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Standard methods for calculating the black hole entropy beyond general relativity are ambiguous
when the horizon is nonstationary. We fix these ambiguities in all quadratic curvature gravity
theories, by demanding that the entropy be increasing at every time, for linear perturbations to a
stationary black hole. Our result matches with the entropy formula found previously in holographic
entanglement entropy calculations. We explicitly calculate the entropy increase for Vaidya-like
solutions in Ricci-tensor gravity to show that (unlike the Wald entropy) the holographic entropy
obeys a Second Law.

Black holes in general relativity (GR) obey laws of
mechanics that are reminiscent of thermodynamical sys-
tems. One of the most profound is the Second Law of
black hole mechanics, which classically states that the
area A of the event horizons of black holes increases ir-
reversibly [1–3]1. Another relation, the “First Law” (re-
ally the Clausius relation) takes the form dE = TdS
where T is proportional to the surface gravity κ which
gives the rate at which light rays exponentially peel off
the event horizon, entropy S is proportional to the area,
and E is the Killing energy as measured in a coordinate
system which is co-rotating with the black hole. Also,
the Generalized Second Law (GSL) states that the sum

of the entropies of the horizon and the matter outside
Sgen = Shorizon+Sout is increasing, although entropy can
be transferred from one term to the other [4–6]. 2

Hawking’s discovery that black holes radiate thermally
at a temperature T = (~κ/2π) [8] strongly suggests that
this is more than just an analogy; somehow these macro-
scopic laws derived from general relativity are describing
the thermodynamics of some unknown microstates of the
black hole.
Additional evidence for a deep connection comes from

gauge-gravity duality, where a stationary black hole is
conjectured to be dual to a nonconfined thermal state of
an ordinary gauge field theory [9–11]. In this case the
entropy of the black hole is equal to the ordinary ther-
modynamical entropy of the thermal fields at the bound-
ary. Inspired by this relationship, Ryu and Takayanagi
[12] proposed that the entropy in an arbitrary region R
of the field theory is given by a minimal area codimen-
sion 2 surface in the gravitational theory, anchored to the
boundary of the region R. (In non-static situations, it is
necessary to generalize this to the surface which extrem-
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1 The proof requires an assumption of cosmic censorship in addi-
tion to the null energy condition

2 For a review see [7] and references therein.

izes the area [13].) The entropy of a stationary black hole
is then a special case, found by choosing R to be the en-
tire boundary so that the minimal area surface is at the
black hole horizon. Although much evidence was found
to support of this “holographic entanglement entropy”
conjecture [14, 15], it was only recently given a deriva-
tion by Lewkowycz and Maldacena [16], who showed how
to calculate the entropy of the boundary theory using a
1-parameter family of consistent solutions in the gravita-
tional theory, and related this to the minimal area surface
in the interior.
But in order for this story to be truly consistent, it

is necessary to be able to take into account corrections
to the action of general relativity. After all, quantum
theory has other effects besides enabling Hawking radia-
tion. Another effect, coming from loop corrections, is to
renormalize the gravitational action. On general Wilso-
nian grounds, one expects the effective field theory at an
energy scale Λ to have corrections depending on the Rie-
mann tensor and various of its derivatives, suppressed by
various powers (or logs) of (Λ/Eplanck) as determined by
dimensional analysis. (In the nonexact Wilsonian renor-
malization group, we need only worry about those cou-
plings which are divergent in the field theory as Λ → +∞;
in four dimensions the cosmological constant and 1/G are
power-law divergent, while the quadratic curvature cor-
rections are log divergent.) 3

Do these higher curvature corrections spoil the laws of
black hole thermodynamics which were the foundation of
this entire line of research? This is a deep question which
has been studied from many angles.
The case of f(R) gravity can be seen to obey a Second

Law by virtue of it’s equivalence to GR plus a scalar field
by a field redefinition [20–22], but other cases have proven
more difficult. Even Lovelock gravity, the most general
covariant metric theory with just two time derivatives in
the equation of motion, appears to violate the Second

