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ABSTRACT

We study the shear viscosity to entropy ratio η/S in the boundary field theories dual to

black hole backgrounds in theories of gravity coupled to a scalar field, and generalisations

including a Maxwell field and non-minimal scalar couplings. Motivated by the observation

in simple examples that the saturation of the η/S ≥ 1/(4π) bound is correlated with the

existence of a generalised Smarr relation for the planar black-hole solutions, we investigate

this in detail for the general black-hole solutions in these theories, focusing especially on the

cases where the scalar field plays a non-trivial role and gives rise to an additional parameter

in the space of solutions. We find that a generalised Smarr relation holds in all cases,

and in fact it can be viewed as the bulk gravity dual of the statement of the saturation of

the viscosity to entropy bound. We obtain the generalised Smarr relation, whose existence

depends upon a scaling symmetry of the planar black-hole solutions, by two different but

related methods, one based on integrating the first law of thermodynamics, and the other

based on the construction of a conserved Noether charge.
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1 Introduction

The AdS/CFT correspondence [1–3] has provided many remarkable insights into the con-

nections between gravitational backgrounds in string theory or more general settings, and

strongly-coupled field theories on the boundary of asymptotically anti-de Sitter spacetimes.

One of the most striking results that has emerged is the intriguing universality of the ra-

tio η/S = 1/(4π) of the shear viscosity to entropy for wide classes of gauge theories that

are dual to gravitational backgrounds. This led to the proposal [4–6] of a universal bound

η/S ≥ 1/(4π) for all materials. A number of papers have demonstrated the universality of

this bound for a variety of supergravity and gravity theories [7–10]. (See [11] for a review.)

It was shown in [12] that the shear viscosity is determined by the effective coupling constant

of the transverse graviton on the horizon, by employing the membrane paradigm. (This

was confirmed by using the Kubo formula in [13,14].) In [15], it was shown that the black

hole entropy is determined by the effective Newtonian coupling at the horizon, and that it

is thus not surprising that the ratio of the shear viscosity to the entropy density is universal

in the sense that the dependence of the quantity on the horizon is canceled. Neverthe-

less, it naturally became of interest to seek counter-examples to the conjecture, but within

the framework of standard two-derivative field theories, the bound seems to have been re-

markably robust. A violation was found, however, in the result for η/S for the case of a

bulk five-dimensional theory of Einstein gravity with a Gauss-Bonnet quadratic curvature

correction [16, 17]. Non-universality also occurs in anisotropic configurations, where the

local rotational symmetry is broken [18–21]. In this paper, we shall focus only on isotropic

configurations in two-derivative gravities.

It is of interest to try to uncover some underlying understanding for why the saturation

of the η/S ≥ 1/(4π) is seemingly so widespread in the classes of theories that have been

studied. A possible line of thinking is suggested if we begin by looking at the simple

example of the calculation of η for the case of a planar Schwarzschild-AdSn black hole in

pure Einstein gravity with a cosmological constant, for which the metric is

ds2 = −
(
g2r2 − µ

rn−3

)
dt2 +

(
g2r2 − µ

rn−3

)−1
dr2 + r2 dxidxi . (1.1)

One finds that

η =
(n− 1)M

4π (n − 2)T
, (1.2)

where M = (n − 2)µ/(16π) is the mass per unit (n − 2)-area and T is the Hawking tem-

perature. From the scaling symmetry

r = λ r̂ , xi = λ−1 x̂i , t = λ−1 t̂ , µ = λn−1 µ̂ (1.3)
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of the solution, and the scaling symmetries T = λ T̂ and S = λn−2 Ŝ of the Hawking

temperature and entropy, one has M(λn−2 Ŝ) = λn−1 M̂(Ŝ), and hence acting with λ∂/∂λ

one can easily derive from the first law of thermodynamics dM = TdS that

M =
n− 2

n− 1
TS (1.4)

for the planar Schwarzschild-AdS solution.1 Substituting (1.4) into (1.2), we see that the

result η/S = 1/(4π) in this example can be attributed to the fact that the generalised Smarr

relation (1.4) holds for the planar Schwarzschild black holes.

In view of this observation in the simple example of the planar Schwarzschild black

holes, it is tempting to conjecture that the universality of the viscosity to entropy ratio for

the variety of gravitational backgrounds that have been tested might be attributable to the

universal validity of the appropriate extension of the generalised Smarr relation (1.4).

It is not hard to check in some more complicated examples, such as the case of charged

planar black holes in Einstein-Maxwell theory with a cosmological constant, that indeed the

calculated 1/(4π) ratio for the viscosity to entropy in this case is implied by the generalised

Smarr relation

M =
n− 2

n− 1
(TS +ΦQ) , (1.5)

where Φ is the potential difference between the horizon and infinity, and Q is the conserved

charge per unit area.

In this paper, our focus is on some rather more complicated examples of theories ad-

mitting asymptotically-AdS black holes, in which a scalar field with a scalar potential is

present. Our reason for considering such cases is that one derivation of the generalised

Smarr relation essentially follows from thermodynamical considerations, and the thermody-

namics of black holes in these theories is quite subtle, and even somewhat controversial. We

shall show that nevertheless, by following procedures along the lines of those we described

above in the simple example of planar Schwarzschild-AdS black holes, we are able to derive

generalised Smarr relations that allow us to prove that the widely universal η/S = 1/(4π)

result holds in these cases too.

A rather remarkable aspect of the generalised Smarr relations we obtain is the following.

The general planar black-hole solutions in the Einstein-Scalar theories that we consider

1This is a generalisation, which works only for planar black holes, of the well-known Smarr relation

M = [(n−2)/(n−3)] TS for asymptotically-flat Schwarzschild black holes in n dimensions. (See [22] for the

original discussion of the Smarr formula in four dimensions.) The reason for the different coefficient of TS is

that a different scaling symmetry arises in the asymptotically-flat case. We discuss the distinction between

the two types of Smarr relation in appendix A.
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depend on two independent parameters (mass, and what may loosely be called “scalar

charge”), but these solutions seemingly cannot be constructed explicitly, on account of the

complexity of the equations. One can construct the solutions numerically, by setting initial

data just outside the horizon and then integrating the equations of motion out to infinity.

One can hence determine the parameters of the asymptotic solution numerically in terms

of the parameters on the horizon, but this would appear on the face of it to preclude the

possibility of obtaining an exact result for η/S, since this, as we have seen in the simple

example, is of the general form of M (an asymptotic quantity) divided by TS (quantities

defined on the horizon). However, we find that for the Einstein-Scalar black holes we can

derive a generalised Smarr formula that does precisely what is wanted, by providing an exact

formula expressing the mass in terms of the product TS. Thus although the expressions for

the full set of asymptotic quantities in the solutions can indeed only be found numerically

in terms of the horizon quantities, the precise one we need in order to calculate η/S can be

calculated exactly.

The bulk of this paper, therefore, is concerned with an exploration of the generalised

Smarr formula for planar black holes in certain theories involving a scalar field in addition

to gravity. First, though, we begin in section 2 with a derivation of the shear viscosity in

the Einstein-Scalar theories, by considering transverse-traceless metric fluctuations around

planar black-hole backgrounds. In section 3 we give a review of the thermodynamics of

black holes in Einstein-Scalar theories, and then we use this in order to derive the gener-

alised Smarr relation that the planar black holes satisfy. In section 4 we combine the results

of sections 2 and 3, to show that we obtain the universal result η/S = 1/(4π) in all these

examples, as a consequence of the universal validity of the generalised Smarr relation.i2 In

section 5 we extend our results to planar black holes in Einstein-Maxwell-Dilaton theories.

This discussion includes the added subtleties that arise in four dimensions, where non-

trivial dilatonic black holes carrying both electric and magnetic charge can arise. In section

6 we extend the discussion further, by considering theories where the scalar field couples

non-minimally to gravity. Section 7 contains a rather different derivation of the generalised

Smarr relation for the wide class of Einstein-Maxwell-Dilaton theories, where the scalar cou-

ples minimally or non-minimally to gravity, based on the existence of a conserved Noether

charge in the planar black-hole solutions. We end with conclusions in section 8. In an ap-

pendix, we contrast the generalised Smarr relation for planar asymptotically-AdS black-hole

2A rather different approach that relates the η/S = 1/(4π) result to universal features of black holes was

discussed in [6], where it was shown to be related to the low-energy graviton absoprtion cross section.
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solutions with the traditional Smarr relation for asymptotically-flat spherically-symmetric

black holes.

