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Superposition of gravitational waves generated by astrophysical sources is expected to give rise to
the stochastic gravitational-wave background. We focus on the background generated by the ring-
down of black holes produced in the stellar core collapse events, which is one of several mechanisms
for gravitational wave production in the stellar core collapse process. We systematically study the
parameter space in this model, including the most recent information about the star formation
rate and about the population of black holes as a function of redshift and of metallicity. We find
that the upcoming second and third generation gravitational-wave detectors will be able to observe
this stochastic background if the black hole ring-down efficiency at producing gravitational waves is
sufficiently high, namely ∼ 10−4 and ∼ 10−6 of the black hole rest energy, respectively.
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I. INTRODUCTION

The stochastic gravitational-wave background
(SGWB) is expected to arise from the superposition
of gravitational waves (GWs) from many uncorrelated
and unresolved sources. Numerous cosmological and
astrophysical models have been proposed. Cosmological
models include inflationary models [1–4], models based
on cosmic (super)strings [5–10], and models of alterna-
tive cosmologies [11, 12]. Astrophysical models (see [13]
for a review) integrate contributions from astrophysical
objects across the universe including compact binary
coalescences (CBC) of binary neutron stars (BNS) or
binary black holes (BBH) [14–24], rotating neutron stars
(NSs) [25–34], magnetars [34–40], the first stars [41],
and white dwarf binaries [42].

Several searches for the isotropic [43–47] and
anisotropic SGWB [48, 49] have been conducted us-
ing data acquired by the first generation interferomet-
ric gravitational-wave detectors LIGO [50, 51] and Virgo
[52]. These searches have established upper limits on the
energy density in the SGWB, and have started to con-
strain some of the proposed models [8, 20, 53, 54]. The
second generation of gravitational-wave detectors is cur-
rently being commissioned, including Advanced LIGO
(aLIGO) [55], Advanced Virgo [56], GEO-HF [57, 58],
and KAGRA [59, 60]. These detectors are expected to
produce first data in 2015, and their strain sensitivity is
expected to be 10× better relative to the first genera-
tion detectors. The third generation gravitational-wave
detectors are also being conceptualized, such as the Ein-
stein Telescope for which the design study was completed
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in Europe [61].

One of the promising sources of gravitational waves,
potentially detectable by the second and third genera-
tion detectors, is the stellar core collapse process. The
physics of core collapse is complex and it is expected to
produce gravitational waves via several mechanisms [62–
64]. While the full three-dimensional simulations that
include all relevant processes are yet to be made, predic-
tions have already been made about the gravitational-
wave signals emitted during core collapse [62–64]. The
stochastic gravitational wave background due to stellar
core collapse events across the universe has first been
proposed and estimated by Blair and Ju [65]. The re-
cent numerical simulations of the core collapse have been
used to update the SGWB estimates due to both stan-
dard and early (population III) stars [41, 66–76]. These
estimates are necessarily only approximate, both because
it is currently not well understood how the gravitational-
wave signal depends on the progenitor stellar parameters
such as the mass or spin, and because the rate of core
collapse events is uncertain. Furthermore, observational
constraints on the overall gravitational-wave energy emit-
ted in stellar core collapse events have been made [21].

In this paper, we focus on the ringdown of the black
hole (BH) following the core collapse. The GW spec-
trum emitted by this process is relatively well under-
stood, since most of the energy is dissipated via the ring-
down of the l = 2 dominant quasi-normal mode [13, 77],
as is also confirmed in simulations [69, 78]. The SGWB
due to this source was first examined by Ferrari et al [66].
We revisit this model of SGWB, taking into account the
most recent information about the star formation rate,
about the population of black holes, and about the ef-
fects due to varying metallicity. We also investigate the
accessibility of the model to the upcoming second and
third generation GW detectors. In Section 2 we present
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the general aspects of the calculation of the astrophysical
SGWB, and we discuss the star formation rate used in
this study. In Section 3 we discuss the SGWB due to
the core collapse to black holes (Model 1)—this has been
discussed in the literature but we revisit it here using
the latest star formation rate. In Section 4, we discuss
Model 2, which builds on the Model 1 by including the
effects of metallicity. In Section 5, we discuss Model 3
which is based on a Monte Carlo simulation of the SGWB
due to core collapse to black holes, taking into account
the StarTrack [79] numerical simulation of the black hole
population. We summarize our results in Section 6.

