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Abstract
Beginning with a set of simplified models for spin-0, spin-1

2 , and spin-1 dark matter candidates,

we derive the full set of non-relativistic operators and nuclear matrix elements relevant for direct

detection of dark matter, and use these to calculate rates and recoil spectra for scattering on various

target nuclei. This allows us to explore what high energy physics constraints might be obtainable

from direct detection experiments, what degeneracies exist, which operators are ubiquitous and

which are unlikely or sub-dominant. We find that there are operators which are common to all

spins as well operators which are unique to spin-1
2 and spin-1 and elucidate two new operators

which have not been previously considered. In addition we demonstrate how recoil energy spectra

can distinguish fundamental microphysics if multiple target nuclei are used. Our work provides a

complete roadmap for taking generic fundamental dark matter theories and calculating rates in di-

rect detection experiments. This provides a useful guide for experimentalists designing experiments

and theorists developing new dark matter models.
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I. INTRODUCTION

The existence of non-baryonic dark matter has been inferred from measurements includ-

ing galactic rotation curves [1], large scale structure surveys [2–4], X-ray observations [5],

gravitational lensing [6, 7], and cosmic microwave background anisotropy measurements [8],

spanning cosmological eras from the present day to the remote past. This widespread and

robust data has led to cold dark matter models with a cosmological constant, labeled ΛCDM

becoming entrenched as the standard cosmological model.

Nevertheless, this impressive array of observations has only been sensitive to the grav-

itational influence of dark matter and constrained its relic abundance, leaving its particle

nature as one of the most important open questions in physics. The search for dark matter

includes indirect astrophysical searches ([9–13]), collider production efforts (for some exam-

ples of dark matter searches at the LHC, see [14–18]) which will examine new territory soon

with LHC run 2 which will commence this year, and attempts to observe dark matter inter-

actions with Standard Model (SM) particles via dark matter-nucleus scattering processes in

direct detection experiments, to which we now turn.

The search for dark matter via direct detection goes back at least three decades [19, 20]

and has been particularly vigorous over the last decade or so with experiments such as LUX

[21], Xenon100 [22], CDMS II (Ge) [23], CDMS I (Si) [24], DAMA/LIBRA [25], COGENT

[26], and CRESST [27] pushing ever deeper into weakly interacting dark matter mass and

scattering cross-section parameter space, but has thus far failed to yield a convincing signal.

In the near future detectors such as Super CDMS [28] (which has recently released its first

results on low mass dark matter searches [29, 30]), XENON1T [31], and DARWIN [32] are

expected to push the limits of direct detection orders of magnitude below the current levels.

In order to connect observations to microphysical models one needs a general framework

within which to interpret the observations of direct detection experiments. For quite some

time the prevailing method of analyzing dark matter-nucleus interactions has been to assume

that dark matter is a weakly interacting massive particle (WIMP), and then to categorize the

interactions as elastic and isospin conserving and either spin-independent or spin-dependent

[33, 34]. For some well studied models of dark matter, such as the weakly interacting

Majorana neutralino found in supersymmetry models, this assumption is reasonable.

With an absence of observed dark matter signals, there has of late been a surge in
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interest in exploring more general types of interactions between dark matter and nuclei.

Generalizations include inelastic and momentum dependent interactions, which may arise

due to additional structure in the dark sector including excited dark matter states, or dark

gauge bosons giving rise to electric and magnetic form factors [35–44].

The formalism of choice for many of these investigations is relativistic effective field

theory, which provides a model independent framework to analyse dark matter-SM inter-

actions [45–49]. It has been shown that these effective theories break down when applied

to high-momentum transfer experiments, such as the LHC [50, 51]. Therefore analyses

moved beyond this framework and have moved to what are labeled as ‘simplified models’

instead [52–54]. Simplified models are field theories which extend the SM by a single dark

matter particle and a single mediator particle which allows the WIMP to communicate with

quarks and/or leptons. The newly added dark matter content is assumed to be a singlet

under the SM gauge groups (we will consider some cases where the particles mediating

the interaction have SM charge). In this context it is then possible to calculate collider

amplitudes valid at the high energies of interest in such experiments. Given this simple dark

sector, one can write down an exhaustive list of every combination of WIMP and mediator

spins, and all possible tree level interactions. These simplified models have now gained

popularity for analyzing indirect detection signals [55, 56], allowing connections to be made

with the growing body of literature which make use of them.

Another step towards placing dark matter-nucleus interactions on a general footing has

been accomplished recently by utilizing a non-relativistic effective field theory (EFT) ap-

proach [57–60]. Since the interactions in direct detection scenarios are assumed to take

place due to an incoming dark matter particle with a typical velocity O(100km/s), the

recoil momenta in such an interaction will be O(. 100keV). The particle masses involved,

including the nucleons of roughly GeV scale, the dark matter particles, which typically range

from the GeV region to several orders of magnitude above, and mediators that can also be

quite heavy compared to the typical interaction momenta, produce a situation where an

EFT treatment is quite natural.

In order to circumvent as much model dependence as possible, one can construct general

interactions which obey Galilean invariance, T -symmetry, and Hermiticity. These operators
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will take the standard effective four-particle interaction form, reminiscent of Fermi’s original

model of weak interactions. The non-relativistic interactions can be shown to be functions of

only four parameters including the nucleon spin SN , the dark matter spin Sχ, the momentum

transfer, ~q, and a kinematic variable ~v⊥ which is a function of the relative incoming (~vχ,in−

~vN,in) and outgoing velocities ~vχ,out − ~vN,out

~v⊥ = 1
2 (~vχ,in − ~vN,in + ~vχ,out − ~vN,out) = ~vχ,in − ~vN,in + ~q

2µN
(1)

which obeys ~v⊥ · ~q = 0. It was demonstrated in [58] that there exist fifteen such non-

relativistic interactions which arise from twenty possible bi-linear combinations of dark

matter and nucleons.

The formalism developed in [58] is unique in being the only analysis to comprehensively

develop the nuclear physics of direct detection experiments. From this general framework it

is now apparent that there are interactions beyond the standard spin independent/dependent

type. The origins of these ‘new’ interactions are not necessarily exotic and it has been shown,

in the context of relativistic EFT, how many of them can be generated [61].

What has been lacking to date however, is a completely general and comprehensive treat-

ment that connects high energy microphysics with low-energy effective nuclear matrix ele-

ments in a model independent way. It is possible, for example, that the various interactions

listed in [58] can give rise to degeneracies where different fundamental dark matter La-

grangians, describing dark matter and interaction mediators of various spins, can produce

the same interaction types. This will obviously pose problems for attempts to discern the

properties of dark matter when interpreting the results of experimental data. Furthermore,

dark matter may not be spin-1
2 , which creates a need for extending the parametric frame-

work from the four descriptors listed above. In particular, as we shall show, this allows the

existence of new non-relativistic operators to appear in the low energy effective theory.

Motivated by the above we present here a general analysis covering a broad spectrum

of particle and interaction types, starting from the microphysics, which will enable one to

link experiment with fundamental theory while incorporating the new nuclear responses

described in [58].

In this work we build upon the NR-EFT description by examining simplified models with

generalized Lagrangians for scalar, spinor, and vector dark matter interacting with nucleons

via scalar, spinor, and vector mediators, consistent with Lorentz invariance and hermiticity
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while imposing stability of the dark matter candidates. We integrate out the heavy mediator

and obtain effective relativistic interaction Lagrangians. Next, we take the non-relativistic

limit of these Lagrangians, and identify them with the NR operators from [58], which are

reproduced below, in Table 1. Using these, we identify which electroweak nuclear responses

are excited by a given fundamental interaction model and determine the relative importance

of various models within the context of direct detection experiments consisting of xenon and

germanium targets by exploring the relative magnitude of coefficients of these operators,

and also their energy dependence.

The paper is organized as follows; in section II the EFT formalism of [58] is summarized,

in section III we build the generalized relativistic Lagrangians and in section IV we out-

line the signatures and distinguishability of these models in the context of direct detection

experiments, providing a framework for both experimentalists and theorists to base their

future analyses.

