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Excess emission over expected diffuse astrophysical backgrounds in the direction of the Galactic center region
has been claimed at various wavelengths, from radio to gamma rays. Among particle models advocated to
explain such observations, a few invoke interactions between dark matter particles and ordinary matter, such as
cosmic rays, interstellar gas or free electrons. Depending on the specific interstellar matter particles’ species and
energy, such models predict distinct morphological features. In this study we make detailed, model-independent
predictions for the morphology of models where the relevant electromagnetic emission is proportional to the
product of the dark matter density profile and the density of interstellar matter or cosmic rays. We compare the
predicted latitudinal and longitudinal distributions with observations, and provide the associated set of relevant
spatial templates.

I. INTRODUCTION

With the advent of large-scale sky surveys at frequencies
spanning most of the electromagnetic spectrum, from radio
to gamma rays, our theoretical understanding of astrophysi-
cal diffuse electromagnetic emission processes is confronting
the test of observation in an unprecedented detailed way. Per-
haps not surprisingly, at several frequencies diffuse emission
models have, at times, fallen short of providing a satisfac-
tory match to observations. Interestingly, in many cases such
shortcomings are centered towards the inner regions of the
Galaxy, a rich, and relatively poorly understood region. Over
the years, some such excesses have found plausible explana-
tions in the realm of “traditional” astrophysical processes, or
in previously under-estimated emission from populations of
astrophysical objects. In some cases, however, it has also been
argued that the detected excess might have a “non-traditional”
origin, possibly connected with new physics.

Perhaps the longest-standing and most widely known such
excess is the 511 keV line detected from a broad angular
region by INTEGRAL/SPI [1]. At larger energy, COMP-
TEL reported an excess across the energy range between 1-
20 MeV [2]. Diffuse X-ray emission from the Galactic bulge
region, with an approximately thermal spectrum with a very
large associated plasma temperature (around 10 keV), has also
been reported from Chandra data after point-source subtrac-
tion [3]. At radio frequencies WMAP revealed excess mi-
crowave emission at frequencies between 23 and 61 GHz, an
excess known as WMAP haze [4]. This radio “haze” has also
been confirmed with Planck observations [5]. Finally, sev-
eral groups have identified an extended excess of gamma rays
from the Galactic center region and from the inner Galaxy, in
the few GeV range [6–8].

While astrophysical counterparts have been identified that
might explain in part or entirely the excesses listed above,
several studies have focused on the possible connection of
the observed excess emissions with new physics, and specifi-
cally with particle dark matter. Dark matter pair-annihilation
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or decay produces electromagnetic emission both as a result
of prompt photon emission from, e.g., neutral pion decay or
internal bremsstrahlung or loop-mediated direct annihilation
into photons, as well as from secondary mechanisms: the
latter mechanism depends on how electrons and positrons,
produced in dark matter annihilation or decay, loose energy
via synchrotron, inverse Compton, Coulomb scattering and
bremsstrahlung [9, 10].

As far as the primary emission is concerned, the predicted
morphology follows the integral along the line of sight of the
dark matter number density (squared) for decay (annihilation,
respectively). For the secondary emission, instead, the mor-
phology is complicated by the magnetic field structure and
gas and electron densities [11].

Alternately, some of the excesses listed above have been as-
sociated with slightly less trivial new physics models, where
the dark matter electromagnetic emission effectively depends
on the environmental cosmic-ray population. Such models
include, for example, macroscopic quark nuggets [12–15],
which would emit via several different mechanisms: free elec-
trons would annihilate with positrons in the nugget’s elec-
trosphere producing a 511 keV line; more energetic cosmic
ray electrons would penetrate deeper and potentially produce
photons in the COMPTEL energy range; cosmic-ray protons
penetrating into the quark matter would produce hadronic jets
potentially responsible for Bremshstralung emission in the X-
ray frequencies relevant for the Chandra excess; for proton
cosmic rays penetrating deeper in the nugget, the complete
absorption would eventually yield thermal photons with en-
ergies in the WMAP haze range (for a detailed review of all
these mechanisms, see Ref. [13, 14]).

In eXcited dark matter (XDM) [16] scenarios an excited
dark matter state exists at energies of a few MeV above the
ground state. Such state, in the original model’s incarnation, is
populated by self-collisions of the dark matter particles, yield-
ing subsequent electron-positron pairs that could explain the
511 keV line signal [16]; however, it is possible to envision
modifications to the model which would entail collisions with
Galactic cosmic rays, given a sufficiently large dark matter in-
teraction with relevant cosmic-ray species. We describe one
such scenario in Section II below.

Other scenarios where electromagnetic emission originates
from elastic scattering of dark matter particles off of cosmic
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rays (or vice versa) were considered in Ref. [17–19], albeit
no specific connection with any of the diffuse excesses was
attempted. The relevant cosmic-ray populations are, in this
case, high-energy cosmic-ray protons and electrons [19]. As
also discussed in the next Section II, lower-energy radiation
is expected from scattering off of interstellar gas or free elec-
trons.

We emphasize that while the models listed above, espe-
cially the macroscopic quark nugget model [12, 13], provide
some motivation for our study, our results are entirely model-
independent, and are intrinsically motivated by the generic
possibility that dark matter interacts with cosmic rays and in-
terstellar matter to produce diffuse electromagnetic emission.
We present here detailed predictions for the morphology of
any model where electromagnetic emission stems from inter-
actions of dark matter with ordinary matter in the Galaxy, and
the validity and scope of the present work is thus defined by
this intent, and not by how compelling specific example mod-
els are. Section II provides quantitative estimates of the sig-
nals expected in specific example model realizations.