II. ASTROPHYSICAL GRAVITATIONAL-WAVE

BACKGROUND

To compute the SGWB due to astrophysical GW
sources, we follow the formalism used in [13, 20, 37]. In
particular, we define the normalized energy density in
gravitational waves:

ΩGW(f) =
1

ρc

dρGW

d ln f
, (1)

where ρGW(f) is the energy density in gravitational

waves at the observed frequency f , and ρc =
3H2

0
c2

8πG is
the critical energy density needed to close the universe.
Here, H0 is the present value of the Hubble parameter,
taken to be 68 km/s/Mpc, G is the Newton’s constant,
and c is the speed of light. The energy density can then
be rewritten in terms of the integrated flux F (f) over
redshift z:

ΩGW(f) =
f

ρcc
F (f)

=
f

ρcc

∫

dz
Rz(z)

4πr2(z)

dEGW

dfe
. (2)

Here, r(z) is the proper distance, and dEGW/df is the
energy spectrum emitted by a single astrophysical source
as a function of the emitted frequency fe in the source’s
frame, fe = f(1 + z). We will consider three different
models for dEGW/dfe below. The rate of astrophysical
sources as a function of redshift, Rz(z), can be written in
terms of the rate of sources per comoving volume RV (z):

Rz(z) = RV (z)
dV

dz

= RV (z)
4πc

H0

r2(z)

E(ΩM ,ΩΛ, z),
(3)

where E(ΩM ,ΩΛ, z) captures the dependence of the co-
moving volume on redshift:

E(ΩM ,ΩΛ, z) =
√

ΩM (1 + z)3 +ΩΛ, (4)

with ΩM = 0.3 and ΩΛ = 0.7 corresponding to the energy
density in matter and dark energy respectively. Finally,

the rate of astrophysical sources can be related to the
star formation rate (SFR) R∗(z):

RV (z) = λBH
R∗(z)

1 + z
, (5)

where λBH captures the mass fraction of matter that
ends up in progenitors of black holes. Bringing the above
together, we get

ΩGW(f) =
8πGfλBH

3H3
0c

2

∫

dz
R∗(z)

(1 + z)E(ΩM ,ΩΛ, z)

dEGW

dfe
.

(6)

The star formation rate and its dependence on redshift
have been studied extensively in the literature, and mul-
tiple functional forms have been proposed [80–85]. His-
torically, most of the star formation rate estimates have
been based on luminosity measurements. We use the
SFR derived in Behroozi et al. [86] and Oesch et al.
[87, 88]. While luminosity measurements at redshifts up
to ∼ 2 are relatively well understood, measurements at
high redshifts (up to z ∼ 11) are subject to uncertainties
due to the extinction by dust and due to the fact that
early star formation takes place in faint galaxies that may
be missed in magnitude-limited surveys. An alternative
to luminosity measurements at high redshift is to use the
rate of Gamma Ray Bursts (GRBs) [89–91], which typi-
cally results in a slower fall-off of the star formation rate
at high redshifts. We use the GRB rate of [91] based on
the normalization described in [92, 93].
As argued in [94], the choice of the star formation rate

has direct implications for the chemical and reionization
history of the universe. The analysis presented in [94]
considered both the GRB and the luminosity data and
arrived at two models of star formation rate that are con-
sistent with the available metallicity data as well as with
the reionization redshift and the optical depth measure-
ment by WMAP [95]. Both models use the Springel &
Hernquist functional form [85]:

R∗(z) = ν
peq(z−zm)

p− q + qep(z−zm)
(7)

with the following parameters [94]:

• GRB-based model [91–93]: ν =
0.146 M⊙/yr/Mpc3, zm = 1.72, p = 2.80,
and q = 2.46.

• Luminosity-based model [86–88]: containing
the normal mode stars described by ν =
0.178 M⊙/yr/Mpc3, zm = 2.00, p = 2.37, and
q = 1.80, and population III stars described by
ν = 0.00218M⊙/yr/Mpc3, zm = 11.87, p = 13.81,
and q = 13.36.

