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We present a detailed analysis of the expected signal-to-noise ratios of supermassive black hole
binaries on eccentric orbits observed by pulsar timing arrays. We derive several analytical rela-
tions that extend the results of Peters and Mathews [1] to quantify the impact of eccentricity in
the detection of single resolvable binaries in the pulsar timing array band. We present ready-to-use
expressions to compute the increase/loss in signal-to-noise ratio of eccentric single resolvable sources
whose dominant harmonic is located in the low/high frequency sensitivity regime of pulsar timing
arrays. Building upon the work of Phinney [2] and Enoki and Nagashima [3], we present an ana-
lytical framework that enables the construction of rapid spectra for a stochastic gravitational wave
background generated by a cosmological population of eccentric sources. We confirm previous find-
ings which indicate that, relative to a population of quasi-circular binaries, the strain of a stochastic,
isotropic gravitational wave background generated by a cosmological population of eccentric binaries
will be suppressed in the frequency band of pulsar timing arrays. We quantify this effect in terms
of signal to noise ratios in a pulsar timing array.

I. INTRODUCTION

It is believed that supermassive black holes (SMBHs)
with masses between 106M⊙ − 109M⊙ are ubiquitous in
galactic nuclei [4–6]. According to the accepted frame-
work of hierarchical structure formation, massive galax-
ies are formed by continuous accretion of gas from cosmic
web filaments or through galactic mergers [7, 8]. This lat-
ter mechanism naturally leads to the formation of SMBH
binaries in the merged galaxy remnants. As the SMBHs
sink in the potential well of the remnant galaxy due to dy-
namical friction, stars within the binary orbit are quickly
ejected. An SMBH merger can only take place if addi-
tional mechanisms operate to remove energy and angular
momentum from the binary, e.g., friction from a spheri-
cal Bondi accretion flow [9], a circumnuclear gas disk [10],
slingshot scattering of stars on low angular momentum
orbits intersecting the binary [11–13], etc. If any of these
mechanisms can drive the orbit to sufficiently small sepa-
rations, gravitational wave (GW) emission can take over
and drive the binary system the rest of the way to coa-
lescence within a Hubble time [1, 14–18].
Regarding the orbital properties of SMBH binaries,

scattering interactions between individual stars and
SMBH binaries can potentially drive the binaries to
large orbital eccentricities, particularly when the bina-
ries retain significant eccentricities at the end of the dy-
namical friction phase [12, 19–21], whereas SMBH bi-
naries embedded in sufficiently massive prograde self-
gravitating gas disks may acquire eccentricities as large
as e ∼ 0.6− 0.8 by the time gravitational radiation takes
over the dynamical evolution of the system [10]. Fur-
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thermore, SMBH binaries embedded in counter rotating
disks may be driven to very large values of eccentricity
e ∼ 1 [22, 23], even though the binary can flip and realign
with the disk [24].

The gravitational radiation emitted during the inspi-
ral of binaries with masses 106M⊙ − 109M⊙ out to red-
shifts z ∼< 1 will be detectable by Pulsar Timing Arrays
(PTAs) [25–34]. PTAs are capable of detecting cosmic
string networks, primordial GWs, an unresolved stochas-
tic GW background generated by a large population of
compact binary sources [35–40] and GWs from individual
binary systems [41, 42].

Given the significant attention that eccentric com-
pact binaries have attracted as potential sources of GWs
and electromagnetic radiation [43–45], there is a need to
study the effect of eccentricity both in terms of source
detection and parameter estimation for individually re-
solvable sources, and for the detection of a stochastic GW
background in the context of PTAs. Our understanding
on the effect of eccentricity on potential GW sources for
PTAs has gradually improved from the seminal work of
Quinlan [12], and recent theoretical and numerical stud-
ies that have shed light on the impact of eccentricity and
environmental effects in suppressing the low frequency
GW background in the PTA band [46–53].

In this article we build upon the work of Phinney [2]
and Enoki and Nagashima [3] by constructing an ana-
lytical framework that enables the construction of rapid
spectra for a stochastic GW background generated by a
population of eccentric sources. We then employ a pre-
scription for the evolution of the BH mass function taken
from [54], and combine it with our results to compute the
signal-to-noise ratios (SNRs) of a stochastic GW back-
ground generated by a population of eccentric binaries,
with the SNR in that case being derived from a cross-
correlation statistic, given that matched filtering cannot
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be applied to a stochastic signal. We also derive several
analytical summations that expand upon the results of
Peters and Mathews [1] (PM hereafter) to explore in de-
tail the effect of eccentricity on the GW strain and the
matched-filter SNRs of individually resolvable sources.

Our studies show conclusively that the SNR of eccen-
tric binaries is non-negligibly attenuated for eccentricity
values (e ∼> 0.7). However, binaries with low to moderate
values of eccentricity (0 ∼< e ∼< 0.6) will have SNRs com-
parable to their quasi-circular counterparts. This sug-
gests, in principle, that the detection of a population of
eccentric binaries may be possible and would provide new
insights on the formation channels of SMBH binaries and
their cosmological evolution. However, it is still necessary
to show that the imprints of eccentricity can be accu-
rately extracted from GW observations with PTAs. We
defer the study of this important issue to future work.

This article is organized as follows: in Section II we
provide a succinct description of the properties of eccen-
tric binary systems and derive analytical relations that
are of importance for eccentric SMBH binaries observed
by PTAs. In Section III we provide analytical results
for the energy density and the characteristic amplitude
of the GW spectrum, and discuss at length the effect of
eccentricity on these two observables. In Section IV we
apply this calculated strain to compute SNRs for both
single resolvable sources and a stochastic population of
eccentric binaries with e ∈ [0, 0.9]. We summarize our
findings and describe future directions for research in Sec-
tion V. Throughout this article we use geometric units
with G = c = 1.

II. POWER FROM INDIVIDUAL ECCENTRIC
BINARIES

Consider a binary system with component masses
(m1, m2), such that m1 > m2, M = m1+m2, and whose
orbital rest-frame frequency is given by forb = ω/2π. If
the system evolves from an initial state with nonnegligi-
ble eccentricity e and semi-major axis a, then the binary
radiates GWs in the whole spectrum of harmonics. Fur-
thermore, as shown by PM [1], the relative power P (n)
radiated in the n’th harmonic is given by:

P (n) =
32

5

m2
1m

2
2 (m1 +m2)

a5
g(n, e) , (1)

where

g(n, e) =
n4

32

[

{

Jn−2(ne)− 2eJn−1(ne) (2)

+
2

n
Jn(ne) + 2eJn+1(ne)− Jn+2(ne)

}2

+
(

1− e2
)

{

Jn−2(ne)− 2Jn(ne) + Jn+2(ne)

}2

+
4

3n2
J2
n(ne)

]

.

Using Bessel’s equation and recurrence relations, one can
re-write Eq. (2) as follows:

g(n, e) =
n4

32

[

J2
n

n2

(

2− 4

e2

)2

+ J
′2
n

(

4

e
− 4e

)2

(3)

+
2JnJ

′
n

n

(

2− 4

e2

)(

4

e
− 4e

)

+ J2
n

(

1− e2
)

(

4

e2
− 4

)2

+
J

′2
n

n2

(

1− e2
)

(

4

e

)2

− 2JnJ
′
n

n

4
(

1− e2
)

e

(

4

e2
− 4

)

+
4

3n2
J2
n

]

.