II. EFFECTIVE FIELD THEORY OF DIRECT DETECTION

Conventionally, coherent WIMP-nucleus scattering has been considered to come from two

types of interactions; spin-independent (SI) and spin-dependent (SD). SI interactions couple

to the charge/mass of the nucleus while SD couples to the spin. The nuclear cross section

is generally written in terms of the nucleon cross section at zero momentum transfer, σ0,

and a form factor, F (q), to take into account the loss of coherence over the finite size of the

nucleus,

dσ

dEr
= M

2πµχMv2

(
σSI0 F 2

SI(q) + σSD0 F 2
SD(q)

)
. (2)

where M is the mass of the target nucleus and µχM is the WIMP-nucleus reduced mass.

This picture has recently been shown to be incomplete, as it is also possible for the WIMP to

couple to the nucleus through additional nuclear responses [58, 59]. Working in the language

of a non-relativistic (NR) effective field theory Fitzpatrick et al. identified 15 operators

to characterize the ways in which a WIMP can couple to the various nuclear responses.

These operators are constructed from combinations of non-relativistic vectors which respect

Galilean invariance, T symmetry and which are Hermitian. We list them in table I. The
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Hermitian vectors are:

i
~q

mN

, ~v⊥ = ~v + ~q

2µN
, ~Sχ, ~SN , (3)

where ~q = ~p′− ~p = ~k− ~k′ is the momentum transfer, ~v is the velocity of WIMP with respect

to the nucleus of the detector, µN is the reduced mass of the system and ~Sχ and ~SN are the

WIMP and nuclear spins respectively. Throughout the paper, we denote by ~p and ~p′ the

incoming and outgoing WIMP momenta and by ~k and ~k′ the incoming and outgoing nuclear

momenta respectively. Energy-momentum conservation implies the orthogonality condition

~q · ~v⊥ = 0.

TABLE I. List of NR effective operators described in [58]

O1 1χ1N

O2 (~v⊥)2

O3 i~SN · ( ~q
mN
× ~v⊥)

O4 ~Sχ · ~SN

O5 i~Sχ · ( ~q
mN
× ~v⊥)

O6 ( ~q
mN
· ~SN )( ~q

mN
· ~Sχ)

O7 ~SN · ~v⊥

O8 ~Sχ · ~v⊥

O9 i~Sχ · (~SN × ~q
mN

)

O10 i ~q
mN
· ~SN

O11 i ~q
mN
· ~Sχ

O12 ~Sχ · (~SN × ~v⊥)

O13 i(~Sχ · ~v⊥)( ~q
mN
· ~SN )

O14 i(~SN · ~v⊥)( ~q
mN
· ~Sχ)

O15 −(~Sχ · ~q
mN

)
(
(~SN × ~v⊥) · ~q

mN

)

As we shall describe, in the following analysis we discovered that two additional NR
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operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

O17 ≡ i
~q

mN

· S · ~v⊥,

O18 ≡ i
~q

mN

· S · ~SN , (4)

where S is the symmetric combination of polarization vectors. Together these 171 operators

form a generalized NR interaction lagrangian:

LNR =
∑
α=n,p

15∑
i=1

cαi Oαi , (5)

where the coefficients cαi are given by the microphysics of the interaction and in general one

could allow for isospin violation by having different couplings to neutron and proton inside

the nucleus. In Appendix A, we briefly review the procedure employed in [58] to go from

the NR operators to the WIMP-nucleus amplitude. This procedure is then applied to the

new vector operators in Appendix B.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

In order to interpret the results of direct detection data in terms of fundamental dark

matter models, it is useful to first explore, in as model-independent way as possible, the full

range of possible operators that might contribute to any observed signal. We address this

question by mapping out the space of possible WIMP-nucleon interactions using simplified

models, where ‘simplified model’ means a single WIMP with a single mediator coupling it

to the quark sector. While the simplified models considered here are not full-fledged UV

complete models, any complete model of WIMP dark matter is expected to make use of these

interactions, with relationships between the interactions, and their couplings determined by

issues including renormalizability, symmetries, renormalization group operator mixing, etc.

Previous work [61] demonstrated that using only the simplest SI/SD form factors (even

with additional momentum dependence taken into account) can lead one to infer wildly

incorrect values of the WIMP mass and cross sections if other operators are in fact relevant.

Here we go further by starting with simplified models at the Lagrangian level. This is useful

1 O16 is omitted since it is a linear combination of other operators.
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for two reasons; it allows us to better explore which NR operators arise from a broad set

of Lagrangians, and also make connection with the growing body of literature which use

simplified models for indirect detection and collider searches. Leading order corrections,

including calculations beyond the single particle approach which can exhibit large effects in

isospin violating scenarios, have been examined [62, 63], but in this initial study, keeping

with the simplified model approach, only single particle nucleon interactions at leading order

are considered.

While additional structure must exist to allow renormalizability, in particular for possible

massive vector bosons in the dark sector, unless this structure involves additional operators

which can be included in the broad set of relevant operators we consider, it is not relevant

for the ensuing discussion.

When it comes to interpreting signals, knowing comprehensively how different interactions

with different nuclei arise from different UV complete Lagrangian terms will allow us to

identify degeneracies relevant for distinguishing competing models. Further, it can also help

optimize target selection for maximum discrimination of the UV model parameter space.

In building these simplified models we remain agnostic about the WIMP’s spin, and

consider dark matter spins of 0, 1
2 and 1. We do however only consider renormalizable

interactions between quarks and WIMPs. To ensure a stable WIMP, we assume that the

WIMP is either charged under some internal gauge group or a discrete symmetry group

(for example Z2). However, we assume that this gauge charge is not shared by quarks. We

will couple the WIMP to the quarks via a heavy mediator in two distinct ways: charged

and uncharged mediators, each with all possible spins consistent with angular momentum

conservation. The mediator mass is chosen to be the heaviest scale in the problem (and

certainly much greater than the momentum exchange which characterizes the scattering

process) so that we can integrate it out (see appendix C for details). One should note that

in this process the couplings are fixed at the scale given by heavy mediator. In order to

give a complete connection for the couplings from the mediator scale to the hadronic scale

where direct detection interactions occur, in principle one should use utilize renormalization

group equations arising from loop corrections [64–67]. For example in [67], the authors

showed that after running down to the hadronic scale, EFT operators could arise which were

not present at the high scale. Once again, while this issue is important when considering

the relative magnitude of different operators in specific models, we do not focus here so
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much on the relative magnitude of the coefficients of different operators, but rather on the

detector response for individual EFT operators. Future studies which are concerned with

more complete model building, beginning with the framework presented in the current work,

should consider such effects.

Integrating out the mediator leads to relativistic effective WIMP-nucleon interactions,

whose NR limit can then be examined. In the uncharged mediator case we will consider

mediators that are neutral under all SM and WIMP gauge charges, while in the charged

case, the mediator must have both WIMP and SM gauge charges. Given the above as a

guide, our Lagrangian construction is then constrained only by gauge invariance, Lorentz

invariance, renormalizability and hermiticity. In certain cases which follow, the requirement

of hermiticity demands coupling constants be complex. Unless explicitly noted, the coupling

constants are dimensionless and can be assumed to be real.

In the following Lagrangian descriptions, universality of mediator couplings to quark

flavors is assumed. Including differing, non-universal couplings to quarks would have the

effect of varying the couplings of dark matter to neutrons and protons. Non-universal

couplings would introduce further degeneracies when it comes to determining fundamental

Lagrangian parameters, which is an interesting complication to consider, but outside the

scope of the current study.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-

bility, and S† is its Hermitian conjugate. To have renormalizable interactions, the neutral

mediator can only be a scalar or a vector. We denote the scalar mediator by φ and the

vector mediator by Gµ with field strength tensor Gµν .