Furthermore, both models use the same Salpeter initial
mass function (IMF) φ(m) = Nm−2.35, where N is a
normalization constant defined such that

∫ m2

m1

φ(m)mdm = 1. (8)
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FIG. 1: Comparison of the GRB-based (solid) and luminosity-
based (dashed) models of star formation rate.

Note that the normalization constant depends very
weakly on the upper limit of this integral, so we set
m2 = ∞. For the normal-mode stars we choose the
lower limit of the integral to be m1 = 0.1M⊙. Since pop-
ulation III stars are expected to be heavier, we choose
m1 = 36M⊙ for this population [94]. Figure 1 compares
these two models of star formation rate as a function of
redshift. We will compare our results for these two mod-
els of star formation rate. Note that these two models
predict substantially less star formation at high redshifts
as compared with some of the models used in the past to
estimate the stochastic gravitational-wave backgrounds
(e.g. [41]).

III. MODEL 1

We first consider the model of SGWB due to core col-
lapse to black holes that was first proposed by Ferrari et
al [66]. Numerical simulations [69, 78] have shown that
most of the energy is dissipated via the ringdown of the
l = 2 dominant quasi-normal mode, whose frequency is
given by [13, 77]:

ν∗(m, a, α) =
∆(a)

αm
(9)

∆(a) =
c3

2πG
(1 − 0.63(1− a)0.3) (10)

where the mass of the black hole M is assumed to be a
fraction α of the mass of the progenitor m (M = αm),
and a is the dimensionless spin factor ranging from 0 for
a Schwarzschild black hole to 1 in the extreme Kerr limit.
The energy spectrum of the single source is therefore

dEGW

dfe
= ǫαmc2δ(fe − ν∗(m, a, α)), (11)

where ǫ is the efficiency of GW production, acting as a
scaling parameter of the GW energy spectrum. Hence,

ΩGW(f) =
8πGfǫα

3H3
0

∫

dz

∫ mmax

mmin

dm (12)

R∗(z) φ(m) m δ(f(1 + z)− ν∗(m, a, α))

(1 + z)E(ΩM ,ΩΛ, z)
.

We can use the Dirac delta function to evaluate the in-
tegral over redshift, resulting in:

ΩGW(f) =
8πGǫα

3H3
0

∫ mmax

mmin

dm
R∗(z

′) φ(m) m

(1 + z′) E(ΩM ,ΩΛ, z′)
,

(13)

where

z′ =
ν∗(m, a, α)

f
− 1. (14)

Note that since z′ > 0 necessarily, the integral over m
includes only the values of m for which ν∗(m, a, α) > f .
The range of integration in Eq. 13 is defined by some

minimum and maximum stellar masses that are expected
to act as black hole progenitors. The lower end of this
range, mmin affects only the high-frequency end of the
GW spectrum, above ∼ 200 Hz. Since most of the sensi-
tivity of GW detectors to this SGWB comes from the low-
frequency end of the spectrum, mmin does not strongly
affect the accessibility of the model to the GW detectors,
and we will fix it to 40M⊙. Also note that αm must
be larger than ∼ 4M⊙, otherwise the black hole will not
be produced. We verified that the GW spectrum is not
very sensitive to the cutoff on αm, for example setting
the cutoff at 3M⊙ has negligible impact on ΩGW.
The high end of the integration range mmax affects

the low-frequency end of the spectrum and could there-
fore have a significant impact on the detectability of
the model by GW detectors. Furthermore, there is
currently much uncertainty in the largest mass of the
black hole progenitor stars—for example, stars as mas-
sive as ∼ 200− 300M⊙ stars we recently reported in the
R136 star cluster in the LMC [96]. To capture this un-
certainty, we will repeat our analysis for two values of
mmax = 100M⊙ and 500M⊙ to illustrate the importance
of this high-mass cutoff.
The free parameters of the model are therefore ǫ, α, and

