
c→∞ 2F1(µ− ν + 1

2 ,−µ− ν + 1
2 ; c; 1− c

z )

× e−z/2zν (61)

Mν,µ(z) = lim
b→∞

2F1(µ− ν + 1
2 , b; 1 + 2µ;

z

b
)

× e−z/2zµ+ 1
2 . (62)
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Specifically, we have

Rnear
in (x0) = x

− in
2

0

(x0

2ε
+ 1
)i(n

2−m)

× e3im/4(3im/2)−imWim,h− 1
2
(3im/2) (63)

Rnear
N (x0) = (3imx0/2)−h

(
2ε

x0
+ 1

)i(n
2−m)

× e3im/4Mim,h− 1
2
(3im/2), (64)

where we have again used that nε = −3mx0/4.

H. Horizon flux

To compute the power radiated down the event horizon
we need to examine the x → 0 behavior of our solution
and extract the coefficient CH defined in (18). For x < x0

the solution is given by

Rnear
ret (x) =

Nx0

αA(1− 2h)
Rnear

in (x)Rnear
up (x0). (65)

Thus the horizon coefficient is

CH
ret =

Nx0

αA(1− 2h)
CH

inR
near
up (x0), (66)

where CH
in is the horizon coefficient for the in solution.

However, from (41) we have simply CH
in = 1. Using

Eqs. (50) and (59), a more convenient expression is

CH
ret =

Nx0

AB(1− 2h)

(
BRnear

N (x0) +
b

1− b
Rnear

in (x0)

)
.

(67)

Using Eqs. (26), (57), (58), (60), (63), and (64) and sim-
plifying, we find

CH
ret = N

2i

3m
e3im/4(−in)im(2ε)in/2

(
1 +

2ε

x0

)i(n
2−m)

× Γ(h− im)

Γ(2h)

(
M +

b

1− b
Γ(1− h− im)

Γ(1− 2h)
W

)
,

(68)

where we introduce

M = Mim,h− 1
2

(
3im

2

)
, W = Wim,h− 1

2

(
3im

2

)
. (69)

Squaring and plugging into (29) gives the power radiated,

ĖH = − q2

16M2
x0 e

−π|m|S
(
π
2

)2 ∣∣∣∣Γ(h− im)

Γ(2h)

∣∣∣∣2
×
∣∣∣∣M +

b

1− b
Γ(1− h− im)

Γ(1− 2h)
W

∣∣∣∣2 . (70)

The energy flux down the horizon scales as x0, that is for
the ISCO it scales as ε2/3. The formula for b was given in

Eq. (60). When h has an imaginary part, b is order unity

and oscillatory in ε, causing ĖH to have small oscillations.
When h is real, b � 1 and the entire term proportional
to W drops out at the leading order, making there be no
oscillations.

I. Infinity flux

For x > x0 the solution is given in the near-zone by

Rnear
ret (x) =

Nx0

αA(1− 2h)
Rnear

in (x0)Rnear
up (x). (71)

This solution is valid in the near-zone, with x→∞ cor-
responding to the overlap region rather than asymptotic
infinity. To determine the behavior near asymptotic in-
finity one has to match to solutions of the far region.
However, this has already been done when constructing
the “up” solution. Thus the retarded solution near infin-
ity is determined by

C∞ret =
Nx0

αA(1− 2h)
Rnear

in (x0)C∞up. (72)

Using Eq. (54) for C∞up gives

C∞ret = Nx0
1

1− b
Rnear

in (x0)

A

× (−1)−sign(m)hΓ(h− im)

Γ(2h)
eπ|m|(im)h−1+im. (73)

Using Eqs. (63) and (57) and simplifying gives

C∞ret = Nxh0 e
3im/4

(
2ε

x0
+ 1

)i(n
2−m) 2h− 1

1− b
Γ(h− im)2

Γ(2h)2

× (−1)−sign(m)heπ|m|(im)h−1+im(3im/2)h−1 W ,
(74)

where W was defined in (69). Squaring and plugging in
to (28) gives the infinity flux,

Ė∞ =
q2

24M2
(3m2x0/2)2Re[h]m−2eπ|m|S

(
π
2

)2
×
∣∣∣∣2h− 1

1− b
Γ(h− im)2

Γ(2h)2
W

∣∣∣∣2 . (75)