3 See [17–19] for additional discussion of how this affects the holo-
graphic entanglement entropy.
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Law when two black holes merge [23]. However, if we
restrict attention to linearized metric perturbations to
stationary black holes with a regular bifurcation surface,
then the Second Law has been shown for all Lagrangians
of the form f(Lovelock) [24–26]. Our goal is to study
whether the linearized Second Law continues to hold in
the simplest theory not yet covered, namely Ricci-tensor
squared theory.
A recent argument shows that one cannot have a con-

sistent holographic theory of quantum gravity in which
the Gauss-Bonnet term is finite in the classical limit
~ → 0, unless there is also an infinite tower of higher
spin fields as in string theory [27]. (This is stricter than
some previous bounds on the magnitude of Gauss-Bonnet
(or Lovelock) terms [28–35]). However, it must still be
possible to treat the higher curvature terms in a pertur-
bative way, as part of a consistent quantum gravity or
string theory expansion.
We hypothesize that in such a consistent perturbative

truncation, it is important for the laws of thermodynam-
ics to hold for higher curvature theories at linear order in
the metric perturbation, but that they should not neces-
sarily at nonlinear order (except of course for nonlinear
pure GR effects). The argument for this comes from con-
sidering the case of an adiabatic (reversible) change in a
quantum black hole. In a reversible process (e.g. feed-
ing the black hole with radiation whose temperature is
very close to the Hawking temperature, but not exactly
the same) the change in the black hole entropy can be
made arbitrarily small: dSgen/dt ≈ 0. In the semiclas-
sical regime such adiabatic processes involve only very
small corrections to the black hole metric, which may
however be of any sign. But some higher curvature effects
will still matter even at linear order in the metric pertur-
bation (as will be seen explicitly for Ricci-tensor gravity
below). No matter how small the effects due to higher
curvature corrections, for sufficiently adiabatic processes
it will be necessary to take them into account in order
to keep dSgen/dt ≥ 0. But if the GSL holds for linear
perturbations to the metric, a fortiori a classical Second
Law should hold at linear order as well.
In order to discuss the validity of the First or Second

Law, the first thing we need to know is what entropy for-
mula to use. The Noether charge method [36, 37] says
that the entropy of a stationary black hole is given by the
generator of the boost symmetry at the horizon. This is
given by the Wald entropy formula obtained by differen-
tiating the Lagrangian L with respect to the Riemann
tensor [36]:

SW = −2π

∫

∂L
∂Rabcd

ǫabǫcd
√
γ dD−2x, (1)

where ǫab is the binormal on the horizon slice and
√
γ

the area element.
Unfortunately, as noted by Jacobson, Kang, and Myers

(JKM), the Noether charge method is ambiguous when
applied to a slice of a nonstationary black hole horizon
[21, 37]. As such the Wald entropy formula is just one of

several possible candidates for the entropy. JKM iden-
tified three different types of ambiguities, but the only
one which is relevant in this context gives us the freedom
to add to the Wald entropy any term of the form X · Y
where X and Y are objects which transform nontrivially
under a boost of the two normal directions, but which are
boost-invariant in combination [26]. For example, the
product of two extrinsic curvature tensors Kab(i)K

ab(i)

or K(i)K
(i) are of this form (and are also have the same

scaling dimension as the quadratic curvature entropy).
It is therefore unclear from the Noether charge method
what the coefficients of these terms are. Any entropy in
this class is known to obey the First Law of black hole
mechanics when comparing nearby stationary solutions
[21, 37]. It will also obey the “physical process version”
of the First Law, [21, 38, 39] in which a black hole be-
gins and ends in a stationary state, but in the middle one
perturbs it with a stress-energy tensor Tab and considers
the linearized response:

∆S =

∫ +∞

λ

Tk̄k̄ (λ
′ − λ)

√
γ dλ′dD−2x (2)

where λ is an affine parameter along the null directions
of the horizon, and k̄a is the associated null vector. Our
notation is Aabk

akb = Akk. However, not all entropies in
this class have the entropy increasing instantaneously so
that dS/dλ ≥ 0. Some JKM ambiguities (such as those

quadratic inK
(i)
ab

) matter even at linear order. In order to

prove the Second Law, we must resolve these ambiguities.