The most general renormailzable Lagrangian for scalar mediation consistent with the
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above assumptions is given by

LSφq = ∂µS
†∂µS −m2

SS
†S − λS

2 (S†S)2

+1
2∂µφ∂

µφ− 1
2m

2
φφ

2 − mφµ1

3 φ3 − µ2

4 φ
4

+iq̄D/ q −mq q̄q

−g1mSS
†Sφ− g2

2 S
†Sφ2 − h1q̄qφ− ih2q̄γ

5qφ, (6)

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector

mediation (up to gauge fixing terms) is

LSGq = ∂µS
†∂µS −m2

SS
†S − λS

2 (S†S)2

−1
4GµνG

µν + 1
2m

2
GGµG

µ − λG
4 (GµG

µ)2

+iq̄ /Dq −mq q̄q

−g3

2 S
†SGµG

µ − ig4(S†∂µS − ∂µS†S)Gµ

−h3(q̄γµq)Gµ − h4(q̄γµγ5q)Gµ. (7)

2. Spin-1
2 Dark Matter

If the WIMP has spin-1
2 (denoted by χ below), then, as in the scalar WIMP case, me-

diation will only occur via scalar or vector mediators. The most general renormalizable

interactions for the scalar (φ) and vector mediator (Gµ) cases respectively are given below,

Lχφq = iχ̄ /Dχ−mχχ̄χ

+1
2∂µφ∂

µφ− 1
2m

2
φφ

2 − mφµ1

3 φ3 − µ2

4 φ
4

+iq̄D/ q −mq q̄q

−λ1φχ̄χ− iλ2φχ̄γ
5χ− h1φq̄q − ih2φq̄γ

5q, (8)
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LχGq = iχ̄ /Dχ−mχχ̄χ

−1
4GµνG

µν + 1
2m

2
GGµG

µ

+iq̄D/ q −mq q̄q

−λ3χ̄γ
µχGµ − λ4χ̄γ

µγ5χGµ

−h3q̄γµqG
µ − h4q̄γµγ

5qGµ. (9)

3. Spin-1 Dark Matter

If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can

occur via a heavy scalar or a vector particle. The general interaction Lagrangian for the

scalar mediation case is

LXφq = −1
2X

†
µνX µν +m2

XX
†
µX

µ − λX
2 (X†µXµ)2

+1
2(∂µφ)2 − 1

2m
2
φφ

2 − mφµ1

3 φ3 − µ2

4 φ
4

+iq̄ /Dq −mq q̄q

−b1mXφX
†
µX

µ − b2

2 φ
2X†µX

µ − h1φq̄q − ih2φq̄γ
5q. (10)

For the case of vector mediation, there are many possible interactions because the Lorentz

indices on the vectors afford a more diverse set of terms. The Lagrangian is given by

LXGq = −1
2X

†
µνX µν +m2

XX
†
µX

µ − λX
2 (X†µXµ)2

−1
4GµνG

µν + 1
2m

2
GG

2
µ −

λG
4 (GµG

µ)2

+iq̄ /Dq −mq q̄q

−b3

2 G
2
µ(X†νXν)− b4

2 (GµGν)(X†µXν)−
[
ib5X

†
ν∂µX

νGµ

+b6X
†
µ∂

µXνG
ν + b7εµνρσ(X†µ∂νXρ)Gσ + h.c.

]
−h3Gµq̄γ

µq − h4Gµq̄γ
µγ5q (11)

where, for the Lagrangian to be Hermitian, b6 and b7 are complex (this implies a new source

of CP violation, which will not be considered further here).
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A. Charged-mediator Lagrangians

Here we consider the simplest case of mediators that are charged under both the DM

internal symmetry group and SM gauge groups. This is motivated by the absence of spin-
1
2 mediators (s-channel processes) in the previous section. Such a mediator, if neutral, is

forbidden by simultaneous requirements of gauge invariance and renormalizability. Dark

Matter models with mediators endowed with charges from both DM and SM side have been

considered in the literature before [68, 69]. The case of a spin-1
2 mediator carrying SU(3)c

is also motivated by studies of heavy quark models. This allows unique interactions as we

show below. In particular they necessitate a direct interaction between quarks and WIMPs

at the level of the Lagrangian.

1. Scalar Dark Matter

Scalar WIMPs with a charged scalar or vector mediator do not lead to any Lorentz

invariant interactions. This is easy to see since both the scalars (or scalar and vector) and

the quark are required in the (gauge invariant) interaction, but there is no way to contract

the spinor indices consistently if the mediating particle is a scalar or vector. Therefore, the

only possibility is that of a spin-1/2 mediator, Q, which acts like a heavy quark. The general

renormalizable action is given by

LSQq = ∂µS
†∂µS −m2

SS
†S − λS(S†S)2

+iQ̄ /DQ−mQQ̄Q

+iq̄ /Dq −mq q̄q

−(y1SQ̄q + y2SQ̄γ
5q + h.c.), (12)

where y1 and y2 are again complex.

2. Spin-1
2 Dark Matter

For a spin-1/2 WIMP, both a charged scalar and charged vector mediator exchange can
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lead to novel interactions. The charged scalar is denoted by Φ and the charged vector by Vµ

LχΦq = iχ̄ /Dχ−mχχ̄χ

+(∂µΦ†)(∂µΦ)−m2
ΦΦ†Φ− λΦ

2 (Φ†Φ)2

+iq̄ /Dq −mq q̄q

−(l1Φ†χ̄q + l2Φ†χ̄γ5q + h.c.), (13)

LχV q = iχ̄ /Dχ−mχχ̄χ

−1
2V
†
µνVµν +m2

V V
†
µV

µ

+iq̄ /Dq −mq q̄q

−(d1χ̄γ
µqV †µ + d2χ̄γ

µγ5qV †µ + h.c.), (14)

where l1, l2, d1 and d2 are complex.

3. Vector DM

Here again we only have the case of a spin-1
2 mediated interaction between vector DM

and quarks (again scalar and vector charged mediators aren’t possible because they don’t

lead to Lorentz invariant and renormalizable interactions). The general Lagrangian is given

by

LXQq = −1
2X

†
µνX µν +m2

XX
†
µX

µ − λX
2 (X†µXµ)2

+iQ̄ /DQ−mQQ̄Q

+iq̄ /Dq −mq q̄q

−(y3XµQ̄γ
µq + y4XµQ̄γ

µγ5q + h.c.), (15)

where y3 and y4 are complex.

IV. NON-RELATIVISTIC REDUCTION OF SIMPLIFIED MODELS

After integrating out the heavy mediator we replace quark operators with nucleon op-

erators (see appendix D), take the non-relativistic limit (see appendix C), and match onto

the operators given in table I. The results of this calculation are presented in terms of the ci
coefficients from [59], described in section II, facilitating a straightforward computation of
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amplitudes and rates. The ci’s are given for each of the WIMP spins in tables II, III and IV.

With this general framework in place we can now easily find the leading order NR operators

for each distinct WIMP-nucleus interaction. One can imagine a set of minimal scenarios

where only one or two of the interaction terms from our Lagrangians are present and the

rest absent. These scenarios will map out a basis set of interactions which UV models are

built from. We only consider scenarios that give rise to a non-zero direct detection signal.

Each of these scenarios is listed with its leading operators in table V and with all operators

generated in table VI. Note that in the case of a complex coupling constant we consider

purely real and purely imaginary values as separate cases since they produce a distinct set

of operators.

