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We describe a method for sensing short range forces using matter wave interference in dielectric
nanospheres. When compared with atom interferometers, the larger mass of the nanosphere results
in reduced wave packet expansion, enabling investigations of forces nearer to surfaces in a free-
fall interferometer. By laser cooling a nanosphere to the ground state of an optical potential and
releasing it by turning off the optical trap, acceleration sensing at the 10−8m/s2 level is possible.
The approach can yield improved sensitivity to Yukawa-type deviations from Newtonian gravity at
the 5 µm length scale by a factor of 104 over current limits.
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I. INTRODUCTION

Light-pulse atom interferometers have been demon-
strated as a powerful tool for precision sensing, enabling
gravimetry at the 10−9g level [1–3], gravity gradiome-

try at the 10−9 s−2/
√
Hz level [4], and rotation sensing

at the 10−8 rad/s/
√
Hz level [5]. Atom interferometers

can also be used in principle for measuring the gravita-
tional attraction of nearby masses [6], and for tests of
deviations from Newton’s inverse square law of gravita-
tion [7–13]. In addition atom interferometers can be used
as a surface probe for electromagnetic forces [14] such as
Casimir-Polder forces [15–19]. A challenge for applying
light-pulse atom interferometers to such measurements in
proximity to surfaces results from the finite wave packet
expansion of the atomic cloud. By replacing the atom
with a massive dielectric object which is laser-cooled to
its motional ground state in an optical trap, the velocity
spread dramatically decreases as (ma/M)1/2, where ma

and M are the mass of the atom and sphere respectively,
enabling measurement times of order 1 second with a
wave packet spread of order 1 µm.
In this paper we describe two protocols which utilize

macroscopic matter wave phenomena in dielectric spheres
to perform sensitive acceleration measurements near ma-
terial surfaces. First we describe a near-field Talbot in-
terferometer [20–22] which diffracts a sphere from a pure
phase grating made of light to generate a density distri-
bution with a fringe pattern at twice the grating period.
Such a setup can be used as an accelerometer to test for
corrections to Newtonian gravity at short range. These
corrections are generally parameterized according to a
Yukawa-type potential

V (r) = −GNm1m2

r

[

1 + αe−r/λ
]

, (1)
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where m1 and m2 are two masses interacting at distance
r, α is the strength of the potential relative to gravity,
and λ is the range of the interaction. For two objects of
mass density ρ and linear dimension λ with separation
r ≈ λ, a Yukawa-force scales roughly as FY ∼ GNρ

2αλ4,
decreasing rapidly with smaller λ. We estimate sufficient
sensitivity to measure α = 400 at the λ = 5 µm length
scale in such a setup. The current experimental limits
at 5 µm are |α| > 3 × 106 [23]. Thus an improvement
by several orders of magnitude is possible in searches for
beyond-the-standard-model physics which can naturally
produce large deviations |α| >> 1 at µm-scale distances,
including supersymmetry [11], string theory [24, 25], and
vector or scalar particles residing in large extra dimen-
sions [26, 27].

We then compare this to a ballistic experiment which
is not based on interference, in which a larger nanosphere
is initially cooled to the ground state of an optical po-
tential. After cooling, the optical trap is ramped down
quickly allowing the sphere to undergo free wave packet
expansion at a rate determined by the ground state mo-
mentum spread. For 200 nm diameter spheres, such an
approach has a sensitivity of 1 µGal = 10−8m/s2, which
is comparable to falling corner cube gravimeters [28]. We
compare the two techniques as a function of the temper-
ature and mass of the nanosphere and conclude with a
discussion of the systematic error and noise sources for
each measurement protocol.

II. PROTOCOL

A diagram of the interferometry protocol is given in
Fig. 1, and a list of experimental parameters is given in
Table I. We consider a silicon sphere of radius R = 6.5
nm (and mass M ≈ 1.5 × 106 amu) which is optically
trapped and cooled such that its center-of-mass wave
function ψCM is near the harmonic oscillator ground
state with oscillator frequency ω determined by the trap.
Silicon is chosen for its combination of low-optical ab-
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Parameter Symbol Value

sphere radius R 6.5 nm

sphere density ρ 2300 kg/m3

dielectric constant ǫ 18

trap frequency ω 2π × 100 Hz

grating period d 0.25 µm

grating peak intensity I 16 kW/m2

TABLE I: Experimental parameters for the interference pro-
tocol corresponding to a total fall time of 2TT = 0.5s.

sorption and low blackbody emissivity [22]. The sphere
is then released from the trap and allowed to fall freely
in the z-direction (with the x-direction being transverse
to the fall) next to a wall behind which a mass can be
placed. Immediately after it is released, the wave func-

tion has transverse spread σx =
√

~

2Mω ≈ 6 nm. Af-

ter one Talbot time TT = Md2/h, the wave packet has
expanded and the sphere is diffracted by a pure phase
grating of period d = 0.25 µm. The size of the sphere is
chosen such that TT = 0.25 s.

