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Abstract

We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-

universe string network. The simulation does not include gravitational back reaction, but we model

that process by smoothing the loop using Lorentzian convolution. We find that loops at formation

consist of generally straight segments separated by kinks. We do not see cusps or any cusp-like

structure at the scale of the entire loop, although we do see very small regions of string that move

with large Lorentz boosts. However, smoothing of the string almost always introduces two cusps

on each loop. The smoothing process does not lead to any significant fragmentation of loops that

were in non-self-intersecting trajectories before smoothing.
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I. INTRODUCTION

Cosmic strings are microscopically thin, astrophysically long objects which may have

formed at early times as a result of phase transitions or brane inflation in superstring theories.

See Ref. [1] for a review. In the simple cases to be discussed here, cosmic strings have no

vertices or ends, and thus form a “network” consisting only of infinite strings and closed

loops.

When cosmic strings intersect each other, they can reconnect. In the case of strings

formed by phase transitions in field theory, this reconnection nearly always takes place.

But in the case of strings from superstring theory, the strings can pass through each other

unchanged, only reconnect with some probability p in the range 10−3 to 1. When a string

reconnects with itself, the result is to emit some portion of the string into a closed loop.

Closed loops oscillate, emit gravitational waves, and so eventually decay away.

This process allows the long string network to scale with the expansion of the uni-

verse, meaning that any statistical measure of the string network properties with dimension

(length)α goes as tα, where t is the the age of the universe. In particular, the density of long

strings (length per unit volume) goes as t−2, and thus scales as radiation in the radiation

era and as matter in the matter era. Scaling means that the energy density of strings is a

fixed fraction of the total energy density in the radiation and matter eras. Thus they do

not dominate the universe as monopoles would [2, 3], nor do their effects become ever tinier

with time in these eras.

The evolution of a cosmic string in flat space is easily described. Let x(σ, t) describe the

spatial position of the string at time t, and let the parameter σ be chosen to parameterize

the string energy in units of µ, the energy per unit length of a static string. Then one

can show that in this gauge, x′2 + ẋ2 = 1, where prime and dot denote differentiation with

respect to σ and t respectively. By appropriate choice of starting point for σ at different t,

we can make x′ · ẋ = 0. The equations of motion then become

ẍ(σ, t) = x′′(σ, t) . (1)

The general solution can be written

x(σ, t) =
1

2
[a(t− σ) + b(t+ σ)] , (2)
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where a and b are any functions obeying the constraint |a′| = |b′| = 1. In the expanding

universe, the solutions are more complicated, but Eqs. (1,2) are good approximations for

loops much smaller than the Hubble size.

Because the functions a′ and b′ have unit magnitude, they trace out paths on the unit

sphere, the so-called Kibble-Turok (KT) sphere. In general, one would expect those paths

to intersect [4–6]. In particular, in the case of a closed loop observed in its rest frame, the

center of gravity of a′(σ) and b′(σ) lies at the center of the sphere, and so these paths will

intersect except in special cases.

At an intersection, where a′(t − σ) = b′(t + σ), Eq. (2) gives x′ = 0 and ẋ = 1. Thus

the string doubles back on itself at a point which (in the approximation of an infinitely

thin string) moves at the speed of light. Such a point is called a cusp [5]. At a cusp, the

string core may overlap with itself, leading to the emission of high-energy particles [7–10].

The high Lorentz boost near the cusp may also produce beams of gravitational [11–13] or

electromagnetic radiation [14–17], and if the string is coupled to other fields it may lead to

particle production [18–23]. Many suggestions have been made for observable astrophysical

signatures coming from cosmic string cusps. It is therefore important to understand the

parameters that characterize these kinds of events in a typical cosmic string loop produced

in a scaling network of strings.

The above argument applies only if strings are smooth. The usual calculations, in fact,

assume that a′′ and b′′ are of order 1/L, where L is the invariant length of the string loop. On

the other hand, cosmic strings have kinks: places where the direction of the string changes

suddenly due to a previous reconnection. Such discontinuities in a′ and b′ allow them to

jump to different parts of the unit sphere without crossing each other. In such cases, the

argument fails, and there may be no cusps. To know whether or not there are cusps, we

need to know the shape of the functions a and b.