TABLE II. Non-zero ci coefficients for a spin−0 WIMP

Uncharged Mediator Charged Mediator

c1
hN1 g1
m2
φ

y†
1y1−y†

2y2
mQmS

fNT

c10
−ihN2 g1
m2
φ

+ 2ig4hN4
m2
G

mN
mS

i
y†
2y1−y†

1y2
mQmS

∆̃N

TABLE III. ci coefficients for a spin-1
2 WIMP

Uncharged Mediator Charged Mediator

c1
hN1 λ1
m2
φ
− hN3 λ3

m2
G

(
l†2l2−l

†
1l1

4m2
Φ

+ d†
2d2−d†

1d1
4m2

V

)
fNT +

(
− l†2l2+l†1l1

4m2
Φ

+ d†
2d2+d†

1d1
8m2

V

)
NN

c4
4hN4 λ4
m2
G

l†2l2−l
†
1l1

m2
Φ

δN −
(
l†1l1+l†2l2
m2

Φ
+ d†

2d2−d†
1d1

2m2
V

)
∆N

c6
hN2 λ2mN
m2
φ
mχ

( l
†
1l1−l

†
2l2

4m2
Φ

+ d†
2d2−d†

1d1
4m2

V
)mNmχ ∆̃N

c7
2hN4 λ3
m2
G

( l
†
1l2−l

†
2l1

2m2
Φ

+ d†
1d2+d†

2d1
4m2

V
)∆N

c8 −2hN3 λ4
m2
G

( l
†
1l2−l

†
2l1

2m2
Φ
− d†

1d2+d†
2d1

4m2
V

)NN

c9 −2hN4 λ3mN
mχm2

G
− 2hN3 λ4

m2
G

( l
†
1l2−l

†
2l1

2m2
Φ
− d†

1d2+d†
2d1

4m2
V

)NN − ( l
†
1l2−l

†
2l1

2m2
Φ
− d†

1d2+d†
2d1

4m2
V

)mNmχ ∆N

c10
hN2 λ1
m2
φ

i( l
†
1l2−l

†
2l1

4m2
Φ

+ d†
2d1−d†

1d2
4m2

V
)∆̃N − i l

†
1l2−l

†
2l1

m2
Φ

δN

c11 −hN1 λ2mN
m2
φ
mχ

i( l
†
2l1−l

†
1l2

4m2
Φ

+ d†
2d1−d†

1d2
4m2

V
)mNmχ f

N
T + i

l†1l2−l
†
2l1

m2
Φ

mN
mχ

δN

c12 0 l†2l1−l
†
1l2

m2
Φ

δN

As described earlier, we find that it is important to consider operators beyond those

incorporated into the standard spin-independent and spin-dependent formalism, i.e. simple
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TABLE IV. ci coefficients for a spin-1 WIMP

Uncharged Mediator Charged Mediator

c1
b1hN1
m2
φ

y†
3y3−y†

4y4
mQmX

fNT

c4
4Im(b7)hN4

m2
G

+ i q
2

m2
X

Re(b7)hN4
m2
G
− q2

mXmN

Re(b6)hN3
m2
G

2y
†
3y3−y†

4y4
mQmX

δN

c5
Re(b6)hN3

m2
G

mN
mX

0

c6
Re(b6)hN3

m2
G

mN
mX
− iRe(b7)hN4

m2
G

m2
N

m2
X

0

c8
2Im(b7)hN3

m2
G

0

c9 −2Re(b6)hN4
m2
G

mN
mX

+ 2Im(b7)hN3
m2
G

0

c10
b1hN2
m2
φ
− 3b5hN4

m2
G

mN
mX

i
y†
4y3−y†

3y4
mQmX

∆̃N

c11
Re(b7)hN3

m2
G

mN
mX

i
y†
4y3−y†

3y4
mQmX

δN

c12 0 2iy
†
3y4−y†

4y3
mQmX

δN

c14 −2Re(b7)hN4
m2
G

mN
mX

0

c17 −4Im(b6)hN3
m2
G

mN
mX

0

c18
4Im(b6)hN4

m2
G

mN
mX

−2iy
†
4y3−y†

3y4
mQmX

δN

models exist in which one would infer an incorrect rate in current experiments by not in-

cluding these effects. Also importantly, not all of the NR operators are actually generated at

leading order; for example, the operators O2, O3, O13 and O15 are missing at leading order.

Note that we only consider renormalizable Lagrangians, higher order non-renormalizable

operators are presumably further suppressed. We have also not considered the case of ki-

netic mixing, which could be used to generate anapole interactions [61], because the effective

interaction doesn’t arise from one mediator exchange.

While spin independent interactions are a generic feature of direct couplings to quarks

in our charged mediator cases, it is sometimes possbile to suppress them. In the scalar (and

vector) WIMP with charged mediator cases, it is possible to suppress the spin independent

interaction by ensuring that |y1| = |y2|(|y3| = |y4|) while keeping their relative phases non-

zero (or π). While these non-minimal scenarios require some fine tuning we include it for

completeness and label them y1, y2 and y3, y4.

Aside from scalar WIMPs, each particular spin produces some non-relativistic operators

15



that are unique to that spin. Also, importantly, the operators O1 and O10 are generic to

all spins. In five cases relativistic operators generate unique non-relativistic operators at

leading order. Therefore distinguishing WIMP scenarios in these cases reduces to experi-

mentally discerning between these operators (see also [70]). Given the likely low statistics

of any detection in upcoming direct detection experiments, sub-leading operators are not

likely to contribute enough to provide any further discriminating power.

V. OBSERVABLES

The principle observable in direct detection experiments is the differential event rate.

Since the incoming WIMPs originate in the galactic halo, one must average over the WIMP

velocity distribution, f(v), which we assume for the purposes of this paper to be Maxwell-

Boltzmann,
dR

dER
= NT

ρχM

2πmχ

∫
vmin

f(v)
v

Ptotdv (16)

where we use the value ρχ = 0.3GeV/cm3 for the local dark matter density, NT is the number

of nuclei in the target and Ptot can be calculated from the amplitude M in Eq. A10

Ptot = 1
2jχ + 1

1
2jN + 1

∑
spins

|M|2. (17)

Throughout this work we use the Mathematica package supplied in [59] to calculate rates.

To determine the leading order operator which arises from a given relativistic scenario we

first plot the rate for each of the NR operators in xenon-131. To simply compare the op-

erators we set the ci coefficients to be the same and normalized the overall rate to that of

O1, see Fig. 1. Since operators are either zero, first or second order in momentum transfer

q or velocity ~v⊥, the relative strengths of the operators span 16 orders of magnitude. This

is an important point to keep in mind when finding the leading operator, as sometimes a

term which appears to be higher order in q can dominate the non-relativistic reduction. For

example in the bRe
7 h4 scenario, one finds that q2O4 dominates over the O6 and O14 which

contain powers of q within the operators.

Since the Lagrangians we have considered are not tied to specific complete and consistent

particle physics models, the mediator masses are not fixed in advance and thus specific
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FIG. 1. The relative strength of event rates for a 50GeV spin-1
2 WIMP in xenon for each of the

non-relativistic operators in table I, where the coefficients of each operator are set to be equal

event rates are not predicted in advance. Clearly one requires a rate that is low enough

to evade the current experimental constraints. For example, a 50 GeV WIMP producing

10 events per tonne per year is sufficiently low to evade the bounds from LUX [21]. For

demonstration purposes we set the couplings to 0.1 (or 0.1i for imaginary) in the various

Lagrangians and find a mediator mass that will produce 10 events/t/y in the signal region

for xenon (5− 45keV). The calculated masses are given in table V. It is perhaps telling that

the mediator masses span 6 orders of magnitude, from just a few GeV up to a PeV. While

it is unlikely that a full model of thermal relic dark matter could be built around all of

these Lagrangians, it is nevertheless a useful metric to estimate the relative strength of the

different nuclear responses to each of the operators.

In Figs. 2, 3, 4 and 5 we have plotted rates for two common targets. For simplicity and

again for demonstration purposes, we only plot the rates for a single isotope of both ger-

manium and xenon. The choice of isotopes, 73Ge and 131Xe, was made to ensure sensitivity

to spin-dependent responses. As can be seen in the figures, many operators produce rates

with similar recoil energy dependence in the same target, but different nuclei can have very

different responses to the various operators [58]. Thus a complementary choice of nuclear

targets can provide important discriminating information.

To illustrate this discriminating power we plot the ratio of the rates in xenon and ger-

manium in Fig. 5 and 6. We choose to only present ratios for the uncharged mediator

cases of spinor and vector WIMPs since the other cases produce trival results (all operators

being spin independent). To estimate the effect astrophysical uncertainties will have on
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discriminating between operators, we plot the rate for a range of astrophysical parame-

ters from v0 = 200m/s, and vesc = 500m/s (lower) to v0 = 240m/s and vesc = 600m/s

(upper). The uncertainty in the dark matter density does not appear since we are con-

sidering the ratio of rates. Given the vastly different energy dependence of the ratio of

rates of each scenario the astrophysical errors do not completely inhibit their identification.

