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Abstract

Beginning with a set of simplified models for spin-0, spin—%, and spin-1 dark matter candidates,
we derive the full set of non-relativistic operators and nuclear matrix elements relevant for direct
detection of dark matter, and use these to calculate rates and recoil spectra for scattering on various
target nuclei. This allows us to explore what high energy physics constraints might be obtainable
from direct detection experiments, what degeneracies exist, which operators are ubiquitous and
which are unlikely or sub-dominant. We find that there are operators which are common to all
spins as well operators which are unique to spin—% and spin-1 and elucidate two new operators
which have not been previously considered. In addition we demonstrate how recoil energy spectra
can distinguish fundamental microphysics if multiple target nuclei are used. Our work provides a
complete roadmap for taking generic fundamental dark matter theories and calculating rates in di-
rect detection experiments. This provides a useful guide for experimentalists designing experiments

and theorists developing new dark matter models.



I. INTRODUCTION

The existence of non-baryonic dark matter has been inferred from measurements includ-
ing galactic rotation curves [1], large scale structure surveys [2-4], X-ray observations [5],
gravitational lensing [6, 7], and cosmic microwave background anisotropy measurements [8],
spanning cosmological eras from the present day to the remote past. This widespread and
robust data has led to cold dark matter models with a cosmological constant, labeled ACDM

becoming entrenched as the standard cosmological model.

Nevertheless, this impressive array of observations has only been sensitive to the grav-
itational influence of dark matter and constrained its relic abundance, leaving its particle
nature as one of the most important open questions in physics. The search for dark matter
includes indirect astrophysical searches ([9-13]), collider production efforts (for some exam-
ples of dark matter searches at the LHC, see [14-18]) which will examine new territory soon
with LHC run 2 which will commence this year, and attempts to observe dark matter inter-
actions with Standard Model (SM) particles via dark matter-nucleus scattering processes in

direct detection experiments, to which we now turn.

The search for dark matter via direct detection goes back at least three decades [19, 20]
and has been particularly vigorous over the last decade or so with experiments such as LUX
[21], Xenonl100 [22], CDMS II (Ge) [23], CDMS I (Si) [24], DAMA/LIBRA [25], COGENT
[26], and CRESST [27] pushing ever deeper into weakly interacting dark matter mass and
scattering cross-section parameter space, but has thus far failed to yield a convincing signal.
In the near future detectors such as Super CDMS [28] (which has recently released its first
results on low mass dark matter searches [29, 30]), XENONI1T [31], and DARWIN [32] are

expected to push the limits of direct detection orders of magnitude below the current levels.

In order to connect observations to microphysical models one needs a general framework
within which to interpret the observations of direct detection experiments. For quite some
time the prevailing method of analyzing dark matter-nucleus interactions has been to assume
that dark matter is a weakly interacting massive particle (WIMP), and then to categorize the
interactions as elastic and isospin conserving and either spin-independent or spin-dependent
(33, 34]. For some well studied models of dark matter, such as the weakly interacting

Majorana neutralino found in supersymmetry models, this assumption is reasonable.

With an absence of observed dark matter signals, there has of late been a surge in



interest in exploring more general types of interactions between dark matter and nuclei.
Generalizations include inelastic and momentum dependent interactions, which may arise
due to additional structure in the dark sector including excited dark matter states, or dark
gauge bosons giving rise to electric and magnetic form factors [35-44].

The formalism of choice for many of these investigations is relativistic effective field
theory, which provides a model independent framework to analyse dark matter-SM inter-
actions [45—49]. It has been shown that these effective theories break down when applied
to high-momentum transfer experiments, such as the LHC [50, 51]. Therefore analyses
moved beyond this framework and have moved to what are labeled as ‘simplified models’
instead [52-54]. Simplified models are field theories which extend the SM by a single dark
matter particle and a single mediator particle which allows the WIMP to communicate with
quarks and/or leptons. The newly added dark matter content is assumed to be a singlet
under the SM gauge groups (we will consider some cases where the particles mediating
the interaction have SM charge). In this context it is then possible to calculate collider
amplitudes valid at the high energies of interest in such experiments. Given this simple dark
sector, one can write down an exhaustive list of every combination of WIMP and mediator
spins, and all possible tree level interactions. These simplified models have now gained
popularity for analyzing indirect detection signals [55, 56], allowing connections to be made

with the growing body of literature which make use of them.

Another step towards placing dark matter-nucleus interactions on a general footing has
been accomplished recently by utilizing a non-relativistic effective field theory (EFT) ap-
proach [57-60]. Since the interactions in direct detection scenarios are assumed to take
place due to an incoming dark matter particle with a typical velocity O(100km/s), the
recoil momenta in such an interaction will be O(< 100keV). The particle masses involved,
including the nucleons of roughly GeV scale, the dark matter particles, which typically range
from the GeV region to several orders of magnitude above, and mediators that can also be
quite heavy compared to the typical interaction momenta, produce a situation where an

EFT treatment is quite natural.

In order to circumvent as much model dependence as possible, one can construct general

interactions which obey Galilean invariance, T-symmetry, and Hermiticity. These operators



will take the standard effective four-particle interaction form, reminiscent of Fermi’s original
model of weak interactions. The non-relativistic interactions can be shown to be functions of
only four parameters including the nucleon spin Sy, the dark matter spin .S,, the momentum
transfer, ¢, and a kinematic variable ¢ which is a function of the relative incoming (¥ i —

Un.in) and outgoing velocities Uy out — Un out

1 q

1 - - - - - -

v =7 ( x,in — UN,in + Uy ,out — UN,out) = Uy,in — UN,in + (1)
2 20N

which obeys o+ - ¢ = 0. It was demonstrated in [58] that there exist fifteen such non-
relativistic interactions which arise from twenty possible bi-linear combinations of dark
matter and nucleons.

The formalism developed in [58] is unique in being the only analysis to comprehensively
develop the nuclear physics of direct detection experiments. From this general framework it
is now apparent that there are interactions beyond the standard spin independent /dependent
type. The origins of these ‘new’ interactions are not necessarily exotic and it has been shown,
in the context of relativistic EFT, how many of them can be generated [61].