A loop is born when a long string reconnects with itself. At this time, the loop consists of

structures that were present on the long string from which it formed, plus two kinks from the

final reconnection. In the first oscillation, the loop may fragment, but after one oscillation

fragmentation is rare. (In flat space, loop trajectories are periodic, so after one whole

oscillation without fragmentation, no further fragmentation is possible. In the expanding

universe there is a correction, but it is typically small.) After that, the loop slowly loses

energy by emitting gravitational waves, with power ΓGµ2, where Γ is a number of order
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50 [5, 11, 24, 25] and G is Newton’s constant. This leads the loop to lose length at rate

ΓGµ. When it has lost a significant fraction of its length by this process, its shape may

be substantially modified. In particular, we expect it to be much smoother than it was at

formation.

The loops which are most important for observable signals are those which have signifi-

cantly evaporated. At any given time t in the history of the universe, most string is in loops

of size around ΓGµt, which are thus roughly half evaporated [26]. Even if we consider loops

of some fixed size ℓ, most of these were created long ago [26] and have suffered significant

evaporation, except for those of the very largest sizes.

The goal of this paper is to determine the shape of cosmic string loops over the course of

their lives. We start by analyzing loops and long strings taken directly from a large cosmic

string network simulation in the expanding universe. We find that these strings consist

primarily of long segments that are generally straight, connected by large-angle kinks. The

straight segments are not exactly straight, but rather consist of several shorter and straighter

segments, with smaller-angle kinks between those. We never see a smooth motion of a′ or

b′ from one place to another of the sort that could lead to the formation of a cusp.

Thus the track of a′ or b′ in the simulated loops at formation consists not of a smooth,

closed curve, as usually envisioned, but rather of a sequence of small, irregular regions.

Within each region, the tangent vector jumps rapidly from place to place, and the regions

are connected by sudden, large jumps. In a loop, these regions are either well separated or

touch along a curve, but they never significantly overlap or cross through each other. Thus

the “crossings” of a′ and b′ occur entirely in the large jumps (kinks) and never in smooth

regions of string that would lead to the phenomenology associated with cusps.

Our large scale string network simulation does not include gravitational back reaction,

so it is accurate only at scales above those that might be smoothed by that process. But

gravitational effects on long strings, and thus on newly formed loops, are not very important.

Loops forming at any given time have sizes much larger than ΓGµt [27] so their general

shapes are little affected by previous smoothing.

Gravitational effects after loop formation, however, are very important, as discussed

above. Unfortunately, we are not presently able to simulate the gravitational back-reaction

on a loop. So instead, we attempt to understand it by smoothing the loop using convolution,

as described below. This gives us a more realistic population of loops with various degrees
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of smoothing, and we study these in addition to the newborn loops. Indeed, after significant

smoothing, most loops have two significant cusps in each oscillation.

The rest of this paper is organized as follows. In the next section, we discuss the shape of

loops directly taken from the simulation without gravitational smoothing, and in Sec. III we

discuss the structures found on long strings. In Sec. IV we discuss our smoothing procedure,

and in Sec. V we discuss the shape of loops with various degrees of smoothing, the number

and size of cusps they produce, their distribution of angular momenta, and to what degree

the trajectory of each loop lies on a plane. We conclude in Sec. VI.

II. LOOPS AT FORMATION

We first discuss the shape of cosmic string loops just as they are found in our simulation,

which does not included gravitational smoothing. Our simulation process is described in

detail in Refs. [27, 28]. The results in this section are taken from a simulation in the matter

era of size 500 in units of the initial correlation length. The initial conformal time for this

simulation is 4.5 and the ending time 500.0, so the dynamic range is 110.

Several groups have studied the properties of non-intersecting loops from a set of random

initial conditions [29, 30]. We will make some comparisons with these other studies when

appropriate. On the other hand, our results should describe more accurately the properties

of real loops from a network since we take the initial distribution of loops from a scaling

network of strings. In fact we believe these loops are a good representative set of scaling

loops themselves. (See the discussion in Ref. [27]).

Because a′ and b′ are piecewise linear in our simulation, their paths on the unit sphere

consist of discrete points corresponding to the linear pieces. Where the string changes

direction at a kink, there is a line connecting two points.