2 Viscosity Bound in Einstein-Scalar Theories

In this section, we give a derivation of the η/s ratio for black holes in the theory of a

scalar field minimally coupled to gravity in a general dimension n, and with a general scalar

potential V (φ). The theory is described by the n-dimensional Lagrangian

e−1 Ln = R− 1
2(∂φ)

2 − V (φ) , (2.1)

where e =
√

− det gµν . We may take the n-dimensional action to be

Sn =
1

16πG

∫
Ln d

nx . (2.2)

The equations of motion are given by

Rµν = 1
2∂µφ∂νφ+

V

n− 2
gµν , �φ =

∂V

∂φ
. (2.3)

The black holes we shall consider, with flat spatial sections, take the general form

ds2 = −hdt2 + dr2

f
+ r2 dxidxi , (2.4)

where h and f are functions only of r. Substituting into (2.3) gives the equations

V

n− 2
+
fh′

2rh
+
f ′

2r
+

(n− 3) f

r2
= 0 , (2.5)

h′′

h
− h′2

2h2
+
h′ f ′

2fh
− f ′

rf
+

(n− 3)h′

rh
− 2(n − 3)

r2
= 0 , (2.6)

(n − 2)

r

(f ′
f

− h′

h

)
= φ′

2
, (2.7)

f φ′′ +
(
1
2f

′ +
fh′

2h
+

(n − 2) f

r

)
φ′ − ∂V

∂φ
= 0 . (2.8)

We then consider a transverse-traceless metric perturbation in the (n − 2)-dimensional

space of the spatial planar section, by making the replacement

dxidxi −→ dxidxi + 2Ψ dx1dx2 , (2.9)

where for the present purposes it suffices to allow Ψ to depend on r and t only. At the

linearised level one finds, after making use of the background equations (2.5-2.8), that Ψ

satisfies

f Ψ′′ +
[fh′
2h

+
(n− 2) f

r
+ 1

2f
′
]
Ψ′ − 1

h
Ψ̈ = 0 . (2.10)
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For a perturbation of the form Ψ(t, r) = e−iωt ψ(r), we therefore have

f ψ′′ +
[fh′
2h

+
(n− 2) f

r
+ 1

2f
′
]
ψ′ +

ω2

h
ψ = 0 . (2.11)

If we consider a black hole solution of the equations (2.5-2.8), with an horizon located

at r = r0, then near the horizon we shall have the expansions

h(r) = h1 [(r− r0) + h2 (r− r0)
2 + · · · ] , f(r) = f1 (r− r0) + f2 (r− r0)

2 + · · · . (2.12)

(We have written h(r) with an overall scale h1, which is a “trivial” parameter, in the sense

that it can be absorbed into a rescaling of the time coordinate t.) The equation (2.11)

therefore takes the form

(r − r0)
2 f1h1 ψ

′′ + (r − r0) f1h1 ψ
′ + ω2 ψ ≈ 0 (2.13)

near the horizon. This can be solved exactly, leading to the near-horizon ingoing solution

ψin ∝ exp
[
− iω log(r − r0)√

f1h1

]
. (2.14)

(The second, outgoing, solution is obtained by sending ω −→ −ω in (2.14).)

We assume that the black hole is asymptotic to AdSn with Rµν = −(n − 1) g2 gµν

at infinity, where g is the inverse AdSn radius and so the scalar potential is such that

V∞ = V (φ(∞)) = −(n− 1)(n − 2) g2. Furthermore, we shall focus on situations where the

metric functions h and f at large r take the form

h(r) = g2r2 − µ

rn−3
+ · · · , f(r) = g2r2 + · · · . (2.15)

where the ellipses indicate terms with faster fall-offs than those preceding them. It is

convenient then to rewrite the near-horizon metric perturbation (2.14) in the form

ψin = exp
[
− iω√

f1h1
log

h(r)

g2r2

]
. (2.16)

We may then seek the solution for the metric perturbation away from the horizon, in

the approximation where ω is small. This suffices for the subsequent purpose of calculating

the viscosity in the boundary theory, since in the Kubo formula we need only know ψ up

to linear order in ω. Making an ansatz of the form

ψ(r) = exp
[
− iω√

f1h1
log

h(r)

g2r2

] (
1− iωU(r)

)
, (2.17)

and keeping terms only up to linear order in ω, we find that U(r) satisfies the equation

U ′′

U ′ = −n− 2

r
− (fh)′

2fh
, (2.18)
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which can be solved to give

U(r) = c0 + c1

∫ r

r0

dr′

r′n−2
√
f(r′)h(r′)

. (2.19)

In view of the near-horizon expansions (2.12), we see that U(r) would be logarithmically

singular near r = r0 unless we take c1 = 0. Since we wish to normalise the metric pertur-

bation so that ψ(r) −→ 1 at r = ∞, we therefore conclude that the required solution, valid

to linear order in ω, is simply

ψ(r) = exp
[
− iω√

f1h1
log

h(r)

g2r2

]
. (2.20)

We see from this, and using (2.15), that at large r we have the expansion

ψ(r) = 1 +
iωµ√

f1h1 g2 rn−1
+ · · · . (2.21)

Bearing in mind that f1 = f ′(r0) and h1 = h′(r0), and that the Hawking temperature for

black holes of the form (2.4) is given by

T =

√
f ′(r0)h′(r0)

4π
, (2.22)

we see that the metric perturbation has the asymptotic form

ψ(r) = 1 +
iωµ

4πg2 T

1

rn−1
+ · · · . (2.23)

We can then calculate the viscosity using standard methods described in the literature.

For our purposes, it is convenient to follow the procedure given in [17, 23], making use of

the Kubo formula. The first step involves calculating the terms in the action at quadratic

order in the metric perturbation Ψ(t, r). One should include the Gibbons-Hawking term in

the original action when doing this, but the net effect of doing so is simply that the required

quadratic action is the one where second derivatives on Ψ have been removed by performing

integrations by parts. Thus we find the action at quadratic order is given by

S(2)
n =

1

16πG

∫
dnx

[
P1 Ψ

′2 + P2 ΨΨ′ + P3 Ψ
2 + P4 Ψ̇

2
]
, (2.24)

with

P1 = −1
2r

n−2
√
fh , P2 = 2rn−3

√
fh ,

P3 = rn−4
√
fh

(
n− 3 +

r(fh)′

2fh

)
, P4 =

rn−2

2
√
fh

. (2.25)

The integrand in (2.24) can be written as

d

dr

(
P1 ΨΨ′ + 1

2P2Ψ
2
)
+
d

dt

(
P4 ΨΨ̇

)
−Ψ

[
P1 Ψ

′′ + P ′
1 Ψ

′ + P4 Ψ
′′
]
, (2.26)
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where we have used that P3 − 1
2P

′
2 = 0. The last term, enclosed in the square brackets,

vanishes by virtue of the linearised equation (2.10) satisfied by Ψ, and so the integrand in

(2.24) is a total derivative. The prescription described in [17,23] requires knowing only the

P1 ΨΨ′ term, for which we have
∫

L(2)
n dtdn−2x = −1

2 r
n−2

√
fhΨΨ′

∣∣∣
r=∞

, (2.27)

Hence, from (2.23), we have
∫

L(2)
n dtdn−2x =

iωµ(n− 1)

4π T
. (2.28)

Using the prescription in [17,23], we therefore find that the viscosity is given by

η =
(n− 1)µ

64π2T
. (2.29)

It is worthwhile to emphasise at this point that the derivation we have presented is

valid for any planar black hole solution of the equations of motion (2.3) that takes the form

(2.4). That is to say, the result (2.29) was obtained without needing to know the explicit

form of the black hole solutions and without needing to know the explicit form of the scalar

potential V (φ). Thus we are able to calculate the viscosity for the general two-parameter

black hole solutions to the equations (2.5-2.8) explicitly, and for an arbitrary choice of the

scalar potential V , even though the general two-parameter solutions can only be found

numerically.

3 Planar Black Hole Thermodynamics and Smarr Relation

3.1 Review of the thermodynamics of spherically-symmetric black holes

The thermodynamics of the general spherically-symmetric static black hole solutions of the

Einstein-Scalar theory described by (2.1) has been discussed in [24, 25]. These black holes

can be written in the form

ds2 = −hdt2 + dr2

f
+ r2 dΩ2

n−2 , (3.1)

where dΩ2
n−2 is the metric on the unit (n − 2)-sphere. If we assume the scalar potential

V (φ) has a Taylor expansion around a stationary point at φ = 0 of the form

V (φ) = −(n− 1)(n − 2)g2 + 1
2m

2 φ2 + γ3 φ
3 + γ4 φ

4 + · · · , (3.2)

then m is the mass of the scalar field φ in the asymptotically-AdS background. Defining

σ =
√

4ℓ2m2 + (n− 1)2 , (3.3)
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where ℓ = 1/g is the AdS “radius,” one finds that the asymptotic behaviour of the scalar

field is of the form

φ(r) =
φ1

r(n−1−σ)/2
+

φ2

r(n−1+σ)/2
+ · · · . (3.4)

The metric functions h(r) and f(r) have the asymptotic forms3

h(r) = g2r2 + 1− µ

rn−3
+ · · · , f(r) = g2r2 + 1 + · · · . (3.5)

By substituting into the equations of motion, it is easy to see that the large-r expansion has

three independent parameters, which we may take to be µ, φ1 and φ2. All the remaining

higher-order coefficients are determined in terms of these.

If we assume there is a black hole solution with an horizon at r = r0, the metric functions

and scalar field will have near-horizon expansions of the form

h(r) = h1 [(r − r0) + h2 (r − r0)
2 + h3 (r − r0)

3 + · · · ] ,

f(r) = f1 (r − r0) + f2 (r − r0)
2 + f3 (r − r0)

3 + · · · ,

φ(r) = φ̃0 + φ̃1 (r − r0) + φ̃2 (r − r0)
2 + φ̃3 (r − r0)

3 + · · · . (3.6)

(The tilded coefficients in the near-horizon φ field expansion are not the same as the ex-

pansion coefficients in the large-r expansion (3.4).) Note that h1, which is common to all

the terms in the h expansion, is a trivial parameter that is associated with the freedom to

rescale the t coordinate. By plugging the expansions into the equations of motion, one finds

that h1 is, as expected, trivial and undetermined, and there are two non-trivial parameters,

which we may take to be r0 and φ̃0. All the other coefficients are then determined in terms

of these.