Furthermore, operators O9 and O14, produced in scenarios h4b
Re
7 and h4b

Re
6 respectively,

remain indistingushable when considering the ratio of rates. While it appears that in prin-

ciple almost every operator is discernible, in practice isotopically impure targets and low

statistics will further complicate the situation and provide limits on practical discrimination.
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FIG. 2. Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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FIG. 3. Rates for a 50GeV spin-1
2 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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FIG. 4. Rates for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.

0 20 40 60 80 100

100

10-5

10-10

10-15

10-20

ER[keV]

h4b7
Re

h3b6
Im

h4b6
Im

h3b7
Im

h4b7
Im

0 20 40 60 80 100
10-3

10-2

10-1

100

ER[keV]

h4b7
Re

h3b6
Im

h4b6
Im

h3b7
Im

h4b7
Im

FIG. 5. Rates (left) for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with

uncharged mediators and imaginary couplings, assuming mediator mass of 1TeV and O(1) coupling

constants. Also shown is the ratio of rates in xenon and germanium (right).

VI. CONCLUSION

The analysis we have given here builds on previous analyses to provide, in generality, a

roadmap to use event rates in direct dark matter detectors to constrain fundamental dark

matter models. We have outlined the steps needed to go from fundamental Lagrangians, first

to relativistic operators, then to non-relativistic operators, and finally to produce nuclear

matrix elements. In the process several significant facts have been elaborated.

• Not all possible non-relativistic operators contributing to nuclear matrix elements in

direct detection will arise from simplified UV complete dark matter models. This is

mainly because of Lorentz symmetry, which restricts interactions depending on spin.

• Spinor and vector WIMPs each have NR operators which are unique to their simplified

models at leading order, O6 for spin-1
2 and O5, O17 and O18 for spin-1. The last two,
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FIG. 6. Ratio of rates in xenon and germanium, illustrating the discriminating power of having

multiple nuclear targets. For a 50GeV spin-1
2 WIMP with uncharged mediator (left) and a 50GeV

spin-1 WIMP with uncharged mediator (right), the shaded regions show the upper and lower

bounds due to the astrophysical parameters

being formed from a symmetric combination of polarization vectors, can only arise for

spin-1.

• Two non-relativistic operators, O1 and O10, are ubiquitous and arise for all WIMP

spins we have explored. They follow at the leading order from the simplest quark

bilinears, q̄q and q̄γ5q or q̄γµγ5q respectively, which are present in our simplified models

for each WIMP spin.

• In 5 of our simplified model scenarios, the leading non-relativistic operator is not

present in any other scenario at leading order.

• Two new non-relativistic operators (Eq. 4) not previously considered within the con-

text of the full array of allowed nuclear responses arise at low energies if spin-1 WIMP

dark matter is allowed for. They arise from symmetric combination of spin-1 polar-

ization vectors, which is linearly independent of the antisymmetric combination that

constitutes the spin vector.

• While not all operators can be distinguished on the basis of their impact on the

differential event rates, they can produce radically different energy dependence for

scattering off different nuclear targets. We have shown that a complementary use of

different target materials (xenon and germanium in this case) allows one to distinguish

between different particle physics models of WIMP dark matter.
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While current detectors have only yielded upper limits, with new generations of larger

detectors with greater energy resolution and lower thresholds coming online, the search for

WIMP dark matter has never been so vibrant and promising. The tools we have provided

here should help experimenters to probe the most useful parameter space, to interpret any

non-zero signals in terms of constraints on fundamental models, and should allow theorists

who build fundamental models to frame predictions in an accurate and simple way so that

they might be directly compared with experiment.
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TABLE V. Leading order operators which can arise from the relativistic Lagrangians considered in

this work, the column ‘L terms’ gives the non-zero couplings for that scenario. Each row represents

a possible leading order direct detection signal. A ‘†’ indicates that the mediator is charged. The

’Eqv. Mm’ column gives the mediator mass required for each scenario to produce ∼10 events

t−1yr−1keV −1 in xenon, with couplings set to 0.1.

WIMP spin Mediator spin L terms leading NR operator Eqv. Mm

0 0 h1, g1 O1 14 TeV

0 0 h2, g1 O10 16 GeV

0 1 h4, g4 O10 9 GeV

0 1
2
†

y1 O1 3.7 PeV

0 1
2
†

y2 O1 3.7 PeV

0 1
2
†

y1, y2 O10 56 GeV
1
2 0 h1, λ1 O1 14 TeV
1
2 0 h2, λ1 O10 330 GeV
1
2 0 h1, λ2 O11 16 GeV
1
2 0 h2, λ2 O6 2.1 GeV
1
2 1 h3, λ3 O1 6.8 TeV
1
2 1 h4, λ3 O9 6.9 GeV
1
2 1 h3, λ4 O8 220 GeV
1
2 1 h4, λ4 O4 150 GeV
1
2 0† l1 O1 7.6 TeV
1
2 0† l2 O1 5.9 TeV
1
2 1† d1 O1 6.4 TeV
1
2 1† d2 O1 7.2 TeV

1 0 h1, b1 O1 14 TeV

1 0 h2, b1 O10 12 GeV

1 1 h4, b5 O10 6.0 GeV

1 1 h3, b
Re
6 (bIm6 ) O5(O17) 6.8 GeV (26 GeV)

1 1 h4, b
Re
6 (bIm6 ) O9(O18) 3.1 GeV (5.4 GeV)

1 1 h3, b
Re
7 (bIm7 ) O11(O8) 210 GeV (280 GeV)

1 1 h4, b
Re
7 (bIm7 ) O4(O4) 90 MeV (190 GeV)

1 1
2
†

y3 O1 3.7 PeV

1 1
2
†

y4 O1 3.7 PeV

1 1
2
†

y3, y4 O11 150 TeV
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TABLE VI. List of scenarios with leading operators colored by which are distinguishable via the

ratio dRXe
dE /dRGedE .

O1 O2 O3 O4 q2O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O17 O18

(h1, g1) 3

(h2, g1) 3

(h4, g4) 3

Sp
in

-0
W

IM
P

(y1) 3 3

(y2) 3 3

(y1, y2) 3

(h1, λ1) 3

(h2, λ1) 3

(h1, λ2) 3

(h2, λ2) 3

(h3, λ3) 3

(h4, λ3) 3 3

(h3, λ4) 3 3

Sp
in

-1 2
W

IM
P

(h4, λ4) 3

(l1) 3 3 3

(l2) 3 3 3

(d1) 3 3 3

(d2) 3 3 3

(h1, b1) 3

(h2, b1) 3

(h4, b5) 3

(h3, b6) 3 3 3 3*

(h4, b6) 3 3*

Sp
in

-1
W

IM
P

(h3, b7) 3* 3* 3

(h4, b7) 3* 3 3 3

(y3) 3 3 3 3 3 3

(y4) 3 3 3 3 3 3

(y3, y4) 3 3 3 3

a

a * indicates the purely imaginary scenario for that coupling
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Appendix A: Non-Relativistic Effective Field Theory Review

We briefly outline the details of the non-relativistic effective field theory of dark matter

direct detection, discussed in [58]. They begin with writing down the full non-relativistic

interaction Lagrangian, which in 2-component isospin space is

LNR =
∑
τ=0,1

15∑
i=1

cτiOitτ (A1)

where t0 and t1 are the identity matrix and the Pauli matrix σ3 respectively. The nucleus is

composed of nucleons, and these can individually interact with the WIMP. This is incorpo-

rated by considering the operator O(j) as an interaction between a single nucleon, j, and

the WIMP, and then summing over the nucleons.

∑
τ=0,1

15∑
i=1

cτiOitτ →
∑
τ=0,1

15∑
i=1

cτi

A∑
j=1
Oi(j)tτ (j) (A2)

where A is the atomic mass number given by the total number of neutrons and protons.