In Fig. 1 we show the paths of a′ and b′ for a non-self-intersecting loop appearing in our

simulation at time 500. We see immediately that the tangent vectors are arranged in five

separated clumps, with jumps between them. In this particular case, the clumps of a′ are

well separated from the clumps of b′. The only places where the paths of a′ and b′ cross

each other are in large-angle kinks that connect the different clumps. Thus this loop will not

produce any of the traditional cusps. We show in Fig. 2 a snapshot of this loop in physical

space at a time when one can clearly see the five different directions made from these blobs.
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FIG. 1. (Color online) The paths of a′ (red or dark) and b′ (blue or light) on the unit sphere for

a loop of length 6.28 seen at time 500.0. Each vertex represents a segment with constant tangent

vector. The tangent vectors have been projected from the unit sphere into the figure plane with the

Mollweide projection (the same one usually used for cosmic microwave background maps). Kinks

are represented by straight lines on the figure.

A more common situation is shown in Fig. 3. In this case the clumps of a′ and b′ touch

along a curve, further shown in Fig. 4. This happens because overlapping segments are lost

to loop production, until the unit sphere has been divided into domains with many points

of a′ and those with many b′, separated by a complicated curve. This is the telltale sign

of a non-self-intersecting loop on the Kibble-Turok sphere. The non-self-intersecting loops

resulting from our simulations cover a continuum of possible distributions of clumps on the

sphere, from the kind of well separated clumps in Fig. 1 through the type represented by

the first panel in Fig. 9 below, where most of the sphere is covered by the blobs.

One can disturb this situation by introducing additional perturbations to the loops so

that the “islands” of a′ heavily overlap the ones of b′. We have performed such experiments

with a number of loops. The result from this exercise is an excited loop whose subsequent

evolution quickly produces an important amount of fragmentation until one is back again in

a similar representation of the loop on the KT sphere of isolated blobs of a′ and b′ segments.

Near the dividing curve between the a′ and b′ clumps, there will be points of a′ and

points of b′ that are very close to each other. In fact, there are even some points that lie
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FIG. 2. A snapshot of the loop represented by its a′ and b′ in Fig. 1. One can clearly see the

5 different orientations of the tangent vector of the string corresponding the 5 combinations of

the regions of a′ and b′ in the Kibble-Turok sphere in Fig. 1 that exist at this time. The small

variations of the tangent vector in each of these segments give some idea of the angular spread of

the lumps on the KT sphere.

A
B

FIG. 3. (Color online) The paths of a′ (red or dark) and b′ (blue or light) on the unit sphere for

a loop of length 8.29.
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FIG. 4. (Color online) Close-up of the upper left of Fig. 3.

on the “wrong side” of this curve, i.e., places where points of a′ reach into the domain of

b′, and vice versa. In most such cases, the distance (angle) on the wrong side of the curve

is quite small, but there are a few cases, such as the leftmost point of a′ in Fig. 4, where a′

reaches deeply into the domain of b′. Such deep excursions seem to consist only of single

points with only a very tiny amount of string. For example, the point mentioned above

represents a segment of a′ with length less than 10−8.

When a′ and b′ are nearly equal, a piece of string will move rapidly. This may lead to

gravitational wave emission and other signatures. In some ways, these regions are similar to

cusps. Indeed, they may be an important source of gravitational waves, which will be the

subject of a separate paper. However, they do not have the usual form of the cusp where

a′ and b′ move steadily across the sphere and cross each other. They certainly cannot be

analyzed by Taylor series expansion around a crossing point, as is usually done for cusps.
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FIG. 5. (Color online) 13197 consecutive segments of a long string at time 500.0, separated into 4

clumps by a hierarchical clustering algorithm. The clumps are shown with different colors (shading)

and symbols. Dotted lines show the kinks that connect the clumps.

III. LONG STRINGS

We can gain some further insight into the shape of strings by looking at the tangent

vectors to the long strings in our simulation. In Fig. 5 we show a section of a′ of length

25.9 consisting of 13197 consecutive straight segments of string1. The colors are chosen by a

hierarchical clustering algorithm, which works as follows. We first merge the two segments

of a′ which are the closest on the unit sphere, replacing them by a merged segment with

the total length and the average direction. The average is weighted by the length of each

segment. We then proceed to the next-closest pair, and so on. When the angle between two

pieces of string (which may be the results of previous merges) is greater than a threshold,

here 60◦, we stop merging.

The clustering procedure has divided the path of a′ into 4 “clumps”. Within each clump,

the points appear to wander over a certain region of the unit sphere. Large kinks connect

each clump to the next.

Figure 6 shows only the leftmost clump from Fig. 5, further split by the same algorithm

with the threshold now 40◦. The motion within the clump is not just random wandering.