The sphere is then allowed to propagate a time TT
after the grating to a position-sensitive detector, which
can be an optical cavity or split photodetector. For
cavity assisted readout of the final displacement of the
sphere, the relevant opto-mechanical coupling which de-
scribes the change of the cavity resonance frequency ωc

due to motion of the sphere is given by ∂ωc/∂z = 2kLgs.
Here the coupling strength gs = 3V

4Vc

ǫ−1
ǫ+2ωc, where ǫ is

the dielectric constant of the sphere of volume V , and
Vc and κ = πc/LF are the cavity mode volume and
linewidth, respectively, and F is the cavity finesse. For
an incident laser with power Pc and frequency ωc, photon
shot-noise limits the minimum detectable phase shift to
δφ ≈ 1/(2

√
I) where I ≡ Pc/(~ωc) [29]. The correspond-

ing photon shot-noise limited displacement sensitivity is
√

Sz(ω) =
κ

4kLgs
1√
I

√

1 + 4ω2

κ2 [30], along the cavity axis

for an impedance matched cavity. For a 532 nm read-
out laser of 10 mW with waist 10 µm and F = 100,
the displacement sensitivity is 9 pm/

√
Hz. A split pho-

todetector was recently used to measure the position of
a nanosphere with 1.2 pm/

√
Hz resolution [31]. We es-

timate that a position resolution of ∼ 30 pm/
√
Hz is

adequate for the proposed measurements.

After recording the position of the sphere after several
experiments, an interference pattern builds up one mea-
surement at a time, with fringes spatially separated by
2d. An acceleration a in the transverse direction due to
the presence of the wall results in a shift in the fringe
pattern by an amount δxφ = −aT 2

T . A measurement of
the influence of the gravitational attraction of the mass
can then be obtained from the relative phase between
the fringe patterns with and without the presence of the
mass behind the wall.

The effect of the grating on the wave function can

δ

x

y

z

x x

FIG. 1: Proposed experimental setup. A nanosphere is cooled
in an optical trap, and allowed to fall in proximity to a wall
which acts as a source mass. After falling for a time TT , a
light pulse grating is applied. After another time TT the po-
sition of the sphere is recorded. Such measurements combine
to reveal an interference pattern, where the node positions
depend on the transverse (x) acceleration experienced by the
bead throughout its fall. The centroid of the distribution also
shifts towards the wall by an amount δx as a result of the
acceleration. The wall consists of vertical sections of varying
density to modulate the x− component of the gravitational
acceleration on the sphere due to the wall, depending on the
initial y-position of the trap. By comparing the results of
experiments in which the sphere is initially positioned to fall
next to a dense (gold) vertical section versus a less dense (sil-
icon) vertical section, searches for Yukawa-type corrections to
gravity can be performed at the 5 µm length scale.

be understood using the phase-space formalism of Ref.
[32]. If the sphere is cooled to the ground state of
center-of-mass (CM) motion, its initial Wigner func-

tion is w0(x, p) = A · exp
[

− x2

σ2
x
− p2

σ2
p

]

, where A is

fixed by normalization. After falling for a time t
with transverse acceleration a, the Wigner distribution
is sheared accordingly as w1(x, p; t) = w0(x − p

M t +
1
2at

2, p −Mat). At the grating, the wave function un-
dergoes a transformation of the form |ψCM 〉 7→ U |ψCM 〉
[33] (see also Appendix). Since the de Broglie wave-
length of the sphere is small compared with the inter-
action range of the optical potential, we can employ the
eikonal approximation U(x) = exp(iφ(x)), where φ(x) =
− 1

~

∫∞
−∞ V (x, t)dt = αωIτ

~cǫ0
sin2(πx/d) ≡ φ0 sin

2(πx/d).

Here αω = 4πR3ǫ0(
ǫ−1
ǫ+2 ) is the polarizability of the

sphere, I is the peak laser intensity, and τ = 1 µs is
the pulse duration.