What has been lacking to date however, is a completely general and comprehensive treat-
ment that connects high energy microphysics with low-energy effective nuclear matrix ele-
ments in a model independent way. It is possible, for example, that the various interactions
listed in [58] can give rise to degeneracies where different fundamental dark matter La-
grangians, describing dark matter and interaction mediators of various spins, can produce
the same interaction types. This will obviously pose problems for attempts to discern the

properties of dark matter when interpreting the results of experimental data. Furthermore,
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dark matter may not be spin-5, which creates a need for extending the parametric frame-
work from the four descriptors listed above. In particular, as we shall show, this allows the
existence of new non-relativistic operators to appear in the low energy effective theory.

Motivated by the above we present here a general analysis covering a broad spectrum
of particle and interaction types, starting from the microphysics, which will enable one to
link experiment with fundamental theory while incorporating the new nuclear responses
described in [58].

In this work we build upon the NR-EFT description by examining simplified models with
generalized Lagrangians for scalar, spinor, and vector dark matter interacting with nucleons

via scalar, spinor, and vector mediators, consistent with Lorentz invariance and hermiticity
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while imposing stability of the dark matter candidates. We integrate out the heavy mediator
and obtain effective relativistic interaction Lagrangians. Next, we take the non-relativistic
limit of these Lagrangians, and identify them with the NR operators from [58], which are
reproduced below, in Table 1. Using these, we identify which electroweak nuclear responses
are excited by a given fundamental interaction model and determine the relative importance
of various models within the context of direct detection experiments consisting of xenon and
germanium targets by exploring the relative magnitude of coefficients of these operators,

and also their energy dependence.

The paper is organized as follows; in section II the EFT formalism of [58] is summarized,
in section IIT we build the generalized relativistic Lagrangians and in section IV we out-
line the signatures and distinguishability of these models in the context of direct detection
experiments, providing a framework for both experimentalists and theorists to base their

future analyses.

II. EFFECTIVE FIELD THEORY OF DIRECT DETECTION

Conventionally, coherent WIMP-nucleus scattering has been considered to come from two
types of interactions; spin-independent (SI) and spin-dependent (SD). SI interactions couple
to the charge/mass of the nucleus while SD couples to the spin. The nuclear cross section
is generally written in terms of the nucleon cross section at zero momentum transfer, oy,
and a form factor, F'(q), to take into account the loss of coherence over the finite size of the
nucleus,

do M

B~ T (00 T + 037 Fip(a) (2)
T X

where M is the mass of the target nucleus and f, s is the WIMP-nucleus reduced mass.
This picture has recently been shown to be incomplete, as it is also possible for the WIMP to
couple to the nucleus through additional nuclear responses [58, 59]. Working in the language
of a non-relativistic (NR) effective field theory Fitzpatrick et al. identified 15 operators
to characterize the ways in which a WIMP can couple to the various nuclear responses.
These operators are constructed from combinations of non-relativistic vectors which respect

Galilean invariance, T' symmetry and which are Hermitian. We list them in table I. The



Hermitian vectors are:

q_’ — —
—0 5, S 3
my + 2/$N7 X N> ( )

|
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<y

where §=p/ — = k — k' is the momentum transfer, U’ is the velocity of WIMP with respect
to the nucleus of the detector, py is the reduced mass of the system and gx and S N are the
WIMP and nuclear spins respectively. Throughout the paper, we denote by p" and ]57 the
incoming and outgoing WIMP momenta and by k and &’ the incoming and outgoing nuclear
momenta respectively. Energy-momentum conservation implies the orthogonality condition

g =0.

TABLE I. List of NR effective operators described in [58]

01 1X1N

Oy (z—)»J_)Q

03 i_’N . (% X 1_)1)
Oy S, - Sy

Os iSy - GL x o)
Os (e ON) (5 - Sy)
O, S - ot

Ox S, ot

09 i§X . (gN X mijv)
O10 izL . Sy
On iz . S
012 gX . (§N X UJ‘)

O13 i(Sy - ) (L - Sy)
Ou Sy T)GL - 8y
O (S - 75 ((Sw x #4) - 7L)

As we shall describe, in the following analysis we discovered that two additional NR



operators are required to fully describe the scattering of spin-1 WIMPs off nuclei,

—

Opn=i—7- 874,
my

—

Op=i—1 .S Sy, (4)

my

where S is the symmetric combination of polarization vectors. Together these 17' operators
form a generalized NR interaction lagrangian:
15
Lyr= > > 02, (5)
a=npi=1
where the coefficients ¢ are given by the microphysics of the interaction and in general one
could allow for isospin violation by having different couplings to neutron and proton inside
the nucleus. In Appendix A, we briefly review the procedure employed in [58] to go from
the NR operators to the WIMP-nucleus amplitude. This procedure is then applied to the

new vector operators in Appendix B.

III. SIMPLIFIED MODELS FOR DIRECT DETECTION

In order to interpret the results of direct detection data in terms of fundamental dark
matter models, it is useful to first explore, in as model-independent way as possible, the full
range of possible operators that might contribute to any observed signal. We address this
question by mapping out the space of possible WIMP-nucleon interactions using simplified
models, where ‘simplified model’ means a single WIMP with a single mediator coupling it
to the quark sector. While the simplified models considered here are not full-fledged UV
complete models, any complete model of WIMP dark matter is expected to make use of these
interactions, with relationships between the interactions, and their couplings determined by
issues including renormalizability, symmetries, renormalization group operator mixing, etc.

Previous work [61] demonstrated that using only the simplest SI/SD form factors (even
with additional momentum dependence taken into account) can lead one to infer wildly
incorrect values of the WIMP mass and cross sections if other operators are in fact relevant.

Here we go further by starting with simplified models at the Lagrangian level. This is useful

L Oy is omitted since it is a linear combination of other operators.



for two reasons; it allows us to better explore which NR operators arise from a broad set
of Lagrangians, and also make connection with the growing body of literature which use
simplified models for indirect detection and collider searches. Leading order corrections,
including calculations beyond the single particle approach which can exhibit large effects in
isospin violating scenarios, have been examined [62, 63], but in this initial study, keeping
with the simplified model approach, only single particle nucleon interactions at leading order
are considered.

While additional structure must exist to allow renormalizability, in particular for possible
massive vector bosons in the dark sector, unless this structure involves additional operators
which can be included in the broad set of relevant operators we consider, it is not relevant
for the ensuing discussion.

When it comes to interpreting signals, knowing comprehensively how different interactions
with different nuclei arise from different UV complete Lagrangian terms will allow us to
identify degeneracies relevant for distinguishing competing models. Further, it can also help
optimize target selection for maximum discrimination of the UV model parameter space.