Recall that b is given in Eq. (60) and W is given in

Eq. (69). The energy flux to infinity scales as x
2Re[h]
0 ,

that is for the ISCO it scales as ε(4/3)Re[h]. The domi-
nant modes are when h has an imaginary part, in which
case Re[h] = 1/2 and b ∼ 1 with oscillations. The modes
with real h are subdominant with b � 1 and no oscilla-
tions at leading order.
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J. Agreement with extremal calculation

Ref. [2] solved the physically distinct problem of the
radiation from a particle orbiting at a radius x0 � 1
in precisely extremal Kerr. Remarkably, our final an-
swer (75) for the flux to infinity agrees precisely with
the analogous answer (3.54) of [2] when we identify the
x coordinates (4) in extremal and near-extremal Kerr.6

In [2] the horizon flux was not explicitly given for the
retarded solution, but performing the calculation shows
perfect agreement as well. Near infinity we can also
sensibly compare the detailed radiation pattern, which
agrees as well: The asymptotic behavior of the retarded
field is given by (74) together with (36) and D∞ = 0,
which differs from the expressions in [2] only by the phase
exp[3im/4](2ε/x0 +1)i(n/2−m). This phase is of the form
exp[imf(ε)] and hence can be eliminated at any fixed ε
by the redefinition φ→ φ− f(ε).

For real h the horizon flux (70) is in perfect agree-
ment with the particle number flux (3.27) of [2]. Us-
ing the Kerr/CFT dictionary, this flux was calculated
independently in the CFT as the appropriate transition
rate induced on the state of the system due to coupling
to a source dual to the orbiting particle (Eq. (3.40) of
[2]). Note, however, that the boundary conditions used
for deriving (3.27) of [2] assumed Neumann falloff of the
near solution (rather than the “up” falloff of (50)). The
boundary conditions used here for the retarded solution
were termed “leaky boundary conditions” in [2] because

they allow radiation to leak out of the near region and
reach future null infinity. However, as we saw in the
previous section, for real h, the radiation that leaks to
infinity here is subdominant and the CFT calculations of
[2] still account for the flux down the horizon at leading
order.

IV. GRAVITATIONAL CASE

The problem of the gravitational radiation from a par-
ticle of mass m0 orbiting on the near-extremal ISCO
can be solved in a manner precisely analogous to the
scalar calculation of Sec. III. However, given the agree-
ment in the scalar case with the analogous calculation
of [2] (Sec. III J), we can instead obtain analytic expres-
sions by postulating agreement in the gravitational case
as well. The expression for the gravitational flux at in-
finity is given in Eq. (4.41) of [2]. The flux at the horizon
was not computed in [2], but it is a straightforward ex-
ercise to do so. Identifying these expressions using the
x-coordinate radius of the particle produces expressions
for the power radiated in our near-extremal ISCO prob-
lem. We confirm these expressions numerically.

We now present these results. In some formulae we use
the variable s = −2 (the spin) to emphasize similarity to
the scalar case s = 0. For each mode ` ≥ 2 and |m| ≤ `
the fluxes are given by

ĖH = − m2
0

2632M2

1

|C|2
x0 e

−π|m| |Γ(h− im− s)|2

|Γ(2h)|2

∣∣∣∣Ms +
bs

1− bs
Γ(1− h− im− s)

Γ(1− 2h)
Ws

∣∣∣∣2 (76)

Ė∞ =
m2

0

2533M2
(3m2x0/2)2Re[h]m−2eπ|m|

∣∣∣∣2h− 1

1− bs
Γ(h− im− s)Γ(h− im+ s)

Γ(2h)2
Ws

∣∣∣∣2 , (77)

where

bs =
Γ(1− 2h)2

Γ(2h− 1)2

Γ(h− im− s)
Γ(1− h− im− s)

Γ(h− im+ s)

Γ(1− h− im+ s)

(
3m2x0

2

)2h−1

(78)

Ms = 2
[
(h2 − h+ 6− im)S + 4(2i+m)S′ − 4S′′

]
Mim−2,h− 1

2
(3im/2)

− (h− 2 + im) [(4 + 3im)S − 8iS′]Mim−1,h− 1
2
(3im/2) (79)

Ws = 2
[
(h2 − h+ 6− im)S + 4(2i+m)S′ − 4S′′

]
Wim−2,h− 1

2
(3im/2)

+ [(4 + 3im)S − 8iS′]Wim−1,h− 1
2
(3im/2) . (80)

|C|2 = [(−2 + h)2 +m2][(−1 + h)2 +m2][h2 +m2][(1 + h)2 +m2]. (81)