Fortunately, the ambiguities have recently been re-
solved for the holographic entanglement entropy using
the Lewkowycz-Maldacena method. In the present case
of quadratic curvature gravity the answer was calculated
by Fursaev, Patrushev and Solodukhin [40, 41] and by
Camps [42]. Dong [43] did the more general case of
f(Riemann) gravity; some corrections and extensions to
higher derivatives are in [44–46]. For Lovelock gravity
see [47–50].
This raises the question of whether the holographic en-

tropy also obeys the classical Second Law. In this work,
by examining Vaidya-like solutions in Ricci-tensor grav-
ity, we find that the holographic entropy obeys a local
linearized Second Law but that the Wald entropy does
not, just as in the case of f(Lovelock) gravity [26]. So,
not only the net change of the holographic entropy is
positive, but it is increasing at every cross section of the
horizon.
Our result provides strong support in favor of the

holographic entanglement entropy conjecture from the
physics of black holes, and highlights the importance
of holographic duality for understanding the microscopic
description of horizon entropy. For the extension of our
results to general linearized perturbations in arbitrary
higher curvature gravity theories (using an entropy for-
mula which matches Dong [43] whenever both are valid)
see Wall [51].
We start with the most general second order higher
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curvature theory of gravity described by the Lagrangian,

L = (1/16π)
(

R+ αR2 + β RabR
ab + γ LGB

)

(3)

where LGB = R2 − 4R2
ab

+ R2
abcd

is the Gauss- Bonnet
combination. As discussed before, the classical second
law has already been proven for higher curvature correc-
tions which are squares of the Ricci scalar [21] and proof
of quasi stationary second law for Gauss-Bonnet combi-
nation in D-dimension is given in [26] Therefore, if we
establish an increase theorem of horizon entropy for the
Lagrangian (3) with α, γ = 0, this will automatically
provide a proof of the classical second law for a generic
second order higher curvature theory of gravity in any
dimension. So, we consider the relevant case when the
Lagrangian is given by

L = (1/16π)
(

R+ β RabR
ab + Lmat

)

. (4)

Where we have also included the matter LagrangianLmat

which obeys the null energy condition. (At first order in
β, the gravitational part of this action could be trans-
formed into the Einstein-Hilbert action by applying the
field redefinition δgab = βδ(Rab− 1

D−2gabR). Näıvely this

suggests that the increasing entropy is 1 − βRabǫ
ab, the

Wald entropy; yet this is not so, because the transforma-
tion would also modify Lmat so that it no longer obeys
the null energy condition.)
The equation of motion is: Gab + βHab = 8πTab with,

Hab =�Rab − ∇a∇bR + 2RacbdR
cd

+ 1
2gab

(

�R − RcdR
cd
)

. (5)

We parameterize the event horizon by a non-affine pa-
rameter ‘t’. We construct a basis with the vector fields
{ka, la, ea

A
}, where la is a second null vector such that

laka = −1. The induced metric on any t = constant
slice of the horizon is γab = gab + 2k(alb). The horizon
binormals are then given by ǫab = (kalb − kbla).
In principle, a general theory of gravity might not pos-

sess any black hole solution. But note that, the usual
Schwarzschild black hole in general relativity is still a so-
lution of Eq. (4). We also expect to have a spherically
symmetric black hole solution with in-falling matter by
perturbing this Schwarzschild solution, as a counterpart
of the Vaidya solution in general relativity. Although,
we do not know the solution explicitly, it must be of the
form:

dS2 = −f(r, v)dv2 + 2dvdr + r2dΩ2
D−2, (6)

where f(r, v) is some arbitrary function.
This solution has an event horizon whose location r =

r(v) can be obtained by solving the equation dr(v)/dv =
f(r, v)/2 with appropriate boundary condition. In the
stationary limit, the metric function f(r, v) vanishes on
the event horizon. We now consider the null generators
of the event horizon. In non affine parametrization, this
is given by ka = (∂t)

a
= {2, f(r, v), 0, 0, ...0}. The second

null vector field is la = {−1/2, 0, 0, 0, ...0}. These vector

fields have the properties: kak
a = lal

a = 0 ; kala = −1
and the null generator ka obeys the geodesic equation
ka∇ak

b = κ kb. For our solution, κ = f ′(r, v). Note that,
in the stationary limit, κ/2 will coincide with the surface
gravity of the background stationary solution. The ex-
pansions of the null congruences generated by ka and la