In building these simplified models we remain agnostic about the WIMP’s spin, and
consider dark matter spins of O,% and 1. We do however only consider renormalizable
interactions between quarks and WIMPs. To ensure a stable WIMP, we assume that the
WIMP is either charged under some internal gauge group or a discrete symmetry group
(for example 7). However, we assume that this gauge charge is not shared by quarks. We
will couple the WIMP to the quarks via a heavy mediator in two distinct ways: charged
and uncharged mediators, each with all possible spins consistent with angular momentum
conservation. The mediator mass is chosen to be the heaviest scale in the problem (and
certainly much greater than the momentum exchange which characterizes the scattering
process) so that we can integrate it out (see appendix C for details). One should note that
in this process the couplings are fixed at the scale given by heavy mediator. In order to
give a complete connection for the couplings from the mediator scale to the hadronic scale
where direct detection interactions occur, in principle one should use utilize renormalization
group equations arising from loop corrections [64-67]. For example in [67], the authors
showed that after running down to the hadronic scale, EFT operators could arise which were
not present at the high scale. Once again, while this issue is important when considering

the relative magnitude of different operators in specific models, we do not focus here so



much on the relative magnitude of the coefficients of different operators, but rather on the
detector response for individual EFT operators. Future studies which are concerned with
more complete model building, beginning with the framework presented in the current work,

should consider such effects.

Integrating out the mediator leads to relativistic effective WIMP-nucleon interactions,
whose NR limit can then be examined. In the uncharged mediator case we will consider
mediators that are neutral under all SM and WIMP gauge charges, while in the charged
case, the mediator must have both WIMP and SM gauge charges. Given the above as a
guide, our Lagrangian construction is then constrained only by gauge invariance, Lorentz
invariance, renormalizability and hermiticity. In certain cases which follow, the requirement
of hermiticity demands coupling constants be complex. Unless explicitly noted, the coupling

constants are dimensionless and can be assumed to be real.

In the following Lagrangian descriptions, universality of mediator couplings to quark
flavors is assumed. Including differing, non-universal couplings to quarks would have the
effect of varying the couplings of dark matter to neutrons and protons. Non-universal
couplings would introduce further degeneracies when it comes to determining fundamental
Lagrangian parameters, which is an interesting complication to consider, but outside the

scope of the current study.

A. Uncharged-mediator Lagrangians

1. Scalar Dark Matter

We begin with a spin-0 scalar WIMP, S, which has some internal charge to ensure sta-
bility, and ST is its Hermitian conjugate. To have renormalizable interactions, the neutral
mediator can only be a scalar or a vector. We denote the scalar mediator by ¢ and the

vector mediator by G* with field strength tensor G, .

The most general renormailzable Lagrangian for scalar mediation consistent with the



above assumptions is given by

As

Lssg = GMST(?“S - m?gSTS — 3 (STS)2
1 1 m
1 wo L9909  MeHt 3 H2 4
"‘Qau?ba ¢ 2m¢¢ 3 ¢ 4¢
+iqlDq — meqq
—gimsS'S6 — £5156% = hidgd — ihaq g0, (©)

where we have suppressed all the SM quark interactions. Similarly, the Lagrangian for vector

mediation (up to gauge fixing terms) is

£5Gq = 8#578“5 - m%STS - >;
1 1
— GG + MGG —

(51s)?
A

(GG

+igPq — mydq

—%STSGMG“ —igy(S79,8 — 9,51 S)G"

—h3(q7,9)G* — ha(qv,7°q) G*. (7)

2. sz’n—% Dark Matter

If the WIMP has spin—% (denoted by x below), then, as in the scalar WIMP case, me-
diation will only occur via scalar or vector mediators. The most general renormalizable

interactions for the scalar (¢) and vector mediator (G,,) cases respectively are given below,

£x¢q = Z)wa - mxf(X

1 1 m
1 w99 Mgl 3 H2 4
+26u¢8 ¢ 2m¢¢ 3 ¢ 1

+iqlDq — mqqq

—MOXX — iAadXY X — hidaq — ihadqy°q, (8)
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Equ = lile - mxXX

1 1
+iqPg — myqq

~ XXV XG — MXY Y XG,
—h3q7,9G" — hyq,7°qG". (9)

3. Spin-1 Dark Matter

If the WIMP is a massive spin-1 particle, uncharged mediation to the quark sector can
occur via a heavy scalar or a vector particle. The general interaction Lagrangian for the

scalar mediation case is

1 A
Lxpq = —52(;,,25#” +mi XIXH — %(ij(ﬂf

1 2_} 2 2 MeH1 5 H2 4

+iqlhq — mqqq
b L
—bimy ¢ X[ X" — O XIX! — hodq — ihain®q. (10)

For the case of vector mediation, there are many possible interactions because the Lorentz

indices on the vectors afford a more diverse set of terms. The Lagrangian is given by

1 Ax

Lxa, = —ixgyxw +miXIX" - 7(X;XW
1 L1 Aa
_Zg,uygu + §méGi - Z(G,UGM)Q
+iglDq — myqq
b b
—53(;3()(;)(”) - g(GﬂG")(X;XV) — [ibsXfo. X G"

06X 10" X, G + breype (XY XP)G7 + hec.|

—h3GLav'q — haG a7 q (11)

where, for the Lagrangian to be Hermitian, bg and b; are complex (this implies a new source

of CP violation, which will not be considered further here).

11



A. Charged-mediator Lagrangians

Here we consider the simplest case of mediators that are charged under both the DM
internal symmetry group and SM gauge groups. This is motivated by the absence of spin-
+ mediators (s-channel processes) in the previous section. Such a mediator, if neutral, is
forbidden by simultaneous requirements of gauge invariance and renormalizability. Dark
Matter models with mediators endowed with charges from both DM and SM side have been
considered in the literature before [68, 69]. The case of a spin-3 mediator carrying SU(3),
is also motivated by studies of heavy quark models. This allows unique interactions as we

show below. In particular they necessitate a direct interaction between quarks and WIMPs

at the level of the Lagrangian.
1. Scalar Dark Matter

Scalar WIMPs with a charged scalar or vector mediator do not lead to any Lorentz
invariant interactions. This is easy to see since both the scalars (or scalar and vector) and
the quark are required in the (gauge invariant) interaction, but there is no way to contract
the spinor indices consistently if the mediating particle is a scalar or vector. Therefore, the
only possibility is that of a spin-1/2 mediator, @), which acts like a heavy quark. The general

renormalizable action is given by

L5, = 0,570"S — m3StS — Ag(515)?
+iQPQ — meQQ
+iqlDg — myqq
—(115Qq + y25Q7°q + h.c.), (12)

where y; and y, are again complex.
2. Spin-% Dark Matter
For a spin-1/2 WIMP, both a charged scalar and charged vector mediator exchange can
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lead to novel interactions. The charged scalar is denoted by ® and the charged vector by V),

»Cxq)q = Z)_(lﬂX - mXXX

+(0,0")(0"®) — m3dT® — Ao

?(qﬂ@)?