The generic feature of the class of models our study applies
to is thus that the electromagnetic emission is proportional to
the integral along the line of sight of the dark matter density
times the density of a charged cosmic ray species. In this
paper, we consider four classes of such cosmic ray species:
(i) low-energy protons; (ii) low-energy free electrons; (iii) in-
termediate energy (1 GeV) cosmic-ray electrons and protons;
and (iv) high-energy (1 TeV) cosmic-ray electrons and pro-
tons. We then compare the predicted average longitudinal and
latitudinal intensity profiles for the four cases (in some in-
stances we even adopt more than one model for a given case)
both with the morphological prediction for dark matter anni-
hilation and with the observed excess’ emission intensity.

The remainder of this study is structured as follows: in
sec. III we describe the dark matter and cosmic-ray densities
we employ in our analysis; sec. IV details on the calculation
of the resulting emission profiles, while in sec. V we compare
our findings with the observed excesses’ profiles. The final
section VI presents our discussion and conclusions.

II. ESTIMATES OF EXPECTED SIGNALS FOR
SELECTED EXAMPLE MODELS

In this section we estimate rates for processes where dark
matter scattering off cosmic rays or interstellar material pro-
duces radiation. Specifically, we consider (i) the antiquark
nuggets model discussed extensively in Ref. [12–15], (ii) a
(novel) modified version of “exciting dark matter”, and (iii)
models of dark matter scattering off of cosmic rays along the
lines of those considered in Ref. [18].

(i) The flux of photons originating from cosmic rays in-
teracting with antiquark nuggets has been first estimated in
Ref. [12]. The rate of events per unit volume is

dW

dV dt
' 4πR2

B
· v · nB · nDM (1)

with R the radius of the nuggets and B the number of nu-

cleons in a nugget1, and nB,DM the baryonic and dark mat-
ter number densities, respectively. Inserting numerical values,
the estimate for the flux φ gives [12]

φ =

∫
dr∆Ω

dW

dV dt
' 10−3cm−2s−1

(
1033

B

)1/3

(2)

yielding, for the nuggets’ expected baryon chargeB ≈ 1020−
1033 [13], fluxes adequate to explain the diffuse excesses men-
tioned above.

(ii) As alluded to in the Introduction, it is possible to con-
struct models of “exciting” dark matter that would also pro-
duce photons from the de-excitation of the dark matter ex-
cited state, produced by interactions of the lower-mass dark
matter state with cosmic rays. To be more specific, we
consider a model with two real scalar fields φ1,2, singlet
under all Standard Model gauge interactions, with a single
dimension-six effective operator describing the interactions of
the new scalars between themselves and with Standard Model
fermions f as follows:

L = LSM+

∑
i=1,2

∂µφi∂
µφi −m2

iφ
2
i

+φ1φ2
Hf̄f + h.c.

M2
.

(3)
With the interaction term in Eq. (3), assuming m1 < m2, φ1

is absolutely stable. The excitation process φ1 + f → φ2 + f ,
where f is either a quark or an electron or a neutrino, leads to
the subsequent decay φ2 → φ1 + f̄f and the production of ra-
diation either by radiative processes associated with f , or via
standard hadronization processes and production of neutral pi-
ons if f is a quark. Note that we are not aware of any signi-
ficant, model-independent collider constraints on the effective
scale M of the interaction term, while model-dependent con-
straints might exist, but are left to further studies.

The model of Eq. (3) leads to a collision rate per unit vol-
ume given by

dW

dV dt
' σ · v · nf · nDM (4)

with nf the relevant species number density for cosmic rays
or interstellar medium particles. The cross section σ ≈
(v/M2)2, with v the Standard Model Higgs vev v ' 246 GeV.
The flux resulting from the rate of Eq. (4) reads

φ =

∫
dr∆Ω

dW

dV dt
' 10−8cm−2s−1

(
GeV

m1

)(
5 TeV

M

)4

.

(5)
As a result, there exist a variety of ranges of dark matter par-
ticle masses m1 and interaction scales M that produce a de-
tectable signal in the context of this framework.

(iii) Ref. [18] draws somewhat pessimistic conclusions
about electroweak-interacting dark matter interacting with

1 These two quantities are related by the typical baryon number density in a
color superconducting phase, nCS ' 3n0, where n0 ∼ (108 MeV)3 is
the nuclear saturation density, by B ' 4π

3
R3nCS [12].
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high-energy cosmic rays and leading to the production of a
large enough radiation yield in the final state. Although it
was shown there that detectable signals are possible even in
the specific framework of supersymmetry, the conclusions pri-
marily depended on two assumptions: (1) electro-weak scale
and electro-weak interacting dark matter, and (2) interactions
off of (relatively rare) high-energy cosmic rays. Relaxing ei-
ther one of these assumptions, for example considering lighter
and more strongly interacting dark matter, or considering in-
terstellar gas as the primary target material would entirely
change the conclusions. Let us be quantitative on the second
case: scattering off of low-energy electrons would change the
relevant flux of scattering particles

E
dφe
dE
|1 GeV ' few×10−1cm−2s−1 → ne·vrel ' 108cm−2s−1,

thus increasing the expected radiative rates by around 9 orders
of magnitude. Key here is that while Ref. [18] focused exclu-
sively on gamma rays and WIMPs, a broader radiation wave-
length target would yield drastically different conclusions and
detectable signals.

III. DENSITY DISTRIBUTIONS

In this section we describe each of the matter distributions
used throughout this study, including the density distribution
of dark matter (sec. III A), as motivated by the results of cur-
rent generation N-body simulations; the density of Galactic
cosmic-rays for energies between a few hundred MeV and
several TeV (sec. III B), as derived through numerical simu-
lations of cosmic-ray propagation; the distributions of inter-
stellar gas (sec. III C in two recent and distinct modeling ap-
proaches; and, finally, the most up-to-date model of the Galac-
tic distribution of free electrons (sec. III D). For dark matter,
cosmic rays, and gas we also discuss the dominant sources of
uncertainty and attempt to bracket the range of state-of-the art
models.