are θk and θl respectively and θk vanishes for stationary
horizons.
We will test whether the expression of holographic en-

tanglement entropy for general quadratic curvature grav-
ity obeys a linear second law in these Vaidya solutions.
In fact, the high symmetry of this non stationary solution
makes the calculation tractable and explicit so that we
can distinguish among the various possible expressions of
horizon entropy beyond general relativity. Since we are
working in the linear approximation, we neglect all terms
which are higher order in the perturbation such as θ2

k
etc.

Now, we write the entropy of the black hole solution
as,

S = (1/4)

∫

(1 + ρ)
√
γ dD−2x, (7)

where we have defined ρ(t) as the entropy density contri-
bution from the higher curvature terms and for general
relativity, ρ = 0. Of course this must return the Wald
entropy expression in the stationary limit. Using this ex-
pression for the entropy, we calculate the entropy change
and define the change of entropy per unit area as a gen-
eralized expansion given by,

Θ =
dρ

dt
+ θk (1 + ρ) . (8)

Using this form and neglecting some explicit higher order
terms in Raychaudhuri equation, we obtain an evolution
equation of Θ:

dΘ

dt
− κΘ = −8π Tkk +∇k∇kρ− ρRkk + βHkk, (9)

where we have used the field equation. Note that, the
first term in the r.h.s. of Eq.(9) is linear in the pertur-
bation. If the rest of the terms collectively are of higher
order, we can also ignore them and obtain,

dΘ

dt
− κΘ = −8π Tkk. (10)

Further, if the matter obeys null energy condition, the
above equation implies dΘ/dt−κΘ < 0, on every slice of
the horizon. In the asymptotic future, the horizon again
settles down to a stationary state, so we must have Θ → 0
in the future. Now, if Θ is negative on any slice, since
κ > 0, we would have dΘ/dt < 0 and as a result we would
never have Θ to be zero in future. This means Θ must be
positive on every slice prior to the future and this estab-
lishes that the entropy in Eq.(7) obeys a local increase
law. So, if we want to prove an increase theorem for quasi
stationary perturbation for any entropy candidate, what
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we need to show is Ekk = ∇k∇kρ−ρRkk+βHkk = O(ǫ2)
where ǫ is some parameter signifying the perturbation.
Now, we start with the expression for Wald entropy

in Eq. (1). For the Lagrangian in Eq. (4), the Wald
entropy density is ρW = −2β Rabk

alb. Using this Wald
entropy density we find,

Ekk =
2 β(D − 2)2

r2
d2f

dv2
+O(ǫ2). (11)

The leading term in the r.h.s of the above equation is
linear in the perturbation, and need not have any spe-
cific sign. So, it is evident even from this simple example
that the Wald entropy density does not satisfy the re-
quirement needed for a local increase law! This is not
very surprising since the derivation of the Wald entropy
from the stationary comparison version of the first law
requires strict stationarity and existence of a regular bi-
furcation surface. Hence, the Wald entropy expression in
Eq. (4) need not be valid in a non-stationary regime and
could be corrected by ambiguity terms which vanish in
the stationary limit.
Next we write down the entropy expression in [40–43]

motivated from the holographic entanglement entropy
proposal. To translate the result of [43] into our no-
tation, we convert to Lorentzian signature and introduce

two orthogonal vectors n
(i)
a , i = 1, 2 along the two di-

mensional space orthogonal to the horizon slice. They
can be expressed in terms of the null vectors ka and la as
n(1)a = (1/

√
2)(ka + la) ; n(2)a = (1/

√
2)(ka − la). The

extrinsic curvatures of the horizon cross section along

n(i)a are defined as K
(i)
ab

= (1/2)Ln(i)γab and it’s trace is

K(i) = K
(i)
ab

γab.
We now calculate the entanglement entropy for our

Lagrangian in Eq. (4). This is given by the following
expression [43],

SD =
1

4

∫
(

1 + ρW − β

2
K(i)K

(i)