Note that Eq. (3) corrects a typo in Eq. (A1) of PM [1].
As shown in PM:

F (e) =

∞
∑

n=1

g(n, e) =
1 + 73

24e
2 + 37

96e
4

(1− e2)7/2
. (4)

Hence, averaging over one period of the elliptical motion,
the average rate at which the binary system radiates en-
ergy is given by:

〈P 〉 =
∞
∑

n=1

P (n) ,

=
32

5

m2
1m

2
2 M

a5 (1− e2)
7/2

(

1 +
73

24
e2 +

37

96
e4
)

. (5)

Another interesting quantity that involves the object
g(n , e) is the GW strain root-mean-square (rms) ampli-
tude. As discussed in [55], the rms amplitude and the
energy radiated in the n’th harmonic are related through:

hn =
1 + z

πdL

√

Ėn

n forb
, (6)

where z is the redshift. Since the luminosity, Ė, emitted
by the system averaged over one complete orbit is given
by

Ė =
32

5
M10/3 (2πforb)

10/3
∞
∑

n=1

g(n, e) , (7)
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then Eq. (6) can be re-written as follows:

hn = 2

√

32

5

M5/3

ndL
(2πforb)

2/3
√

g(n, e)(1 + z) , (8)

whereM = M η3/5 is the chirp mass, and η = m1m2/M
2

represents the symmetric mass ratio. It is possible to ob-
tain a similar expression to the average power by consid-
ering the quantity

∞
∑

n=1

h2
n =

32

5

M10/3

d2
(2πforb)

4/3
∞
∑

n=1

g(n, e)

(n/2)
2 , (9)

where d = dL/(1+ z). This quantity has heretofore been
evaluated numerically using a given number of harmonics
to ensure a specified accuracy. However, one can derive
an exact closed form for the sum appearing on the right-
hand side of this expression, as shown in Appendix A:

H(e) =

∞
∑

n=1

g(n, e)

n2
=

4−
√
1− e2

12
√
1− e2

. (10)

Thus, Eq. (9) takes the simple form:

∞
∑

n=1

h2
n =

32

15

(

4−
√
1− e2

)

√
1− e2

M10/3

d2
(2πforb)

4/3
. (11)

In the following Section, we will use a similar approach to
derive new analytical relations to explore the signatures
that a population of eccentric binaries may imprint on a
stochastic background of gravitational radiation and on
single resolvable sources.

III. STOCHASTIC BACKGROUND OF A
POPULATION OF ECCENTRIC BINARIES

Following Ref. [2], one can define the total GW energy
density per logarithmic frequency interval observed today
from a population of (instantaneously monochromatic)
sources as:

Egw ≡
∫ ∞

0

ρcΩgw(f)
df

f
≡
∫ ∞

0

π

4
f2h2

c(f)
df

f

=

∫ ∞

0

∫ ∞

0

N(z)
1

1 + z
fr

dEgw

dfr
dz

df

f
. (12)

The rate of mergers per unit comoving volume which
occur between redshift z + dz is given by N(z)dz. Fur-
thermore, ρc represents the rest-mass energy that would
be required to close the Universe [2]

ρc =
3H2

0

8π
. (13)

In practice, we can replace N(z)dz by a differential rate
and integrate over source parameters, but for the mo-
ment we shall assume that the population is composed
of identical sources. If the sources have eccentricity then

they will no longer be instantaneously monochromatic.
Instead, we can regard the emission at each harmonic to
represent a separate population of sources. Based on this
observation, and following Enoki and Nagashima [3], we
have that:

Egw =
∞
∑

n=1

Egw,n, with

Egw,n =

∫ ∞

0

∫ ∞

0

N(z)
1

1 + z
fn,r

dEgw,n

dfn,r
dz

dfn
fn

, (14)

where fn represents the frequency of the n’th harmonic
observed today, and fn,r = (1 + z)fn is the frequency of
the harmonic in the rest frame. The amount of energy
radiated in GWs into the n’th harmonic as the frequency
of the n’th harmonic changes from fn,r to fn,r +dfn,r is
given by:

dEgw,n

dfn,r
dfn,r . (15)

This outgoing energy is measured in the source’s rest
frame, and is integrated over the entire radiating lifetime
of the source and over all solid angles [2]. Using the
relations

4π2 f2
orb a

3 = M and ω = 2π forb , (16)

with Eq. (7), we find that:

dEgw,n

dfn,r
=

dEgw,n

dtr

dtr
dfn,r

, (17)

dEgw,n

dtr
=

32

5
(Mω)

10/3
g(n, e) , (18)

dfn,r
dtr

= n
dforb
dtr

=
96

5

nF (e)

2π
M5/3ω11/3 , (19)

where F (e) was defined in Eq. (4). Combining these, we
find

dEgw,n

dfn,r
=

(2π)2/3 M5/3

3F (e)

g(n, e)

n
f
− 1

3

orb

=
π2/3M5/3

3F (e) (1 + z)
1/3

g(n, e)

(n/2)
2/3

f− 1

3 . (20)

The energy density in the background per logarithmic
frequency interval is then given by

ρcΩgw(f) =
π

4
f2h2

c(f) = (21)

M5/3 (πf)
2/3

3

∫ ∞

0

∞
∑

n=1

1

F (e)

g(n, e)

(n/2)2/3
N(z)

(1 + z)1/3
dz.

Note that in the quasi-circular limit (n = 2, e → 0),
Eq. (21) recovers the results presented in Ref. [2].



4

A. Estimating the number of merger events in unit
comoving volume N(z)

One important ingredient in the calculation of the
stochastic spectrum, energy density and, ultimately, the
SNR with which a population of GW sources can be de-
tected is the number of mergers that occur between red-
shift z and z + dz, i.e., N(z). For the systems under
consideration, i.e., binaries with total masses between
106−9M⊙, our knowledge of the numbers and mass dis-
tributions of SMBHs has changed considerably with the
advent of large scale surveys [56, 57] and recent theoreti-
cal studies [54, 58, 59]. However, deriving a robust model
for the computation of N(z) is a complex problem due
to the large uncertainties inherent in several aspects of
the calculation, e.g., the poorly constrained rate of BH
migration toward the center of merging galaxies caused
by interactions with dark matter, gas, and stars; the pos-
sibility of multiple BH interactions in the event that the
BH migration is inefficient, etc. [47, 49, 60–71]. With
these caveats in mind, we use the estimate for N(z) de-
scribed in Ref. [54], which we will review here for com-
pleteness.
We need to estimate the comoving number density of

BHs with masses between M• and M•+dM•. BH masses
are strongly correlated with the bulge masses of their
hosts and so this is equivalent to considering the distri-
bution of galaxy bulge masses. The starting point for
such an estimate is an empirical model known as the
Schechter function [72], given by

φ(M)dM = ϕMα exp (−M) dM , (22)

where ϕ and α represent the normalization of the lumi-
nosity function and the faint-end slope parameter, re-
spectively. The Schechter function is a power law that is
truncated at large masses. For the most massive galaxies
of interest, we need to amend this function to account for
the observed excess of mass in the brightest cluster galax-
ies and other very massive elliptical galaxies. Following
Ref. [59], we do this by adding a Gaussian component to
Eq. (22):