A. Dark Matter

We employ as our benchmark dark matter profile a Navarro-
Frenk-White (NFW) [20] profile with inner slope α = 1 and
scaling radius rs = 20 kpc. In order to assess the uncertain-
ties due to choice of dark matter profiles, we also utilize a
steeper (more ‘cusped’) generalized NFW with an inner slope
of α = 1.2; this is in part motivated by recent measurements
of the GeV excess [6–8]; a steeper inner slope is physically
motivated in the context of halo evolution including adiabatic
contraction. On the opposite extreme, we consider a cored
Einasto [21] profile with αE = 0.16. We are not concerned
with relative normalizations here since we are exclusively in-
terested in the morphological predictions of the models under
consideration, not the overall emission intensity. The func-
tional forms of the two dark matter density profiles we con-
sider here are as follows:

ρ(r) =
(rs
r

)α ρ0

(1 + r/rs)3−α , (6)
NFW

ρ(r) = ρ0 exp

(
−2

α

[(
r

rs

)−αE

− 1

])
, (7)

Einasto

In Figure 1 we show, in the right-most top panel, the inte-
grated line-of-sight dark matter density squared (i.e. the mor-
phology corresponding to an annihilating dark matter candi-
date) for the case of the NFW profile. This morphology is of
course azimuthally symmetric, and sharply centrally peaked.
In the following two sections we will compare this benchmark
scenario to more exotic morphologies arising from dark mat-
ter interactions with cosmic-ray protons and electrons, inter-
stellar gas, and free electrons.

B. Interstellar Gas

Some models of dark matter – see e.g. Ref. [12, 13] – pre-
dict interactions with Galactic gas and/or free electrons. Both
of these distributions are strongly peaked toward the Galactic
center (GC), and a detailed understanding of the inner few kpc
of the Galaxy are needed to formulate solid predictions for the
resulting morphology.

The gas density in the Milky Way is typically described by
summing contributions from three dynamically distinct com-
ponents of hydrogen gas in molecular, atomic, and ionized
phases. The former two overwhelmingly dominate the gas
density near the GC, and are therefore the most important
here.

The three-dimensional distribution of gas in the Galaxy
can be determined with excellent accuracy by combining sur-
veys of atomic transition lines with a Galactic rotation curve.
For atomic hydrogen, the hyperfine transition at 21 cm pro-
vides a direct observable. In the optically thin limit the col-
umn density is related to the observed brightness tempera-
ture by a single parameter: the hydrogen spin temperature
TS . In the case of molecular hydrogen, the lack of a perma-
nent dipole moment requires, instead, use of a tracer gas, the
CO(J = 1 → 0) transition, which is related to the molecu-
lar hydrogen density through a conversion factor XCO. This
factor is, in principle, spatially varying.

The deconvolution technique described above relies on a
relative velocity between the gas and the solar system. In the
direction of the GC, the gas is co-rotating, implying no kine-
matic resolution, leading to a distance degeneracy along lines
of sight near Galactic longitudes l ≈ 0. This problem is com-
pounded by the so-called ‘near-far ambiguity’ which corre-
sponds two distances to the same radial velocity in the inner
Galaxy. In order to alleviate such problems, one can incorpo-
rate a model into the deconvolution procedure. For CO (H2 by
proxy), we use the gas model from Pohl, Englmaier and Bis-
santz (PEB), Ref. [22], which combines the survey of Dame
et al [23] with a gas flow model derived from hydrodynamic
simulations as well as interpolation of the spiral arms across
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the line-of-sight toward the GC. Not only does this provide a
significant improvement in the l.o.s. gas distribution toward
the Galactic center, but it importantly reconstructs a promi-
nent Galactic bar and the intervening spiral arms. For atomic
hydrogen, Nakanishi and Sofue (NS), Ref. [24], assume, in-
stead an analytic model of hydrodynamic equilibrium for the
scale height of HI as a function of Galactic radius and uses
the Leiden-Argentine-Bonn survey [25] 21 cm survey. This
combination provides a high resolution model of H2 and HI
which we denote PEB+NS.

One can alternatively attempt to build a three-dimensional
model based on observations of individual structures that are
prominent in the region. This is the approach of Refs.[26, 27]
which predicate two primary disk components in the inner
3 kpc of the Galaxy: a dense “Central Molecular Zone” ap-
proximately centered on the GC and aligned with the Galac-
tic Plane, as well as a holed “Galactic-Bulge-disk” which is
rotated at 13.5◦ counter-clockwise to the Galactic plane as
well as having it’s major axis inclined ≈ 45◦ away from the
line of sight, which is notably much larger than the PEB+NS
case, leading to a larger projected extent. Beyond the in-
ner 3 kpc, we use an azimuthally averaged gas profile from
Ref. [28] to describe the molecular phase, and the HI pro-
file from Ref [29], corrected to the updated normalizations of
Ref. [30]. We collectively refer to this model as Ferrière 2007
(F07).

For both the PEB+NS and F07 models, we incorporate the
contributions of dark gas – i.e. molecular hydrogen not traced
by CO emission, and atomic hydrogen missed due to the as-
sumption of a uniform spin temperature – by re-normalizing
the total ‘analytic’ HI column density along each line of sight
to that of the GALPROP map 2. Essentially, this involves
a fitting, in addition to HI and H2, a dust template [31] to
gamma-ray data. The detailed construction of this template is
described in detail in Refs. [32, 33].