The spin-2 spheroidal harmonics S(θ) and their eigenvalues K are defined to be the regular solutions to[
∂θ(sin θ ∂θ)

sin θ
+Ks

`m −
m2 + s2 + 2ms cos θ

sin2 θ
− m2

4
sin2 θ −ms cos θ

]
Ss`m = 0, (82)

6 Ref. [2] uses the notation r for our x and λ for our q.
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normalized so that
∫

sin θdθS2 = 1. In Eqs. (79) and (80), a prime represents a θ-derivative and the harmonics
are evaluated at the equator θ = π/2. The spin-2 spheroidal harmonics and their eigenvalues are not native in
Mathematica, but are straightforward to compute using (e.g.) the spectral method of [24]. We provide a notebook
online [25] that implements this method and evaluates the complete analytic flux formulae.

Eq. (78) for bs generalizes the scalar expression (52) for
b, reducing to that expression when s = 0. Eqs. (79)
and (80) for Ms and Ws generalize M and W in the
sense that they play analogous roles in the expressions
for the energy flux, but do not reduce to their scalar
counterparts in any direct sense. The formula for |C|2 is
the same as Eq. (3.23) of [20] (specialized to the modes
appearing in our calculation); it accounts for relating spin
±2 quantities in the Newman-Penrose formalism.

As in the scalar case, bs � 1 for real h, while bs ∼
1 (and is oscillatory) for complex h. The character of
the fluxes is thus precisely analogous to the scalar case;
we refer the reader to the text below (70) and (75) for
discussion.

V. NUMERICAL RESULTS

In this section we describe two new numerical codes
and the comparison of their results with our analytic flux
formulae. It was necessary to construct these new codes
as previously developed software did not work sufficiently
close to extremality to allow for a clear comparison with
the analytic results. Typically the maximum spin achiev-
able in these older codes was around ε ' 10−3, equiva-
lently a ' .9999995M [23, 24]. The two new codes we
present here mark significant improvements over previ-
ous technology, allowing us to work all the way down to
ε = 10−13 or a = .999999999999999999999999995M .

Our new codes feature three key improvements. First,
the codes are implemented in Mathematica, which al-
lows us to work beyond standard machine precision. Sec-
ond, for the gravitational case we derive new, more accu-
rate, asymptotic approximations used for boundary con-
ditions. Third, again in the gravitational case, we em-
ploy a simpler matching procedure to construct inhomo-
geneous solutions to the Teukolsky equation than that
presented in Ref. [24]. We briefly discuss these points
in the following subsection before presenting the com-
parison between the numerical and analytic results in
Sec. V B.

A. Numerical Implementation

The scalar problem was defined at the start of Sec. III.
The main task is to solve the spin-zero Teukolsky equa-
tion (14) with boundary conditions (19) corresponding
to no incoming radiation. We use a reimplementation
in Mathematica of the algorithm presented in Ref. [23].
Briefly, the steps are as follows: (i) construct unit nor-
malized boundary conditions for the homogeneous so-

lutions far from the particle; (ii) using these boundary
conditions, numerically integrate the field equation to
get R`m and its derivative at the particle; (iii) compute
weighting coefficients for the inhomogeneous solutions via
the variations of parameters method. As our source con-
tains a delta-function this reduces to a matching pro-
cedure at the particle’s radius. We refer the reader to
Ref. [23] for the explicit details of each of these steps.7

For gravitational perturbations we opt to solve the
spin-two Teukolsky equation. In this scenario we cannot
proceed exactly as in the scalar case as the ‘long-ranged’
potential of the Teukolsky equation makes it numerically
challenging to avoid contamination from modes with in-
coming radiation. This is a well known problem which is
neatly circumvented by transforming to a new variable as
was first described by Sasaki and Nakamura [26]. Using
the new variable the field equation has a ‘short-ranged’
potential and, as such, is better suited to numerical treat-
ment. Once the Sasaki-Nakamura radial function and its
derivatives are computed at the particle, we transform
back to the Teukolsky radial function and continue, as
in the scalar case, to construct the inhomogeneous so-
lutions via matching. From the matching coefficients we
then extract the radiated fluxes. A similar procedure was
carried out by Hughes [24]. In addition to implementing
our code in Mathematica, we make some important im-
provements as we outline now.