One can do the same reduction with ~v⊥,

~v⊥ → {~vχ − ~vN(i), i = 1, ..., A}

≡ ~v⊥T − {~̇vN(i), i = 1, ..., A− 1} (A3)

where ~vχ and ~vN(i) are the symmetrized combination of incoming and outgoing velocities

for the WIMP and nucleons respectively. ~v⊥T (here T stands for target, i.e., the nuclear

center-of-mass) is defined as

~v⊥T = ~vχ −
1

2A

A∑
i=1

[~vN,in(i) + ~vN,out(i)] (A4)

This allows for a decomposition of the nucleon velocities into internal velocities ~̇vN(i) that

act only on intrinsic nuclear coordinates and ‘in’ and ‘out’ velocities that evolve as a WIMP

scatters off the detector. As an example, the dot product between ~v⊥N and ~SN can be

rewritten as

~v⊥ · ~SN →
A∑
i=1

1
2 [~vχ,in + ~vχ,out − ~vN,in(i)− ~vN,out(i)] · ~SN(i) (A5)

= ~v⊥T ·
A∑
i=1

~SN(i)−
{

A∑
i=1

1
2 [~vN,in(i) + ~vN,out(i)] · ~SN(i)

}
int

(A6)
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The second term in the curly brackets is internal to the nucleus and acts as an operator on

the ‘in’ and ‘out’ nucleon states. ~vN,in can be replaced by ~pN,in/M acting on the incoming

state, which can in turn be replaced by i
←−
∇/M , and similarly ~pN,out/M by −i−→∇/M on the

outgoing nuclear state. Finally, since the nucleus is non-zero in size and individual nucleons

locally interact with the WIMP, nuclear operators built from Oi are accompanied by an addi-

tional spatial operator e−i~q·~x(i) where x(i) is the location of the ith nucleon inside the nucleus.

Starting from Eqn. A2 and using the substitution rules for ~v⊥ and including a factor of

e−i~q·~xi , the interaction Lagrangian can be written as a sum of five distinct terms (nuclear

electroweak operators) that only act on internal nucleon states. Their coefficients, on the

other hand, act on WIMP ‘in’ and ‘out’ states. The WIMP-nucleus interaction can then be

written as

∑
τ=0,1

{
lτ0S + lAτ0 T +~lτ5 · ~P +~lτM · ~Q+~lτE · ~R

}
tτ (i) (A7)

where

S =
A∑
i=1

e−i~q·~xi

T =
A∑
i=1

1
2M

[
−1
i

←−
∇ i · ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i) · 1

i

−→
∇ i

]

~P =
A∑
i=1

~σ(i)e−i~q·~xi

~Q =
A∑
i=1

1
2M

[
−1
i

←−
∇ ie

−i~q·~xi + e−i~q·~xi
1
i

−→
∇ i

]

~R =
A∑
i=1

1
2M

[←−
∇ i × ~σ(i)e−i~q·~xi + e−i~q·~xi~σ(i)×−→∇ i

]
(A8)
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and

lτ0 = cτ1 + icτ5 ~Sχ ·
(

~q

mN

× ~v⊥T

)
+ cτ8(~Sχ · ~v⊥T ) + icτ11

~q · ~Sχ
mN

lAτ0 = −1
2

[
cτ7 + icτ14

(
~Sχ ·

~q

mN

)]

~l5 = 1
2

cτ3i
(
~q × ~v⊥T

)
mN

+ cτ4 ~Sχ + cτ6
(~q · ~Sχ)~q
m2
N

+ cτ7~v
⊥
T + icτ9

(~q × ~Sχ)
mN

+ icτ10
~q

mN


cτ12(~v⊥T × ~Sχ) + icτ13

(Sχ · ~v⊥T )~q
mN

+ icτ14

(
~Sχ ·

~q

mN

)
~v⊥T + cτ15

(~q · ~Sχ)(~q × ~v⊥T )
m2
N


~lM = cτ5

(
i
~q

mN

× ~Sχ

)
− ~Sχc

τ
8

~lE = 1
2

cτ3 ~q

mN

+ icτ12
~Sχ − cτ13

(~q × ~Sχ)
mN

− icτ15
(~q · ~Sχ)~q
m2
N

 (A9)

The WIMP-nucleus amplitude, M, can then be succinctly written as

M =
∑
τ=0,1
〈jχ,Mχ; jN ,MN |

{
lτ0S + lAτ0 T +~lτ5 · ~P +~lτM · ~Q+~lτE · ~R

}
tτ (i)|jχ,Mχ; jN ,MN〉.

(A10)

By using spherical decomposition, the internal nuclear operators S, T, P,Q and R can be

further rewritten in terms of standard nuclear electroweak responses as follows:

M =
∑
τ=0,1
〈jχ,Mχf ; jN ,MNf |

(∑
J=0

√
4π(2J + 1)(−i)J

[
lτ0MJ0;τ − ilAτ0

q

mN

Ω̃J0;τ (q)
]

(A11)

+
∑
J=1

√
2π(2J + 1)(−i)J

∑
λ±1

(−1)λ
{
lτ5λ[λΣJ−λ;τ (q) + iΣ′

J−λ;τ (q)]

−i q

mN

lτMλ[λ∆J−λ;τ (q)]− i
q

mN

lτEλ[λΦ̃J−λ;τ (q) + iΦ̃′

J−λ;τ (q)]
}

+
∞∑
J=0

√
4π(2J + 1)(−i)J

[
ilτ50Σ′′

J0;τ (q) + q

mN

lτM0∆̃′′

J0;τ (q) + q

mN

lτE0Φ̃′′

J0;τ (q)
])
|jχ,Mχi; jN ,MNi〉

Where there is an implicit sum over the nucleons,

OJM ;τ (q) ≡
A∑
i=1
OJM(q~xi)tτ (i), (A12)
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and the various electroweak responses are defined as

MJM(q~x) ≡ jJ(qx)YJM(Ωx)
~MM
JL ≡ jL(qx)~YJLM(Ωx)

∆JM ≡ ~MM
JJ(qxi) ·

1
q
~∇i

Σ′

JM ≡ −i
{

1
q
~∇i × ~MM

JJ(q~xi)
}
· ~σ(i)

Σ′′

JM ≡
{

1
q
~∇iMJM(q~xi)

}
· ~σ(i)

Φ̃′

JM ≡
[

1
q
~∇i × ~MM

JJ(q~xi)
]
·
[
~σ(i)× 1

q
~∇i

]
+ 1

2
~MM
JJ(q~xi) · ~σ(i)

Φ′′

JM ≡ i

[
1
q
~∇iMJM(q~xi)

]
·
[
~σ(i)× 1

q
~∇i

]
ΣJM ≡ ~MM

JJ(q~xi) · ~σ(i)

Ω̃JM ≡ ΩJM(q~xi) + 1
2Σ′′

JM(q~xi)

Φ̃JM ≡ ΦJM(qxi)−
1
2Σ′

JM(qxi)

∆̃′′

JM ≡ ∆′′

JM(qxi)−
1
2MJM(qxi) (A13)

where YJM , ~YJLM and jj are spherical harmonics, vector spherical harmonics and spherical

bessel functions respectively. We are only considering elastic transitions, and assuming parity

and CP as symmetries of the nuclear ground state. This eliminates some of the responses,

and only M,Φ′′
,Σ′

,∆,Σ′′
, Φ̃′ survive. To calculate cross-sections, one needs to square the

amplitude, average over initial spins and sum over final spins. The matrix element squared

for the nuclear portion of the amplitude has been made available by Fitzpatrick et al. [58],

and codes have been supplied to calculate the full amplitude and rate [59].