a. Figure 2 shows example spectra for several choices of
parameter values, in comparison with the expected sen-
sitivity of Advanced LIGO and Einstein Telescope detec-
tors. The ǫ parameter is simply a scaling factor, and a
effectively shifts the GW spectrum in frequency: low val-
ues of a shift the spectrum to lower frequencies, at which
the GW detectors are more sensitive. The parameter α
has a more complex impact on the GW spectrum: low
values of α shift the spectrum to higher frequencies and
reduce its amplitude, both of which reduce the accessibil-
ity of the model to GW detectors. Finally, Figure 2 shows
the impact of the upper cutoff on the black hole progen-
itor mass, mmax: increasing this cutoff from 100M⊙ to
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FIG. 2: The expected sensitivities of Advanced LIGO [97]
and Einstein Telescope [61] detectors (assuming 1 year expo-
sure) are shown in comparison with several examples of GW
spectra obtained using Model 1 with ǫ = 10−5 and with the
GRB-based model of star formation rate. While we assume
co-located Advanced LIGO detectors in this study, their sen-
sitivity to SGWB will be very similar to the sensitivity of the
complete second-generation GW detector network, including
Advanced LIGO, Advanced Virgo, GEO-HF, and KAGRA.

500M⊙ extends the GW spectrum to ∼ 5× lower fre-
quencies, as expected based on Equations 10 and 11.
We scan this parameter space, restricting 0 < a < 1

and 0.1 < α < 0.5 (motivated by simulations [98], as dis-
cussed further below). For each point in this parameter
space, we compute the spectrum ΩGW(f) and compare
it to the sensitivities of the Advanced LIGO and ET de-
tectors, computing the likelihood function:

L ∝

∏

i

e−(Yi−ΩGW,i(ǫ,a,α))
2/2σ2

i (15)

where the index i runs over frequency bins, Yi is the ex-
pected measurement of the GW energy density in the
bin i, σi is the corresponding measurement error, and
ΩGW,i(ǫ, a, α) is the value of the energy density in the bin
i for the given free parameters ǫ, a, and α. For project-
ing the future experimental sensitivities we set Yi = 0. In
order to determine the accessibility of this 3-dimensional
parameter space to future detectors, we marginalize (in-
tegrate) the likelihood function over one of the parame-
ters, and then compute the 95% confidence level contours
in the plane of the remaining two parameters.
Figure 3 shows the contours computed in this way for

the ǫ − α and ǫ − a planes (top and bottom rows re-
spectively) and for two choices of mmax = 100M⊙ and
500M⊙ (left and right columns respectively). Curves for
both Advanced LIGO and Einstein Telescope, and for
both the GRB-based and the luminosity-based star for-
mation rates are shown. The curves in the ǫ − α plane
are decreasing with α, which is a consequence of the fact
that increasing α pushes the GW spectrum to lower fre-

quencies (c.f. Figure 2), hence making the model more
detectable by the GW detectors. Similarly, increasing the
value of a pushes the GW spectrum to higher frequencies
(c.f. Figure 2), making the model less accessible to GW
detectors and causing the increasing trend (with a) of the
curves in the ǫ− a plane. The upper cutoff on the black
hole progenitors mass also has a significant impact on the
accessibility of these models. As seen by comparing the
two columns of Figure 3, changing mmax from 100M⊙ to
500M⊙ lowers the sensitivity curves in the ǫ parameter
by 2-3 orders of magnitude. We verified that increasing
mmax to 1000M⊙ further lowers the sensitivity curves by
another factor of 2.
The two star formation rates yield nearly identical pre-

dictions, which is the consequence of the fact that the
dominant contribution to ΩGW comes from redshifts re-
gion of 1-2, in which the two models of star formation
rate agree well. It is also evident that the Einstein Tele-
scope will provide a substantially better probe of this
model than the second generation detectors.
Finally, we note that the expected value of ǫ in this

mechanism for GW production is uncertain. While some
of the past literature considers ǫ as high as 0.01 [99], pre-
vious simulations by Stark and Piran [78] gave an upper
limit of ǫ ∼ 7 × 10−4 for an axisymmetric collapse. Ac-
counting for more realistic scenarios, in particular the
pressure reduction that triggers the collapse, leads to
ǫ ∼ 10−7

− 10−6 [100]. These values are clearly out
of reach of the second-generation detectors as shown in
Figure 3, but may be within reach of Einstein Telescope,
especially in the case if massive black hole progenitors
exist (corresponding to the case mmax = 500M⊙).