The Sasaki-Nakamura equation takes the form [26]

dX

dr2
∗
− F (r)

dX

dr∗
− U(r)X(r) = 0, (83)

where r∗ is the tortoise coordinate defined by dr∗/dr =
(r2 + a2)/∆ with ∆ = r2 − 2Mr + a2. The functions
F (r) and U(r) are rather unwieldy and can be found
in the Appendix B of Ref. [24]. Asymptotically, as the
horizon and spatial infinity are approached, the ‘outer’
and ‘inner’ radial solutions behave as

X∞(r∗ →∞) ∼ eiωr∗ , (84)

XH(r∗ → −∞) ∼ e−i(ω−mΩH)r∗ , (85)

respectively. In our numerical procedure we must work
on a finite radial domain. Let us denote the boundaries
of this domain by rin and rout. In order to construct
suitable boundary conditions at rin/out we expand the

7 We correct a mistake in the horizon-side boundary conditions in
Ref. [23]. The arXiv version has been updated to give the correct
recursion relation.
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(a) ` = 2,m = 2 (b) ` = 2,m = 1

FIG. 3. Energy flux to infinity for the 2-2 and 2-1 modes in the gravitational case. The analytic results and numerical results

are denoted by Ė(an)
∞ and Ė(num)

∞ , respectively. The 2-2 mode has h ' 1/2 + 2.050928i and hence an exponent of p = 2/3, while
the 2-1 mode has h ' 2.419070 and an exponent of p ' 3.225427. The 2-2 mode also has oscillations, too small to be seen on this
scale but clearly visible in Fig. 4. Note that the results in this figure have been adimensionalized so that Ė(here) ≡ (M/m0)2Ė .

FIG. 4. The ratio of the infinity flux to horizon flux for the
2-2 mode in the gravitational case. The oscillations occur in
both the infinity and horizon fluxes, but are dominated by
the ε2/3 scaling. The ratio removes the dominant scaling and
makes the oscillations clear. The inset shows the absolute
difference between the analytic and numerical results for the
ratio of the fluxes and demonstrates that our numerical results
are in good agreement with the analytic formula through to
ε = 10−13.

above asymptotic forms with the following ansatz

X∞ = eiωr∗
k∞max∑
k=0

a∞k (ωrout)
−k, (86)

XH = e−i(ω−mΩH)r∗

kHmax∑
k=0

aHk (rin − r+)k. (87)

The a
∞/H
k coefficients of these series expansions are de-

termined by substituting the expansions into the Sasaki-
Nakamura equation (83) and solving for the resulting re-
cursion relations. Explicitly finding the recursion rela-

tions is one point where our algorithm differs from pre-
vious work. For example, the first three coefficients in
Eq. (86) were explicitly computed in Ref. [24]; the first
four coefficients were given Ref. [27]. Both the aforemen-
tioned works just set aH0 = 1 and used only the first term
in the horizon expansion, i.e., kHmax = 0. We find that
using just these few terms in the boundary condition ex-
pansions is insufficient for computations around rapidly
rotating black holes. With our recursion relations we can
compute arbitrary numbers of coefficients which allows us
to place the numerical boundaries for the inner and outer
solutions further from the horizon and closer to the edge
of the wavezone, respectively.

The complicated form of the functions F (r) and U(r)
in Eq. (83) makes solving for the recursion relations chal-
lenging, even with the assistance of computer algebra
packages. Such recursion relations are not unique but
the ones we identify have 13 and 14 terms for the infinity
and horizon expansions, respectively. The recursion rela-
tions we compute are too lengthy to be displayed here but
we make them available in electronic format online [25].

To check the recursion relations we set a
∞/H
0 = 1 (we are

free to set this to any non-zero number as we are solv-
ing for the homogeneous solutions), compute a number of
terms in the expansions, substitute the resulting expan-
sion back into the homogeneous field equation (83) and
check that is it satisfied. For the 2-2 mode with the parti-
cle on the ISCO and a . 0.99M we find we can satisfy the
field equation at rout = 100M and rin = r+ + 10−2M to
over 100 significant digits with ease. As we increase the
spin of the black hole the outer boundary doesn’t need
to move but we find we must move the inner boundary
radius inwards so that by the time we reach ε = 10−13

we must place the inner boundary at rin = r+ + 10−15M
to achieve similar accuracy.