φ(M)dM = (ϕ+ ϕmassive) dM = ϕMα exp (−M) dM

+ φ̂ exp

(

−1

2

(

2.5 logM

σ

)2

− 1

)

dM ,

(23)

where φ̂ and ϕ are normalization factors to describe the
brightest cluster galaxies and less massive galaxies, re-
spectively. We try to encapsulate in a conservative way
the current knowledge we have from galaxies that host
BHs with masses ∼ 109M⊙ such as M87. Hence, follow-

ing Ref. [54] we set φ̂ = ϕ and σ = 0.58, which ensures at
least one M87-mass source in our sample. The comoving
density of BHs can be constructed from the Schechter
function by replacing

M → M•

M
with M =

1.2× 108

1 + z
M⊙ . (24)

Here M• denotes the BH mass and M is a Schechter pa-
rameter that represents the characteristic mass at the
turnover of the mass function. This particular prescrip-
tion is consistent with observational data [73]. We set
the normalization of the luminosity function to have the
constant value

10-6

10-5

10-4

10-3

10-2

107 108 109

φ 
dM

 [M
pc

-3
]

M[M⊙]

z=0
z=1/3
z=2/3

z=1

FIG. 1. Redshift evolution of the black hole mass function
given by Eq. (23).

ϕ ≡ 3× 10−3Mpc−3 . (25)

This choice is in good agreement with results presented
in Ref. [74] at low redshifts and using the cosmological
parameters presented in Ref. [57]. Observational data
suggests that ϕ might have a mild dependence on red-
shift. However, following Ref. [54], we ignore the red-
shift dependence of ϕ because it is a small effect that has
a negligible influence on the total GW signal. Finally,
ensuring that the redshift dependence of the faint-end
slope parameter α satisfies mass conservation, one finds
that [54]:

α ≈ −2 +
0.52

1 + z
. (26)

We can reconstruct the BH mass function introduced in
Ref. [54] by plugging Eqs. (24)–(26) into Eq. (23) — see
Figure 1. This approach reproduces the results presented
in Ref. [58] at a 2σ level. Following Ref. [54], we express
the number density of mergers N(z) by assuming that
it is proportional to the product of the number density
of the constituent black holes, as shown in Eq. (8) of
Ref. [54]. Using this approach, we evaluate the integral

N0 =

∫ zmax

zmin

N(z)

(1 + z)1/3
dz , (27)

where zmin = 0 and zmax = 1. Assuming that all systems
in the Universe have the same eccentricity we find that

N0 =

{

2.63× 10−3Mpc−3 , 7 ∼< logM ∼< 7.9 ,

1.16× 10−3Mpc−3 , logM ∼> 7.9 .
(28)
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We have used the mass ranges quoted above motivated by
the fact that mass function has a break around logM ∼
7.9 for all redshifts of interest. Note that even though
this is a rough approximation, we have verified that this
choice does not have a strong influence on the results.

B. Ready to use expressions for the gravitational
wave energy density and the characteristic

amplitude of the gravitational wave spectrum

Having derived all of the ingredients to compute the
GW energy density and the characteristic amplitude of
the GW spectrum, and using the most recent results for
the cosmological parameters released by the Plank Col-
laboration in Ref. [75] to compute the critical density of
the Universe defined by Eq. (13), we can derive ready-
to-use expressions for the energy density and the char-
acteristic amplitude of the GW background. We carry
out this calculation in two steps. We first provide a ped-
agogic example in which the eccentricity of the SMBH
binary population is assumed to be constant. Thereafter,

we address the likely physical scenario in which the ec-
centricity evolves as a function of frequency due to GW
emission.

1. Compact binary population with fixed eccentricity

Assuming that the eccentricity of the binary popula-
tion is fixed, we can derive an analytical expression that
reproduces the sum in Eq. (21) to better than 0.01% in
the eccentricity range e0 ∈ [0, 0.95] (see Appendix C),
namely:

A(e0) =

∞
∑

n=1

g(n, e0)

(n/2)2/3
=

1+ 1467
1024e

2
0 − 115

12288e
4
0 +

227
32768e

6
0

(1− e20)
5/2

.

(29)
For later convenience, let us define the function:

B(e0) ≡
A(e0)

F (e0)
=
(

1− e20
)

(

1 + 1467
1024e

2
0 − 115

12288e
4
0 +

227
32768e

6
0

)

1 + 73
24e

2
0 +

37
96e

4
0

.

(30)
Using Eq. (30), the energy density and the characteristic
amplitude of the GW background take the form:

Ωgw(f) = 3.6× 10−10

( M
108M⊙

)5/3(
f

1 yr−1

)2/3(
N0

10−3Mpc−3

)

B(e0) , (31)

hc(f) = 5.0× 10−16

( M
108M⊙

)5/6(
f

1 yr−1

)−2/3(
N0

10−3Mpc−3

)1/2
√

B(e0) . (32)

In Figure 2 we plot the attenuation function B(e0) (see
Eq. (30)). We notice that both the energy density and
the characteristic amplitude of the GW background are
maximized for a population of quasi-circular binaries,
and steadily decrease for increasing values of eccentricity.
These results give the energy density and typical strain
of a GW background generated by binaries with fixed
eccentricity and chirp mass.

2. Compact binary population with evolving eccentricity

To describe a compact binary population whose ec-
centricity is evolving, we notice that for a given initial
eccentricity e0 at a fiducial initial orbital frequency f0,
the eccentricity depends only on the orbital frequency:
e = e(forb, e0). Each harmonic n contributes to the sig-
nal at an observed frequency f = n forb/(1 + z). Hence,
including the frequency evolution of the eccentricity en-
tails replacing the argument of the g(n, e), F (e) functions
in Eq. (21) by

e(forb; e0) = e

(

1 + z

n
f ; e0

)

. (33)

We shall use the dictionary e → e(forb) given by Eq.
(3.12) of Ref. [76], which is robust for e ∈ [0, 0.9], namely:

e(forb; e0) →
16.83− 3.814 β0.3858

16.04 + 8.1 β1.637
, (34)

where β = χ2/3/σ0 and χ = forb/f0, with forb =
(1 + z) f/n, and

σ0 =
e
12/19
0

1− e20

(

1 +
121

304
e20

)870/2299

. (35)

We substitute Eq. (34) into Eq. (21) to obtain the func-
tion:

S(f, f0, e0, z) =

∞
∑

n=1

1

F (e(forb; e0))

g(n, e(forb; e0))

(n/2)
2/3

.

(36)
In Figure 3 we show the frequency evolution of the func-
tion S(f, f0, e0, z) for several values of initial eccentricity
e0. It is worth pointing out that these results are in excel-
lent agreement with Ref. [3], even though we have used a
different approach to parameterize the orbital frequency
evolution. We have found several interesting properties
of the generating function S(f, f0, e0, z):
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FIG. 2. Attenuation factor, B(e0), as defined in Eq. (30),
which describes the decrease in the emitted energy density
for a population of compact sources with fixed eccentricity.
In light of Eqs. (31) and (32), the present-day energy den-
sity Ωgw(f) is maximized for a population of quasi-circular
compact binaries, whereas its value is decreased by a factor
∼ 10 for a population of highly eccentric systems (e0 ∼ 0.9).
Similarly, the characteristic amplitude of the GW spectrum
steadily decreases as the eccentricity of the compact binary
population increases.
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tion S(f, f0, e0, z), given by Eq. (36) for several values of ini-
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fr = (1 + z) f .