+iqlDq — mqdq

—(11DTxq + LYY q + h.c.), (13)
Lyvq = ixDx — myxx

—;VL,V’“’ +my VIV

+iqlDq — mqqq

—(dixy"qV,] + dox"y V) + h.c.), (14)

where [1, 5, d; and dy are complex.

3. Vector DM

Here again we only have the case of a spin—% mediated interaction between vector DM
and quarks (again scalar and vector charged mediators aren’t possible because they don’t
lead to Lorentz invariant and renormalizable interactions). The general Lagrangian is given
by

1 Ax

Lxoq = —52(;”2(“” +mi X XH — 7()(;)(“)2
+iQPQ — maQQ
+iqDq — mqqq
— (Y3 X, Q7" q + Y4 X,.Qv"°q + h.c.), (15)

where y3 and y4 are complex.

IV. NON-RELATIVISTIC REDUCTION OF SIMPLIFIED MODELS

After integrating out the heavy mediator we replace quark operators with nucleon op-
erators (see appendix D), take the non-relativistic limit (see appendix C), and match onto
the operators given in table I. The results of this calculation are presented in terms of the ¢;

coefficients from [59], described in section II, facilitating a straightforward computation of
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amplitudes and rates. The ¢;’s are given for each of the WIMP spins in tables II, III and IV.
With this general framework in place we can now easily find the leading order NR operators
for each distinct WIMP-nucleus interaction. One can imagine a set of minimal scenarios
where only one or two of the interaction terms from our Lagrangians are present and the
rest absent. These scenarios will map out a basis set of interactions which UV models are
built from. We only consider scenarios that give rise to a non-zero direct detection signal.
Each of these scenarios is listed with its leading operators in table V and with all operators
generated in table VI. Note that in the case of a complex coupling constant we consider
purely real and purely imaginary values as separate cases since they produce a distinct set

of operators.

TABLE II. Non-zero ¢; coefficients for a spin—0 WIMP

Uncharged Mediator|Charged Mediator
h' g1 viyi—vlye oN
C1 m2 moms f
)
c —ihy g1 + 2igahy my Z-ygyryiyz AN
0] 7m? mg  ms mQms
TABLE III. ¢; coefficients for a spin-3 WIMP
Uncharged Mediator Charged Mediator
. hNAL R s la—111 n dl d2 d dy Py _gmqh n dida+dld; AN
1 mi m2G 4m§> T 4m§> Sm%/
4RI A 1o —111 Ui+l | dida—did
¢4 424 2— 15N 11-&-2224_22211 AN
mg, m(b mg 2ms,
hY Aoy Ui—illo | dido—dldy mNAN
6 m2m ( 4m? 4m? )
61X E \%
2hN A3 Uio—t5, | dlda+dids AN
€7 m2G ( 2m§, 4m )
2h A4 z{lg—zgzl di dg—f—d di\ N
8 o m% ( 2m - 4m? )N
o | 20 Nemy 20 N (zizz—z;zl  dlda+didy W (1112—1211 B d{d2+d§d1)mN AN
9 meQG m2G 2m§> . 47:,‘, ) ) 2m§> . 4:77,%, My
hY A\ U=l dldi—dldoy AN -l N
c10 72n2 Z(l4m22 _|_ 24 21 )A _Zlm22 5
[ P P
AN Aom 0=l didi— deQ my Alla—15h my N
c11 i P (2™ + 2 )R I i R
»TTx £ mg
m —111
0 thtte
P

As described earlier, we find that it is important to consider operators beyond those

incorporated into the standard spin-independent and spin-dependent formalism, i.e. simple
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TABLE 1V. ¢; coefficients for a spin-1 WIMP

Uncharged Mediator Charged Mediator
‘ bihY yiys—ylya N
1 mi QOX T
c 4Im(b7)h +i q2 Re(b7)h ¢®>  Re(bg)hY 2y3y37y4y4 sN
4 m2 m%  mZ  mxmy mg momx
Re(bﬁ)hs my
c Re(ba)h3 my Re(b7)h mN 0
6 mG mx m% mX
2Tm (br ) ALY
8 - 0
G
c _ 2Re(bs)hy my |, 2Im(br)hd 0
0 mg mx T
c bihd  3bshy my Z.ylyg—ygm AN
10 mi m2G mx mgQmx
Re(b7)hy my yiys—ylya SN
C11 T2 mix e
e T it
Y3Y4—YaY3 cN
€12 0 2 73QOi )
2Re(b7)hY my
4Im(be)hY my
C17 mZ, mx T 0 T
4Im(bg)h. . —y]
18 %m _9;YaYs—Y3¥a sN
mG mx mqQmx

models exist in which one would infer an incorrect rate in current experiments by not in-
cluding these effects. Also importantly, not all of the NR operators are actually generated at
leading order; for example, the operators Oy, O3, O13 and Oy; are missing at leading order.
Note that we only consider renormalizable Lagrangians, higher order non-renormalizable
operators are presumably further suppressed. We have also not considered the case of ki-
netic mixing, which could be used to generate anapole interactions [61], because the effective

interaction doesn’t arise from one mediator exchange.

While spin independent interactions are a generic feature of direct couplings to quarks
in our charged mediator cases, it is sometimes possbile to suppress them. In the scalar (and
vector) WIMP with charged mediator cases, it is possible to suppress the spin independent
interaction by ensuring that |y;| = |y2|(|ys| = |y4|) while keeping their relative phases non-
zero (or 7). While these non-minimal scenarios require some fine tuning we include it for

completeness and label them 1, o and ys, y4.