Lastly, we briefly mention an improvement in the prac-
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tical application of the variations of parameters method
used to construct the inhomogeneous solutions by inte-
grating the homogeneous solutions against the source.
With this method it is necessary to compute the Wron-
skian of homogeneous solutions and in Ref. [24] this is
calculated at a large radius. To achieve this a variant
of Richardson extrapolation was used to accurately cal-
culate the ‘inner’ homogeneous solution at large radii.
This step is unnecessary as the Wronskian, defined with
derivatives with respect to r∗, is a constant for all r and
so can be calculated at any suitable radius. We find it
convenient to calculate the Wronskian at the particle’s
orbital radius where we can calculate the homogeneous
solutions to high accuracy via direct numerical integra-
tion of the field equation.

As a test of our new Sasaki-Nakamura code we com-
pared our results for the fluxes against those of Ref. [24]
for a ≤ 0.99M , finding agreement to over 8 significant
figures, which is consistent with the given error bars. We
also compare against results of Ref. [28], which solves the
Teukolsky equation as a series of special functions [26],
finding 13 significant figures of agreement.

B. Comparison of results

In this section we compare the fluxes computed with
our new numerical codes against our analytic flux formu-
lae given by Eqs. (70) and (75) for the scalar case and
Eqs. (76) and (77) for the gravitational case. The results
for the scalar and gravitational cases are very similar and
so we will concentrate on the physically more interesting
gravitational case.

In making our calculations we need to evaluate the
spin-weighted spheroidal-harmonics and their eigenval-
ues which are used in both the analytic formula and
the numerical procedure. For the spin-0 harmon-
ics we use Mathematica’s inbuilt SpheroidalPS and
SpheroidalEigenvalue functions. For the spin-2 har-
monics we use the spectral decomposition method de-
scribed in Appendix A of Ref. [24]. For ease of com-
parison we provide a Mathematica notebook online that
evaluates the analytic flux formulae [25].

Our main results are presented in Figs. 3, 4 and Ta-
ble I for the gravitational case. For the scalar case we
give numerical data in Table II. For small ε we find the
numerical and analytic results agree, as expected. As an
example, for the gravitational 2-2 mode we find, for the
flux at infinity, that the relative difference between the

analytically calculated flux, Ė(an)
∞ , and numerically cal-

culated flux, Ė(num)
∞ , is around 6.6% for ε = 10−2. The

agreement improves by ε = 10−13 to over 8 significant
figures.

For all modes the horizon flux scales as ε2/3. On the
other hand, the scaling of the energy flux radiated to
infinity depends on the mode in question, going as εp

where p = 4/3Re[h]. For modes with m ∼ ` the scal-
ing exponent is p = 2/3 but for low m modes p is larger.

Which modes are dominant or subdominant is illustrated
in Fig. 1 for ` ≤ 15. For ` = 2 this difference in scal-
ing can be seen explicitly by comparing the two plots
in Fig. 3. In addition to the leading order scaling, the
horizon flux and the infinity flux for modes with p = 2/3
exhibit oscillations. Taking the ratio of the horizon and
infinity fluxes removes this leading-order behavior and
makes the oscillations clear, as we show in Fig. 4.

The excellent agreement we observe between our ana-
lytical and numerical results gives us confidence in both.
In particular, numerical codes often struggle in such high-
spin regimes and we envisage that our analytic formula
will provide a valuable benchmark for future numerical
work on rapidly rotating black holes.
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Appendix A: Near-Horizon Limits and Symmetries

In this appendix we review the NHEK limits and how
their enhanced symmetry naturally assigns a conformal
weight h to certain solutions of the wave equation. While
all of this material has appeared in some form in the
literature, the references vary in their choices of nota-
tion, coordinate patch, and symmetry algebra basis. We
present the relevant results here with choices suited to
our calculation.

1. Far limit

A convenient form for the Kerr exterior metric in BL
coordinates is

ds2 = −∆

ρ2

(
dt− a sin2θdφ

)2
+

sin2θ

ρ2

(
(r2 + a2)dφ− adt

)2
+
ρ2

∆
dr2 + ρ2dθ2, (A1)

where ∆ = r2−2Mr+a2 and ρ2 = r2 +a2 cos2 θ. Setting
a = M (equivalently ε = 0) gives extremal Kerr. More
formally, we could introduce an auxiliary parameter δ by

ε =
√

1− (a/M)2 = ε̄δ (A2)

for some fixed ε̄. Letting δ → 0 at fixed BL coordinates
produces extremal Kerr. In the language of Geroch [29],
we use the BL coordinates to identify metrics at different
values of δ.
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ε Ė∞ ĖH ∆relĖ∞ ∆relĖH
10−1 1.71745312× 10−2 −3.11049626× 10−3 3.5× 10−1 6.0× 10−1