1 The number 13197 was chosen to start and end at large kinks.
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FIG. 6. (Color online) The leftmost clump of Fig. 5, further broken down with threshold 40◦

In fact the clump can be seen to be made up of 5 major sub-clumps with a certain degree

of overlap. Such a structure is what one would expect in a scaling regime. If one separates

clumps at a certain angular threshold, the size of the clumps as a fraction of the horizon

size should not change with time. Thus clumps at later times should be composed of many

clumps that existed at earlier times. These clumps are made smaller by damping due to

the expansion of the universe. Thus at any given time, each large clump should consist of

several smaller clumps separated by smaller angles, and so on.

Since our simulation begins with piecewise-linear initial conditions, one might worry that

the clumping structure is related to the kinks that were present in the initial conditions. To

investigate this possibility, in Fig. 7 we distinguish the kinks that were present in the initial

conditions from those occurred later at reconnections. While some of the structure comes

from the initial conditions, a significant portion was added later.

Our picture of string shapes is thus the following. The tangent vector a′ on a long string

wanders over small areas of the unit sphere to form small clumps, then jumps to another

nearby area to form another small clump. Nearby small clumps form a single larger clump,
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FIG. 7. (Color online) Magnified view of the bottom clump of Fig. 5. Kinks that were present in

the initial conditions are shown in blue (gray); those that were formed by later intersections are

shown in black. The latter includes the kinks that go into and come out of the clump. The path

of a′ sometimes jumps to a new value and then back again, leading to lines that appear to end.

and larger jumps connect the larger clumps, and so on. The path of a′ or b′ on a loop at

formation is simply a section of the path that existed in a long string, with the ends of that

section connected by one new kink formed when the loop was broken off, thus it has the

same structure, and we do not expect cusps on newly-formed loops.

IV. GRAVITATIONAL SMOOTHING

Now we turn to the effects of gravitational back reaction on the shape of strings. The

general expectation, going back to the work of Quashnock and Spergel [31] is that kinks

formed at time t1 will be smoothed out by a later time t2 over length ΓGµ(t2 − t1), where

Γ ∼ 50. This effect limits the depth of the hierarchy of clumps and sub-clumps. Since the

kinks in small sub-clumps were generally formed long ago, sub-clumps with σ < ΓGµt do

not exist at time t. Instead, at such scales the string is smooth.

On long strings, or recently formed loops, this effect is minimal. Observational constraints

limit Gµ to be less than 10−8 (E.g., see Ref. [26]) so ΓGµ < 10−6. Only a tiny percentage

of the energy goes into loops with sizes smaller than or comparable to 10−6t, so in general

the effects of smoothing are small.

On the other hand, for old loops, the effect is very different. For a loop which has lost half

its initial energy to gravitational radiation, the length of the loop and the smoothing scale
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are equal. Such a loop will be quite smooth and will likely have cusps at scales similar to its

length. As discussed in the Introduction, loops with a significant degree of evaporation are

the most important cosmologically, so it is crucial to understand the effect of gravitational

back reaction on loop shapes.

Unfortunately, we do not know the effect of gravitational back reaction in detail, so we

must resort to a toy model to understand these phenomena. As a loop radiates gravitational

waves, it must lose energy. We expect small structures to radiate their energy away more

quickly than large ones, so that small structures are damped more quickly, resulting in a

smoothing of the loop. Thus we will attempt to understand effects of gravitational back

reaction by progressively smoothing our loops using convolution.

There is a simple model of gravitational back-reaction for wiggles on a straight string

[32, 33]. If one takes small-amplitude sinusoidal wiggles traveling in one direction on the

string and large wiggles (representing the underlying loop in this case) traveling in the other,

and if the difference in wavelengths is not too large [33] one finds that the small wiggles are

damped approximately as an exponential with time constant proportional to wavelength.

After a fixed time period, wiggles of different wavelengths would be damped exponentially

with exponents inversely proportional their wavelengths.

Following this idea, we would like to Fourier decompose the tangent vectors a′ and b′

and damp each harmonic n by some factor e−wk, where w is a constant and k = 2πn/L is

the wave number. This corresponds to convolving a′ and b′ with a Lorentzian of width w,

i.e., w/(π(σ2 + w2)).