After propagating to the grating over a time t0, and
falling for an additional time t1 from the grating to the
detector, the final fringe pattern in the probability den-
sity |ψCM (x)|2 can be obtained by integrating the final
Wigner distribution over momentum. A detailed de-
scription of the Wigner function evolution is provided
in the Appendix. We find an optimum fringe contrast
for φ0 ≈ 1.5. The final fringe pattern develops a phase
Φ(a, t0, t1) which is proportional to the transverse accel-
eration a to lowest order: Φ(a, t0, t1) ≈

(

iπt0t1
d

)

a. For
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FIG. 2: (left) Density plot of |Ψ(x)|2 following the grating for
zero acceleration for releasing the trap at ω0 = 2π × 100 Hz
from its ground state. (right) As in left panel, with aπ = 4×
10−7g constant acceleration. (lower) Lineouts taken at t1 =
TT after the grating for a = 0 (solid) and a = aπ (dashed).

t0 = t1 = TT and R = 6.5 nm, the acceleration required
for a π phase shift in the fringe pattern is approximately
aπ = d/T 2

T = 4 µm/s2 = 4× 10−7g. Thus the sensitivity
of the experiment is determined by the grating period
and time of fall. If the sphere has an initial transverse
momentum kick, the phase shift Φ remains the same,
which means that while this experiment is highly sen-
sitive to transverse acceleration, it is insensitive to any
systematic initial momentum kicks. Plots of the proba-
bility densities we obtain for parameters given in Table I
are shown in Fig. (2) for a = 0 and a = aπ.
The above assumes that the sphere can be cooled to

its ground state of CM motion. However, it is possible
to obtain a fringe pattern at temperatures above that of
the ground state, where the CM wave function becomes
a superposition of harmonic oscillator eigenstates. The
effect of temperature on the Wigner distribution can be
approximated as a widening of the position and momen-
tum spreads of the pure ground state distribution accord-
ing to kBT ≈ ~ωn̄(T ) ≈ Mω2σ2

x(T ), where n̄(T ) is the
average principal quantum number of the CM state at
temperature T . Therefore the position (and momentum)

spread grow as
√

n̄(T ) at large T .
Short-range force measurements. The Casimir-Polder

force between a small dielectric sphere and metal plane
can be written as [16] Fcp = − 3~cαω

8π2ǫ0
1
z5 . This force results

in an acceleration of 4×10−7g on the sphere and displaces

Excluded by experiment

λ

|α|

Sushkov (2011)

Lamoreaux (1997)

Decca (2005)

Masuda (2010)

Decca (2007)

Geraci (2008)

Kapner (2007)moduli

gauged B#

Yukawa messengers

dilaton

A

B

FIG. 3: Current experimental bounds [23, 35–41] and theo-
retical predictions [7] for a non-Newtonian potential of the

form V (r) = −GNm1m2

r

[

1 + α exp(− r

λ
)
]

between two masses
m1 and m2 separated by r. Curves A and B are the pre-
dicted sensitivities for wall-separation 6 µm and 10 µm, with
corresponding Talbot times of 0.1 s and 0.25 s, respectively.

the fringe pattern by approximately π for a surface sepa-
ration of 10 µm and R = 6.5 nm, TT = 0.25s. The phase
shift is ≈ 3π for R = 5 nm, TT = 0.1 s, and surface sep-
aration of 6 µm. Thus by averaging over 104 shots, the
Casimir-Polder acceleration can be measured at or below
the percent level. Such measurements may be relevant
for the study of the quantum states of nanospheres near
surfaces [17].
For a short-distance gravity measurement, we consider

the differential shift in the fringe pattern between the
case where the sphere falls next to a gold section of the
wall and the case where the sphere falls next to a sili-
con section of the wall. Here the shift from the Casimir
acceleration is common to both cases as a 200 nm thick
uniform gold coating covers the surface of the wall. We
take the width of the gold and silicon sections to be 40
µm. We consider two cases, with R = 6.5 nm, TT = 0.25
s and a 10 µm separation of the sphere from the wall,
and with R = 5 nm, TT = 0.1 s and 6 µm sphere-wall
separation. Projected sensitivity is shown in Fig. 3 for
a phase resolution of π/300, corresponding to averaging
over 105 shots of the experiment.

III. COMPARISON OF INTERFERENCE AND

BALLISTIC MEASUREMENTS

It is interesting to compare the position sensitivity for
a ballistic approach where the position of the sphere is
measured after falling from the trap versus the Talbot in-
terferometer sensitivity. Assuming the particle is cooled
to the ground state in the harmonic trap, the velocity



4

spread due to zero point motion σv =
√

~ω
2M will cause a

spread in the measured position of the bead after it falls
during the experiment. The position spread after a mea-
surement at time t later is thus given by σvt. After N
repeated experiments, the uncertainty in the mean of the
distribution goes as σvt/

√
N . This uncertainty is added

to the signal δx = 1
2at

2 for an acceleration a towards
the wall. In the Talbot interferometer, the fringe pattern
shifts by a comparable amount due to the acceleration
from the wall. However, the momentum uncertainty in
the ground state harmonic oscillator trap does not influ-
ence the location of particular interference fringes − only
the overall envelope is influenced by the initial momen-
tum spread. The uncertainty in the fringe position of the
fringe maxima when taking N measurements is ∼ d/

√
N .