Although one cannot obtain the general black-hole solutions to the equations of motion

explicitly, it is easy to see by considering what happens if one integrates out to infinity,

starting from the family of near-horizon solutions coming from (3.6), which have two non-

trivial parameters, that all the members of the family will evolve in a non-singular fashion

to match on to members of the three-parameter family of asymptotic solutions we discussed

above. Thus, we will find that the three parameters in the asymptotic solutions are functions

of the two non-trivial parameters of the near-horizon solutions:

µ = µ(r0, φ̃0) , φ1 = φ1(r0, φ̃0) , φ2 = φ2(r0, φ̃0) . (3.7)

3Depending on the value of the scalar mass parameter m2, there could be circumstances where there are

terms in the large-r expansion (3.4) have slower fall-offs than those displayed explicitly. In order to keep the

discussion as simple as possible, we shall postpone the discussion of such cases until later. The “standard”

cases that we shall discuss first occur when 0 < σ < 1.
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We can, if desired, view these parametric relations instead as saying

φ2 = φ2(µ, φ1) , (3.8)

so that we regard the asymptotic parameters µ and φ1 as the independently-adjustable

parameters of the general two-parameter black-hole solutions, with φ2 determined as a

function of µ and φ1. Numerical calculations straightforwardly confirm the existence of the

two-parameter family of black-hole solutions.

The fact that the full two-parameter family of black-hole solutions cannot be constructed

explicitly makes it a little difficult to give a complete discussion of the black-hole dynamics

or thermodynamics. However, one can make some progress by applying Wald’s analysis

of conserved charges associated with symmetries of the spacetime [26, 27]. Applying it to

the timelike Killing vector ∂/∂t, one derives the following variations at infinity and on the

horizon [25]:

δH∞ =
ωn−2

16π

[
(n − 2)δµ + δK(φ1)−

σ g2

2(n− 1)
[(n − 1− σ)φ1 δφ2 − (n− 1 + σ)φ2 δφ1]

]
,

δHr0 = TδS , (3.9)

where ωn−2 is the volume of the unit (n−2)-sphere, T = κ/(2π) is the Hawking temperature

and S = 1
4A is the Bekenstein-Hawking entropy. The function K(φ1) is a polynomial in φ1,

with coefficients determined by the parameters in the Einstein-Scalar theory. For generic

values of the parameters K(φ1) is zero, but for special values, such as when σ is an integer,

log r terms generally occur in the asymptotic expansions and their occurrence is associated

with K(φ1) being non-zero [25]. The Wald calculation shows that δH∞ = δHr0 , and hence

one has [25]

ωn−2

16π
[(n−2)dµ+dK] = TdS+

σ g2 ωn−2

32π(n − 1)
[(n−1−σ)φ1 dφ2− (n−1+σ)φ2 dφ1] . (3.10)

Equation (3.10) provides a relation between the infinitesimal variations of the parameters

in the black-hole solutions. The left-hand side is the infinitesimal variation of a quantity

with the dimensions of energy, or mass, and it is convenient to define that quantity to be

the Thermodynamic Mass of the black hole. We shall write this as Mtherm, defined by

Mtherm =
ωn−2

16π

[
(n− 2)µ +K

]
, (3.11)

where µ is minus the coefficient of the 1/rn−3 term in the large-r expansion of h(r). Thus,

in terms of the thermodynamic mass, one has the first law

dMtherm = TdS +
σ g2 ωn−2

32π(n − 1)
[(n− 1− σ)φ1 dφ2 − (n− 1 + σ)φ2 dφ1] . (3.12)
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It should be emphasised that the thermodynamic mass Mtherm is logically distinct from

the strict definition of the “Hamiltonian Mass” whose variation would be given by the

expression δMHam = δH∞ if δH∞ in (3.9) were integrable, which it is not for the general

two-parameter black-hole solutions. The viewpoint proposed in [25] is that rather than

taking the non-integrability of δH∞ to signal the end of any attempt to define a mass and

make use of the relation (3.12), it is more useful instead to interpret (3.12) as providing a

definition of the “thermodynamic mass,” which is then given by (3.11). (See also [34,35].)

Thus the thermodynamic mass is an energy function whose variation is the exact (and hence

integrable) part of δH∞. As we shall see shortly, in the case of planar black holes (3.12) may

be employed in order to derive a useful relation between the parameters of the solutions.

Large classes of explicit scalar hairy black-hole solutions have been constructed in

Einstein-Scalar theories in general dimensions [36–41]. However, all these explicit solu-

tions involve only one, rather than the full complement of two, parameters. It then follows,

on dimensional grounds, that in these solutions φ1 and φ2 are related by φn−1−σ
2 = c φn−1+σ

1 ,

where c is a dimensionless constant that is independent of the parameter of the solutions.

As a consequence, the differentials involving dφ1 and dφ2 in (3.12) cancel, and so the first

law does not involve a contribution from the scalar charge in these special solutions. Nu-

merical calculations confirm that two-parameter black-hole solutions do exist [25, 42]. For

these solutions the terms involving φ1 and φ2 do contribute non-trivially in the first law

(3.12), and in fact their contribution in (3.12) is essential in order for the right-hand side

to be an exact form, and hence integrable. Numerical calculations in [25] confirmed that

(3.12) is indeed obeyed for the general two-parameter solutions.

Finally we remark that this technique of deriving the first law of thermodynamics have

been employed recently for AdS and Lifshitz black holes in a variety of theories involving

Proca, Yang-Mills fields and higher-derivative curvature terms [28–31].

3.2 The planar limit of the spherically-symmetric black holes

Having reviewed the essential points presented in [25], we now turn to the consideration of

the thermodynamics of the planar black holes we are studying in this paper. The planar

black holes can be derived from those with spherically-symmetric spatial sections by means

of a limit procedure, in which we write the unit Sn−2 metric dΩ2
n−2 in (3.1) as

dΩ2
n−2 =

du2

1− u2
+ u2dΩ2

n−3 , (3.13)

11



define u = k ū, and then send k to zero. In the small-k limit we have

dΩ2
n−2 −→ k2 (dū2 + ū2 dΩ2

n−3) , (3.14)

which can be recognised as k2 times the Euclidean metric in (n − 2) dimensions, written

in hyperspherical polar coordinates. One can then make the standard transformation to

Cartesian coordinates xi, so that we have

dΩ2
n−2 −→ k2 dxidxi . (3.15)

In order to keep the metric (3.1) non-singular in the limit when k goes to zero, we must

define new barred radial and time coordinates:

r = k−1 r̄ , t = k t̄ , (3.16)

and make appropriate scalings of the various expansion coefficients in the near-horizon and

asymptotic forms for the metric and the scalar field. In particular, in the simplest situation

of the “standard” cases that we are considering first, we shall have

r0 = k−1 r̄0 , µ̄ = k1−n µ̄ , φ1 = k−(n−1−σ)/2 φ̄1 , φ2 = k−(n−1+σ)/2 φ̄2 . (3.17)

After sending k to zero, certain terms in the asymptotic expansions of the metric functions

and the scalar field scale away to zero. These terms include, but are not necessarily restricted

to, the “1” terms in (3.5). Dropping the bars after having taken k to zero, the metric

functions now have the expansions (2.15), while the asymptotic expansion for the scalar field

will still take the same form as in (3.4). The two-parameter family of black-hole solutions

with spherical horizons becomes a two-parameter family of planar black-hole solutions.

Later, we shall discuss some more complicated situations where additional terms disappear

also when taking the planar limit.

3.3 Thermodynamics and Smarr formula for planar black holes

An important new feature of the planar black holes is that they have a scaling symmetry,

absent in the spherical case, which means that there exists a generalised Smarr formula

relating the thermodynamic mass M to the other thermodynamic quantities. In fact the

scaling symmetry is essentially a direct consequence of having derived the planar black-hole

solutions from the spherical ones by taking the singular limit described in the previous

subsection. To study the generalised Smarr relation, we first apply the planar limiting

procedure discussed in the previous subsection to the first law (3.12), in order to obtain

12



the corresponding first law for the planar black holes in the Einstein-Scalar theory. The

quantities M and S will now be viewed as mass and entropy densities, by dividing out by

the volume ωn−2 prior to taking the limit when k goes to zero. It is then easy to see that

the first law (3.12) becomes

dMtherm = TdS +
σ g2

32π(n − 1)
[(n− 1− σ)φ1 dφ2 − (n− 1 + σ)φ2 dφ1] , (3.18)

where the thermodynamic mass density is given by

Mtherm =
1

16π
[(n− 2)µ +K(φ1)] . (3.19)

We shall focus first on the generic cases where there are no log r terms in the asymptotic

expansions of the scalar and metric functions, which means the function K(φ1) in the

definition (3.19) of the thermodynamic mass is absent. However, it will be useful to define

also what we shall call the “gravitational mass,” which is simply given by

Mgrav =
(n− 2)µ

16π
. (3.20)

This is the “naive” mass that is simply associated with the coefficient of the 1/rn−3 term

in g00, which is the leading-order term in the asymptotic expansion of a massless spin-2

mode in the AdS background. When there are no log r terms in the asymptotic expansions,

Mtherm and Mgrav are the same. In cases where there are log r terms, it will turn out that

it is Mgrav that appears in the simplest form of the generalised Smarr relation.