10−2 5.33839225× 10−3 −1.43536969× 10−3 6.6× 10−2 1.5× 10−1

10−3 1.21422396× 10−3 −3.50339388× 10−4 1.3× 10−2 3.2× 10−2

10−4 2.64399402× 10−4 −7.74081267× 10−5 2.9× 10−3 6.8× 10−3

10−5 5.70914114× 10−5 −1.67667887× 10−5 6.1× 10−4 1.5× 10−3

10−6 1.23059093× 10−5 −3.61646072× 10−6 1.3× 10−4 3.2× 10−4

10−7 2.65150343× 10−6 −7.79336251× 10−7 2.9× 10−5 6.8× 10−5

10−8 5.71261941× 10−7 −1.67911892× 10−7 6.1× 10−6 1.5× 10−5

10−9 1.23075261× 10−7 −3.61759396× 10−8 1.3× 10−6 3.2× 10−6

10−10 2.65157915× 10−8 −7.79388978× 10−9 2.9× 10−7 6.8× 10−7

10−11 5.71265599× 10−9 −1.67914365× 10−9 6.1× 10−8 1.5× 10−7

10−12 1.23075461× 10−9 −3.61760597× 10−10 1.3× 10−8 3.2× 10−8

10−13 2.65158073× 10−10 −7.79389645× 10−11 2.9× 10−9 6.8× 10−9

TABLE I. Sample numerical results and their comparison with the analytic formula for the gravitational 2-2 mode. The second
and third columns give the flux radiated to infinity and through the horizon, respectively. The fourth and fifth columns given

the relative difference between the numerical results and the analytic formulae, i.e., ∆relĖ∞/H = 1− Ė(num)

∞/H /Ė(an)

∞/H . Note that

the data in columns two and three has been adimensionalized so that Ė(here) ≡ (M/m0)2Ė .

ε Ė∞ ĖH ∆relĖ∞ ∆relĖH
10−1 5.85189833× 10−4 −3.34966656× 10−4 −7.4× 10−1 6.1× 10−1

10−2 1.06917341× 10−4 −1.56686813× 10−4 −4.6× 10−1 1.5× 10−1

10−3 1.74509810× 10−5 −3.84548334× 10−5 −1.2× 10−1 3.3× 10−2

10−4 3.48448909× 10−6 −8.51021948× 10−6 −2.6× 10−2 7.2× 10−3

10−5 7.30812181× 10−7 −1.84356886× 10−6 −5.6× 10−3 1.6× 10−3

10−6 1.57583045× 10−7 −3.97754374× 10−7 −1.2× 10−3 3.3× 10−4

10−7 3.38175817× 10−8 −8.56962339× 10−8 −2.6× 10−4 7.2× 10−5

10−8 7.28828188× 10−9 −1.84681469× 10−8 −5.5× 10−5 1.6× 10−5

10−9 1.57315673× 10−9 −3.97796344× 10−9 −1.2× 10−5 3.3× 10−6

10−10 3.37478969× 10−10 −8.57211607× 10−10 −2.6× 10−6 7.2× 10−7

10−11 7.31738299× 10−11 −1.84647008× 10−10 −5.6× 10−7 1.6× 10−7

10−12 1.56369119× 10−11 −3.97866228× 10−11 −1.2× 10−7 3.4× 10−8

10−13 3.40087145× 10−12 −8.57097932× 10−12 −2.6× 10−8 7.2× 10−9

TABLE II. The same as Table I but for a particle carrying scalar charge orbiting at the ISCO. The data in columns two and
three has been adimensionalized so that Ė(here) ≡ (M/q)2Ė .

2. Near-horizon limit

We are free, however, to identify the metrics differently.
If we still use (A2) but instead hold fixed

x̄ =
x

δ
=
r − r+

r+
δ−1, t̄ =

t

2M
δ, φ̄ = φ− t

2M
, (A3)

then letting δ → 0 gives

ds2 = 2M2Γ(θ)

{
− x̄(x̄+ 2ε̄)dt̄2 +

dx̄2

x̄(x̄+ 2ε̄)

+ dθ2 + Λ2(θ)[dφ̄+ (x̄+ ε̄)dt̄]2

}
, (A4)

where Γ(θ) = (1+cos2θ)/2 and Λ(θ) = 2 sin θ/(1+cos2θ).
This is the “near-NHEK” metric [30]. This limit is
expected to be useful for near-extremal, near-horizon
physics. It corresponds to the lowest “crack” in the
throats diagram, Fig. 2.