Aside from scalar WIMPs, each particular spin produces some non-relativistic operators
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that are unique to that spin. Also, importantly, the operators O; and O, are generic to
all spins. In five cases relativistic operators generate unique non-relativistic operators at
leading order. Therefore distinguishing WIMP scenarios in these cases reduces to experi-
mentally discerning between these operators (see also [70]). Given the likely low statistics
of any detection in upcoming direct detection experiments, sub-leading operators are not

likely to contribute enough to provide any further discriminating power.

V. OBSERVABLES

The principle observable in direct detection experiments is the differential event rate.
Since the incoming WIMPs originate in the galactic halo, one must average over the WIMP
velocity distribution, f(v), which we assume for the purposes of this paper to be Maxwell-

Boltzmann,
dR N Py M (v)

dERr 2y Joi, U

Ptotdv (16)

where we use the value p, = 0.3GeV /cm? for the local dark matter density, N is the number

of nuclei in the target and P,,; can be calculated from the amplitude M in Eq. A10

1 1
= — , M2 17
2]X+12jN+1spziT‘:s| | (17)

tot

Throughout this work we use the Mathematica package supplied in [59] to calculate rates.
To determine the leading order operator which arises from a given relativistic scenario we
first plot the rate for each of the NR operators in xenon-131. To simply compare the op-
erators we set the ¢; coefficients to be the same and normalized the overall rate to that of
01, see Fig. 1. Since operators are either zero, first or second order in momentum transfer
q or velocity ™, the relative strengths of the operators span 16 orders of magnitude. This
is an important point to keep in mind when finding the leading operator, as sometimes a
term which appears to be higher order in ¢ can dominate the non-relativistic reduction. For
example in the b?e‘h4 scenario, one finds that ¢, dominates over the Og and 014 which

contain powers of ¢ within the operators.

Since the Lagrangians we have considered are not tied to specific complete and consistent

particle physics models, the mediator masses are not fixed in advance and thus specific
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FIG. 1. The relative strength of event rates for a 50GeV spin—% WIMP in xenon for each of the

non-relativistic operators in table I, where the coefficients of each operator are set to be equal

event rates are not predicted in advance. Clearly one requires a rate that is low enough
to evade the current experimental constraints. For example, a 50 GeV WIMP producing
10 events per tonne per year is sufficiently low to evade the bounds from LUX [21]. For
demonstration purposes we set the couplings to 0.1 (or 0.1: for imaginary) in the various
Lagrangians and find a mediator mass that will produce 10 events/t/y in the signal region
for xenon (5 —45keV). The calculated masses are given in table V. It is perhaps telling that
the mediator masses span 6 orders of magnitude, from just a few GeV up to a PeV. While
it is unlikely that a full model of thermal relic dark matter could be built around all of
these Lagrangians, it is nevertheless a useful metric to estimate the relative strength of the

different nuclear responses to each of the operators.

In Figs. 2, 3, 4 and 5 we have plotted rates for two common targets. For simplicity and
again for demonstration purposes, we only plot the rates for a single isotope of both ger-
manium and xenon. The choice of isotopes, Ge and '*'Xe, was made to ensure sensitivity
to spin-dependent responses. As can be seen in the figures, many operators produce rates
with similar recoil energy dependence in the same target, but different nuclei can have very
different responses to the various operators [58]. Thus a complementary choice of nuclear
targets can provide important discriminating information.

To illustrate this discriminating power we plot the ratio of the rates in xenon and ger-
manium in Fig. 5 and 6. We choose to only present ratios for the uncharged mediator
cases of spinor and vector WIMPs since the other cases produce trival results (all operators

being spin independent). To estimate the effect astrophysical uncertainties will have on
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discriminating between operators, we plot the rate for a range of astrophysical parame-
ters from vy = 200m/s, and ve,. = 500m/s (lower) to vy = 240m/s and ves, = 600m/s
(upper). The uncertainty in the dark matter density does not appear since we are con-
sidering the ratio of rates. Given the vastly different energy dependence of the ratio of
rates of each scenario the astrophysical errors do not completely inhibit their identification.
Furthermore, operators Oy and Oy, produced in scenarios hybi° and hby° respectively,
remain indistingushable when considering the ratio of rates. While it appears that in prin-
ciple almost every operator is discernible, in practice isotopically impure targets and low

statistics will further complicate the situation and provide limits on practical discrimination.
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- 0
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FIG. 2. Rates for a 50GeV spin-0 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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FIG. 3. Rates for a 50GeV spin-3 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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FIG. 4. Rates for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with uncharged

(left) and charged mediators (right), assuming mediator mass of 1TeV and O(1) coupling constants.
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FIG. 5. Rates (left) for a 50GeV spin-1 WIMP in xenon (solid) and germanium (dashed) with
uncharged mediators and imaginary couplings, assuming mediator mass of 1TeV and O(1) coupling

constants. Also shown is the ratio of rates in xenon and germanium (right).
VI. CONCLUSION

The analysis we have given here builds on previous analyses to provide, in generality, a
roadmap to use event rates in direct dark matter detectors to constrain fundamental dark
matter models. We have outlined the steps needed to go from fundamental Lagrangians, first
to relativistic operators, then to non-relativistic operators, and finally to produce nuclear

matrix elements. In the process several significant facts have been elaborated.

e Not all possible non-relativistic operators contributing to nuclear matrix elements in
direct detection will arise from simplified UV complete dark matter models. This is

mainly because of Lorentz symmetry, which restricts interactions depending on spin.

e Spinor and vector WIMPs each have NR operators which are unique to their simplified
models at leading order, Og for spin—% and Oy, O17 and Oq5 for spin-1. The last two,
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FIG. 6. Ratio of rates in xenon and germanium, illustrating the discriminating power of having
multiple nuclear targets. For a 50GeV spin—% WIMP with uncharged mediator (left) and a 50GeV
spin-1 WIMP with uncharged mediator (right), the shaded regions show the upper and lower

bounds due to the astrophysical parameters

being formed from a symmetric combination of polarization vectors, can only arise for

spin-1.

e Two non-relativistic operators, O; and O;, are ubiquitous and arise for all WIMP
spins we have explored. They follow at the leading order from the simplest quark

bilinears, gq and gy°q or gy*~°q respectively, which are present in our simplified models

for each WIMP spin.

e In 5 of our simplified model scenarios, the leading non-relativistic operator is not

present in any other scenario at leading order.