Unfortunately, there is a constraint on the magnitude of the tangent vectors, |a′| = |b′| =
1. Smoothing any nontrivial function a′ or b′ will decrease its magnitude and violate this

constraint. We tried simply renormalizing by setting a′ → a′/|a′| after smoothing, but

this works very poorly. The additional function 1/|a′| is in general not very smooth and

multiplying by it undoes most of the desired damping of the high frequency modes.

After trying several techniques to address this problem, we arrived at the following solu-

tion. Instead of just convolving with a Lorentzian of width w and then renormalizing, we

convolve many times with much narrower Lorentzians, and renormalize after each one. We

use as our Lorentzian width 1/20 of the spacing between the points used to describe the

function a′ or b′. (It may seem bit strange to convolve with something narrower than the

point spacing, but since a Lorentzian falls off slowly, the kernel is still quite wide.) Dis-
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tributing the renormalization through the smoothing procedure yields much better results.

The short modes are in fact damped by approximately the amount they would have been

without renormalization.

We would like to consider loops which have lost some fraction f of their initial energy to

gravitational radiation. What does this corresponds to in terms of Lorentzian smoothing?

We consider the amplitude of the n = 1 mode as a proxy for the total length. This amplitude

is multiplied in the smoothing procedure by exp(−2πc), where c = w/L is the ratio of the

Lorentzian width to the string length. Thus we say that smoothing with coefficient c has

removed a fraction

f = 1− exp(−2πc) , (3)

of the initial loop length, and choose c to achieve any desired fraction of evaporation.

We have studied loops taken from two simulations of size 500 in the matter era and two

of size 1000 in the radiation era. In each case, we looked at all loops produced in the second

half of the simulation with the ratio of loop size to horizon size at least 0.01. For each loop

we repeatedly smooth the loop by convolution, evolve it for at least one oscillation to check

whether smoothing has introduced self- intersections, smooth the loop again, and so on. In

all there are 7 smoothing steps. The steps involve amounts of smoothing corresponding to

a total loss since formation of the fractions 1/128, 1/64, 1/32, 1/16, 1/8, 1/4 and 1/2 of

the original loop energy. Since repeated smoothing with coefficients c1, c2, c3 . . . corresponds

to a single smoothing step with coefficient c = c1 + c2 + c3 + · · ·, we determine the actual

smoothing coefficients by solving the equations

1− e2πc1 = 1/128 , (4)

1− e2π(c1+c2) = 1/64 , (5)

1− e2π(c1+c2+c3) = 1/32 , (6)

and so on to determine the coefficients c1 through c7.

To simplify the smoothing procedure, which requires repeated fast Fourier transforms,

we work with numbers of frequencies and numbers of points that are powers of 2. We start

with a function a′ (and similarly b′) that is piecewise constant with non-uniform pieces.

We Fourier transform this function, keeping at step i some number Ni frequencies (half

of which are negative frequencies whose whose amplitudes are just the complex conjugate

of the positive-frequency amplitudes). We smooth in Fourier space by multiplying by an
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exponential representing the transform of a narrow Lorentzian. Then we transform back

into Ni uniformly spaced points, adjust the new tangent vectors to have uniform magnitude,

Fourier transform back into Ni frequencies, and so on, until we have achieved the desired

degree of smoothing for the given step. We choose

Ni = (4096, 4096, 2048, 1024, 512, 256, 128) , (7)

so that frequency Ni/2, the highest we keep at each step, would be reduced by the Lorentzian

convolution by about2 10−7.

The smoothing procedure described above is the best we have found, but we tried several

other procedures (e.g., using a Gaussian instead of a Lorentzian) and the results are all

qualitatively similar.

V. SMOOTHING RESULTS

A. Smoothing of loops and their tangent vectors

We show in Fig. 8 some pictures of a typical loop at different stages of the smoothing

process. We see that indeed our smoothing procedure has removed small-scale structure

from the loop.

In Fig. 9, we show an example of the change in the paths of a′ and b′ on the Kibble-

Turok sphere for a particular loop across the different stages of smoothing. We can clearly

see that the procedure smooths out structures at increasingly large scales on the figure. A

fragmentation event can be seen in these figures as a sharp disappearance of a collection of

segments in both the a′’s and the b′’s. We have chosen a particular loop where we can see

this clearly. After each fragmentation process, the remaining loop is not generally in the

rest frame, so we boost it back to its rest frame before we further evolve it.