) √
γ dD−2x. (12)

Where ρW is the Wald entropy density. A simple compu-
tation gives usK(i)K

(i) = −2θkθl and we obtain the holo-
graphic entropy density: ρD = ρW + β θkθl. For the met-
ric in Eq.(6), this is ρD = −2β Rkl −β(D−2)2f(r, v)/2r2.
Note that the holographic entropy and the Wald entropy
differ at the linear order! So, although both of these ex-
pressions coincide for a stationary black hole, their evo-
lutions are different once we perturb the horizon. To see
that the holographic entropy obeys a local increase law,
we first notice,

∇k∇kρW = ∇k∇kρD +
2 β (D − 2)2

r2
d2f

dv2
+O(ǫ2) (13)

As a result, for the holographic entropy we have, Ekk =
O(ǫ2). The offending term in the r.h.s. of Eq. (11) is can-
celed due to the presence of the term ‘β θkθl’ in the holo-
graphic entropy, which implies a classical Second Law for
Vaidya-type solutions (or a GSL, if we apply the methods
of [6] to higher curvature gravity, as done in [26]).

Because of our restriction to spherical symmetry, our
calculation does not yet indicate whether or not there
should also be a σab(k)σ

ab
(l) shear-squared term in the

entropy formula. To see that there should not be such a
term, consider a nonspherically symmetric vacuum solu-
tion to Einstein’s equations with Rab = 0, which is nec-
essarily also a solution to any action composed purely of
Ricci tensors. This class of solutions includes stationary
black holes perturbed by linearized gravity waves. A lin-
earized gravity wave allows one to set σab(k) 6= 0, while
σab(l) 6= 0 can be arranged by choosing a wiggly slice of
the horizon. Integrating the Raychaudhuri equation, we
find that θk vanishes at linear order, so the sole contribu-
tion to the entropy would come from the shear-squared
term. This allows us to easily violate the Second Law un-
less we choose the coefficient of the shear-squared term
in the entropy to be 0. But σab(k)σ

ab
(l) and θkθl were

the only possible JKM ambiguities with the same dimen-
sion as Rkl. It follows that holographic entropy is the
only entropy in the JKM class which can possibly obey
a linearized increase theorem.
To summarize, we used a Vaidya-like non stationary

black hole solution in a Ricci square theory of gravity
and showed that the expression of holographic entangle-
ment obtained in [40–43] obeys a classical second law for
linearized perturbations. Our result combined with [21]
and [26] suggests that the correct choice for black hole
entropy density for a general quadratic curvature gravity
described by the Lagrangian in Eq.(3) is indeed

s =
1

4
+

1

2

[

αR− β

(

Rabk
alb − 1

2
θkθl

)

+ γ r

]

, (14)

where r = Rabcdγ
acγbd − Kab(i)K

ab(i) + K(i)K
(i) is the

intrinsic Riemann scalar on the horizon slice. On a non-
equilibrium slice of the horizon this entropy expression
differs from the result obtained from the Wald’s formula
in Eq.(1), but agrees with the holographic result in [40–
43]. For general higher curvature theories see [51].
An important limitation of our result is that we have

considered only the effects of matter falling into a black
hole, not linearized gravitons. In addition to not be-
ing spherically symmetric, infalling gravitons would re-
quire an analysis of second-order metric perturbations,
and might require α, β, γ to satisfy certain constraints.
Also, in general gravitons travel on a different light cone
than the matter fields [28, 52, 53].
It seems that somehow the validity of black hole

thermodynamics is already encoded in the holographic
principle; the holographic entanglement entropy satisfies
the linearized second law while the Wald entropy does
not. But the exact relationship with the holographic
entanglement entropy is not completely clear. Since
slices of future horizons are not in general extremal sur-
faces, the entropy that increases cannot be fine-grained
entropy of any boundary region. By analogy to ordinary
statistical mechanics, one expects that the increasing en-
tropy must correspond to some coarse-grained entropy.
Some recent proposals along these lines involve the
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causal holographic information [54–56] or the differential
entropy [57–59]. It would be interesting to derive an
entropy formula in one of these frameworks in a way that
makes the holographic reason for the increase theorem

explicit.
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