Finally, for both models, we also include a contribution
from warm, hot, and very hot phases of ionized hydrogen
based on the NE2001 [34, 35] model for free electrons, de-
scribed below. The specific implementation we use is de-
scribed in Refs. [26, 27].

We note that the precise gas distribution in the outer galaxy
is of only marginal importance due to the central peak in the
dark matter (DM) density profile. Consequently, we assume
both Ts = 150K and XCO = 2 × 1020 cm−2(K km/s)−1

and neglect spatial dependence of either one of these quanti-
ties. Although spatial variations are certainly present in both
components [36, 37], we expect the effect of this on the mor-
phology of the Gas×DM profile to be small in the GC region
of interest.

C. Cosmic-Rays

In order to obtain the steady state distribution of cosmic-
rays in the Galaxy, we use the numerical code GALPROP

2 rbands hi12 v2 qdeg zmax1 Ts150 EBV mag5 limit.fits.gz

v54.r25043 [38, 39], which encompasses all of the physics
relevant for cosmic-ray transport through the galaxy in-
cluding energy losses, primary source distributions, and re-
acceleration. A detailed description of the physics can be
found at the dedicated Web Site4.

Our default diffusion setup consists the model
SLZ4R20T150C5 in Ref [33]. This model features a
standard set of diffusion parameters fit to local observations
of a variety of primary and secondary species including
protons, helium, electrons, positrons, B/C, and 10Be/9Be
[33]. The simulations assume cylindrical geometry with
free escape boundary conditions from a diffusion halo of
radius 20 kpc and half-height 4 kpc. Because the dark matter
profiles are strongly centrally peaked, most of the reasonable
variations related to the diffusion setup and geometry are
unimportant to the final cosmic ray (CR) morphology. This
includes the halo height, provided zmax is greater than a few
kpc and the CR energy of interest is less than a few TeV,
at which point CR propagation transitions to the rectilinear
regime. Notably, since we are concerned with the morphology
and not the spectrum of cosmic rays, parameters describing
diffusive re-acceleration and injection spectra are irrelevant.
The energy dependence of the diffusion constant will have
only a very minimal effect on morphology at the very lowest
and highest energies. For definiteness, we use here a diffusion
coefficient D(R) = 5.3× 1028cm2s−1(R/4 GV)1/3

Of particular interest to this analysis is the distribution of
primary cosmic-ray sources. In what follows, we show predic-
tions for four tracers of supernova remnants, believed to gen-
erate the majority of Galactic cosmic-rays. These are based
on the observed surface densities of Galactic pulsars (Yusi-
fov [40] and Lorimer [41]), OB stars [42], and supernova rem-
nants (SNR [43]). Each of these distributions suffer from sub-
stantial uncertainties in the inner 1-2 kpc due to both statistics
and systematics surrounding correction for selection effects.
In fact, the latter three distributions are parametrized such that
the surface density is zero at the Galactic center, while the
Yusifov case is non-zero, leading to a potentially large differ-
ence in CR densities in this region. Simulations of neutron star
populations in the Milky Way’s gravitational potential also in-
dicate a non-zero central density [44], with certain models
predicting a strong peak. Finally, it is difficult to rule out
the possibility of a cataclysmic event, or enhanced injection
of cosmic-rays at the GC, as may be evidenced by the Fermi
Bubbles [45], and perhaps the Galactic Center γ-ray Excess
itself (see e.g. Refs. [46, 47]). Fortunately, only for low ki-
netic energies – and only for very high energies for the case
of e± – does this have a significant impact on the CR distri-
butions, which become substantially smoothed after diffusion.
In what follows, we do not include these more speculative CR
source distributions.

3 Current versions of GALPROP are available at
http://galprop.sourceforge.net/

4 http://galprop.stanford.edu
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D. Free Electrons

The density of free electrons ne in the Milky Way has been
mapped to reasonably good precision by fitting complex mul-
ticomponent models to a thousands of measurements includ-
ing primarily pulsar dispersion measures (the line-of-sight in-
tegral of the ne), temporal and angular broadening of radio
pulses sensitive to variations in ne, and emission measures
(the line-of-sight integral of n2

e). Combining this huge body
of information has lead to the development of the so-called
NE2001 model [34, 35].

NE2001 contains 5 component classes: (i) smooth compo-
nents including a thin and thick disc as well as 4 logarithmic
spiral arms, (ii) a Galactic center region consisting of a Gaus-
sian component in radius and scale height, (iii) a 4 component
local ISM region, (iv) 78 clumped HII regions, and (v) 16 void
regions. The only region with high DM density is the Galactic
center, and thus we only include contributions from the dense
and thin (140 pc) disk, the lower density thick disk, and the
small, but very dense Galactic center components. We neglect
the spiral arms, which do not extend to the inner 3 kpc of the
Galaxy as well as clumps and voids which provide only weak
and small angular scale (θ � 1◦) perturbations to the overall
density profile in the GC direction.

We also utilize a correction to the thick disk scale-height
proposed in Ref. [48] after recalibrating the NE2001 model
while avoiding strong HII regions in the Galactic plane. This
correction roughly doubles the height of the thick disk to
≈ 2 kpc, which for our purposes leads to a substantial broad-
ening of the expected emission to high latitudes and is there-
fore less disk-like and more spherically symmetric. Ref. [49]
provides a recent comparison and recalibration of all models
of the free electron density. Importantly, they are all based on
approximately the same ingredients, with the primary differ-
ences in the smooth components being the thick disk scale-
height. The model used here is the thickest, and thus offers
the most optimistic scenario for fitting a DM × free electron
signal to an approximately spherical excess. As we will see
below, the primary motivation for modeling such emission is
to explain the sharp excess observed at 511 keV by INTE-
GRAL/SPI and even this optimistic model is too disk-like to
explain the signal.