B. Weighting of simulation data

When we discuss the fraction of loops with certain properties, we are interested in the

fraction of loops of any given size existing at some given time. What the simulation gives

2 The actual amount of smoothing is somewhat less than pure Lorentzian convolution, because some is

undone by renormalization.
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FIG. 8. Snapshots for several steps of the smoothing procedure for a loop of length 17.9 at time

1000 in the radiation era.

us, however, is a set of loops of different sizes produced in the same interval of time. As

explained in Ref. [26], each loop should thus enter into all histograms and averages with

weight xδ, where x is the ratio of the rest energy of the loop in units of µ to the horizon

distance at the time of formation, and δ = 1 for matter and 3/2 for radiation. All results

below use this weighting procedure.

C. Fragmentation

The first question we ask is whether smoothing causes loops in non-self-intersecting tra-

jectories to self-intersect and fragment. The answer is that this is not an important process.

In our simulations, 90% of the loops survive the smoothing procedure until half of their en-

ergy is eliminated by gravitational radiation with loss of no more than 10% of their energy

into fragmentation. We have followed this procedure for loops obtained in simulations in

the radiation and matter era and we do not see significant variations on these numbers for

the two cases3.

3 The exact percentages are 92% for radiation and 87% for matter. If we instead ask of what is the

percentage of loops that lose less than 1% then we get 79% for radiation and 73% for matter.
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FIG. 9. The effect of smoothing on the distribution of the a′ and b′ in the loop shown in Fig. 8.

We see the production of a small loop from a region of high velocity where the a′ ≈ b′ after step

3 of our smoothing procedure. We mark the region of interest with a shaded disk near the center

of the figure. The ejection of this loop is seen by the disappearance of a series of points of a′’s as

well b′’s. Subsequent smoothing reconnects these points and smooths the string again.

Looking at movies of the loop evolution after fragmentation we have identified two major

sources of loop fragmentation which are quite distinct and that pretty much cover all the

cases where there is significant energy lost into loops by the parent loop.

Most of the cases where fragmentation occurs seem to be coming from fast-moving regions
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of the parent loop. The loops being produced from those regions are typically small but

often have high Lorentz boosts. Furthermore there are several cases where we have seen

trains of small loops created from those regions.

The other kind of fragmentation comes from the late time smoothing of the loop where

the smoothing length is already comparable to the size of the loop. It is not clear how much

one should trust this limiting regime of the smoothing process so in some sense we may be

overestimating the amount of fragmentation by including these possible energy losses.

D. Number of Cusps

As shown in Fig. 9, the smoothing procedure yields an important reduction of the number

of crossings between the a′ and the b′ functions on the sphere. We plot in Fig. 10 the dis-

tribution of the number of cusps for loops directly from the simulation, after two smoothing

steps, and after the final step of the the smoothing procedure. We see that the number

of “cusps” gets dramatically reduced already in the first stages of smoothing and quickly

settles to 2 cusps per loop either for radiation or matter.

Furthermore, the amount of energy or length involved in each crossing increases from a

very small amount to a considerable fraction of the total energy of the loop at the final stage

of our smoothing procedure. In order to quantify this we estimate the value of the length

associated with the second derivative of a and b at the point of the cusp by calculating

αcusp =
2π

L|a′′
cusp|

, (8)

and similarly for βcusp in terms of b′′. We show in Fig. 11 the distribution for the values

of
√
αβ at different stages of smoothing. We use the product αβ because this is the area

of the world sheet that is involved in the cusp, and controls, for example, the amount of

gravitational radiation emitted [13].

As we mentioned earlier, at the time of loop formation, there are a very large number

of “cusps”, but these are really crossings of kinks that have no significant energy as can be

seen in Fig. (11). On the other hand, nearly all smoothed loops have 2 cusps per oscillation,

and these cusps are quite substantial.
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FIG. 10. Distribution for the number of cusps before smoothing, after two smoothing steps, and

when the loop is fully smoothed. Initially there are very many cusps, but these are really just

crossings of kinks. By the end there are almost always 2 cusps in both cases.

E. Angular Momentum

The angular momentum of a loop is defined by the expression,

J = µ
∫ L

0
(x× ẋ) dσ , (9)

which can be written in terms of the the a and b functions by

J =
µ

4

∫

(a× a′ + b× b′) dσ . (10)

It is useful to define a dimensionless quantity that compares the angular momentum of a

loop of certain size L to the maximum angular momentum for a loop of that energy,4

J =
|J|
Jmax

= 4π
|J|
µL2

. (11)

We show in Fig. 12 the weighted histogram of the angular momentum for the distribution of

loops in our simulation. The initial distribution of loops as they come out of the simulation

4 The state with maximum angular momentum for a particular mass is the rotating double line, which is

the simplest example of a Regge trajectory [34].
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FIG. 11. Distribution of the value of the cusp parameter
√
αβ at the same steps as in Fig. 10.