e Two new non-relativistic operators (Eq. 4) not previously considered within the con-
text of the full array of allowed nuclear responses arise at low energies if spin-1 WIMP
dark matter is allowed for. They arise from symmetric combination of spin-1 polar-
ization vectors, which is linearly independent of the antisymmetric combination that

constitutes the spin vector.

e While not all operators can be distinguished on the basis of their impact on the
differential event rates, they can produce radically different energy dependence for
scattering off different nuclear targets. We have shown that a complementary use of
different target materials (xenon and germanium in this case) allows one to distinguish

between different particle physics models of WIMP dark matter.
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While current detectors have only yielded upper limits, with new generations of larger
detectors with greater energy resolution and lower thresholds coming online, the search for
WIMP dark matter has never been so vibrant and promising. The tools we have provided
here should help experimenters to probe the most useful parameter space, to interpret any
non-zero signals in terms of constraints on fundamental models, and should allow theorists
who build fundamental models to frame predictions in an accurate and simple way so that

they might be directly compared with experiment.
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TABLE V. Leading order operators which can arise from the relativistic Lagrangians considered in
this work, the column ‘L terms’ gives the non-zero couplings for that scenario. Each row represents
a possible leading order direct detection signal. A ‘{’ indicates that the mediator is charged. The
"Eqv. M,,’ column gives the mediator mass required for each scenario to produce ~10 events

t~lyr~'keV ! in xenon, with couplings set to 0.1.

WIMP spin|Mediator spin| L terms |leading NR operator Eqv. M,
0 0 hi, 91 [ 14 TeV
0 0 ho, g1 O10 16 GeV
0 1 ha, g4 O10 9 GeV
0 if o O, 3.7 PeV
0 if Yo o, 3.7 PeV
0 %T Y1, Y2 O1o 56 GeV
i 0 hi, A1 O, 14 TeV
% 0 ha, A1 O1o 330 GeV
% 0 hi, A2 On 16 GeV
3 0 ha, A2 O¢ 2.1 GeV
i 1 hs, A3 O 6.8 TeV
i 1 ha, A3 Oy 6.9 GeV
3 1 h3, A Og 220 GeV
1 1 hy, A4 O, 150 GeV
i of L O 7.6 TeV
: of s O 5.9 TeV
3 1f dy O 6.4 TeV
3 1f ds Oy 7.2 TeV
1 0 h1, by O, 14 TeV
1 0 ha, by O10 12 GeV
1 1 hy, bs O10 6.0 GeV
1 1 hs, bEe (b 05(017) 6.8 GeV (26 GeV)
1 1 hay, DES(bE™) Og(O13) 3.1 GeV (5.4 GeV)
1 1 hs, bRe (bhm) 011(0%) 210 GeV (280 GeV)
1 1 ha, b2e(bim) 04(0y) 90 MeV (190 GeV)
1 %T Y3 01 3.7 PeV
1 if m o, 3.7 PeV
1 11 Y3, Y4 On 150 TeV
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TABLE VI. List of scenarios with leading operators colored by which are distinguishable via the

. dRx. dRg
ratio “ e /Sge.
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Appendix A: Non-Relativistic Effective Field Theory Review

We briefly outline the details of the non-relativistic effective field theory of dark matter
direct detection, discussed in [58]. They begin with writing down the full non-relativistic

interaction Lagrangian, which in 2-component isospin space is

15
LNR: Z Zc{(’)itT (Al)

7=0,11i=1

where t° and ¢! are the identity matrix and the Pauli matrix o3 respectively. The nucleus is
composed of nucleons, and these can individually interact with the WIMP. This is incorpo-
rated by considering the operator O(j) as an interaction between a single nucleon, j, and
the WIMP, and then summing over the nucleons.

15 A
> ZCT(’)tT = > A 0:) () (A2)
7=0,1i=1 7=0,1 =1 7j=1

where A is the atomic mass number given by the total number of neutrons and protons.

One can do the same reduction with o+,

ot — {v, — Uy (i), i = 1,..., A}
= 0r —{on@i),i=1,..,A—1} (A3)

where ¥, and ¥y(7) are the symmetrized combination of incoming and outgoing velocities
for the WIMP and nucleons respectively. @ (here T stands for target, i.e., the nuclear

center-of-mass) is defined as

] ZA
’U 2 UN zn + UN out (Z)] (A4)
=1

This allows for a decomposition of the nucleon velocities into internal velocities UN( ) that
act only on intrinsic nuclear coordinates and ‘in’ and ‘out’ velocities that evolve as a WIMP
scatters off the detector. As an example, the dot product between @y and Sy can be

rewritten as

—

A

L 1. . . N o . .

Sy =) 3 [Uyin + Uyout — UNin (1) — UNout (4)] - SN (i) (A5)
=1

= 328000 = {3 g i) + )] S0 | (A6

=1
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The second term in the curly brackets is internal to the nucleus and acts as an operator on
the ‘in” and ‘out’ nucleon states. vy, can be replaced by pn.,/M acting on the incoming
state, which can in turn be replaced by 2% /M, and similarly p oue/M by —2’9 /M on the
outgoing nuclear state. Finally, since the nucleus is non-zero in size and individual nucleons
locally interact with the WIMP, nuclear operators built from O; are accompanied by an addi-

tional spatial operator e~*7#(%) where z(i) is the location of the i nucleon inside the nucleus.

Starting from Eqn. A2 and using the substitution rules for 7+ and including a factor of
e70%i | the interaction Lagrangian can be written as a sum of five distinct terms (nuclear
electroweak operators) that only act on internal nucleon states. Their coefficients, on the

other hand, act on WIMP ‘in” and ‘out’ states. The WIMP-nucleus interaction can then be

written as

S AGS+iT T+ P41y -G+ 1 RE7() (A7)

7=0,1

where

B=3 o [V x a(0)e ™ 4 e 795(0) x V] (A8)



and

R - g
X" ( XUT) +CS(SX UT)+ZC11q X
my

myn
ATt 1 T T a J
lO = —5 Cr + 1C1y SX . miN

+
N T 15 m%\/
I = zi X gx Sycg
my
s 1 d e @x8) . @807

The WIMP-nucleus amplitude, M, can then be succinctly written as

M =3 (o Mys v, M| {I5S + 17T + I - P+ Ty - Q@ + Iy - R} (0) iy, My; v, M)
7=0,1

(A10)

By using spherical decomposition, the internal nuclear operators S, T, P,) and R can be

further rewritten in terms of standard nuclear electroweak responses as follows

M= > (. Mygi jn, My (Z Var(2J +1)(—i [ZSMJO;T - iléTﬂiVQJo;T(Q)]
7=0,1
+ Z J2r (2T +1)(—i