As a final note, the next generation of free electron mod-
els are likely to incorporate all-sky surveys of the hydrogen-α
emission line, perhaps leading to a significant modification of
the model presented here. Under the assumption that the num-
ber density of ionized hydrogen (i.e. free protons) is equal
to the number density of free electrons, the Hα intensity is
directly proportional to the emission measure [50]. Unfor-
tunately, such corrections are non-trivial and prone to large
errors due to the quadratic dependence of the integrand on ne.

IV. MORPHOLOGICAL PROFILES

With the matter distributions as specified above, we can
now perform the line-of-sight convolution of dark matter with
our gas models (meaning the integral along the line of sigh

of dark matter times relevant cosmic ray or gas density). In
the top row of Figure 1 we show the projected emission pro-
files for an NFW profile convolved with the F07 and PEB+NS
gas models, the NE2001 free electron model, and a standard
NFW profile in order to compare against a standard annihi-
lation morphology. In each case, use of either a contracted
NFW or Einasto profile would lead to a slightly brighter and
cuspier, or fainter and more cored profile in the innermost re-
gions and each template has been normalized to its maximal
value, with no other salient differences.

The F07 gas model possesses a very bright central core due
to the highly concentrated CMZ zone surrounding the galac-
tic nucleus (not to be confused with the even denser circum-
nuclear ring [51] which occupies the innermost ≈10 pc and is
below the scale probed here). Emission from the bulge disk
can be seen in the diagonally oriented flares on either side.
Beyond 5 degrees from the GC, the thin molecular and atomic
disks dominate the emission and do not significantly extent to
high latitudes making it nearly impossible to obtain a spheri-
cal excess. Similarly, the empirically derived PEB+NS model,
shows a bright central disk which more smoothly falls off into
the broader Galactic disks. In addition, the high latitude emis-
sion is significantly enhanced with respect to F07. Still, the
overall profile lacks azimuthal symmetry and we can conclude
that a truly spherical excess is not well fit by DM × gas pro-
file.

The case of free electrons is more subtle. Here, we observe
a thick disk extending beyond 2 kpc (b >∼ 15◦) which, com-
bined with the DM halo produces a roughly spherical emis-
sion profile. A very bright emission disk can be observed at
the Galactic center, though the angular extent is less than The
thin disk, however adds a distinct elongation along the plane
making the averaged longitude profile significantly less steep.

In the bottom row of Figure 1 we show projected emission
templates for benchmark cosmic-ray protons and electrons at
1 GeV and 1 TeV, using a Yusifov profile for the primary
source distribution. For low and high energy protons, as well
as low energy electrons, the CR density is relatively uniform
over the region of interest, leading approximately to the same
profile as would be expected from dark matter decays. For
electrons and positrons, inverse-Compton and synchrotron en-
ergy loss timescales (τics,sync ∝ E−2) limit the diffusion ra-
dius to Rdiff =

√
D(E)τics,sync ≈ 7.5kpc/EGeV for our

choice of parameters, implying that the CR distributions will
depend significantly on energy above a few tens of GeV as
the cosmic-rays lose energy before propagating farther than a
few kpc from their production region (provided the primary
source distribution is not uniform). Supernova remnants are
highly concentrated in the plane of the Galaxy, resulting in a
full-width-half-max of only a few hundred parsecs near 1 TeV.
Therefore any dark matter model which predicts emission due
to interactions with high energy electrons or positrons will re-
sult in a significantly disk-like morphology.

An important caveat should be kept in mind before exclud-
ing models based solely on a disk-like component. Namely
that most “excess” signals rely on fitting and subtracting off a
complicated background model especially at low Galactic lat-
itudes. In some cases, particularly those with gas correlated
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FIG. 1. Top, from left to right: Projected emission profiles for DM (NFW profile) times the F07 gas model, PEB+NS gas model, free
electrons, and, for reference a NFW2 profile (DM annihilation) . Bottom: Projected profiles of DM times cosmic-ray protons and electrons for
representative energies of 1 GeV (two left-most panels) and 1 TeV (right-most two panels) as calculated with the GALPROP package, using
the Yusifov [40] distribution of primary sources.

backgrounds, this fitting procedure can potentially also sub-
tract off a disk component which was actually part of the sig-
nal. For example, the background models used to obtain the
Galactic Center excess rely on fitting independent gas annuli
to gamma-ray data without including any model for excess
emission. Thus if the Galactic center excess actually contains
a disk-like (gas correlated) component this could be ‘hiding’
in the artificially enhanced background normalization. One
way to alleviate such issues is to fit all components simultane-
ously rather than relying on residual emission alone.

Finally, we provide skymaps in FITS file format as well
as Python scripts at the supplemental materials web page5

for each combination of halo profile/gas model/free electron
model, as well as logarithmically spaced templates in CR en-
ergy. Details about the files and model assumptions are pro-
vided on the same web page. We also provide example scripts
demonstrating how to specify and integrate an arbitrary three-
dimensional distribution against the cosmic-ray, free e−, and
gas models which may be found useful in other contexts.

5 http://planck.ucsc.edu/dmcr-morphology

V. COMPARISON TO OBSERVED GALACTIC CENTER
EXCESSES

We now proceed to comparing the morphology resulting
from the models under consideration here to three residual
signals observed in the Galactic center region.