IV. MODEL 2

We now modify the model discussed above to take into
account the effects of metallicity Z. Metallicity has been
shown to impact the maximum masses of the black hole
progenitors as well as the fraction of the progenitor mass
that remains in the black hole α(Z) [98]. In particular,
simulation results described in [98] provide an explicit
formula for the maximum black hole mass as a function
of metallicity (Eq. 11 of [98]). Furthermore, this study
shows the dependence of the remnant mass MBH on the
progenitor mass m for several values of metallicity - we
model this dependence as linear, MBH = α(Z)m, ex-
tracting the value of α for several metallicity values, and
then interpolating as necessary. For the sake of simplic-
ity, we ignore the dependence of α on the progenitor mass
m. The resulting curve for the average α(Z) is shown in
Figure 4. Finally, we note that the minimum mass of
black hole progenitors also depends on the metallicity,
as we will see in Model 3—for Model 2, however, we
will assume that mmin(Z) = 20M⊙, independent of the
metallicity. Also, as in Model 1, we require αm > 4M⊙

in order for the black hole to be produced.
Metallicity is a function of redshift Z(z), and can be
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FIG. 3: Top left: 95% confidence sensitivity contours of the Advanced LIGO and Einstein Telescope and for two models of star
formation rate are shown in the ǫ−α plane for Model 1, after marginalizing over the parameter a, and assuming mmax = 100M⊙.
Top right: Same as top left but for mmax = 500M⊙. Bottom left: 95% confidence sensitivity contours of the Advanced LIGO
and Einstein Telescope and for two models of star formation rate are shown in the ǫ− a plane for Model 1, after marginalizing
over the parameter α, and assuming mmax = 100M⊙. Bottom right: Same as bottom left but for mmax = 500M⊙. Note the
significant change of vertical scale from models with mmax = 100M⊙ to models with mmax = 500M⊙.

estimated using the chemical evolution code for the cho-
sen star formation rate [94]. Figure 5 shows the mean
metallicity evolution for the two star formation rates con-
sidered in this paper. For any given redshift, we assume
that the metallicity values range within a factor of 3 from
the mean metallicity, with a uniform (flat) distribution
denoted by ψ(Z; z), and we average over it. We can there-
fore rewrite the equation for ΩGW(f):

ΩGW(f) =
8πGfǫ

3H3
0

∫

dz
R∗(z)

(1 + z)E(ΩM ,ΩΛ, z)
∫

dZψ(Z; z)α(Z) (16)

∫ mmax(Z)

mmin(Z)

dm φ(m) m δ(f(1 + z)− ν∗(m, a, α)).

We first solve the integral over the progenitor mass using
the Dirac delta function:

δ(f(1 + z)− ν∗(m, a, α)) =
δ(m−m0)α(Z)mm0

∆(a)
(17)

m0 =
∆(a)

f(1 + z)α(Z)
. (18)

Clearly, the following condition must be satisfied for a
non-zero signal: mmin(Z) < m0 < mmax(Z). This trans-
lates into

∆(a)

mmin(Z)(1 + z)α(Z)
> f >

∆(a)

mmax(Z)(1 + z)α(Z)

fmax(Z, a, z) > f > fmin(Z, a, z) (19)

where in the last line we have defined fmax and fmin.
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Then,

ΩGW(f) =
8πGfǫ

3H3
0

∫

dz
R∗(z)

(1 + z)E(ΩM ,ΩΛ, z)
∫

dZψ(Z; z)α(Z)Nm0.65
0

α(Z)

∆(a)

Θ(f − fmin)Θ(fmax − f) (20)

=
8πGf0.35ǫ

3H3
0∆(a)0.35

∫

dz
R∗(z)

(1 + z)1.65E(ΩM ,ΩΛ, z)
∫

dZψ(Z; z)α1.35(Z)NΘ(f − fmin)Θ(fmax − f)

If the condition in Eq. 19 is not satisfied, the m-integral
is simply zero. Note that N is the normalization of the
initial mass function.
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FIG. 6: Comparison of Models 1, 2, and 3, for ǫ = 10−5 and
a = 0.2.