Appendix B: Vector Dark Matter

If the WIMP has spin 1, we find two extra operators that haven’t been considered pre-

viously. Specifically, the operators depend on the symmetric combination of polarization

vectors, Sij = 1
2

(
ε†iεj + ε†jεi

)
. This necessitates a modification to the WIMP response func-

tions by first modifying the ` coefficients given in Eq. A9. Based on our non-relativistic
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reduction for vector dark matter, the Lagrangian for vector dark matter and the nucleus,

interacting via an uncharged scalar or vector mediator can be written in general as:

Lvector = c1O1 + c4O4 + c5O5 + c8O8 + c9O9 + c10O10 + c11O11 + c14O14 + c17O17 + c18O18

(B1)

where we’ve defined O17 ≡ i~q
mN
· S · ~v⊥ and O18 ≡ i~q

mN
· S · ~SN and the ci’s are given in

table IV. To decompose these new operators we replace ~v⊥ with the target velocity and the

internucleon velocities and sum over nucleons. O17 can then be put into the form

O17 →
i~q

mN

.S.
[
~v⊥T e

−i~q.~xi −
A∑
i=1

1
2M

(
−1
i

←−
∇ ie

−i~q·~xi + e−i~q·~xi
1
i

−→
∇ i

)
int

]
. (B2)

O18 can be expanded as

O18 →
1
2
i~q

mN

· S · ~σ (B3)

Together, all the terms of Lvector give rise to the following ` factors from Eq. A9,

`τ0 = cτ1 + i

(
~q

mN

× ~v⊥T

)
· ~Sχcτ5 + (~v⊥T · ~Sχ)cτ8 + i

(
~q

mN

· ~Sχ
)
cτ11 + i

(
~q

mN

· S · ~vT⊥

)
cτ17

lAτ0 = −i
(

~q

2mN

· ~Sχ
)
cτ14

~lτE = 0 (B4)

~lτM = i

(
~q

mN

× ~Sχ

)
cτ5 − ~Sχc

τ
8 − i

(
~q

mN

· S
)
cτ17

~lτ5 = 1
2
~Sχc

τ
4 + i

(
~q

mN

× ~Sχ

)
cτ9 + 1

2

(
i
~q

mN

)
cτ10 + 1

2~v
⊥
T

(
~q

2mN

· ~Sχ
)
cτ14 + 1

2

(
i
~q

mN

· S
)
cτ18

Based on the `’s above, the coefficients of the various nuclear responses are found by squaring

the amplitude and then summing over spins. To simplify calculations, we choose a convenient

basis for polarization vectors, εsi = δsi . Recall that the spin can then be written as the anti-

symmetric combination iSk = εijkε
†
iεj. The WIMP responses unique to the vector case are
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then given by:

Rττ ′

M = cτ1c
τ ′

1 + 2
3

(
q2

m2
N

v⊥2
T cτ5c

τ ′

5 + v⊥2
T cτ8c

τ ′

8 + q2

m2
N

cτ11c
τ ′

11 + q2v⊥2
T

4m2
N

cτ17c
τ ′

17

)
Rττ ′

Φ′′ = 0

Rττ ′

Φ′′M = 0

Rττ ′

Φ̃′ = 0

Rττ ′

Σ′′ = 1
6c

τ
4c
τ ′

4 + q2

4m2
N

cτ10c
τ ′

10 + q2

12m2
N

cτ18c
τ ′

18

Rττ ′

Σ′ = 1
6c

τ
4c
τ ′

4 + q2

6m2
N

cτ9c
τ ′

9 + q2v⊥2
T

2m2
N

cτ14c
τ ′

14 + q2

24m2
N

cτ18c
τ ′

18

Rττ ′

∆ = 2
3

(
~q2

m2
N

cτ5c
τ ′

5 + cτ8c
τ ′

8

)
+ q2

6m2
N

cτ17c
τ ′

17

Rττ ′

∆Σ′ = 2
3
(
cτ5c

τ ′

4 − cτ8cτ
′

9

)
. (B5)

Appendix C: Non-relativistic Reduction

We find effective relativistic interaction Lagrangians by integrating out heavy mediators.

We only keep the leading order interactions (suppressed by m or m2). To the right of each

operator is their non-relativistic reduction expressed in terms of the operators in table I with

the coefficient derived from the Lagrangian parameters along with the relevant nucleon form

factor. As multiple operators can have the same non-relativistic limit, it is important to

include the nucleon form factor at the relativistic level. If this is not performed, erroneous

cancellations can occur.

For free spinors we use the Bjorken and Drell normalization and γ matrix conventions.

In the non-relativistic limit we make the following replacements:

S → 1S√
mS

Xµ →
εsµ√
mX

χ→
√
E +mχ

2mχ

 ξ

~σ·~p
E+mχ ξ

 (C1)

where s = 1, 2, 3 are the different polarization states of the vector. ξ = (1 0)T is the left
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handed Weyl spinor. The following Fierz transformation and gamma matrix identites were

useful in the charged mediator cases, (a sign difference was found in the final identity when

compared with [71]):

(q̄χ)(χ̄q) =−1
4

[
q̄qχ̄χ+ q̄γµqχ̄γµχ+ 1

2 q̄σ
µνqχ̄σµνχ− q̄γµγ5qχ̄γµγ

5χ+ q̄γ5qχ̄γ5χ
]

(q̄γ5χ)(χ̄γ5q) =−1
4

[
q̄qχ̄χ+ q̄γ5qχ̄γ5χ− q̄γµqχ̄γµχ+ q̄γµγ5qχ̄γµγ

5χ+ 1
2 q̄σ

µνqχ̄σµνχ
]

(q̄χ)(χ̄γ5q) =−1
4
[
q̄qχ̄γ5χ+ q̄γ5qχ̄χ− q̄γµqχ̄γµγ5χ+ q̄γµγ5qχ̄γµχ+ iεµναβ q̄σ

µνqχ̄σαβχ
]

(q̄γµχ)(χ̄γµq) =−
[
q̄qχ̄χ− q̄γ5qχ̄γ5χ− 1

2 q̄γ
µqχ̄γµχ−

1
2 q̄γ

µγ5qχ̄γµγ
5χ
]

(q̄γµγ5χ)(χ̄γµγ5q) =−
[
−q̄qχ̄χ+ q̄γ5qχ̄γ5χ− 1

2 q̄γ
µqχ̄γµχ−

1
2 q̄γ

µγ5qχ̄γµγ
5χ
]

(q̄γµχ)(χ̄γµγ5q) =−
[
q̄qχ̄γ5χ− q̄γ5qχ̄χ+ 1

2 q̄γ
µqχ̄γµγ

5χ+ 1
2 q̄γ

µγ5qχ̄γµχ
]

(C2)

σµνγ5 = i

2ε
µνρσσρσ (C3)

All of the following operators are collected in terms of the coefficients of the NR operators,

ci, in tables II,III and IV. The spinor case is in good agreement with the more complete set

of relativistic operators given in [58, 59].

TABLE VII. Non-relativistic reduction of operators for a spin-0 WIMP

Scalar Mediator

(S†S)(q̄q) −→
(
hN1 g1
m2
φ

)
O1

(S†S)(q̄γ5q) −→
(
hN2 g1
m2
φ

)
O10

Vector Mediator

i(S†∂µS − ∂µS†S)(q̄γµq) −→ 0

i(S†∂µS − ∂µS†S)(q̄γµγ5q) −→
(

2ig4hN4
m2
G

mN
mS

)
O10

Charged Spinor Mediator

(S†S)(q̄q) −→ y†
1y1−y†

2y2
mQmS

fNT O1

(S†S)(q̄γ5q) −→ i
y†
2y1−y†

1y2
mQmS

∆̃NO10

30



TABLE VIII. Operators for a spin-1
2 WIMP via a neutral mediator

Scalar Mediator

χ̄χq̄q −→
(
hN1 λ1
m2
φ

)
O1

χ̄χq̄γ5q −→
(
hN2 λ1
m2
φ

)
O10

χ̄γ5χq̄q −→
(
−hN1 λ2mN

m2
φ
mχ

)
O11

χ̄γ5χq̄γ5q −→
(
hN2 λ2mN
m2
φ
mχ

)
O6

Vector Mediator

χ̄γµχq̄γµq −→
(
−hN3 λ3

m2
G

)
O1

χ̄γµχq̄γµγ
5q −→

(
−2hN4 λ3

m2
G

)(
−O7 + mN

mχ
O9
)

χ̄γµγ5χq̄γµq −→
(
−2hN3 λ4

m2
G

)
(O8 +O9)