It is also the near-horizon metric in the more pedes-
trian sense that it agrees with near-extremal Kerr near
the horizon. That is to say, Eq. (A4) may also be ob-
tained by using the coordinates (A3) with δ = 1 and
using x � 1 in the metric components, keeping to lead-
ing order in each component. The redefinition of the φ
coordinate in (A3) is essential for the resulting metric to
be non-singular, making these “good” near-horizon coor-
dinates.
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Consider a scalar field Φ in non-extremal Kerr (ε > 0)
with the usual harmonic t and φ dependence. Expressing
in the scaled coordinates (A3) gives

Φ ∼ e−iωteimφ = e−iω̄t̄eimφ̄, (A5)

where we define

ω̄ =
2Mω −m

δ
. (A6)

If we have a family of scalar fields, one for each ε, then
for this family to have a good near-horizon limit ω must
approach m/(2M) linearly with ε. (Recall that 1/(2M)
is the extremal limit of the horizon angular velocity.) For
a circular orbit of angular velocity Ω we have ω = mΩ.
Thus for the associated mode functions to have a good
near-horizon limit, Ω must approach the extremal hori-
zon frequency linearly with ε.

For the ISCO, Ω − 1/(2M) ∼ ε2/3 and hence ω̄ ∼
δ−1/3. The n defined in the text (16) corresponds to
ω̄/ε̄ with δ = 1, explaining n ∼ ε−1/3 as ε → 0 (24).
The coordinate position of the ISCO also diverges in this
limit, since x0 ∼ ε2/3 and hence x̄ ∼ δ−1/3. Thus from
the near-NHEK point of view, the ISCO orbits infinitely
far away and infinitely fast. This is the physical origin of
the infinitely oscillating phases and the need for large-n
asymptotics.

3. Intermediate (ISCO) limit

In order to avoid these difficulties one could instead
define an alternate limit by keeping (A2) but replacing
(A3) with

x̃ =
r − r+

r+
δ−2/3, t̃ =

t

2M
δ2/3, φ̃ = φ− t

2M
, (A7)

which will keep the ISCO radius and frequency finite. In
this limit the metric becomes

ds2 = 2M2Γ

{
− x̃2dt̃2 +

dx̃2

x̃2
+ dθ2 + Λ2[dφ̃+ x̃dt̃]2

}
,

(A8)

where Γ and Λ are given below (A4). This metric agrees
with the near metric (A4) when x̄ � ε̄ and with the
far metric (extremal Kerr) when x � 1. It too can be
derived the pedestrian way, that is to say, Eq. (A8) may
also be obtained by using the coordinates (A3) with δ = 1
and using ε� x� 1 in the metric components, keeping
to leading order in each component. The ISCO limit is
thus intermediate between the near and far regions, cor-
responding to the middle region in the throats diagram,
Fig. 2.

Eq. (A8) is a non-singular spacetime; in fact it is diffeo-
morphic to (A4). Eq. (A8) is generally called “NHEK”
or“Poincare NHEK” and it is the form originally discov-
ered in [6] as a limit of precisely extremal Kerr. This met-
ric also approximates the near-horizon region of precisely

extremal black hole in the pedestrian sense. Poincare
NHEK and near-NHEK cover different patches of the
maximally extended spacetime.

Despite its adaptation to the ISCO, the limit (A7) does
not appear to be useful in calculating the radiation from
a particle orbiting there. Since the metric does not agree
with near-extreme Kerr at the horizon or at infinity, it
cannot be used to impose boundary conditions at either
place. We have found it more useful to include the ISCO
region in our “near” region in the main body for the pur-
poses of calculation, defined as x � 1 without deciding
between x ∼ ε (the near-horizon region) and x ∼ ε2/3

(the intermediate region). Note that the ISCO is not in
our region of overlap, since that region has x� ε2/3 (as
well as x � 1). Correspondingly, the wave equation as-
sociated with the ISCO limit, that is the NHEK wave
equation, does not appear explicitly in our calculation.
Note however the connection to the extremal calculation
of [2], discussed in the Introduction and in Section III J,
which involved solving explicitly the NHEK wave equa-
tion.