• The location of the maxima follows a simple rela-
tion given by:

xmax ∼= 1293

181





e
12/19
0

1− e20

[

1 +
121

304
e20

]870/2299




3/2

, (37)

where x = fr/f0.

• The maxima of the S(f, f0, e0, z) function is the

same for all values of e0 and is given by

S(f, f0, e0, z)
max =

373

234
. (38)

• Two additional properties that S(f, f0, e0, z) must
satisfy are:

S(f, f0, e0 = 0, z) ≡ 1 ,

limf→∞ S(f, f0, e0, z) → 1 .

In light of this analysis, we have constructed a function
that has these generic properties. We found it convenient
to split the function in two pieces given its distinct prop-
erties before and after it reaches S = 1. The points at
which S(f, f0, e0, z) ≡ 1 are given by:

xfixed ∼= 3620 e0

841 (1− e20)
3

(

1− 370

243
e20 +

132

269
e40

)

. (39)

In the domain x ∼> xfixed, we propose the following ansatz
for S(f, f0, e0, z):

Shigh(f, f0, e0, z) = 1 + a(e0)[x− b(e0)]e
−c(e0)x , (40)

where x = fr/f0 and the eccentricity dependent coeffi-
cients a(e0), b(e0), c(e0) are given by:

b(e0) = xfixed , (41)

c(e0) =
1

xmax − xfixed
, (42)

a(e0) =
Smax − 1

xmax − xfixed
exp (c(e0)x

max) . (43)

It is worth pointing out that for low values of eccentric-
ity (e0 ∼< 0.2), Eq. (40) reproduces the main features of
S(f, f0, e0, z) throughout the domain x ≥ 1. When we
consider e0 ∼> 0.2, we need to replace the low frequency
evolution using the following relation

Slow(f, f0, e0, z) = d(e0)x
(29−s(e0))/7 e−g(e0) x , (44)

where the coefficients (d(e0), s(e0), g(e0)) are determined
by enforcing that Slow has the correct value at x = 1 and
x = xfixed, and that S′

low(x
fixed) = S′

high(x
fixed). The

transition from Slow to Shigh is at the point xfixed.
We have found that Shigh(f, f0, e0, z), given by

Eq. (40), can accurately describe the full numerical solu-
tion of Eq. (36) for e0 ∈ [0, 0.9] in the domain x ∼> xfixed.
This is possible because the numerical solution has self-
similarity properties that are captured by Eqs. (37)- (43).
We have attempted to provide a similar parameteriza-
tion for the spectra in the domain 1 ∼< x ∼< xfixed and
have found that self-similarity is present for populations
with e0 ∼< 0.7. Populations with larger eccentricities
have two properties that deviate from self-similarity in
the domain 1 ∼< x ∼< xfixed: (a) the slope of the spectra
evolves as a function of eccentricity; (b) the spectra de-
velops a bulging at lower frequencies that becomes more
pronounced for increasing values of eccentricity. These
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two properties are clearly shown in the bottom panel of
Figure 4. The parameterization we propose in Eq. (44)
captures the evolution of the spectra as a function of ec-
centricity with the parameter s(e0). Using both Eqs. (40)
and (44), we can analytically reproduce the numerical so-
lution of Eq. (36) for systems with eccentricity e0 ∼< 0.7
with an accuracy better than 10% in the domain x ≥ 1 —
note that the largest deviation between the numerical and
analytical solutions occurs for populations with e0 = 0.7.
The discrepancy arises because, even if we have captured
the evolution of the slope of the spectra as a function
of eccentricity, the numerical solution presents an ad-
ditional bulging at low frequencies that is not equally
present in all spectra. Indeed, the bottom panel of Fig-
ure 4 shows that this feature becomes increasingly pro-
nounced for highly eccentric populations in the low fre-
quency domain. However, we notice that Slow(f, f0, e0, z)
still provides an approximate description of the spectra
in the low frequency domain that smoothly asymptotes
to the numerical solution when x → xfixed. This is an
important property, since this is the region where the
signal is most likely to be detected. Therefore, given the
ever-increasing attenuation of the spectra for very large
eccentricities, it seems that the analytical framework we
have constructed covers the entire domain of detectable
stochastic signals. Finally, we note that, by construction,
our analytical approach satisfies S(f, f0, e0 = 0, z) ≡ 1
and limf→∞ S(f, f0, e0, z) → 1. In future studies that
aim at modeling SMBH binaries that evolve in stellar en-
vironments or embedded in counter rotating disks that
may drive the eccentricity to large values e0 ∼ 1, it will
be necessary to modify the framework described above
by including a non-self-similar evolution for the low fre-
quency evolution part of the spectrum, in particular for
eccentricities e0 ∼> 0.7.
The analytical approximation to the spectra of eccen-

tric populations we have constructed above provides a
robust description of the imprint of eccentricity over a
wide range of parameter space. Given its simplicity, it
provides an ideal tool to be implemented in detection
pipelines. We utilize this result in the following Section
to compute the expected signal-to-noise ratio with which
a cosmological population of SMBH binaries with non-
negligible eccentricity can be detected with PTAs.

IV. SIGNAL-TO-NOISE RATIOS FOR PULSAR
TIMING ARRAYS

In this Section we discuss in detail the prospects of de-
tecting a cosmological population of inspiralling SMBH
binaries with PTAs. Current studies suggest that the
expected signal from these events may comprise a su-
perposition of two distinct contributions: (i) a stochas-
tic background generated by the incoherent superposi-
tion of gravitational radiation emitted from the whole
SMBH population [40, 77, 78]; and (ii) GW signals that
stand above the background and can be individually re-
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FIG. 4. The top panel shows a direct comparison between
the numerical solution of the sum S(f, f0, e0, z) given by
Eq. (36) and the analytical solution we have constructed using
Eqs. (40) and (44). This analytical solution reproduces the
full numerical solution for systems with eccentricity e0 ∼

< 0.7

with an accuracy better than 10% in the domain x ≥ 1. The
largest deviation occurs for populations with e0 = 0.7, which
start to deviate from self-similar solutions in the low frequency
regime (1

∼
< x

∼
< xfixed). Bottom panel: populations with

higher eccentricity have a non self-similar evolution in the
domain 1

∼
< x

∼
< xfixed, but we can still provide an approx-

imate description in this regime using Eq. (44). Please note
that Eq. (40) provides a reliable description of the spectra
for any value of eccentricity e0 ∈ [0, 0.9] for x

∼
> xfixed, and

Eq. (44) smoothly asymptotes to the numerical solution when
x → xfixed.

solved [39, 79]. The motivation to consider these two
complementary cases stems from the fact that an inho-
mogenous combination of multiple sources emitting in
the same frequency bin can adopt several configurations
in the timing residuals, such as a nearly isotropic distri-
bution over the sky or a few bright spots in the sky if they
superpose coherently [40]. There has been a vigorous re-
search program to develop data analysis techniques in
the limiting cases of an isotropic stochastic background
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which, as described in the previous Section, may be de-
scribed by a power law spectrum [35–38, 80, 81], for sin-
gle monochromatic GW sources [33, 82–85] and, more re-
cently, for anisotropic GW backgrounds [86–88], although
we will not discuss these further here.