(A1)

Ai DMEANS - xr(9) + 5500 (a)]

L A 0] = 1 AR ) + ) )]
L5 T
J=0

o " q RN q N
|:Zl502JO;T(q) + 7ZM0AJ0;T(q) + 71E0®J0;T( )D |jX7 X17]N7MN7«>
my my

Where there is an implicit sum over the nucleons

Osni-(q) = ; O m(q;)t" (1), (A12)
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and the various electroweak responses are defined as

My (g%) = ji(qz)Yinm ()
M = j1(q) Yo ()

— 1 —
Ajm = M%(qxz) : 5Vz'
/ 1~ -
Y,y =—i {Vz X M%(qu)} 7(7)
q

" 1 = .
Y= {qViMJM(qxi) - (1)

= - 15 1 -

a0 = |19 x 01| - o0 x L9 4 a0z ot
" 1~ 1=

O,y =1 leM]M(qxl)] [a(z) X qvi]

)
~ N ]. " 5
Qv = Q) + §ZJM(C]33¢)
~ 1
Qv = Ponlqrs) — §EJM(q$i)
~ 1" 1
A = Agnlaw) — §MJM(Q%) (A13)

where Yy, ?L]LM and j; are spherical harmonics, vector spherical harmonics and spherical
bessel functions respectively. We are only considering elastic transitions, and assuming parity
and CP as symmetries of the nuclear ground state. This eliminates some of the responses,
and only M,®" ¥ A, %", ®" survive. To calculate cross-sections, one needs to square the
amplitude, average over initial spins and sum over final spins. The matrix element squared
for the nuclear portion of the amplitude has been made available by Fitzpatrick et al. [58],

and codes have been supplied to calculate the full amplitude and rate [59].

Appendix B: Vector Dark Matter

If the WIMP has spin 1, we find two extra operators that haven’t been considered pre-

viously. Specifically, the operators depend on the symmetric combination of polarization

vectors, S;; = % (ej € + e}ei). This necessitates a modification to the WIMP response func-

tions by first modifying the ¢ coefficients given in Eq. A9. Based on our non-relativistic
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reduction for vector dark matter, the Lagrangian for vector dark matter and the nucleus,

interacting via an uncharged scalar or vector mediator can be written in general as:

Loyector = €101 + c4O4 + 505 + csOg + 9Oy + 10010 + 11011 + 14014 + 17017 + 18015
(B1)

where we've defined O;; = L - S - v, and O3 = 2L - § - Sy and the ¢;’s are given in
my myn

table IV. To decompose these new operators we replace 7+ with the target velocity and the

internucleon velocities and sum over nucleons. Q7 can then be put into the form

q —1  —iq.7; 1 ( 1 —iq-T; QG- Es 1? )
Oy —» —.8S. N — (== Ve T -V, . B2
AR b Zoopp \ T Ve e YL (B2)

015 can be expanded as

Together, all the terms of L, cct0r give rise to the following ¢ factors from Eq. A9,

—

zgzqﬂ'(qxa%) -gcg+(a;-sx)cg+i<q-§>c;1+i<q-s-z7{>c;7
my m

my N
T J T
ZOA = —1 (2771]\7 SX) 014
=0 (B4)
= ([ d 3z = | q
I, =il — xS T — St —i|— -8
M =1 <mN x) Cs xCs — 1 <mN ) C17

T la T . J J T 1 i T 1—» J a T 1 (T T
15:25XC4+Z<WVXSX>CQ+2<ZW)610+2,U7J: (2/”7/]\[8>614+2<ZWS 018

Based on the ¢’s above, the coefficients of the various nuclear responses are found by squaring
the amplitude and then summing over spins. To simplify calculations, we choose a convenient
basis for polarization vectors, €/ = 0;. Recall that the spin can then be written as the anti-

symmetric combination .Sy, = eijkej- ¢;. The WIMP responses unique to the vector case are
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then given by:

2 2 2,,12
77’ T 2 q 12 7 7 12 7 7 9 - & qaur” - o
Ry =cep + 3 5 Up C5C5 + Up Cglgy + —5-CpyCyy + A ¢
m m

2 %V m%\f C17C17
!
;I/-/ = O
!
o =0
!
R =0
[
2 2
T T 7 T .7 q T 7
S + 4m%vc1oc1o + 12m%v018018
1 / q? . ot / 2 /
Tl T T T T T Tt 7 T T
R& = 60404 + 62 CoCy + om2 Ci4C14 + 242 €18€18
N N N
2 2
/ 2 q / / q /
RN =3 | =766 +egeg | + —5circiy
3 \my 6msy,
2 / /
T T T T T
R\ = 3 (0504 — g > : (B5)

Appendix C: Non-relativistic Reduction

We find effective relativistic interaction Lagrangians by integrating out heavy mediators.
We only keep the leading order interactions (suppressed by m or m?). To the right of each
operator is their non-relativistic reduction expressed in terms of the operators in table I with
the coefficient derived from the Lagrangian parameters along with the relevant nucleon form
factor. As multiple operators can have the same non-relativistic limit, it is important to
include the nucleon form factor at the relativistic level. If this is not performed, erroneous
cancellations can occur.

For free spinors we use the Bjorken and Drell normalization and v matrix conventions.

In the non-relativistic limit we make the following replacements:

X, —
Iz Mix
FE
o [Em € (1)
2m,y Gp
E+my

where s = 1,2,3 are the different polarization states of the vector. ¢ = (1 0)7 is the left
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handed Weyl spinor. The following Fierz transformation and gamma matrix identites were
useful in the charged mediator cases, (a sign difference was found in the final identity when

compared with [71]):

(@)(Xq) ==7 |2aXX + @1 axX WX + 540" aXo X — Y ax X + qv5qm5x]

1
1

(@7°x)(x7°q) =—7 |aaxx + IV X — PGV + VY X+ 50" qxoywx]
1

(@) 0) == (207" x + 0 00— O 00X + DV GXX + iewasio™ o™ x|
(@) (X"q) =— :qqxx — XX — ;qv“qxwx - ;qv“v‘r’qmﬁx}
(@77 ) (XY"7°q) =— :—qqxx + g’ x — ;qv“qxwx - ;qv“quvﬁx}
(@7uX)(X7"7°q) =— :qqxv5x — @7 qxx + ;qv“qx7w5x + ;qv“v‘%qxwx] (C2)

v Z vpo
0 = S (C3)

All of the following operators are collected in terms of the coefficients of the NR operators,
¢;, in tables ILIII and IV. The spinor case is in good agreement with the more complete set

of relativistic operators given in [58, 59].