Proceeding for now with the generic discussion for the cases where there are no log r

terms, it is easy to see that there exists a scaling symmetry under which the coordinates

transform as

r = λr̂ , xi = λ−1 x̂i , t = λ−1 t̂ , (3.21)

with the parameters and thermodynamic quantities correspondingly rescaling as

µ = λn−1 µ̂ , φ1 = λ(n−1−σ)/2 φ̂1 , φ2 = λ(n−1+σ)/2 φ̂2 ,

Mtherm = λn−1 M̂therm , T = λ T̂ , S = λn−2 Ŝ . (3.22)

Whenever one has a scaling symmetry of this kind, it is always associated with the existence

of a generalised Smarr formula. To derive the formula in this example, it is useful as an

intermediate step to define a new energy function, which we shall call E, related to Mtherm

by a Legendre transformation such that on the right-hand side of the first law for dE we

have only the differentials dS and dφ1. Thus we define

E =Mtherm − σ (n− 1− σ) g2

32π(n − 1)
φ1 φ2 , (3.23)

13



in terms of which the first law (3.18) becomes

dE = TdS − σ g2

16π
φ2 dφ1 . (3.24)

We may then view E as a function only of S and φ1, and under the scaling symmetry we

may deduce from E = E(S, φ1) that

E
(
λn−2 Ŝ, λ(n−1−σ)/2 φ̂1

)
= λn−1 Ê(Ŝ, φ̂1) . (3.25)

Acting with the Euler operator λ∂/∂λ gives

(n− 2)λn−2 Ŝ
∂E

∂S
+ 1

2 (n− 1− σ)λ(n−1−σ)/2 φ̂1
∂E

∂φ1
= (n− 1)λn−1 Ê . (3.26)

Using (3.24), we obtain the generalised Smarr relation4

E =
(n− 2)

(n− 1)
TS − σ (n− 1− σ) g2

32π(n − 1)
φ1 φ2 . (3.27)

Written back in terms of the original energy function Mtherm using (3.23), we find the

generalised Smarr relation

Mtherm =
n− 2

n− 1
TS . (3.28)

Since Mtherm and Mgrav are equal for the cases we have discussed so far, where there are no

log r terms in the asymptotic expansions, we can also write the generalised Smarr relation

as

Mgrav =
n− 2

n− 1
TS . (3.29)

In fact, this way of writing the Smarr relation is preferable, since, as we shall see in the next

subsection, it is this relation, rather than (3.28), that holds in the cases where there are

log r terms in the asymptotic expansions and hence when Mtherm and Mgrav are unequal.

It should be emphasised that even though the first law (3.18) for the general two-

parameter planar black hole solutions involves the variations of the scalar parameters φ1

and φ2, it has turned out that the generalised Smarr relation (3.29) involves only the product

TS, with a zero coefficient for the term involving the product φ1 φ2 that one might à priori

have expected. Of course, the Smarr relation for a Legendre-transformed energy, such as

the quantity E we defined in (3.23), does then have a φ1 φ2 term, as seen in eqn (3.27).

4Note that the scaling symmetry that is being used here is different from the usual scaling, purely

according to the “engineering dimensions” of the parameters, that one uses when deriving the “standard”

Smarr relation for asymptotically-flat black holes. Here, with r → λ r, we are scaling the mass parameter µ so

that the g2r2 and the −µ/rn−3 terms in the metric function h both scale like λ2, and hence µ → λn−1 µ. By

contrast, in the usual Smarr relations for asymptotically-flat black holes one scales r → λ r and µ → λn−3 µ,

so that the 1 and the −µ/rn−3 terms in the metric function h are both scale-invariant. This different scaling

accounts, in particular, for the different coefficient of the TS term in the generalised Smarr relation we have

obtained here, in comparison to the coefficient in the standard Smarr relation.
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3.4 log r terms and anomalous scaling

In the previous section, we gave a rather general analysis of the derivation of the generalised

Smarr relation (3.29) obeyed by the gravitational mass Mgrav = (n− 2)µ/(16π) in the case

of planar black holes. In certain cases, depending upon the value of the parameter sigma

defined in (3.3), and upon specific features in the scalar potential, log r terms can arise in

the large-r asymptotic expansions of the metric functions and the scalar field. This leads to

modifications in the scaling argument that we used previously in deriving the generalised

Smarr relation.

A nice illustrative example is provided by the case of σ = 1 in n = 4 dimensions. From

(3.3), it can be seen that this corresponds to m2 = −2g2, which is precisely the value of m2

that arises for the scalar fields in gauged four-dimensional supergravity in the maximally

symmetric N = 8 AdS4 background. The asymptotic expansions of the scalar and metric

functions were presented for this example for spherical black holes in [25]:

φ =
φ1
r

+
φ2
r2

− 3γ3 φ
2
1 log r

g2r2
+ · · · ,

h = g2r2 + 1− µ

r
+ · · · ,

f = g2r2 + 1 + 1
4g

2φ21 +
f1
r

− 2γ3 φ
3
1 log r

r
+ · · · , (3.30)

where f1 = −µ+ 1
3γ3 φ

3
1+

2
3g

2 φ1 φ2. Note that here γ3 is the coefficient of the cubic term in

the Taylor expansion (3.2) of the scalar potential. In ordinary N = 8 gauged supergravity

γ3 vanishes, and in that case no log r terms are present in the asymptotic expansions. But

more generally, we may consider theories where γ3 6= 0. In fact this situation can arise in

the recently-discovered ω-deformed N = 8 gauged supergravities [32,33].

Because of the presence of the log r terms, we must modify the scaling transformations

given in (3.16) and (3.17) before taking the k → 0 limit to get the planar black hole solution.

Specifically, the coordinate scalings in (3.16) are unchanged, but the transformation for φ2

is modified, so that (3.17) becomes, for this n = 4, σ = 1 case,

r0 = k−1 r̄0 , µ̄ = k−3 µ̄ , φ1 = k−1 φ̄1 , φ2 = k−2 φ̄2 − 3γ3 φ̄
2
1 k

−2 log k . (3.31)

The net effect, after sending k to zero, and up to the orders displayed in (3.30), is that the

“1” terms in the metric functions disappear, and so for the n = 4, σ = 1 planar black holes
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we have

φ =
φ1
r

+
φ2
r2

− 3γ3 φ
2
1 log r

g2r2
+ · · · ,

h = g2r2 − µ

r
+ · · · ,

f = g2r2 + 1
4g

2φ21 +
f1
r

− 2γ3 φ
3
1 log r

r
+ · · · , (3.32)

After taking the k → 0 limit the first law, calculated in [25], takes the form

dMtherm = TdS +
g2

48π
(φ1 dφ2 − 2φ2 dφ1) , (3.33)

with

Mtherm =
1

16π
(2µ +K(φ1)) , K(φ1) =

1
3γ3 φ

3
1 . (3.34)

The presence of the K(φ1) term here is associated with the occurrence of the log r terms in

the asymptotic expansions of the scalar and metric functions.

Turning now to the derivation of the generalised Smarr relation for this example, the

previous expressions for the rescalings given in (3.21 and (3.22) also require modification

because of log r terms. The coordinate rescalings themselves are unchanged, but now we

find that in order for φ(r) to be invariant, and for h(r) and f(r) to scale with overall λ2

factors as they did before, we must now have, in this n = 4 and σ = 1 case, that

µ = λ3 µ̂ , φ1 = λ φ̂1 , φ2 = λ2 φ̂2 + 3γ3 g
−2 φ̂21 λ

2 log λ . (3.35)

Note that we still have Mtherm = λ3 M̂therm. Defining the Legendre-transformed energy

function E as before using (3.23), we have

E =M − g2

48π
φ1 φ2 , (3.36)

which therefore obeys the first law

dE = TdS − g2

16π
φ2 dφ1 , (3.37)

and so E can again be treated as a function of S and φ1. It is important to note that

although Mtherm scales in the standard way, Mtherm = λ3 M̂therm, it follows from (3.35) and

(3.36) that E obeys the anomalous scaling transformation

E = λ3 Ê − γ3
16π

λ3 φ̂31 λ
3 log λ . (3.38)

This leads to a modification in the standard scaling relation (3.25), leading, in this n = 4,

σ = 1 case, to

E(λ2 Ŝ, λ φ̂1) = λ3 Ê − γ3
16π

λ3 φ̂31 λ
3 log λ . (3.39)
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Acting with the Euler operator λ∂/∂λ and using the first law (3.37), we conclude that E

obeys

E = 2
3TS − g2

48π
φ1 φ2 +

γ3
48π

φ31 . (3.40)

Returning now to the thermodynamic mass Mtherm, related to E by (3.36), we therefore

obtain the generalised Smarr relation

Mtherm = 2
3TS +

γ3
48π

φ31 . (3.41)

Finally, we see from definitions (3.20) and (3.34) that Mgrav obeys the very simple gener-

alised Smarr relation

Mgrav = 2
3TS . (3.42)

Thus, despite the occurrence of the unusual new feature of log r terms in the asymptotic

expansions, and the associated anomalous scaling law for φ2 as seen in (3.35), we find that in

the end the “gravitational mass” Mgrav = µ/(8π) continues to satisfy the same generalised

Smarr relation (3.29) (specialised to n = 4) as in the standard cases with no anomalous

scaling.

The phenomenon we have illustrated above for the special case of n = 4 and σ = 1

is representative of what happens in all cases where planar black holes solutions in the

Einstein-Scalar theory have log r terms in the asymptotic expansions for the scalar and

metric functions. The conclusion in all cases is that the generalised Smarr relation (3.29)

holds, with the gravitational mass defined in (3.20) appearing on the left-hand side. A

few further examples, for black holes with spherical spatial sections, can be found in [25].