A. Sensitivity of PTAs to single resolvable sources
and a stochastic gravitational wave background

The sensitivity curves of PTAs to continuous waves
and a stochastic GW background have been discussed
at length in Ref. [31, 89]. If we define σrms as the rms
timing noise, and 1/∆t as the cadence of the measure-
ments, then combining Eqs. (40) and (42) of Ref. [89],
the dimensionless effective noise amplitude for the tim-
ing residuals induced for a stochastic GW background is
given by:

h2
N (f) = fSn(f) = 24π2∆t σ2

rms f
3 . (45)

Assuming a total observation time Tobs, the analysis pre-
sented in [31] shows that the power law integrated sen-
sitivity curve for a PTA’s response to a stochastic GW
background has a sharp cut-off in sensitivity at a fre-
quency f = T−1

obs. On the other hand, for individually
resolvable sources, the maximum sensitivity is attained
around frequencies T−1

obs, and there is a slow diminish-
ing in sensitivity below this value. Assuming a quadratic
timing model, Ref. [31] shows that the dimensionless ef-
fective noise amplitude for continuous waves can be mod-
eled as a two-part power law in f . This two-part power
law, as given in Ref. [31], is formally a continuous sum
of the two components, but it will prove convenient for
us to approximate it as a piecewise combination of the
components, namely:

hc,high(f) = B f
3

2 , for f ∼>
2

Tobs
, (46)

hc, low(f) = C f− 3

2 , with (47)

B =

(

36

Np (Np − 1)

)1/2 √
∆t σrms , (48)

C =
8B
T 3
obs

. (49)

The quantity hc(f) is the characteristic strain of noise
fluctuations in the detector, which is required to com-
pute the SNR using Eq. (50) below. We note that
the transition frequency value ftrans = 2T−1

obs at which
hc, high(f) = hc, low(f) is simply an approximate value
for which the two-part power law representation of the
total sensitivity reproduces a fully numerical Bayesian
analysis [31].
We emphasize that the effective sensitivities above dif-

fer depending on the detection statistic being assumed,
and this has occasionally resulted in some confusion
when calculating sensitivity curves, particularly their

spectral slopes, throughout the literature. We have as-
sumed in Eq. (45) that the stochastic background is
searched for using a cross-correlation statistic, whereas in
Eqs. (46)–(49), we assume that continuous-wave sources
are searched for using matched filtering.
Having described the prescription we will use for the

sensitivity of PTAs to detect continuous wave sources and
a stochastic GW background, we will now compute the
expected SNR of single resolvable sources.

B. Signal-to-noise ratio calculations for single
resolvable sources

Several recent studies have explored the ability of
PTAs to resolve GW sources individually. For instance,
assuming the existence of a population of quasi-circular
monochromatic sources, an array of pulsars which are
equally-sampled every two weeks for ten years, and mak-
ing several other simplifications regarding the nature of
the data sets, Ref. [90] concluded thatNs sufficiently loud
sources with SNRs ∼> 10 can be resolved and localized in
the sky with a network of 3Ns pulsars. Building upon
this study, Ref. [91] demonstrated that it was possible
to: (i) recover the SNR of injected signals to within a
few percent; (ii) infer the sky localization to within a few
degrees; and (iii) resolve the frequency at which the sig-
nals were injected to better than 0.1 nHz. To put this
latter result in context, a PTA that collects data for a
time span of Tobs cannot in principle distinguish two GW
frequencies separated by less than ∆f ∼ 1/Tobs ∼ 3nHz
for Tobs = 10yr. If the algorithm introduced in Ref. [91]
is capable of determining sub-Fourier bin precision to the
level of 0.1 nHz, this means that they are capable of re-
solving up to 30 sources per frequency bin.
A more conservative approach to estimate the number

of GW sources that can be individually resolved with a
PTA was presented in Ref. [92]. Basic counting argu-
ments suggest that a PTA with Np pulsars can charac-
terize up to 2Np/7 chirping GW point sources per GW
frequency bin or 2Np/6 monochromatic sources. This is
just the number of measurements (an amplitude and a
phase per pulsar) divided by the number of parameters
characterizing a single GW source (7 for a chirping binary
and 6 for a monochromatic binary). We therefore expect
a PTA to be sensitivity limited when every GW frequency
bin has more than 2Np/7 sources. At present there are
more than 20 pulsars in the IPTA with rms timing residu-
als σrms < 1µs, and a few pulsars with σrms < 100ns [93].
With the advent of the Chinese five hundred meter spher-
ical aperture telescope [94] and the Square Kilometer Ar-
ray (SKA) [95], there will be a major leap in sensitivity.
A conservative estimate suggests that the SKA could de-
tect more than twenty thousand pulsars, including hun-
dreds of them with σrms that will match or supersede
the best pulsars currently known. Such a PTA may no
longer be a detector capable only of detecting a stochastic
GW background (i.e., a confusion-limited detector) but
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may become a point source telescope capable of carrying
out matched-filtering GW searches [92]. In view of this
bright prospect, we now compute the SNRs of eccentric
sources in the frequency band of PTAs.
Since binaries on eccentric orbits radiate in a wide

spectrum of harmonics n of the mean orbital frequency,
we can write the SNR as:

ρ2ℓ(n, forb) =
h2
cw(n, forb)

h2
c,l(nforb)

, (50)

with ℓ = [low, high] and [96]:

h2
cw(n, forb) =

h2
n nforb Tobs

1 + z
, (51)

where hn is given by Eq. (8). Eq. (51) can be inter-
preted as the averaged squared amplitude multiplied by
the number of cycles completed during the observation
time Tobs. In general, the total SNR of a single resolvable
source can be written as:

ρ2 ≡
nmax
∑

n=1

ρ2low(n, forb) +

∞
∑

nmax+1

ρ2high(n, forb) , (52)

where nmax is given by nmax forb = ftrans. Now, bearing
in mind that the sensitivity for continuous wave sources
is given by a piecewise function, let us consider the low
frequency component. Using Eq. (47) we find that:

ρ2low = Ĉ
nmax
∑

n=1

(n

2

)2

g(n, e0) f
16/3
orb , (53)

Ĉ =
4 3
√
2 π4/3 Np (Np − 1)

45

T 7
obs M10/3

d2L (1 + z)2 ∆t σ2
rms

,

(54)

where we have used f = n forb/(1+z) in the last line. In
the case where most of the detectable signal is contained
in modes with n < nmax, we can use an analytical form
for the sum in Eq. (53). In Appendix A we show that:

G(e0) =
∞
∑

n=1

(n

2

)2

g(n, e0) =
1

(1− e20)
13/2

[

1 +
85

6
e20

+
5171

192
e40 +

1751

192
e60 +

297

1024
e80

]

. (55)

Hence, summing over all the harmonics enables us to
recast Eq. (54) as follows:

ρ2low = ĈG(e0) f
16/3
orb . (56)

We can find a similar expression for the high frequency
contribution, namely:

ρ2high = B̂
∞
∑

n=nmax

g(n, e0)

(n/2)
4 f

−2/3
orb , (57)

B̂ =
4 3
√
2 π4/3 Np (Np − 1)

45

TobsM10/3 (1 + z)
4

d2L∆t σ2
rms

.