The first signal of interest is the 511 keV line. First detected
in 1972[52], the 511 keV excess has since been the subject of
lively scientific debate. The most reliable measurement [1]
is provided by the SPI instrument on-board the ESA’s INTE-
GRAL satellite which indicates a large excess population of
low-energy positrons in the Galactic center region. Proposed
explanations range from cosmic-ray interactions with the in-
terstellar medium to exotic astrophysical objects, to dark mat-
ter6. However, any plausible explanation must not only ex-
plain the spectrum, but also the basic morphological proper-
ties of the observed excess which are well well fit by two com-

6 For an extensive review of this signal and its possible origins we refer the
reader to Ref. [53].

http://planck.ucsc.edu/dmcr-morphology
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FIG. 2. Profiles in Galactic longitude (left column) and latitude (right column) of the 511 keV excess detected by INTEGRAL/SPI taken from
Ref. [1]. From the top to bottom row, we show projected profiles for the dark matter density convolved with various distributions (see text) of
Galactic gas, free electrons, cosmic-ray electrons, and cosmic ray protons. The shaded regions show variations due to the choice of dark matter
density profile for the benchamark NFW model (solid blue). Each profile has been convolved with a Gaussian with FWHM 3◦ to approximate
the INTEGRAL/SPI point spread function, and has been normalized to the same value at l, b = 0. The profiles are averaged over |b|, |l| < 30◦,
respectively; notice that no error bars are given in Ref. [1].

ponents: (i) a spherical-bulge consisting of two radial Gaus-
sians (projected FWHMs of 3◦ and 11◦) and a ≈30% fainter
thick disk (FWHM 7◦) [54].

In Figure V we compare longitude and latitude profiles [1]
of the 511 keV excess in the Galactic center region against
each of the four morphological profiles. To account for the
finite angular resolution of the instrument, we have applied a
Gaussian point spread function with a FWHM of 3◦. The lon-
gitude and latitude profiles have been averaged over |b|, |l| <
30◦, respectively, in order to match the same angular averages
as in the reported excess of Ref. [1]. Each distribution has
been normalized independently in both latitude and longitude
at l, b = 0 which is suitable for observations with a large point
spread function. In each panel we also show the prediction for
a squared NFW profile, for comparison to the standard case of
annihilating dark matter. To represent variations on the dark
matter halo, we show the canonical convolution with an NFW
profile in dark blue, with shaded cyan (red) regions represent-
ing the contracted NFW (Einasto) profiles.

In the top row of Fig. V we show the DM×Gas for our
PEB+NS and F07 models. As observed in the previous sec-
tion, the latitude profile is extremely centrally peaked and is
much to steep to match the observed excess. Likewise, the
longitude profile is also very centrally peaked due to the very
bright CMZ region surrounding the GC. This is particularly
true in the F07 model, where off-center emission is orders of
magnitude lower beyond 5◦. Variations in the halo profile are
relatively small and unable to reconcile a compatible signal.

In the second row, we show the free-electron case. Here the
halo model has a much larger impact due to the extended dis-
tribution of free e−. Because 511 keV corresponds to the elec-
tron/positron mass, DM×Free e± is perhaps the primary case
of interest for this signal, as DM models producing an abun-
dance of low energy positrons will form para-positronium
bound states which subsequently decay into two 511 MeV γ-
rays. Another possibility arises in models of Quark ‘(anti)-
Nugget’ Dark Matter [12, 13], in which heavy ‘nuggets’ of
quark matter form as a result of a new high-density color-
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FIG. 3. Same as Figure 2, but for the 3-10 MeV COMPTEL excess of Ref. [2], after subtracting the average ‘base’ emission. Predicted profiles
have been convoluted with a PSF of FWHM=3.8◦, and have been averaged over |b| < 5◦ and 1◦ < |l| < 30◦, respectively.

superconducting QCD phase. Such models can explain both
baryogenisis and provide a connection to the ≈ 5 : 1 relative
abundance of dark matter and baryons. In these models quark
matter can be surrounded by a layer of positrons which can
annihilate through collisions with free electrons. As noted in
the Introduction, these models also predict a variety of other
multi-wavelength signatures which are tested below and act as
an interesting test case throughout for confirming or ruling out
models based on the detailed morphology of DM-matter inter-
actions. Our results indicate that for any angular scale larger
than a few degrees, the predicted morphology for DM×Free
electrons does not match the observed signal, with significant
over-predicted intensity around 10 degrees in longitude.

In the third row, we show the emission profile for cosmic-
ray electrons at 1, 32, and 103 GeV and protons at 1 GeV
and 1 TeV, along with the variations introduced by CR source
distributions. In eXcited DM (XDM) [16] scenarios it has
also been proposed that a DM particle is collisionally excited
through some inelastic interaction with, e.g. cosmic-rays or
gas, into a higher energy state. If the difference in energy lev-
els is δE = 2me, such a state could decay through emission
of a non-relativistic e+e− pair, where the e+ subsequently an-

nihilates. Our results indicate that for either protons or elec-
trons the predicted morphology is qualitatively incompatible
in both latitude and longitude with the observed 511 keV sig-
nal profile. The morphology predicted for pair-annihilating
DM models provides a much better fit to the observed mor-
phology.