By applying the appropriate scalings, analogous to (3.16) and (3.31), one can obtain the

corresponding planar black holes solutions in the limit when k goes to zero. The derivation

of the generalised Smarr relation then goes in a manner that is very analogous to our

derivation above, leading in general to the conclusion that Mgrav is related to T and S by

(3.29). A further point worth noting is that in some cases, the effect of taking the k → 0

planar limit can be to remove more than just the “1” terms in the asymptotic expansions

of the metric functions h and f . In particular, one finds that in the metric function h,

whenever the spherical black hole solutions have terms with r dependence lying between

the leading-order g2r2 term and the mass term −µ/rn−3, then these terms scale away to zero

when k goes to zero. Thus, for the planar black holes one always finds that the asymptotic

expansions of the functions h and f are of the form given in (2.15), with no intermediate

powers between g2r2 and −µ/rn−3 in h, even if there are such intermediate powers in the
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corresponding spherical black-hole solutions. We give a proof of this statement in section

7.

3.5 Imaginary σ = i σ̃

We have established at this point that for all real values of the constant σ, defined in

terms of the mass m of the scalar field by (3.3), there is a generalised Smarr formula given

by (3.29), relating the “gravitational mass” Mgrav defined in (3.20) to the product of the

entropy and temperature of the black hole. By a further extension of these arguments,

we can include also the case where m2 < −1
4g

2 (n − 1)2, corresponding to a scalar field

whose mass-squared is more negative than the Breitenlöhner-Freedman bound. As formal

solutions of the equations, Einstein-Scalar black holes exist also in this regime where σ is

imaginary. They are discussed in [25] for the case of spherically-symmetric black holes.

Before taking the scaling limit to obtain the planar black holes, it is helpful to rewrite

the spherically-symmetric black holes with σ = i σ̃ that are discussed in [25] in terms of a

reparameterisation of the two scalar field coefficients φ1 and φ2, by writing

φ1 = Φ sinχ , φ2 = Φ cosχ . (3.43)

The asymptotic expansions presented in [25] then become

φ =
Φ sin(χ+ 1

2 σ̃ log r)

r(n−1)/2
+ · · · , h = g2r2 + 1− µ

rn−3
+ · · · ,

f = g2r2 + 1 +
1

rn−3

[
− µ (3.44)

+
g2 Φ2

(
2(n − 1)2 sin2(χ+ 1

2 σ̃ log r) + σ̃2 − (n− 1) σ̃ sin(2χ+ σ̃ log r)
)

8(n − 1)(n − 2)

]
+ · · · .

The first law obtained in [25] becomes

dMtherm = TdS +
g2 σ̃ ωn−2

16π
Φ2 dχ , (3.45)

with

Mtherm =
ωn−2

16π

[
(n− 2)µ +K

]
, K = − g2 σ̃2

8(n− 1)
Φ2 . (3.46)

Applying the scalings (3.16), together with

µ = k1−n µ̄ , Φ = k−(n−1)/2 Φ̄ , χ = χ̄+ 1
2 σ̃ log k , (3.47)

we obtain the planar limit of these black holes. The effect in the expansions displayed in

(3.44) is to remove the “1” terms in the expressions for h and f . The first law and the
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expression for Mtherm are unchanged, except that we now, as usual, omit the factors ωn−2.

The scaling symmetry of the planar black holes is given by

r = λ r̂ , µ = λn−1 µ̂ , Φ = λ(n−1)/2 Φ̂ , χ = χ̂− 1
2 σ̃ log λ , (3.48)

with S = λn−2 Ŝ and T = λT as usual, and so applying the Euler operator λ∂/∂λ to

Mtherm(λ
n−2 Ŝ, χ̂− 1

2 σ̃ log λ) = λn−1 M̂therm(Ŝ, χ̂) (3.49)

and using the first law, we obtain

Mtherm =
(n− 2)

(n− 1)
TS − g2 σ̃2

126(n − 1)π
Φ2 . (3.50)

It then follows from (3.20) and (3.46) that the gravitational mass Mgrav again satisfies the

simple generalised Smarr relation (3.29).

This completes our derivation of the generalised Smarr relation (3.29) for the general

two-parameter planar black hole solutions in the Einstein-Scalar theories described by the

Lagrangian (2.1). It was not necessary, for the purpose of this derivation, to know the

explicit form of these solutions, nor even to know the detailed form of the scalar potential.

It is rather remarkable that nonetheless, we are able to obtain an exact expression for the

coefficient µ of the “mass term” −µ/rn−3 in the large-r expansion of the metric function

h(r), purely in terms of T and S, which are quantities defined on the horizon of the black

hole. As we shall discuss in the next section, this allows us to calculate the exact viscosity

to entropy ratio for all the Einstein-Scalar black holes, even though it is only possible to

construct the actual black-hole solutions numerically.

4 Viscosity Ratio for the Einstein-Scalar Planar Black Holes

We are now in a position to give an explicit evaluation of the ratio η/S for the general

two-parameter family of Einstein-Scalar black holes. From the expression (2.29) for the

viscosity, we see that
η

S
=

(n− 1)µ

64π2 TS
. (4.1)

From the definition (3.19) of the gravitational mass, we then find

η

S
=

(n− 1)

(n− 2)

Mgrav

TS

1

4π
. (4.2)

Finally, it follows from the generalised Smarr relation (3.29) that

η

S
=

1

4π
(4.3)
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for the entire two-parameter family of planar black holes in the Einstein-Scalar theory

described by (2.1).

The intriguing conclusion from this discussion is that for the entire two-parameter family

of planar black hole solutions in Einstein-Scalar gravity, the universality of the 1/(4π)

viscosity to entropy ratio can be seen to be due to the universal validity of the generalised

Smarr relation (3.29). Furthermore, it was not necessary to be able to construct the solutions

explicitly (and indeed, the general solution can only be obtained numerically), and the

universal result holds regardless of the detailed form of the scalar potential.

Large classes of explicit scalar hairy planar black-hole solutions have been constructed

in Einstein-Scalar theories in general dimensions [38–40], and it can easily be verified that

they indeed all satisfy the generalised Smarr relation. However, since all these explicit solu-

tions involve only one, rather than the general two, parameters, it follows from the earlier

discussion in the end of section 3.1 that the first law does not involve a contribution from the

scalar charges. The fact that the generalised Smarr relation holds, and the consequent sat-

uration of the viscosity bound, is then rather straightforward and not especially remarkable

in the case of these special solutions. Indeed an explicit demonstration of η/S = 1/(4π)

for such a one-parameter family of scalar black holes was performed in [43]. Numerical

black-hole solutions with the complete complement of two independent parameters have

been constructed in [25,42]. We have confirmed for these solutions, and demonstrated nu-

merically, that the generalised Smarr formula is indeed obeyed for these general solutions.

Since we shall in any case present an alternative proof of the generalised Smarr relation, in

section 7, we shall not present the numerical calculations here.

5 Einstein-Maxwell-Dilaton Theory

5.1 General result

We now consider the Einstein-Scalar theory coupled to a Maxwell field described by the

1-form potential A. A general class of Lagrangians is given by

e−1L = R− 1
2(∂φ)

2 − 1
4Z(φ)F

2 − V (φ) , (5.1)

where F = dA. In supergravities, Z is typically an exponential function of φ, but here we

shall allow Z to be an arbitrary function of φ. Exact solutions of charged black holes with

certain more general Z are constructed in [44]. We shall assume for convenience that, as in

the Einstein-Scalar case, the relevant stationary point of the scalar potential is at φ = 0, so
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that φ will asymptotically approach zero at r = ∞. As in the pure Einstein-Scalar case we

discussed previously, we shall consider planar black hole solutions, taking the form

ds5 = −h(r)dt2 + dr2

f(r)
+ r2 dxidxi , A = a(r) dt , φ = φ(r) . (5.2)

The Maxwell equation implies that

a′ =
q

Z rn−1

√
h

f
, (5.3)

where the q is the electric charge (density) parameter. The conserved electric charge density

is given by

Qe =
1

16πωn−2

∫

r→∞
Z∗F =

q

16π
. (5.4)

As in the Einstein-Scalar case, we consider a transverse-traceless metric perturbation

in the (n − 2)-dimensional space of the spatial planar section, by making the replacement

(2.9). At linearised order, the perturbation can again be solved straightforwardly. Taking

Ψ(t, r) = e−iωt ψ(r), we find

ψ(r) = exp
[
− iω√

h1f1
log

h

g2r2

]
(1− iωU +O(ω2)) , (5.5)

where

U = c0 −
q√
h1f1

∫
a− c1

rn−2
√
hf

, (5.6)

and f1 and h1 are the coefficients of the leading-order terms in the near-horizon expansions

(2.12). Making a gauge choice so that a(r) vanishes on the horizon, we must then require

that the two integration constants c1 and c0 both vanish, so that U is non-singular on the

horizon and that Ψ equals 1 at r = ∞.