Finally, if we ignore the metallicity dependence, the
equation simplifies to:

ΩGW(f) =
8πGf0.35ǫα1.35N

3H3
0∆(a)0.35

∫

dz
R∗(z)

(1 + z)1.65E(ΩM ,ΩΛ, z)

Θ(f − fmin(a, z))Θ(fmax(a, z)− f), (21)

which is identical to Equation 13 that was obtained by
evaluating the z-integral instead of the m-integral.
We note that the chemical evolution model that was

used to determine the star formation rate [94] uses a value
of α which varies between 0.08 and 0.30 depending on the
progenitor mass and metallicity [101]. However, we have
confirmed that using the larger value of α = 0.5 in the
chemical evolution model does not have a significant im-
pact on the best fit for the star formation rate. In partic-
ular, increasing α reduces the amount of metals released
in the core collapse events by 10-20%, but the effect is
well within the uncertainty on metallicity measurements.
Hence, Model 2 is characterized by 2 parameters, ǫ and

a, which have similar effects on the GW energy spectrum
as in Model 1. The third free parameter in Model 1, α,
is now modelled as a function of metallicity and redshift
based on the population synthesis simulations. Figure 6
shows a Model 2 spectrum in comparison with Model 1
spectra obtained for the same values of ǫ and a and for
the largest and smallest values of α. Model 2 spectrum
can be seen as an effective average of the Model 1 spectra.

Figure 7 shows the 95% confidence contours for the
Model 2 in the ǫ − a plane for the Advanced LIGO and
Einstein Telescope detectors. Similarly to Model 1, the
two different star formation models yield nearly identical
results, and the expected ET sensitivity is about 100×
better than that for Advanced LIGO. The contours are
also about 2× lower in ǫ than for Model 1, which is a con-
sequence of the fact that α(Z) is distributed differently
in Models 1 and 2.
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V. MODEL 3

We now treat the dependence of α, mmin, and mmax

on metallicity more carefully, by using the results of
StarTrack [102, 103], a sophisticated population syn-
thesis code able to generate realistic populations of sin-
gle and binary compact objects (neutron stars and black
holes). The code is based on revised formulas from [104];
updated with new wind mass loss prescriptions, cali-
brated tidal interactions, physical estimation of donor’s
binding energy (λ) and convection driven, neutrino en-
hanced supernova engines. A full description of these up-
dates is given in [105]. The two most recent updates take
into account measurements of initial parameter distribu-
tions for massive O stars [106] as well as a correction of
a technical bug that has limited the formation of BH-BH
binaries for high metallicity (e.g., Z = 0.02).

We evolve single stars until the formation of a compact
object. Simulations are done for a dense grid of stellar
metallicities: Z = 0.0001–0.03 with step of ∆Z = 0.0001
(solar composition is Z = Z⊙ ≈ 0.02). Two major fac-
tors shape the initial (Zero Age Main Sequence) – final
(compact object) mass relation: wind mass loss and core
collapse/supernova compact object formation. For wind
mass loss we use O/B type winds from [107] and for other
evolutionary stages (e.g., LBV winds) formulae as cali-
brated in [98]. We adopt the set of models presented by
[108] with the rapid core collapse/supernova mechanism.
The explosion occurs within the first 0.1 − 0.2s driven
by a convection and neutrino enhanced engine. This en-
gine reproduces [109] the mass gap observed in Galactic
X-ray binaries [110, 111]. The typical initial-final mass
relations are presented in Figure 8.