4. Symmetry Group and Conformal Weights

The NHEK spacetime has an enhanced SL(2, R)×U(1)
isometry group. The explicit form of the Killing fields de-
pends on the coordinates and the choice of basis. We will
be agnostic to both, and simply name the Killing fields
H0, H± and W0, demanding only the SL(2, R) commu-
tation relations [H0, H±] = ∓H±, [H+, H−] = 2H0 and
the U(1) generator W0 commuting with everything.

For any complex number h and integer m, an infinite-
dimensional representation {ψh,m,k} with k ≥ 0 may be
constructed as follows. The member ψh,m,0 should satisfy
the highest-weight condition,

LH+
ψh,m,0 = 0 (A9a)

LH0
ψh,m,0 = hψ, (A9b)

together with LW0
ψh,m,0 = imψ. The remaining mem-

bers of the representation are formed by repeated appli-
cation of H−,

ψh,m,k = (LH−)kψh,m,0. (A10)

Here L is the Lie derivative. Since SL(2, R) is not com-
pact, this tower does not terminate and the representa-
tion is infinite-dimensional.

Solutions to the wave equation may be organized in
representations of the isometry group. For simplicity, we
work in the case of a scalar field Φ and drop circumflexes
in order to be agnostic between the coordinates (A4) and
(A8). Adopting the decomposition

Φ = Q(x, t)S(θ)eimφ, (A11)

with S satisfying the angular equation (22), the wave
equation implies:[
LH0

(LH0
− 1)− LH−LH+

]
Φ = (K − 2m2)Φ. (A12)
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The operator on the LHS is the Casimir of SL(2, R); thus
Φ is an eigenstate of the Casimir with eigenvalueK−2m2.
If Φ is also highest-weight (A9) then this becomes

h(h− 1) + 2m2 −K = 0, (A13)

which is solved by

h =
1

2
±
√
K − 2m2 +

1

4
. (A14)

(In the text we define h to be the plus branch of (A14).
The minus branch appears as 1 − h in (e.g.) (33).) The
highest-weight condition thus replaces the second-order
differential equation (A12) with two first-order equations
(A9a) and (A9b). Once the highest-weight solution is
found by solving these equations, further solutions arise
from its descendants via (A10). In this way one con-
structs an infinite tower of solutions for each {K,m} an-
gular mode. It is generally believed that these comprise
a complete basis for solutions of the wave equation. Our
near equation (31) is the radial near-NHEK wave equa-
tion for the ansatz Φ = R(x)e−i(n−m)εtS(θ)eimφ. There-
fore, the near solutions Rnear(x)e−i(n−m)εtS(θ)eimφ must
be expressible as linear combinations of the members of
the highest weight representations labelled by (A14).

5. Where is the extremal Kerr ISCO?

Having introduced three inequivalent limits and dis-
cussed their properties, we conclude with a discussion of
the “location” of the extremal Kerr ISCO, an innocent
question with an amusingly complicated answer.

The far limit produces the extremal Kerr exterior and
the ISCO exits the domain, approaching r = M (x = 0).
Correspondingly, every equatorial (prograde) circular or-
bit in extremal Kerr is stable. If we complete the domain
by including the horizon (e.g. taking the limit at fixed
Doran coordinate), then the ISCO approaches the hori-
zon generators [31].

The near-horizon limit produces near-NHEK (A4) and
the ISCO also exits the domain, approaching x̄0 → ∞.
Correspondingly, there are no stable circular orbits in
near-NHEK [3].

The intermediate limit produces NHEK (A8) and
ISCO achieves a finite coordinate value x̃0 = 21/3. Is
this, then, the location of the ISCO? No: redefining (A7)
by x̃ → cx̃ and t̃ → t̃/c for a number c, we produce
the same limiting metric (A8) but find that the ISCO
instead approached x̃0 = c × 21/3. We can therefore
put the ISCO anywhere we want. Within (A8) itself
this can be seen as the fact that x̃ → cx̃ and t̃ → t̃/c
is a symmetry—the “dilation” member of the enhanced
SL(2, R) symmetry group. This symmetry maps circular
orbits to circular orbits, making all circular orbits phys-
ically equivalent within NHEK.8 In particular, they are
all marginally stable [3], like the ISCO.

Where is the extremal Kerr ISCO? It’s on the horizon
in the far limit, at infinity in the near-horizon limit, and
in the intermediate limit, it is everywhere!
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