TABLE VII. Non-relativistic reduction of operators for a spin-0 WIMP

Scalar Mediator

(S7S)(qa) — (M) o
(S19)(@q) — (12) o

Vector Mediator
i(519,5 - 9,5')@"e)  — 0
i(810,8 — 0,578)(@v"7°q) — <2942h£‘va> O10

mg  Mms

Charged Spinor Mediator

ool
(515)(a0) e o
H
(ST9)(a7°q) N Z%ANOm
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TABLE VIII. Operators for a spin—% WIMP via a neutral mediator

Scalar Mediator

XXqq — (hjjjél) O1

X’ o (h:iig 1) O19

X7’ xdq — <—hi§$f> On

X xa7°q — (%%ﬁgf) Og

Vector Mediator

XV*XqVuq — <—h§:22 3) O,

Xxow’e — (—Q%A3> (—07 + %“X’Og)
XV X@e — (_2,:3754> (Og + Oy)
XX — <4},€§4) Oy
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TABLE IX. Non-relativistic reduction of operators for a spin—% WIMP via a charged mediator

(after using Fierz identities)

Charged Scalar Mediator

llg lll

XXqq — f1,01

Xxa’q — i%AW O19

X7 xdq — ijml il my N fOn

X7 xa7°q — % 2N AGN Og

XY XA SN IR ZQN NO,

XYY XAV N 12” ll/\f N (Og + Oy)

XV XT1°4 - %AN(O — N )
XX — —%AN Oy

X0 xqouwq — lglfn;mld]v 0,4
euuan(UWX@Uo‘Bq — %(51\[(20 10 — i 011 +4049)
Charged Vector Mediator

XX44q — Mfm(?l

XX’ — idgdj%zimAdN O1o

X7°Xdq — z‘fﬁmid% ma fN On

X7 xXa7°q — %711% X AGN Og

XY XAV —, ddatd] dl/\/ NO,

X" XT4 — dd;nﬂ/\/ N(Og + Oy)
XX — %AN (07 — 2 0y)
XX g — —%Af 04

32



TABLE X. Non-relativistic reduction of operators for a spin-1 WIMP

Scalar Mediator

X[ Xt qq

~~D
X} Xrqyq

!

o
o

l

N
@‘
wz gw

Ql\.’)

Vector Mediator

(X[0, X" — 9, X[X¥)(a7"q) —0

(X}0, X" ~ 0,X3X") (%) — (Lm0

0y (X1 X, + X[ X) (Gv"q) — (R bG)h?’ mN> (05 + O — —04)
O,XV1 X, + X[X7) (@) — (- e B ) 0,

0, (X1 X, — X[ X")(qv"q) — ( Lmibolhy ) O17

0, (XX, — X[ X") (@) — (‘” iy my) 0y

€pvpo (X”Ta”X" + X”a”X"T) (") — (Re b7)h3 m”) On

Cupo (XVTOPXT + XV XN (07#97q) — (R (br)hf mN> (il — O — i O — 2014)
€Ly po (X”TapX“ — X”@”X"T> (Gy'q) —> (21 b7)h ) Og + Oy)

Cuvpo (XVTapXU XyapXUT) (V"7°q) — (4Im b7)h >

Charged Spinor Mediator

(X3 X0)(@v"7"q) — (y?;,?i;,ﬁ;“) 01+ 265 04)

(X X)) ("7 ~°q) — (yﬁz nﬁ{;y‘*) (iAN O19 + 6N O11 — 206N O12 — 26 O13)

Appendix D: Quarks to Nucleons

To go from the fundamental interactions of WIMPs with quarks to scattering from point-
like nucleons, one must evaluate the quark (parton) bilinears in the nucleons. For a full
discussion see the appendix of [71] and [72]. We write the nucleon couplings in terms of the
quark couplings times a form factor (in the limit of zero momentum transfer): The scalar
bilinear for light quarks can be evaluated from

(Nlmqqq|N)
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No‘mq(jQ|Nz’> — f%NN
No|qy°q|N;) — AGNN~APN

(

(

(Nolv"q|Ni)  — NNNA#N
(No| v 7°q |Ni) — AYNy#y°N
(

No|go*q|N;)y — (5[]1VNUWN

while for the heavy quarks

_ 2 2
(N|m,da [N) = omyFi = -y (1— )y fN> (D2)

q=u,d,s

Summing over all the quarks one finds

m 2 m
hy = Z h%%f%‘i‘ﬁfijrvc Z htlzl (D3)
q

q=u,d,s g=cbt

The psuedo-scalar bilinear was recently revisited in [72]:

q
hy = Y hSAGY —AGN Y i

q=u,d,s q=c,b,t myq

(D4)

The vector bilinear essentially gives the number operator:

ohi+hi N =
I S B (D5)
By + 20 N =u

The psuedo-vector bilinear counts the contributions of spin to the nucleon (note that

sometimes this coupling has a G factored out to make it dimensionless)

Y= S hiAY (D6)

q=u,d,s

Throughout this paper the following values are used (it should be noted that there are
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large uncertainties in these values) [71, 72]:

fro= 0014  fb =0.02

fr = 0036  fP,=0.026

fro= 0118  f2,=0.118

A" = — 0427 AP =0.842

A= 0.842  Ah=—0.427

A? = —0.085 AP =-0.085

Au" =—108.03 Au? =110.55

Ad" = 108.60 AdP = —107.17

A§" = —0.57 As =-3.37

AG™ =35.7TMeV  AGP = 395.2MeV

(D7)

Assuming a universal coupling of the mediators to all quarks, the nucleon level couplings

can then be written as,

where we have defined,

N =

W' = fr'h
hY =ANh,
hY =N"Nh;
hY =ANhy
(D8)
fr=1193 fr=1231
A" =—0.07 AP =-0.28
3 NP=3
A" = 033 AP =10.33
6" = 0.564 0P = 0.564
(D9)
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This introduces a small amount of isospin violation, and it is known that relaxing the assump-

tion of universal couplings to quarks can lead to interesting isospin violating effects [72, 73].
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