Initially the “cusps” are infinitesimal, but by the end they involve most of the loop.

seem to have a somewhat larger typical angular momentum than the one found earlier in

[29]. This is probably due to the statistical difference of the loops considered in these earlier

studies compared with our scaling loops. We see that the distribution moves towards a larger

fraction of the total possible angular momentum after smoothing has taken place. This does

not mean, of course, that angular momentum increases but only that it grows relative to

the total energy on the loop. One can understand this by realizing that most of the total

angular momentum of the loop comes from the bulk motion of the loop and not the small

scale structure on it. Smoothing reduces the small scale structure but does not have a great

effect on the angular momentum. It would be interesting to see whether a more realistic

model of back reaction changes this picture since gravitational waves should radiate part of

the angular momentum on the loop.

F. Planarity

Copi and Vachaspati [30] studied the degree to which cosmic string loops line in a plane.

Their loops were formed by fragmentation of single loops with specified harmonics. Here we
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FIG. 12. Distribution of the angular momentum of the loops before and after smoothing.

do a similar analysis of loops coming from our simulations and their smoothed versions. We

consider the tensor

Iij =
∫

dt dσ xi(σ, t)xj(σ, t) , (12)

where the integral is taken over one oscillation and the coordinates are in the rest frame of

the loop. This tensor (related to the quadrupole and moment of inertia tensors) gives the

extent of the string world sheet in different directions. If the motion of the loop is confined

to a plane, I will have a zero eigenvalue in the perpendicular direction. If the world sheet

extends in all spatial directions equally, then the 3 eigenvalues of I will be equal. Thus we

define the planarity,

P = 1−
(

minimum eigenvalue of I
average eigenvalue of I

)

, (13)

which takes on values ranging from 0 for spherical symmetry to 1 for a planar loop.

We can compute I by integrating over a and b separately. The results are shown in

Fig. 13. We find that loops at formation are significantly planar, P ∼ 0.8 or 0.9, but

smoothing makes them more three-dimensional.

Ref. [30] performed the same tensor calculation, but on a and b separately, rather than

on x. They found the two parts of the string to be substantially linear, with the largest
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FIG. 13. Distribution of the planarity measure PI for loops at formation and after the last

smoothing step.

eigenvalue of order 0.85 of the sum of the eigenvalues. Adding together the two mostly linear

parts of the string yields a mostly planar shape, similar to what we found here for loops at

formation. Ref. [30] did not attempt to simulate gravitational smoothing.

VI. CONCLUSIONS

We have analyzed the shape of loops and long strings in large cosmic string network

simulations. Contrary to the usual view that strings are smooth, we find that long strings

consist of generally straight segments punctuated by large-angle kinks. We find that the

tangent vectors a′ and b′ to the right- and left-moving parts of strings form hierarchical

“clumps” on the unit sphere. We do not see places where a′ and b′ trace out smooth paths.

When a loop forms, it inherits the a′ and b′ of the string from which it formed. Thus

loops at formation do not have smooth regions of a′ and b′ that could cross to form a cusp.

Furthermore, fragmentation of loops nearly completely divides the unit sphere into regions

with only a′ and those with only b′. Only in unusual cases where these tangent vectors cross

into each other’s regions could cusps be possible.
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Nevertheless, gravitational back reaction will smooth loops and produce cusps on loops

which formerly had only kinks. We study this process with a toy model and find that nearly

all loops end up with 2 cusps per oscillation with most of the loop involved in the cusps.

The angular momentum of loops at the time of formation is about one quarter the max-

imum possible value, and increases by smoothing into about half the maximum possible

value. This does not mean that the angular momentum of the loop is increasing, but rather

that the length of the loop decreases during smoothing and that small-scale structure that

does not contribute much to the overall angular momentum is the first to be eliminated.

At formation, loops have some degree of planarity, on the order of 0.85 as we described

above. However, smoothing reduces the degree of planarity so that the smoothed loops

are midway between a planar loop and a loop which has no preferred axes, with a wide

distribution.
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