We now consider observations from the Compton Tele-
scope (COMPTEL), which detects a significant and broad
spectrum excess from 1-20 MeV which is well over the
expected inverse-Compton and bremsstrahlung backgrounds.
Limited statistics and systematics surrounding the deconvolu-
tion techniques lead to a somewhat noisy morphological pro-
file which is difficult to definitively call diffuse, as opposed to
some combination of point sources (e.g. hard X-rays from su-
pernovae). Models exist which postulate a sharp steepening in
the cosmic-ray electron spectrum below 200 MeV exist which
do not violate synchrotron constraints [55] and can potentially
also link the hard X-ray excess from INTEGRAL to the low
energy γ-ray regime (EGRET). However, such models lack a
straightforward physical interpretation and are remain ad hoc,
leaving open the door for new physics explanations. A variety
of astrophysical models are reviewed in Ref. [55].
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Figure 3 shows our results for the COMPTEL 3-10 MeV
excess, where the average “base” emission has been sub-
tracted off [2]. The predicted emission profiles are again nor-
malized to the l, b = 0 value, and have been averaged over
|b| < 5◦ and 1◦ < |l| < 30◦, respectively and smoother
out with a Gaussian PSF of FWHM=3.8◦ as warranted for
the COMPTEL observations. The four rows and two columns
adopt the same conventions as in Fig. V.

In the context of the anti-quark nugget model, the COMP-
TEL emission might be associated with non-relativistic cos-
mic ray electrons penetrating deeper in the nugget’s electro-
sphere. As discussed in Ref. [56] the relevant electron veloci-
ties to explain the COMPTEL excess spectrum range between
v/c = 0.001 and 0.01. Therefore, the relevant population
corresponds to the free electrons case (second row), although
it is interesting to also compare with the cosmic-ray electron
case (third row). While the CR electron longitudinal profile
is marginally compatible with the flat COMPTEL profile, the
free electron case is significantly under-abundant. The latitu-
dinal profile, instead, shows a remarkably close match for the
free electron case to the observed profile, but only in the inner-
most few degrees, while falling short at larger latitudes. The
cosmic-ray electron (or proton) latitudinal profiles are instead
significantly different from the observed excess. Finally, con-
volution with gas density profiles also provides a decent match
to observations as a function of latitude in the innermost few
degrees.

In summary, models invoking a convolution of free elec-
trons and dark matter to explain the COMPTEL excess, such
as antiquark nuggets, provide an adequate morphological
shape for the innermost regions at low latitude, but fall short
at larger latitudes and provide a relatively poor match to the
longitudinal profile.

Finally, we come to the observed Fermi-LAT GeV ex-
cess. Detected initially in 2009 [57], a recent, detailed re-
evaulation [6] has led to renewed interest and subsequent de-
tection by several other groups [8, 58]. Based on current state-
of-the art diffuse γ-ray background models, the excess is ap-
proximately spherical with a radial profile consistent with a
contracted NFW. The spectrum is also well fit by a ≈ 50 GeV
weakly interacting massive particle annihilating to b-quarks
with a cross-section near the thermal relic value, making the
signal a prime candidate for the potential detection of dark
matter. Thus far, proposed astrophysical explanations in terms
of unresolved pulsars [59] have failed to explain the hard low-
energy spectum, luminosity, and spatial extent [60], which has
now been detected beyond 15◦ [58] (see however, the recent
Ref. [61] which proposes a new population of very young pul-
sars). A viable interpretation involving cosmic-ray outbursts
from the Galactic center region [46, 47] remains an open ques-
tion, though for hadronic models the significant gas correlated
emission from neutral pion decay imposes substantial con-
straints.

In Figure V we exhibit our results for the latitudinal profile
from the Galactic center taken from Ref. [7]. Here, we smooth
the predicted profiles with a PSF of FWHM=0.3◦, and we av-
erage, as in Ref. [7] over |l| < 2◦. Unlike the previous cases
we normalize the predicted emission profiles at b = +6◦.
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FIG. 4. Same as Figure 2, but for the ∼GeV Fermi-LAT ‘excess’
from Ref. [7]. Predicted profiles use a PSF of FWHM=0.3◦, are
averaged over |l| < 2◦, and are normalized at b = +6◦.

Our key findings are that models predicating a convolution
of DM with interstellar gas or free electrons produce a remark-
ably good fit to the latitudinal distribution of the observed pro-
file (top two rows). Models, instead, involving DM×CR con-
volutions do not provide a good match, over predicting sig-
nals at large latitudes and falling short in the inner regions —
in other words producing unacceptably shallow density pro-
files. This rules out for example interpretation based on the
models discussed in Ref. [18]. Although longitudinal distribu-
tions are currently unavailable, the observed excess has been
found to be highly spherical making such that any profile with
a significant disk component is unlikely to be viable barring
substantial changes to the diffuse background model.

VI. DISCUSSION AND CONCLUSIONS

We carried out a model-independent study of scenarios
where diffuse electromagnetic emission originates from in-
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teractions of dark matter particles with the interstellar gas,
free electrons or Galactic cosmic rays. We assumed that the
relevant morphology depends on the integrated line-of-sight
product of the dark matter particle density times the relevant
gas/cosmic-ray density. The key motivation to consider such
models is that a variety of large-scale diffuse excesses in the
general direction of the Galactic center have been identified,
at wavelengths ranging from radio to gamma rays, and that a
variety of particle physics scenarios have been proposed that
rely on dark matter interacting with Galactic gas or cosmic
rays.

We considered a variety of state-of-the-art gas density mod-
els, and well-motivated cosmic ray models, utilizing several
different assumed injection source distribution profiles. We
produced the relevant latitudinal and longitudinal profiles, and
we are making our results available publicly on the web. Fi-
nally, we compared our predictions with the emission profiles
of a few selected diffuse excesses.

Generally, we find that the morphology of the 511 keV
line is matched much more closely by dark matter pair-
annihilation than by any of the dark matter times gas/cosmic
ray models we investigated; the COMPTEL excess is repro-
duced by models of dark matter times gas or free electrons in
the innermost regions, at low Galactic latitude, but not at large
latitudes or in longitude. Finally, models advocating dark
matter/cosmic-ray convolution fail at reproducing the Fermi-
LAT GeV excess, while dark matter times gas or free electrons
provides a relatively good fit to the latitudinal distribution of
the signal.