Pair-instability supernovae (PISNe) may disrupt the
most massive stars without leaving behind a compact ob-
ject. The original simulations indicate that stars in the
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FIG. 8: Final mass of a remnant as a function of its pro-
genitor’s mass and metallicity for single stellar evolution as
predicted by our population synthesis model. Note that the
maximum BH mass increases rapidly with decreasing metal-
licity. Maximum BH mass for solar metallicity is only 15M⊙,
while for 1% solar metallicity it is 81M⊙. Our model also
reproduces the observed mass gap between NSs and BHs. In
our predictions there is no compact objects in mass range
1.8 − 5.5M⊙ (Z⊙), 1.9 − 5.6M⊙ (0.1 Z⊙), and 1.8 − 6.7M⊙

(0.01 Z⊙).

initial mass range Mzams = 150 − 300M⊙ may be sub-
ject to PISNe [112] (here, the subscript ”zams” stands
for the ”zero-age mass sequence”). These initial esti-
mates were translated into the final CO core mass (as
this can be used for various metallicities and wind mass
loss rates). The range for PISNe to disrupt stars with-
out black hole formation is found approximately in range
MCO = 60−130M⊙ [113]. For our assumed extent of IMF
(up to 150 M⊙) and the range of employed metallicities
we are not in the regime of pair-instability supernovae
(PISNe). However, recent discovery of stars as massive
as ∼ 200− 300M⊙ in the R136 star cluster in LMC [96]
may possibly indicate that IMF extends beyond PISNe
regime, implying that stars more massive than 300M⊙

may exist and form massive BHs (& 100M⊙) [114].

The evolutionary code StarTrack provides α(Z,m) for
a grid of metallicity in the interval 0.0001−0.03, and pro-
genitor mass between 7− 150 M⊙. It also gives mmin(Z)
and mmax(Z), the minimal and the maximal masses to
form a black hole for a given metallicity. Using these
data, we can simulate a population of massive stars that
undergo core-collapse to black holes. Our Monte-Carlo
procedure is described below.

We fix the spin parameter a and the efficiency ε, and
we proceeded as follows for NMC = 106 sources :

• We draw the redshift z from a probability distribu-
tion constructed by normalizing the rate Rz(z) in
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the interval 0− 20.

pz(z) =
Rz(z)

Ṅ
(22)

where Ṅ =
∫ 20

0 Rz(z)dz and calculate the luminos-
ity distance dL(z) = (1 + z)r(z).

• We calculate the average metallicity Z̄ at redshift
z and draw the metallicity from a uniform distri-
bution in the interval [Z̄/3− 3Z̄].

• By interpolating in the StarTrack data, we calcu-
late mmin(Z) and mmax(Z), as well as the corre-
sponding mass fraction λBH(Z) (c.f. Eq. 5). For
all metallicities, the maximal mass is assumed to be
150 M⊙ while the minimal mass increases from 20
M⊙ for Z = 0.0001 to 36 M⊙ for Z = 0.03. We also
draw the mass of the progenitor from a distribution
constructed from the initial mass function:

pm(m,Z) =
φ(m)

∫mmax(Z)

mmin(Z)
φ(m)dm

(23)

We used two different models: the Saltpeter IMF
introduced in the previous sections and a three
component broken power-law IMF with slope of
−1.3 for initial mass Mzams = 0.08− 0.5M⊙, −2.2
for Mzams = 0.5 − 1M⊙, and −2.7 for Mzams =
1− 150M⊙ [115].

• We deduce α(Z,m) and then the mass of the BH
MBH(m,Z) = α(Z,m)m, by interpolating in the
StarTrack data.

• We calculate the emission frequency
ν∗(m, a, α(Z,m)) and the observed frequency
f = (1 + z)ν∗.

The sources are stored into frequency bins of length
∆f = 10 Hz, with central frequencies fi = 10i + 5 Hz
for i=1...500. The energy density at the frequency fi is
given by the discrete sum of the individual contribution
of the Ni sources in the ith bin:

ΩGW(fi) =
8πG

3H2
0c

Ṅ

∆fNMC
fi

Ni
∑

k=0

λBH(Z)
εMBH(Z)(1 + z)

4πdL(z)2

(24)
The spectrum for a = 0.2 and ε = 10−5 is shown in Fig-

ure 6 and compared to Models 1 and 2. The fluctuation
at high frequencies is due to the small number sources
in the simulation at such high frequencies. The above
procedure is repeated for a grid of points in the ǫ− a pa-
rameter space, producing ΩGW(f) for each point in this
grid. The gravitational-wave spectra are then compared
to the projected sensitivities of the second and third gen-
eration detectors, similarly to Models 1 and 2, using the
likelihood formalism (c.f. Equation 15).