χ̄γµγ5χq̄γµγ
5q −→

(
4hN4 λ4
m2
G

)
O4
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TABLE IX. Non-relativistic reduction of operators for a spin-1
2 WIMP via a charged mediator

(after using Fierz identities)

Charged Scalar Mediator

χ̄χq̄q −→ l†2l2−l
†
1l1

4m2
Φ

fNTqO1

χ̄χq̄γ5q −→ i
l†1l2−l

†
2l1

4m2
Φ

∆q̃NO10

χ̄γ5χq̄q −→ i
l†2l1−l

†
1l2

4m2
Φ

mN
mχ

fNTqO11

χ̄γ5χq̄γ5q −→ l†1l1−l
†
2l2

4m2
Φ

mN
mχ

∆q̃NO6

χ̄γµχq̄γµq −→ − l†1l1+l†2l2
4m2

Φ
NN
q O1

χ̄γµγ5χq̄γµq −→ l†1l2+l†2l1
2m2

Φ
NN
q (O8 +O9)

χ̄γµχq̄γµγ
5q −→ l†1l2+l†2l1

2m2
Φ

∆N
q (O7 − mN

mχ
O9)

χ̄γµγ5χq̄γµγ
5q −→ − l†1l1+l†2l2

m2
Φ

∆N
q O4

χ̄σµνχq̄σµνq −→ l†2l2−l
†
1l1

m2
Φ

δNq O4

εµναβχ̄σ
µνχq̄σαβq −→ l†2l1−l

†
1l2

m2
Φ

δNq (iO10 − imNmχ O11 + 4O12)

Charged Vector Mediator

χ̄χq̄q −→ d†
2d2−d†

1d1
4m2

V
fNTqO1

χ̄χq̄γ5q −→ i
d†

2d1−d†
1d2

4m2
V

∆q̃NO10

χ̄γ5χq̄q −→ i
d†

2d1−d†
1d2

4m2
V

mN
mχ

fNTqO11

χ̄γ5χq̄γ5q −→ d†
2d2−d†

1d1
4m2

V

mN
mχ

∆q̃NO6

χ̄γµχq̄γµq −→ d†
2d2+d†

1d1
8m2

V
NN
q O1

χ̄γµγ5χq̄γµq −→ −d†
2d1+d†

1d2
4m2

V
NN
q (O8 +O9)

χ̄γµχq̄γµγ
5q −→ d†

2d1+d†
1d2

4m2
V

∆N
q (O7 − mN

mχ
O9)

χ̄γµγ5χq̄γµγ
5q −→ −d†

2d2+d†
1d1

2m2
V

∆N
q O4
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TABLE X. Non-relativistic reduction of operators for a spin-1 WIMP

Scalar Mediator

X†µX
µq̄q −→

(
b1hN1
m2
φ

)
O1

X†µX
µq̄γ5q −→

(
b1hN2
m2
φ

)
O10

Vector Mediator

(X†ν∂µXν − ∂µX†νXν)(q̄γµq) −→ 0

(X†ν∂µXν − ∂µX†νXν)(q̄γµγ5q) −→
(
−3b5hN4
m2
G

mN
mX

)
O10

∂ν(Xν†Xµ +X†µX
ν)(q̄γµq) −→

(
Re(b6)hN3

m2
G

mN
mX

)
(O5 +O6 − q2

m2
N
O4)

∂ν(Xν†Xµ +X†µX
ν)(q̄γµγ5q) −→

(
−2Re(b6)hN4

m2
G

mN
mX

)
O9

∂ν(Xν†Xµ −X†µXν)(q̄γµq) −→
(
−4Im(b6)hN3

m2
G

mN
mX

)
O17

∂ν(Xν†Xµ −X†µXν)(q̄γµγ5q) −→
(

4Im(b6)hN4
m2
G

mN
mX

)
O18

εµνρσ
(
Xν†∂ρXσ +Xν∂ρXσ†

)
(q̄γµq) −→

(
Re(b7)hN3

m2
G

mN
mX

)
O11

εµνρσ
(
Xν†∂ρXσ +Xν∂ρXσ†

)
(q̄γµγ5q) −→

(
Re(b7)hN4

m2
G

mN
mX

)
(i q2

mXmN
O4 − imNmXO6 − 2O14)

εµνρσ
(
Xν†∂ρXσ −Xν∂ρXσ†

)
(q̄γµq) −→

(
2Im(b7)hN3

m2
G

)
(O8 +O9)

εµνρσ
(
Xν†∂ρXσ −Xν∂ρXσ†

)
(q̄γµγ5q) −→

(
4Im(b7)hN4

m2
G

)
O4

Charged Spinor Mediator

(X†µXν)(q̄γµγνq) −→
(
y†
3y3−y†

4y4
mQmX

)(
fNTqO1 + 2δNq O4

)
(X†µXν)(q̄γµγνγ5q) −→

(
y†
4y3−y†

3y4
mQmX

)
(i∆N

q̃ O10 + iδNq O11 − 2iδNq O12 − 2iδNq O18)

Appendix D: Quarks to Nucleons

To go from the fundamental interactions of WIMPs with quarks to scattering from point-

like nucleons, one must evaluate the quark (parton) bilinears in the nucleons. For a full

discussion see the appendix of [71] and [72]. We write the nucleon couplings in terms of the

quark couplings times a form factor (in the limit of zero momentum transfer): The scalar

bilinear for light quarks can be evaluated from

〈N |mq q̄q |N〉 = mNf
N
Tq (D1)
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〈No|mq q̄q |Ni〉 −→ fNTqN̄N

〈No| q̄γ5q |Ni〉 −→ ∆q̃N N̄γ5N

〈No| q̄γµq |Ni〉 −→ NN
q N̄γ

µN

〈No| q̄γµγ5q |Ni〉 −→ ∆N
q N̄γ

µγ5N

〈No| q̄σµνq |Ni〉 −→ δNq N̄σ
µνN

while for the heavy quarks

〈N |mq q̄q |N〉 = 2
27mNF

N
TG = 2

27mN

1−
∑

q=u,d,s
fNTq

 . (D2)

Summing over all the quarks one finds

hN1 =
∑

q=u,d,s
hq1
mN

mq

fNTq + 2
27f

N
TG

∑
q=c,b,t

hq1
mN

mq

(D3)

The psuedo-scalar bilinear was recently revisited in [72]:

hN2 =
∑

q=u,d,s
hq2∆q̃N −∆G̃N

∑
q=c,b,t

hq2
mq

(D4)

The vector bilinear essentially gives the number operator:

hN3 =

 2hu3 + hd3 N = p

hu3 + 2hd3 N = u
(D5)

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note that

sometimes this coupling has a GF factored out to make it dimensionless)

hN4 =
∑

q=u,d,s
hq4∆N

q (D6)

Throughout this paper the following values are used (it should be noted that there are
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large uncertainties in these values) [71, 72]:

fnTu = 0.014 fpTu = 0.02

fnTd = 0.036 fpTd = 0.026

fnTs = 0.118 fpTs = 0.118

∆n
u = − 0.427 ∆p

u = 0.842

∆n
d = 0.842 ∆p

d = −0.427

∆n
s = − 0.085 ∆p

s = −0.085

∆ũn =− 108.03 ∆ũp = 110.55

∆d̃n = 108.60 ∆d̃p = −107.17

∆s̃n = − 0.57 ∆s̃p = −3.37

∆G̃n =35.7MeV ∆G̃p = 395.2MeV

(D7)

Assuming a universal coupling of the mediators to all quarks, the nucleon level couplings

can then be written as,

hN1 = fNT h1

hN2 =∆̃Nh2

hN3 =NNh3

hN4 =∆Nh4

(D8)

where we have defined,

fnT = 11.93 fpT = 12.31

∆̃n =− 0.07 ∆̃p = −0.28

N n = 3 N p = 3

∆n = 0.33 ∆p = 0.33

δn = 0.564 δp = 0.564

. (D9)
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This introduces a small amount of isospin violation, and it is known that relaxing the assump-

tion of universal couplings to quarks can lead to interesting isospin violating effects [72, 73].
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