(58)

If the first harmonic n = 1 is located within the high
frequency regime (∼> ftrans), then no detectable signal
occurs in the low frequency regime, so nmax = 1 and
we can analytically evaluate the sum in Eq. (57). In
Appendix A we show that this sum is given by

Y (e0) =

∞
∑

n=1

g(n, e0)

(n/2)4
= 1− 1

3
e20 , (59)

and the high frequency contribution can be expressed as:

ρ2high = B̂ Y (e0) f
−2/3
orb . (60)

We can re-write the low and high frequency contributions
to the SNR in a convenient way using the transformation
u = forb/ftrans:

ρ2 =

{

(1 + z)
−2 LG(e0)u

16/3 , u ≪ 1 ,

(1 + z)4 LY (e0)u
−2/3 , u ≥ 1 ,

(61)

where:

L =
4 3
√
2π4/3 Np (Np − 1)

45

T
5/3
obs M10/3

d2L∆t σ2
rms

. (62)

We note that the requirement that u ≪ 1 in the first part
of Eq. (61) is due to the fact that eccentric sources will
emit in a wide range of harmonics. For more moderate
eccentricities, this requirement is weakened, such that
Eq. (61) applies to all orbital frequencies in the limit of
very small eccentricity.

To give a sense of scale, we can reexpress Eq. (61) as:
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ρ2 = ρ̂2
{

(1 + z)
−2

G(e0)u
16/3 , u ≪ 1 ,

(1 + z)
4
Y (e0)u

−2/3 , u ≥ 1 ,
(63)

ρ̂2 = 4.26× 10−2Np (Np − 1)

( M
108M⊙

)10/3(
Tobs

10 yr

)5/3(
100Mpc

dL

)2 (
100 ns

σrms

)2(
0.05 yr

∆t

)

. (64)

Finally, in the case that individual sources are emitting
in the transition regime between low and high frequency

sensitivity (i.e., forb < ftrans, but the eccentricity is large
enough that significant signal is contained in harmonics
with nforb > ftrans), the total SNR is given by:

ρ2 = ρ̂2

[

1

(1 + z)
2

nmax
∑

n=1

(n

2

)2

g(n, e0)u
16/3 + (1 + z)

4
Nmax
∑

nmax+1

g(n, e0)

(n/2)
4 u−2/3

]

, (65)

where formally Nmax → ∞, but in practice, we find that
Nmax = 1500 suffices for all of the eccentricities consid-
ered in this work. In Figure 5 we show the expected
SNR ρ for sources that emit in three different regimes:
very low frequencies (forb ≪ ftrans), transition frequen-
cies (0.0 1ftrans ∼< forb < ftrans), and high frequencies
(forb ∼> ftrans). These results indicate that:

• Single resolvable binaries that satisfy forb ≪ ftrans
undergo a substantial SNR increase. Heuristically,
we can understand this effect based on the results
reported in [1], namely, the SNR gets contributions
from all harmonics of the orbital frequency n forb,
some of which will be located in the region of max-
imum sensitivity of the PTA. The bottom panel of
Figure 5 shows that we can analytically compute
the SNR for binaries with orbital frequencies up
to forb ∼< 0.01ftrans and e0 ≤ 0.8 with an accu-
racy better than 1% using Eqs. (55), (63) and (64)
for u ≪ 1. The bottom panel of Figure 5 shows
that the regime of applicability of these relations
increases as we consider sources radiating at very
low frequencies (see the line labelled u = 0.005).
Using these relations, we find that the increase in
SNR in the low frequency regime is given by:

ρu≤0.01
increase ≡

ρe0≥0

ρe0=0
=
√

G(e0) . (66)

Evidently, the contribution from harmonics located
in the high frequency regime — where the sensitiv-
ity of the PTA is poorer — tends to slow down the
increase in the SNR and eventually attenuate it.
This is clearly shown in the top panel of Figure 5.

• Binaries with orbital frequencies 0.01 ftrans ∼<
forb < ftrans need to be described by Eq. (65) in-
cluding the contribution from harmonics located in
the low and high sensitivity regime frequency of a

PTA. In that case we include up to Nmax = 1500
to provide a reliable answer.

• Finally, binaries with forb ≥ ftrans are very well
described by Eqs. (59), (63) and (64) for u ≥ 1.
These relations indicate that the loss in SNR due
to eccentricity is given by:

ρu≥1
loss ≡ ρe0≥0

ρe0=0
=
√

Y (e0) . (67)

C. Signal-to-noise ratio calculations for a
stochastic gravitational wave background

The nature of a stochastic GW background allows us
only to predict the statistical properties of the signal it
generates, not the precise signal. Matched filtering ap-
proaches are not, therefore, applicable and instead we
rely on cross-correlation of data streams from different
pulsars. The SNR statistic we shall adopt in this case
is described in Ref. [31]. This is the linear combination
of cross-correlations between different pulsars that max-
imizes the SNR, defined as the ratio of the expectation
value of the statistic in the presence of a signal to the
rms value in the absence of a signal. The SNR for this
optimal statistic is

Σ2 = 8

Np
∑

i>j

Np
∑

j

Tobs

∫

df
Γ2
ijS

2
h(f)

S2
n(f)

. (68)

For an isotropic background, the overlap reduction func-
tion Γij is entirely determined by the angular separation
of the pulsars [97]. Assuming that the pulsars in the PTA
are randomly placed on the sky, Γij can be approximated
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FIG. 5. Expected signal-to-noise ratio ρ for sources that may
be detected in the frequency band of PTAs assuming Np = 10,
dL = 100Mpc, z = 0.022, σrms = 100 ns, ∆t = 0.05 yr and
M = 109M⊙ (see Eq. (65)). The top panel shows the enhance-
ment in ρ at low frequencies (u ≪ 1), and the corresponding
attenuation at higher frequencies. We also compare the per-
formance of the expressions given in Eqs. (56) and (60) with
the actual numerical evaluation of Eq. (65).

as the rms value over the sky, i.e.,

Γij = χ =
(

4
√
3
)−1

, (69)

Np
∑

i>j

Np
∑

j

Γij ≈
Np (Np − 1)χ

2
. (70)

Eq. (68) thus takes the form

Σ2 =
Np (Np − 1)Tobs

12

∫

df
S2
h(f)

S2
n(f)

. (71)

Additionally,

Sh(f) =
3H2

0

2π2

Ω(f)gw
f3

and Sn(f) = 24π2∆t σ2
rmsf

2 .

(72)
1. SNR calculations for binaries with fixed eccentricity

The SNR for a population of binaries with fixed orbital
eccentricity can be derived using Eqs. (21), (30) and (71):

Σ2 =
N2

0 M10/3

3888 π14/3

Np (Np − 1) Tobs B
2(e0)

(∆t σ2
rms)

2

∫ ∞

f̂0

df

f26/3
.