Finally, to assess the importance of possible black hole
progenitors of masses beyond our assumed upper limit of
150M⊙, we repeat the above calculations extending the
IMF up to 300M⊙ and 1000M⊙ under the assumption
that all stars above 300M⊙ produce 100M⊙ black holes.
The 95% sensitivities of future detectors are shown in

Figure 9, in the ǫ − a plane. Note that the sensitivity
contours are about 2× lower in ǫ relative to Model 2,
which is the result of the more careful treatment of the
dependence of α on the metallicity, including the PISNe
mass region. Changing the value of maximum progeni-
tor mass again has a significant impact on detectability
of this model, as already observed in Model 1. The two
IMF models considered in this calculation agree to within
a factor of about 2. We have verified that the two dif-
ferent SFR models considered in this paper yield nearly
identical results, as already observed in Models 1 and 2.
Finally, as noted in the case of Model 1, the realis-

tic values of ǫ ∼ 10−7
− 10−6 [100] may be reached

by Einstein Telescope, especially in the case if massive
(> 300M⊙) black hole progenitors exist, as suggested
by recent observations. The second generation detec-
tors may probe the more exotic scenarios associated with
ǫ ∼ 0.01 [99].

VI. CONCLUSIONS

In this paper we have studied the stochastic gravita-
tional wave background generated by stellar core col-
lapse events occurring throughout the universe. While
the core collapse process is likely associated with several
mechanisms for GW production, we focused on the most
tractable one, namely the ringdown of the newly formed
black hole, following the collapse itself. While this mech-
anism has been studied in the past, our purpose here is
to revisit it in more detail, and study the detectability
of the corresponding background by the upcoming sec-
ond and third generation gravitational-wave detectors.
We considered three variations of the model. Our Model
1 assumes that the dominant gravitational-wave mode
during the ringdown is l = 2, and it integrates this sig-
nal across all core collapse events that yield black holes.
For this purpose, we used the most recent models of star
formation rate that are consistent with the metallicity
observations as well as with the CMB-based constraints
on the reionization redshift and the optical depth param-
eters. We scan the parameter space of the model and
determine the part of the parameter space that is acces-
sible to future detectors. In our Model 2, we attempt
to include the effect of metallicity (which evolves with
redshift) on the mass of the newly produced black hole.
In this model we treat this effect in an average sense,
allowing us to compute the gravitational-wave spectrum
analytically. In Model 3, we go a step further and instead
of an analytic calculation, we perform Monte Carlo sim-
ulations, drawing the stars from the appropriate redshift
and mass distributions determined by the StarTrack sim-
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FIG. 9: 95% confidence sensitivity contours for the Advanced LIGO (black) and Einstein Telescope (gray) and for three values
of mmax = 150M⊙ (solid), 300M⊙ (dashed), and 1000M⊙ (dot-dashed) are shown in the ǫ− a plane for the Model 3, assuming
the Salpeter IMF (left plot) and the Koupra IMF (right plot).

ulations.
Remarkably, the three models agree with each other to

within a factor of ∼ 2, indicating their robustness. How-
ever, the required efficiency of gravitational-wave pro-
duction by the ringdown is relatively high. In particu-
lar, it is unlikely that the second generation detectors
will observe this background since the required efficiency
of gravitational-wave production is ǫ ∼ 10−4 or higher,
which is not supported by simulations. The third gen-
eration detectors, however, would require ǫ ∼ 10−6 or
higher, which is more realistic. We emphasize, however,
that we have considered only one of the several mecha-
nisms for gravitational-wave production in core collapse
processes. Future studies should attempt to repeat sim-
ilar studies for other mechanisms—while other mecha-
nisms are more difficult to model (due to the complexity
of the relevant processes), they are also likely to produce
a stronger gravitational-wave background. Furthermore,
since most massive stars reside in binaries, we expect that
inclusion of binary systems in this calculation may have a
significant impact on the gravitational-wave background
estimate. We plan to include this step in a follow-up

study.
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