We shall consider black holes that are asymptotic to AdSn, with

h ∼ g2r2 − µ

rn−3
+ · · · , (5.7)

It follows that

ψ = 1 +
iω

g2rn−1

µ− 1
n−1Φeq

4πT
+O(ω2)

= 1 +
iω

g2rn−1

4

T

(Mgrav

n− 2
− ΦeQe

n− 1

)
+O(ω2) , (5.8)

where Mgrav is defined in (3.20) and Φe = −a(∞) is the electric potential at infinity. The

relevant part of the surface term of the action for the linear mode Ψ is given by (2.27) and

hence the viscosity/entropy ratio is given by

η

S
=

1

4π TS

(n− 1

n− 2
Mgrav − ΦeQe

)
. (5.9)
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The general planar black-hole solution in n ≥ 5 dimensions involves three independent

parameters, namely the mass, the scalar charge and the electric charge. The first law of

thermodynamics is given by

dMtherm = TdS +ΦedQe +
σ g2

32π(n − 1)
[(n− 1− σ)φ1 dφ2 − (n− 1 + σ)φ2 dφ1] , (5.10)

where the scalar contribution and the relation between Mtherm and Mgrav was extensively

discussed in the previous sections. Since the scaling behavior of (Φe, Qe) is the same as

that of (T, S), it follows from a straightforward extension of the earlier discussion that the

generalised Smarr formula will given by

Mgrav =
n− 2

n− 1
(TS +ΦeQe) , (5.11)

Thus the viscosity/entropy ratio is again given by (4.3).

In four dimensions, the Maxwell field A can carry both electric and magnetic charges,

with the gauge potential given by

A =
q

Z r

√
h

f
dt+ px1dx2 . (5.12)

Note that there is no continuous electric/magnetic duality symmetry that would allow one

to rotate the system into a purely electric or purely magnetic complexion, except in the

special case when Z(φ) is just a constant. Thus the electric and magnetic charge parameters

are genuinely independent parameters in the solutions, except in the Z = constant special

case. The electric and magnetic charge densities are now

Qe =
q

16π
, Qm =

p

16π
. (5.13)

The derivations of the first law and the generalised Smarr relation proceed in close

analogy to the previous case we discussed, and the upshot is that the four-parameter planar

black holes obey the relation

Mgrav =
n− 2

n− 1
(TS +ΦeQe +ΦmQm) , (5.14)

For the linearised transverse and traceless mode Ψ(r, t) = e−iωt ψ(r), we find that up to

linear order in ω,

ψ = exp
[
− iω√

h1f1
log

h

g2r2

]
(1− iωU) , (5.15)

where

U = c0 −
1√
h1f1

∫
dr

W

r2
√
hf

, W ′ =
1

r2

(q2
Z

+ p2Z
)√h

f
. (5.16)

22



Note that the q2 term above is given by qa′, and the corresponding term becomes Φeq.

Owing to the electric and magnetic duality, the remaining term in W gives Φmp. Following

the same calculational steps as before, we now find

η

S
=

1

4π TS

(3
2
Mgrav − ΦeQe − ΦmQm

)
. (5.17)

The generalized Smarr formula (5.14) then implies that η/S is again given by (4.3).

5.2 Dyonic Kaluza-Klein AdS black hole

An explicit four-dimensional dyonic black hole solution was found in [45]. The solution has

three non-trivial parameters, which may be viewed as the mass, the electric and the magnetic

charges. Although it does not contain the full complement of four independent parameters

of the general solutions (which can only be obtained numerically), it has sufficiently many

parameters that the role of the “charge” for the scalar field can be exhibited in a non-trivial

way.

The four-dimensional Lagrangian for this example is a consistent truncation of N = 8

gauged supergravity (in fact, a consistent truncation of the gauged STU model, where only

one of the four U(1) gauge fields is retained, and the axion in then consistently truncated

also). The Lagrangian is given by (5.1) with

Z = e−
√
3φ , V = −6g2 cosh( 1√

3
φ) . (5.18)

Both the spherically-symmetric and planar asymptotic-AdS dyonic black holes were con-

structed in [45]. For our present purposes, we shall consider just the planar black hole,

which is given by [45]

ds2 = −(H1H2)
− 1

2 fdt2 + (H1H2)
1

2

(dρ2
f

+ ρ2(dx2 + dy2)
)
,

φ =

√
3

2
log

H2

H1
, f = −µ

ρ
+ g2ρ2H1H2 ,

A =
√

1
2µ

( (ρ+ 2β1)√
β1H1 ρ

dt+ 2
√
β2 xdy

)
,

H1 = 1 +
4β1
ρ

+
4β1β2
ρ2

, H2 = 1 +
4β2
ρ

+
4β1β2
ρ2

. (5.19)

(We have rescaled µ by a factor of 2 relative to the solution presented in [45], to fit with

our conventions in the rest of this paper.) Note that the radial coordinate being used here,

which we call ρ to distinguish it from r that we are using in the rest of this paper, is related

to r by r = ρ (H1H2)
1/4.
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The parameter µ can be expressed in terms of the horizon radius ρ = ρ0, namely

µ = g2ρ30H1(ρ0)H2(ρ0) , (5.20)

Here we are, for convenience, assuming that the R
2 coordinates (x, y) have been identified

to give a 2-torus of volume 4π. One can take any other choice for the volume, with the

understanding that the extensive quantities should be scaled by the relative volume factor.

We find that the remaining thermodynamic quantities are given by

M =
µ

8π
, Qe =

1

8π

√
µβ1 , Qm =

1

8π

√
µβ2 ,

Φe =
2
√
µβ1(r0 + 2β2)

r20H1(r0)
, Φm =

2
√
µβ2(r0 + 2β1)

r20H2(r0)
,

φ1 = 2
√
3(β2 − β1) , φ2 = 2

√
3(β21 − β22) . (5.21)

Note that φ1 and φ2 here are, as in the rest of this paper, the leading coefficients of the

large-distance expansion for φ, using the r coordinate. Thus φ = φ1/r + φ2/r
2 + · · · here.

It is now straightforward to verify that

dM = TdS +ΦedQe +ΦmdQm +
g2

48π
(φ1dφ2 − 2φ2dφ1) . (5.22)

It is worth noting that

φ1 dφ2 − 2φ2 dφ1 = 24(β1 − β2) (β2 dβ1 − β1 dβ2) , (5.23)

and so unlike in some simple solutions that have been discussed elsewhere in the literature,

here the scalar terms φ1 dφ2 − 2φ2 dφ1 play an essential role in the relation (5.22) between

the infinitesimal variations of the black-hole parameters. (The right-hand side of (5.22)

would not be an exact form if these terms were omitted.) It can easily be seen that the

quantities given above obey the generalized Smarr formula (5.14).

6 Non-Minimally Coupled Scalar

In this section, we consider Einstein-Maxwell-Dilaton theories in which the dilaton couples

non-minimally to gravity, with a Lagrangian given by

e−1L = κ(φ)R − 1
2(∂φ)

2 − 1
4Z(φ)F

2 − V (φ) , (6.1)

for which the equations of motion are

κ(φ)Gµν = ∇µ∇ν κ(φ)−�κ(φ) gµν + 1
2

(
∂µφ∂νφ− 1

2(∂φ)
2 gµν

)
+ 1

2V (φ) gµν

+1
2Z(φ)

(
Fµρ Fν

ρ − 1
4F

2 gµν

)
,

�φ =
∂V (φ)

∂φ
− ∂κ(φ)

∂φ
R+ 1

4

∂Z(φ)

∂φ
F 2 , ∇µ

(
Z(φ)Fµν

)
= 0 , (6.2)
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where Gµν = Rµν − 1
2Rgµν is the Einstein tensor. We shall assume that both the functions

κ(φ) and Z(φ) become unity when φ = 0, which is a stationary point of the potential V (φ).

We consider black holes of the type (5.2), with an horizon located at r = r0. We may

easily verify that the linearised transverse and traceless perturbative mode is again given

by (5.5), but with the function U now given by

U =
q√
h1f1

∫
a

rn−2κ(φ)
√
hf

, (6.3)

where a is chosen to be in the gauge for which it vanishes on the horizon. Since now the

relevant surface term in the quadratic action of the linearised mode is

−1
2 r

n−2 κ(φ)
√
fhΨΨ′

∣∣∣
r=∞

, (6.4)

rather than the previous expression (2.27), it follows that the viscosity/entropy ratio will

be the same as that given in (5.9), where now the entropy is given by κ(φ)|r=r0 multiplying

the area of the horizon. Thus we see that again η/S = 1/(4π), as a consequence of the

generalised Smarr formula.

Many examples of exact black-hole solutions in such theories have been found in the

literature [40, 46–49] and it can easily be verified that all of them indeed satisfy the gen-

eralised Smarr formula. Of course, these exact solutions all have fewer than the maximal

number of independent parameters, and the first law of thermodynamics therefore does not

involve the scalar charges. The working of the generalised Smarr formula, and hence the

saturation of the viscosity bound, is therefore less striking in these explicit special cases.

7 Noether Charge, Generalised Smarr formula and Viscosity

Bound

In the previous sections, we established the link between the saturation of the viscosity

bound and the generalised Smarr relation in the general Einstein-Maxwell-Dilaton theory,

both with a minimal and with a non-minimal scalar coupling to gravity. Owing to the

existence of the extra scalar “charges” in asymptotically-AdS spacetimes, one might have

expected the generalised Smarr formula to include a contribution from these, but as we saw

in detail this does not occur. We derived this result by making use of scaling arguments

and the first law of black hole (thermo)dynamics, derived from the Wald formalism. Al-

though instructive as a demonstration of the interplay between scaling and the first law,

the derivation was somewhat indirect. In this section, we obtain further insights by pre-
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senting a different derivation of the generalised Smarr relation, based on the construction

of a Noether charge associated with the relevant scaling symmetry.