(73)

Using the coordinate transformation v = f/f̂0, with f̂0 =
T−1
obs, we obtain:

Σ2 =
N2

0 M10/3

29808 π14/3

Np (Np − 1) T
26/3
obs B2(e0)

(∆t σ2
rms)

2 . (74)

We thus obtain an expression for the SNR of a stochastic
GW background of identical constant eccentricities e0:

Σ2 ≡ 23.49B2(e0)Np (Np − 1)

( M
108M⊙

)10/3(
Tobs

10 yr

)26/3(
N0

10−3Mpc−3

)2(
100 ns

σrms

)4(
0.05 yr

∆t

)2

. (75)

In Figure 7 we show the expected SNR from a stochas-
tic GW background generated by sources with fixed to-
tal mass M . These results have been generated using
the fiducial values quoted in parentheses in Eq. (75),
and assuming a network of Np = 10 pulsars. Figure 7
shows that eccentricity tends to reduce the expected SNR
from a population of compact binary sources. This ef-
fect is marginal for binaries with low to moderate val-
ues of eccentricity, i.e., for e0 ∈ [0, 0.6]. However, the
expected SNR of a stochastic GW background gener-

ated by a population of highly eccentric binaries satisfies
Σ(e0 = 0) ∼> 10Σ(e0 ∼ 0.9). This is a natural conse-
quence of the effect of the attenuation factor B(e0) on
the strain of a stochastic GW background (see Figure 2).
In the following Section we extend this analysis to con-
sider populations in which the orbital eccentricity of the
binaries evolves.
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2. SNR calculations for binaries with evolving eccentricity

A more realistic astrophysical scenario is one in which
the eccentricity of binaries that generate the stochastic
GW background is allowed to evolve. In this case, we
again use Eqs. (71) and (72), but we now use Eq. (21)
along with the function S(f, f0, e0, z) in Eq. (36) to take

into account the frequency evolution of the eccentric-
ity. Since the function S(f, f0, e0, z) was derived using
Eq. (20), we identify f0 as the orbital frequency at which
the ensemble of binaries have a fiducial orbital eccentric-
ity e0 = e(forb = f0), where f0 = T−1

obs.
We can compute the SNR for the evolving eccentricity

case assuming that the GW background signal evolves
both above and below forb = f0, so that e > e0 for
forb ∼< f0. In that scenario, the contribution from sources
for frequencies forb ∼< f0 is highly attenuated, as shown
in Fig. 3. However, this scenario is problematic, partic-
ularly for large values of e0. In reality, we expect some
dynamical process to be driving binaries to eccentricities
of e0 at f0, so that the behavior of the eccentricity at
lower frequencies will vary depending on the details of the
mechanism. In order to make a SNR comparison between
sources with fixed and evolving eccentricity that does not
include such severe attenuation for forb ∼< f0, since such
attenuation is not well astrophysically motivated, we can
modify the framework described by Eq. (36). As dis-
cussed by Kocsis and Sesana [39], the rate of inspiral
depends on the mechanism driving the evolution, and
will generically be more rapid than the GW-driven case.
However, given that the likely dynamical processes pre-
ceding GW domination tend to drive binary eccentrici-
ties to fixed values, one physically reasonable, if simplis-
tic, approach is to assume that sources with forb < f0
evolve in frequency at the appropriate rate for gravita-
tional emission, but with constant eccentricity, whereas
sources with forb ∼> f0 evolve following the behavior given
by the function S(f, f0, e0, z) in Eq. (36). Therefore, the
attenuation function for this scenario is given by:

Z(f, f0, e0, z) =

fr/f0
∑

n=1

1

F (e(forb; e0))

g(n, e(forb; e0))

(n/2)
2/3

+

∞
∑

n=fr/f0+1

1

F (e0)

g(n, e0)

(n/2)
2/3

. (76)

We show the form of this modified prescription in Fig. (6)
assuming a population of sources with eccentricity e0 =
e(forb = f0) = 0.7. Using this approach, Fig. (7) shows
that the expected SNR from sources with evolving ec-
centricity is less attenuated that their fixed eccentricity
counterparts, which is a natural consequence of the way
in which we constructed the Z(f, f0, e0, z) function, and
is the expected physical behavior; since we have found
that higher eccentricities are more attenuated, the evolv-
ing eccentricity case, which evolves to lower eccentric-
ities due to gravitational-wave emission, should there-
fore be less attenuated than its fixed eccentricity coun-
terpart. Furthermore, evolving eccentricity sources with
low eccentricities tend to have larger SNR values because
Z(f, f0, e0, z) ∼> 1 for frequencies fr/f0 ∼< 10, and most
of the SNR is accumulated at lower frequencies due to
the strong suppression factor f−26/3 in Eq. (73). Simi-
larly, since highly eccentric systems tend to circularize for
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larger fr/f0 values, the net enhancement in SNR of evolv-
ing over fixed eccentricity sources is less pronounced.
This analysis shows that eccentricity introduces sub-

stantial qualitative and quantitative changes in the prop-
erties of the GWs emitted that, in the context of cur-
rent data analysis algorithms, will make their detection
more challenging. Developing alternative techniques for
the detection and characterization of these signals goes
beyond mere curiosity. Since the orbits of SMBH bina-
ries may only shrink to small enough separations for GW
domination due to interaction with their environments,
and these interactions may drive the binaries to large ec-
centricity, it is quite plausible that eccentricity will play
a fundamental role in the dynamical evolution of SMBH
binaries within the sensitivity band of PTAs. This arti-
cle is a first step to addressing some of these outstanding
challenges in the detection of eccentric supermassive bi-
naries.

V. CONCLUSIONS

Eccentric binary systems may play a more relevant
role in the dynamics of compact binary systems than
previously thought. In light of studies which suggest
that SMBH binaries may have non negligible eccentricity
while emitting in the sensitive frequency band of PTAs,
we have provided a solid foundation to study the prop-
erties of eccentric binary systems.
In this article we have developed an analytical frame-

work that enables the construction of rapid spectra for
a stochastic GW background generated by a population
of eccentric sources which builds upon the work of Phin-
ney [2] and Enoki and Nagashima [3]. We have also de-
rived several new analytical approximations that expand
upon the results of Peters and Mathews [1] to fully as-
sess the impact of including eccentricity on the detection
and characterization of eccentric binary systems in the
context of single resolvable sources.
The analytical summations we have derived to bench-

mark the SNR of single binaries that radiate in the high
frequency regime of PTA sensitivity to continuous wave
sources do not suffer from the limitations of numeri-
cal summation, particularly for very large eccentricities
where harmonics at hundreds or thousands of times the
orbital frequency may significantly contribute to the sig-
nal. Regarding single resolvable binaries that radiate pre-
dominantly in the low frequency PTA sensitivity band,
our analytical results can be used to benchmark the in-
crease in SNR for sources with eccentricities as high as
e0 ∼ 0.8 with an accuracy better than 1%
We have provided ready to use expressions to com-

pute the SNR for eccentric single resolvable sources and
a stochastic GW background generated by a population
of eccentric binaries. Our results conclusively show that
eccentricity will have a positive impact on the detec-
tion of single resolvable sources emitting primarily at
gravitational-wave frequencies f < 2T−1

obs. On the other

hand, single resolvable sources whose fundamental n = 1
harmonic is located at a frequency f = forb ≥ 2T−1

obs,
or a stochastic, isotropic GW background generated
by binaries with low to moderate values of eccentricity
(e0 ∈ [0, 0.6]) may still be recovered with SNRs compa-
rable to their quasi-circular counterparts. The SNRs of
highly eccentric binaries, however, will be substantially
suppressed, thus requiring the development of alterna-
tive search techniques to detect and characterize these
signals.
In forthcoming work, we will apply the tools developed

here to devise a new, efficient and accurate framework to
explore the ability of PTAs to extract the signatures of
eccentric binary systems and reconstruct the intrinsic pa-
rameters of single resolvable sources and the astrophysi-
cal distribution of parameters for stochastic signals.
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Appendix A: Sums of Bessel functions that are
relevant for the study of eccentric binary systems