While our results are generic to any model that predicates
diffuse electromagnetic emission from dark matter interac-
tions with cosmic rays or with interstellar matter, our results
apply to certain specific models, most notably the macro-
scopic quark nugget of Ref. [12, 13].
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[40] I. Yusifov and I. Küçük, in The Magnetized Interstellar
Medium, edited by B. Uyaniker, W. Reich, and R. Wielebinski
(2004), pp. 159–164, astro-ph/0405495.

[41] D. R. Lorimer, A. J. Faulkner, A. G. Lyne, R. N. Manch-
ester, M. Kramer, M. A. McLaughlin, G. Hobbs, A. Possenti,

http://arxiv.org/pdf/astro-ph/0506026v1.pdf http://www.edpsciences.org/10.1051/0004-6361:20042063
http://arxiv.org/pdf/astro-ph/0506026v1.pdf http://www.edpsciences.org/10.1051/0004-6361:20042063
http://arxiv.org/pdf/astro-ph/0506026v1.pdf http://www.edpsciences.org/10.1051/0004-6361:20042063
http://arxiv.org/pdf/0705.3655v1.pdf http://arxiv.org/abs/0705.3655
http://arxiv.org/pdf/0705.3655v1.pdf http://arxiv.org/abs/0705.3655
http://www.aanda.org/articles/aa/pdf/2011/12/aa16485-11.pdf
http://www.aanda.org/articles/aa/pdf/2011/12/aa16485-11.pdf
http://link.aps.org/doi/10.1103/PhysRevD.90.023526
http://link.aps.org/doi/10.1103/PhysRevD.90.023526
http://arxiv.org/pdf/astro-ph/0106359.pdf http://arxiv.org/abs/astro-ph/0106359
http://arxiv.org/pdf/astro-ph/0106359.pdf http://arxiv.org/abs/astro-ph/0106359
http://arxiv.org/pdf/astro-ph/0106359.pdf http://arxiv.org/abs/astro-ph/0106359
http://arxiv.org/pdf/astro-ph/0702532v1.pdf http://arxiv.org/abs/astro-ph/0702532 http://www.aanda.org/10.1051/0004-6361:20066992
http://arxiv.org/pdf/astro-ph/0702532v1.pdf http://arxiv.org/abs/astro-ph/0702532 http://www.aanda.org/10.1051/0004-6361:20066992
http://arxiv.org/pdf/astro-ph/0702532v1.pdf http://arxiv.org/abs/astro-ph/0702532 http://www.aanda.org/10.1051/0004-6361:20066992
http://arxiv.org/pdf/astro-ph/0702532v1.pdf http://arxiv.org/abs/astro-ph/0702532 http://www.aanda.org/10.1051/0004-6361:20066992
http://adsabs.harvard.edu/abs/1976ApJ...208..346G http://adsabs.harvard.edu/doi/10.1086/154613
http://adsabs.harvard.edu/abs/1976ApJ...208..346G http://adsabs.harvard.edu/doi/10.1086/154613
http://adsabs.harvard.edu/abs/1976ApJ...208..346G http://adsabs.harvard.edu/doi/10.1086/154613
http://www.annualreviews.org/doi/pdf/10.1146/annurev.aa.28.090190.001243 http://www.annualreviews.org/doi/abs/10.1146/annurev.aa.28.090190.001243
http://www.annualreviews.org/doi/pdf/10.1146/annurev.aa.28.090190.001243 http://www.annualreviews.org/doi/abs/10.1146/annurev.aa.28.090190.001243
http://www.annualreviews.org/doi/pdf/10.1146/annurev.aa.28.090190.001243 http://www.annualreviews.org/doi/abs/10.1146/annurev.aa.28.090190.001243
http://www.annualreviews.org/doi/pdf/10.1146/annurev.aa.28.090190.001243 http://www.annualreviews.org/doi/abs/10.1146/annurev.aa.28.090190.001243
http://stacks.iop.org/0004-637X/750/i=1/a=3?key=crossref.df6dd3ed0cf5a605dffbcb75777753db
http://stacks.iop.org/0004-637X/750/i=1/a=3?key=crossref.df6dd3ed0cf5a605dffbcb75777753db
http://stacks.iop.org/0004-637X/750/i=1/a=3?key=crossref.df6dd3ed0cf5a605dffbcb75777753db
http://arxiv.org/pdf/astro-ph/0207156v3.pdf http://arxiv.org/abs/astro-ph/0207156 http://arxiv.org/abs/astroph/0207156
http://arxiv.org/pdf/astro-ph/0207156v3.pdf http://arxiv.org/abs/astro-ph/0207156 http://arxiv.org/abs/astroph/0207156
http://arxiv.org/pdf/astro-ph/0207156v3.pdf http://arxiv.org/abs/astro-ph/0207156 http://arxiv.org/abs/astroph/0207156
http://arxiv.org/pdf/astro-ph/0207156v3.pdf http://arxiv.org/abs/astro-ph/0207156 http://arxiv.org/abs/astroph/0207156
http://arxiv.org/pdf/astro-ph/0301598v1.pdf http://arxiv.org/abs/astro-ph/0301598
http://arxiv.org/pdf/astro-ph/0301598v1.pdf http://arxiv.org/abs/astro-ph/0301598
http://arxiv.org/pdf/astro-ph/0301598v1.pdf http://arxiv.org/abs/astro-ph/0301598


12

I. H. Stairs, F. Camilo, et al., MNRAS 372, 777 (2006), astro-
ph/0607640.

[42] L. Bronfman, S. Casassus, J. May, and L.-Å. Nyman, A&A
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