7.1 Einstein-Maxwell-Dilaton theory

We start with the most general theory (6.1) we have considered in this paper, which en-

compasses all the previous cases. We rewrite the black hole ansatz as

ds2 = −u dt2 + dρ2 + v dxidxi , A = a dt , (7.1)

where u, v, a and the scalar φ are all functions only of the coordinate ρ. Since this is the

most general ansatz that respects the isometries, we can safely substitute the ansatz into

the Lagrangian, finding

L = u vn−2
[
κ
(
−2

ü

u
−2(n−2)

v̈

v
−(n−2)(n−3)

v̇2

v2
−2(n−2)

u̇v̇

uv

)
− 1

2 φ̇
2− 1

2Z
ȧ2

u2
−V

]
, (7.2)

where a dot denotes a derivative with respect to ρ. The Lagrangian is invariant under the

global scaling

u→ λ−(n−2) u , v → λ v , a→ λ−(n−2) a . (7.3)

If we now allow λ to be ρ dependent, then by integrating by parts and collecting the

coefficient of λ̇, we can derive the conserved Noether charge

2κ(vu̇ − uv̇)vn−3 − Zau−1vn−2 ȧ = c = const. (7.4)

Re-writing this equation using the r coordinate defined in (5.2), and substituting also (5.3),

we find

κ
√
hf

(h′
h

− 2

r

)
rn−2 + q a = c . (7.5)

Note that for q = 0 and κ(φ) = 1, this is just the first integral of the second-order differential

equation (2.6).

Assuming that the solution is asymptotic to AdS, for which it is necessary (but not

sufficient) that f and h have the asymptotic forms h = g2r2 + · · · and f = g2r2 + · · · as

r → ∞, and assuming also that κ→ 1 asymptotically, we can then conclude from (7.5) that

h = g2r2 − µ

rn−3
+ · · · , (7.6)

with no slower-falling intervening terms between the g2r2 and the −µ/rn−3 terms.5 Corre-

5We emphasise that this absence of intervening terms in the asymptotic form of h is deduced using

the first-order equation (7.5), which is valid for planar black holes but not spherically-symmetric black

holes. Indeed, in our discussion in section 3.4 we discussed cases where the spherically-symmetric black-hole

solutions presented in [25] had such intervening terms in the asymptotic expansion of h, but these all scaled

away when the planar limit was taken.
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spondingly, the constant c in (7.5) is simply given by c = (n − 1)µ. Applying the identity

(7.5) instead on the horizon, we therefore find

(n− 1)µ = 16π(TS +ΦeQe) . (7.7)

It then follows from (3.20) that generalized Small formula (5.11) holds (or, with a straight-

forward extension of the above argument in n = 4 dimensions, (5.14)), and hence the

viscosity bound η/S ≥ 1/(4π) is saturated. Note that in this calculation, we have chosen

the gauge where a vanishes at infinity. Alternatively, we could choose the gauge where a

vanishes instead on the horizon. In this case, the constant c becomes (n− 1)µ− 16πΦeQe,

when evaluated at asymptotic infinity, and 16πTS when evaluated on the horizon. The

generalized Smarr relation (7.7) continues to hold.

7.2 Gauss-Bonnet gravity

We now examine the relation between the generalised Smarr formula and the viscosity/entropy

ratio for an example of a theory with higher-derivative terms, namely Einstein-Maxwell the-

ory with a cosmological constant and an added Gauss-Bonnet term. We take the Lagrangian

in general dimensions to be given by

e−1Ln = R− α(R2 − 4RµνRµν +RµνρσRµνρσ)− 1
4F

2 + (n− 1)(n − 2)g2 . (7.8)

The exact solution for the planar black hole in Gauss-Bonnet gravity was constructed in [50].

In fact, however, in the following discussion it will not be necessary to know the explicit

form of the solution. Following the same procedure as in the previous subsection, we obtain

the Noether charge

√
hf

(h′
h

− 2

r

)(
r2 − 2(n− 3)(n − 4)αf

)
rn−4 + q a = c . (7.9)

In dimensions n ≥ 5 the Gauss-Bonnet term modifies the effective cosmological constant

in asymptotically-AdS solutions, such that h and f will have the leading-order asymptotic

forms h = g̃2r2 + · · · , f = r̃2 + · · · , where g and g̃ are related by

g2 = g̃2 [1− (n− 3)(n − 4)α g̃2] . (7.10)

By evaluating (7.9) asymptotically and on the horizon, in the same manner is in the previous

subsection, it is then straightforward to see that c = (n− 1)µ [1− 2α(n− 3)(n− 4) g̃2] and

hence we obtain a modification to the previous generalised Smarr formula, with

(n− 1) [1 − 2α(n − 3)(n − 4) g̃2]µ = 16π(TS +ΦeQe) . (7.11)
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Since the mass is given by

M =
1

16π
(n− 2) [1 − 2α (n− 3)(n − 4) g̃2]µ , (7.12)

the usual generalised Smarr relation (5.11) continues to hold. However, as shown in [17]

for a neutral planar black hole in n = 5 dimensions, the viscosity/entropy ratio, after

re-expressing in our notation, is given by

η

S
=

1

4π
(1− 4α g̃2)2 , (7.13)

and so the correlation between the Smarr relation and the viscosity bound no longer holds

in this higher-derivative example.

8 Conclusions

Motivated by an interest in trying to understand the rather widespread universality of the

ratio η/S = 1/(4π) in boundary field theories dual to bulk two-derivative theories involving

gravity, we have investigated the relation to a generalisation of the Smarr formula of classical

general relativity. The generalised Smarr formula in question arises as a consequence of a

scaling symmetry that is a specific feature of planar black holes, and which is absent in the

case of black holes with spherical symmetry.

One way in which the generalised Smarr relation can be derived is via thermodynamic

considerations. Starting from the first law of thermodynamics for a class of black-hole

solutions, and given a scaling symmetry of the system of solutions, one can essentially

integrate up the first law to obtain an algebraic expression for the black hole mass as a

sum of products of the thermodynamic quantities characterising the solutions times their

thermodynamic conjugate variables. Our principal focus in this paper has been to study

the resulting generalised Smarr formulae in cases that have not been extensively studied

previously, in which a scalar field plays an essential role and in fact leads to the enlargement

of the parameter-space of black hole solutions. In the simplest example, of black holes in

Einstein gravity minimally coupled to a scalar field with an appropriate potential, the

symmetrical black holes we consider depend not merely on a single mass parameter (as in

Schwarzschild-AdS) but on two parameters, which can be thought of as the mass and a

scalar “charge” in addition.

We have shown in this paper that although the scalar charge and its thermodynamic

conjugate variable enter non-trivially in the first law (in fact, precisely because they enter in

the first law), they do not contribute in the generalised Smarr relation, which continues to
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take the same form (3.29) as in the simple case when the scalar field vanishes. The formula

(3.29) provides an exact expression for the gravitational mass of the black hole, which is

a quantity associated with a parameter in the asymptotic solution at infinity, in terms of

the quantities T and S, which are defined at the black-hole horizon. Thus even though the

two-parameter black-hole solutions cannot be found explicitly, owing to the complexity of

the equations of motion for the system, one still has an exact result for the ratio of mass to

TS. As we have seen, this ratio is proportional to the viscosity to entropy ratio η/S, and so

we are able to give an exact evaluation of this ratio, leading to the familiar result 1/(4π),

even in this rather complicated class of examples.

One of the goals of this paper has been to derive the generalised Smarr relation for

planar black holes in theories involving a scalar field by making use of the first law of

thermodynamics, precisely because of the subtleties that arise in the first law in this case.

As we saw, although the coefficients φ1 and φ2 in the asymptotic expansion of the scalar

field enter non-trivially in the first law, the term proportional to φ1 φ2 that one might have

expected, à priori, to enter as a contribution in the generalised Smarr relation is actually

absent. Thus by making use of the first law (3.18), we derived the generalised Smarr formula

(3.29) that relates the horizon quantities T and S to the asymptotic quantity Mgrav (which

is proportional to the coefficient µ in the asymptotic expansion of h(r)). If one had taken

a more restrictive viewpoint in which φ1 and φ2 were held fixed, or a functional relation

between them imposed, then the first law would simply have read dM = TdS, the scaling

symmetry would have been broken, and one would not have been able to derive an expression

for µ in terms of T and S by this method.

The generalised Smarr relation can also be derived in a different way, by using the scaling

symmetry of the planar black-hole solutions to derive a conserved Noether charge, of the

form (7.5). In fact this expression not merely gives an equality of the the left-hand side at

infinity (proportional to the mass) to the left-hand side on the horizon, but an equality valid

at all radii r. This alternative derivation of the generalised Smarr formula also provides a

further vindication of the thermodynamic interpretation [24,25,45] that we have adopted.

We also extended our discussion to a wide class of Einstein-Maxwell-Dilaton theories,

with Lagrangian given by (6.1). These theories in general have non-minimal coupling of

the scalar field to gravity, with minimal coupling arising if κ(φ) = 1. We showed that a

generalised Smarr relation of the form (5.11) (or (5.14) in n = 4 dimensions) holds for the

general planar black-hole solutions in all these theories. Furthermore, we showed also that

η/S again equals 1/(4π) for all the black-hole solutions. Note that the proof was general, in
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the sense that it did not require knowledge of the explicit form of the black-hole solutions.

We have seen that the equality η/S = 1/(4π) and the generalised Smarr relation go hand-

in-hand for the rather general class of two-derivative theories that we have investigated. One

might, in fact, say that the generalised Smarr formula is the bulk gravity holographic dual

of the saturation of the η/S bound in the boundary field theory. This mapping breaks down

in cases such as the higher-derivative theory involving the Gauss-Bonnet term. It would be

interesting to try to obtain a deeper understanding of the circumstances under which the

breakdown should occur.
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A Dimensional Scaling and the Standard Smarr Relation

In this appendix, we present a discussion of the standard Smarr formula for black holes in

theories of gravity, as a contrast to the generalised Smarr formulae that have formed the

focus of the rest of the paper.