In this Appendix we show how to evaluate the sum over
all harmonics n for the cases described in the main text
of the article. The solutions presented in this Appendix
are based on Bessel’s solution of the Kepler equation,
M = e− e sinE(M, e) [98]:

E(M, e) = M + 2
∞
∑

n=1

sin(nM)

n
Jn(ne) . (A1)

Using the previous relation, we have found the following
results:

∞
∑

n=1

n8J2
n(ne) =

e2

4 (1− e2)25/2

[

1 +
973

4
e2

+
40065

8
e4 +

1515705

64
e6 +

4317789

128
e8 +

7679931

512
e10

+
1779939

1024
e12 +

385875

16384
e14

]

, (A2)

∞
∑

n=1

n8J ′2
n (ne) =

1

4 (1− e2)
23/2

[

1 +
975

4
e2

+
40701

8
e4 +

1585023

64
e6 +

4716117

128
e8 +

8832369

512
e10

+
2163231

1024
e12 +

496125

16384
e14

]

, (A3)

∞
∑

n=1

n7Jn(ne)J
′
n(ne) =

e

4 (1− e2)
21/2

[

1 + 117e2

+
10809

4
e4 +

14091

4
e6 +

317205

128
e8 +

53235

128
e10

+
7875

1024
e12

]

, (A4)

∞
∑

n=1

n6J2
n(ne) =

e2

4 (1− e2)
19/2

[

1 +
217

4
e2

+
1259

4
e4 +

11815

32
e6 +

11455

128
e8 +

1125

512
e10

]

, (A5)

∞
∑

n=1

n6J ′2
n (ne) =

1

4 (1− e2)
17/2

[

1 +
219

4
e2

+
1327

4
e4 +

13585

32
e6 +

14535

128
e8 +

1575

512
e10

]

, (A6)

∞
∑

n=1

n5Jn(ne)J
′
n(ne) =

e

4 (1− e2)
15/2
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1 + 24e2

+
255

4
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55
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135

128
e8
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, (A7)

∞
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n=1

J2
n(ne) = −1
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+

1

2 (1− e2)1/2
, (A8)

∞
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n=1

nJn(ne)J
′
n(ne) =

e

4 (1− e2)
3/2

, (A9)

∞
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n=1

(

Jn(ne)

n

)2

=
e2

4
, (A10)

∞
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n=1

Jn(ne)J
′
n(ne)

n
=

e

4
, (A11)

∞
∑

n=1

(

J ′
n(ne)

n

)2

=
1

4
− 1

8
e2 . (A12)

Using these results and those quoted in the Appendix of
PM [1], we obtain

L(e) =

∞
∑

n=1

n4g(n, e) =
16

(1− e2)
19/2

[

1 +
16579

384
e2

+
459595

1536
e4 +

847853

1536
e6 +

3672745

12288
e8 +

1997845

49152
e10

+
41325

65536
e12

]

, (A13)

G(e) =

∞
∑

n=1

n2g(n, e) =
4

(1− e2)
13/2

[

1 +
85

6
e2

+
5171

192
e4 +

1751

192
e6 +

297

1024
e8

]

, (A14)

F (e) =
∞
∑

n=1

g(n, e) =
1 + 73

24e
2 + 37

96e
4

(1− e2)
7/2

, (A15)

H(e) =

∞
∑

n=1

g(n, e)

n2
=

4−
√
1− e2

12
√
1− e2

, (A16)

Y (e) =
∞
∑

n=1

g(n, e)

n4
=

1

16
− e2

48
. (A17)

Eq. (A16) was used to derive Eqs. (9)-(11). Eq. (A15)
was used in Eq. (4). The remaining expressions, (A14)
and (A17), were used to determine Eqs. (29), (55)
and (59).

Appendix B: Convergence of infinite sums

We now estimate how many terms n are needed for
convergence of sums of the type:

N(nmax) =

nmax
∑

n=1

npg(n, e) . (B1)

We do this by computing the fractional error in the nu-
merical value of the sum N by including up to nmax har-
monics, and then comparing this value with the exact
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analytical result and the numerical fit. We consider first
the well known sum given by Eq. (A15). We have found
that including up to 100 harmonics is sufficient to repro-
duce the exact analytical result for eccentricities e ∼< 0.7.
However, for eccentricities up to e = 0.9 we need to in-
clude up to n = 400 harmonics; n = 800 for eccentricities
up to e = 0.94 and n = 1200 for eccentricities as high as
e = 0.96.
Another important sum is given by Eq. (A17). Fig-

ure 8 shows that this sum is highly convergent. Note
that nmax = 100 harmonics is sufficient to ensure
that the fractional error ∼< 0.1% in the entire domain
e ∈ [0.0, 0.98]. With nmax = 500 harmonics, the
fractional error ∼< 0.001% in the entire domain e ∈
[0.0, 0.98].
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FIG. 8. Fractional error in Eq. (B1) for p = −4. The choice
nmax = 100 is sufficient to ensure that the fractional error

∼
<

0.1% in the entire domain e ∈ [0.0, 0.95].

Appendix C: Attenuation factor B(e)

We could not find an analytical solution for the fun-
damental sum given in Eq. (29). Instead, we con-
structed a numerical fit that robustly reproduces the sum
given by Eq. (B1) with p = −2/3 and nmax = 1500
with a fractional error ∼< 0.01% in the entire domain
e ∈ [0.0, 0.95]. This is shown in Figure 9.
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FIG. 9. The numerical fit given by Eq. (29) reproduces
Eq. (B1) with p = −2/3 and nmax = 1500 with a
fractional error

∼
< 0.01% in the entire domain e ∈ [0.0, 0.95].
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[66] R. Roškar, L. Mayer, D. Fiacconi, S. Kazantzidis,
T. R. Quinn, and J. Wadsley, ArXiv e-prints (2014),
arXiv:1406.4505.

[67] S. Van Wassenhove, P. R. Capelo, M. Volon-
teri, M. Dotti, J. M. Bellovary, L. Mayer,
and F. Governato, MNRAS 439, 474 (2014),
arXiv:1310.7581 [astro-ph.CO].

[68] S. Bonoli, L. Mayer, and S. Cal-
legari, MNRAS 437, 1576 (2014),
arXiv:1211.3752 [astro-ph.CO].

[69] D. Fiacconi, L. Mayer, R. Roškar, and
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