One can obtain a relation of the general form of a Smarr relation whenever a solution

has a scaling symmetry. The classic Smarr relation holds in the case of asymptotically-

flat black hole solutions, with the scaling symmetry being the one where all parameters in

the theory simply scale according to their “engineering” dimensions. For example, in the

Reissner-Nordström black hole in n dimensions, one has

ds2 = −hdt2 + dr2

h
+ r2 dΩ2

n−2 , h = 1− µ

rn−3
+

q2

r2n−6
, (A.1)

and the first law of thermodynamics reads

dM = TdS +Φ dQ , (A.2)

where Φ is the potential difference between the horizon and infinity, and Q is the conserved

charge. From the definition of h in (A.1) we see that [µ] = Ln−3 and [q] = Ln−3. The

canonical conserved massM and charge Q have the same dimensions as µ and q respectively,
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and hence there is a scaling symmetry with

M = λn−3 M̃ , Q = λn−3 Q̃ , Φ = Φ̃ , T = λ−1 T̃ , S = λn−2 S̃ . (A.3)

Thus M(λn−2 S̃, λn−3 Q̃) = λn−3 M̃ (S̃, Q̃), and so acting with λ∂/∂λ and using (A.2), one

obtains the standard Smarr relation

M =
(n− 2)

(n− 3)
TS +ΦQ . (A.4)

If we now consider the Reissner-Nordström AdS black hole, where a cosmological con-

stant Λ = −(n − 1) g2 has been added to the theory, and the metric function h in (A.1)

becomes

h = g2r2 + 1− µ

rn−3
+

q2

r2n−6
, (A.5)

then the scaling symmetry is broken if Λ, which has the dimension [Λ] = L−2, is treated

conventionally as a fixed parameter in the theory. As a consequence, one no longer has a

Smarr relation of the form (A.4).

A Smarr relation for Reissner-Nordström-AdS black hole can be obtained if the view-

point is changed slightly and Λ, despite being a parameter in the Lagrangian, is treated as

if it were a thermodynamical variable. The first law (A.2) then generalises to

dM = TdS +Φ dQ+Υ dΛ , (A.6)

where, since the cosmological constant acts like a pressure, its thermodynamic conjugate Υ

is like a volume. The standard dimensional scalings are then augmented by

Λ = λ−2 Λ̃ , Υ = λn−1 Υ̃ , (A.7)

and the scaling relation becomesM(λn−2 S̃, λn−3 Q̃, λ−2 Λ̃) = λn−3 M̃(S̃, Q̃, Λ̃). Acting with

λ∂/∂λ and using (A.6), one obtains the Smarr relation

M =
(n− 2)

(n− 3)
TS +ΦQ− 2

(n− 2)
ΥΛ . (A.8)

Although the idea of allowing Λ to vary in the first law is not part of the classic treatment

of black hole thermodynamics, we may still refer to (A.8) as a “standard” type of Smarr

relation in the sense that it is based on the scaling symmetry that one can always realise, in

which all parameters (including parameters in the Lagrangian if necessary) are scaled simply

according to their “engineering” dimensions. We illustrated the discussion above with

the simple examples of the Reissner-Nordström black holes, with or without cosmological
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constant, but of course the whole discussion can be extended to include all black holes, with

rotation as well, and in more complicated theories such as supergravities.

Another example of a standard Smarr relation is for the gauge dyonic black hole that

we discussed in section 5. As was shown in [45]), it admits a “standard” type of Smarr

relation (with the gauge parameter, related to Λ by Λ = −3g2, treated as a thermodynamic

variable too). The first law reads

dM = TdS +ΦedQe +ΦmdQm +ΥdΛ +
g2

48π
(φ1dφ2 − 2φ2dφ1) , (A.9)

where

Υ = − 1

24π

(
4β1β2(β1 + β2) + 12β1β2r0 + 3(β1 + β2)r

2
0 + r30

)
. (A.10)

It is then clear that the first law is invariant if all the thermodynamical quantities are scaled

according to their physical dimensions. This leads to the “standard” Smarr formula

M = 2TS +ΦeQe +ΦmQm − 2ΥΛ . (A.11)

(This can be done both for the spherically-symmetric or the planar black holes, but here we

are presenting Υ just for the planar limit that is relevant for our discussion in this paper.)

All of the above discussion in this appendix was concerned with the “standard” Smarr

relations that one can derive by considering a scaling of quantities according to their “en-

gineering” dimensions. This is to be contrasted with the scaling symmetry that has been

the focus of our attention in this paper, which applies only to planar black holes and not

to spherically-symmetric black holes. In particular, the scaling symmetry we have been

using is one where r scales as r → λ r but the mass scales as M → λn−1M , and not as

M → λn−3M as it does in dimensional scaling (see (A.3)). This is because the metric

function h is of the form

h = g2r2 − µ

rn−3
+ · · · (A.12)

in the planar black holes, rather than h = g2r2 +1−µ/rn−3 + · · · in spherically-symmetric

black holes. The scaling symmetry we wish to consider in this paper is one where g is held

fixed, and thus in order for the g2r2 and the −µ/rn−3 terms in h to scale the same way, we

must have µ→ λn−1 µ. This scaling symmetry would be broken if the “1” term were present

in h and f , as it is in the spherically-symmetric black holes. We have consistently referred

to Smarr relations derived from the µ → λn−1 µ scaling as “generalised,” to contrast them

with the “standard” relations based on the µ→ λn−3 µ dimensional scaling.

32



References

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity,

Adv. Theor. Math. Phys. 2, 231 (1998), hep-th/9711200.

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-

critical string theory, Phys. Lett. B428, 105 (1998), hep-th/9802109.

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2, 253 (1998),

hep-th/9802150.

[4] G. Policastro, D.T. Son and A. O. Starinets, The shear viscosity of strongly coupled

N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87, 081601 (2001), hep-

th/0104066.

[5] P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on

stretched horizons, JHEP 0310, 064 (2003), hep-th/0309213.

[6] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field

theories from black hole physics, Phys. Rev. Lett. 94, 111601 (2005), hep-th/0405231.

[7] A. Buchel and J. T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev.

Lett. 93, 090602 (2004), hep-th/0311175.

[8] A. Buchel, On universality of stress-energy tensor correlation functions in supergravity,

Phys. Lett. B 609, 392 (2005), hep-th/0408095.

[9] P. Benincasa, A. Buchel and R. Naryshkin, The shear viscosity of gauge theory plasma

with chemical potentials, Phys. Lett. B 645, 309 (2007), hep-th/0610145.

[10] K. Landsteiner and J. Mas, The shear viscosity of the non-commutative plasma, JHEP

0707, 088 (2007), arXiv:0706.0411 [hep-th].

[11] S. Cremonini, The shear viscosity to entropy ratio: A status report, Mod. Phys. Lett.

B 25, 1867 (2011), arXiv:1108.0677 [hep-th].

[12] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the

membrane paradigm, Phys. Rev. D 79, 025023 (2009), arXiv:0809.3808 [hep-th].

[13] R.G. Cai, Z.Y. Nie and Y.W. Sun, Shear viscosity from effective couplings of gravitons,

Phys. Rev. D 78, 126007 (2008) [arXiv:0811.1665 [hep-th]].

33



[14] R.G. Cai, Z.Y. Nie, N. Ohta and Y.W. Sun, Shear viscosity from Gauss-Bonnet gravity

with a dilaton coupling, Phys. Rev. D 79, 066004 (2009) [arXiv:0901.1421 [hep-th]].

[15] R. Brustein, D. Gorbonos and M. Hadad, Wald’s entropy is equal to a quarter of the

horizon area in units of the effective gravitational coupling, Phys. Rev. D 79, 044025

(2009) [arXiv:0712.3206 [hep-th]].

[16] Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity

of the dual gauge theory, JHEP 0901, 044 (2009) [arXiv:0712.0743 [hep-th]].

[17] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation

in higher derivative gravity, Phys. Rev. D 77, 126006 (2008), arXiv:0712.0805 [hep-th].

[18] M. Natsuume and M. Ohta, The shear viscosity of holographic superfluids, Prog. Theor.

Phys. 124, 931 (2010) [arXiv:1008.4142 [hep-th]].

[19] J. Erdmenger, P. Kerner and H. Zeller, Non-universal shear viscosity from Einstein

gravity, Phys. Lett. B 699, 301 (2011) [arXiv:1011.5912 [hep-th]].

[20] O. Ovdat and A. Yarom, A modulated shear to entropy ratio, JHEP 1411, 019 (2014)

[arXiv:1407.6372 [hep-th]].

[21] X.H. Ge, Y. Ling, C. Niu and S.J. Sin, Holographic transports and stability in

anisotropic linear axion model, arXiv:1412.8346 [hep-th].

[22] L. Smarr, Mass formula for Kerr black holes, Phys. Rev. Lett. 30, 71 (1973).

[23] D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence:

Recipe and applications, JHEP 0209, 042 (2002), hep-th/0205051.

[24] H.S. Liu and H. Lü, Scalar charges in asymptotic AdS geometries, Phys. Lett. B 730,

267 (2014), arXiv:1401.0010 [hep-th].
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