Since the period is known, the fringe pattern can be fit
using a function with a known period and variable phase.
The improvement over the ballistic measurement is given
by β = χσvt/d, where χ is the fringe contrast of the in-
terferometer. Plots of β as a function of mass are given
for various temperatures in Fig. 4 for a fixed fall time of
t = 2TT = 0.5 s.

At temperatures near the ground state temperature,
increasing mass results in increasing localization and ulti-
mately a wave packet which is too narrow to interact with
the grating, at which point the interference signal van-
ishes. For higher temperatures, the position and velocity
spreads become large enough to let higher masses inter-
act with the grating, but velocity spreads which are large
compared to the grating velocity vg = ~/dM result in re-
duced contrast. Increases in the mass actually improve
the sensitivity of the interference setup until one strays
too far from the Talbot condition (i.e. TT (M) >> t).
At this point the contrast of the fringe pattern falls un-
til there is no more visibility. Thus, at higher temper-
atures, β increases for some mass interval, peaks, and
subsequently falls to zero.

If the mass is increased without also extending the
time-of-flight to maintain the Talbot time condition, the
ballistic experiment eventually exceeds the sensitivity of
the interference experiment, with the caveat that the lo-
cation of the sphere at the end of the experiment is sen-
sitive to systematic errors in the initial velocity distri-
bution upon release from the optical trap. For a 100
nm radius sphere initially cooled to the ground state and
allowed to expand and fall ballistically, the sensitivity
curves are approximately 10× better than those shown
in Fig. 3, however with this additional source of error.

IV. SYSTEMATICS

While the effect of decoherence due to gas collisions is
negligible for our setup, Rayleigh scattering of photons
from the laser grating can result in decoherence in the
interference experiment. The timescale for this however
can be much larger than τ = 1µs. Since the spread of
the CM wave function at the grating is of order ∼ d, the
decoherence time is roughly the time for one scattering
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FIG. 4: The improvement factor β for an interference experi-
ment relative to a ballistic wave-packet expansion experiment
as a function of mass at various temperatures. The fall time
is fixed at t = 0.5 s, corresponding to 2TT for a sphere of mass
M = M0, where M0 ≡ 4

3
ρπR3 with R = 6.5 nm.

event, approximately 2 ms. More significantly, blackbody
emission from the sphere as it is falling can result in
decoherence. However, the low emissivity of silicon allows
for measurements on the timescales we require [22].
A deviation in vertical alignment will produce a con-

stant offset in the measured acceleration. If each shot
has a varying misalignment this becomes an additional
noise source. Such noise is negligible for tilt fluctuations
of the apparatus of ∼ 0.5 µrad/

√
Hz. While the fringe

locations are insensitive to any systematic velocity kick
given to the falling sphere as it is released from the op-
tical trap, the setup is sensitive to vibrational noise in
the mirrors during the application of the grating pulse
and the during detection of the sphere. Maximal sensi-
tivity requires vibrational stability of ∼ 10−3 µm/

√
Hz

at frequencies around 1 Hz.
Charge on the dielectric sphere will produce a signif-

icant background in the presence of stray electric fields.
However, recent experimental work has shown that the
charge on optically trapped spheres can be made zero
and remain zero for long measurement periods [42, 43].
The polycrystalline structure of the gold coating on

the wall results in local electric field variations due to
the patch effect [44, 45]. These patch potentials can drift
with time and vary over spatial extent of the wall. We
can estimate the acceleration applied to the sphere as a
result of typical patch potentials ranging from ∼ 50 mV
variations over length scales of a few µm to be of order
10−7g. Such accelerations will contribute to the fringe
shift of the interferometer and would need to be char-
acterized experimentally. However, the initial trap can
be translated laterally, so that the experiment can first
be performed with the sphere closest to a gold section
of the wall, and then closest to the adjacent silicon sec-
tion of the wall, and then closest to the next gold section
etc. as shown in Fig. 1. Thus, by scanning the initial
y-position of the sphere along the wall, one expects a
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spatially periodic signal for the acceleration due to the
mass. The variation of the acceleration due to the patch
effect is not expected to exhibit the same periodicity as
the underlying spatial density pattern in the wall. This
can be used in principle to distinguish the effects. For
example, assuming random patch variations on the µm
scale, the spatial Fourier component of the patch effect
at the period of the mass density modulation should be
suppressed as 1/

√

Ny for Ny initial y positions. In this

case we roughly expect sensitivity at the 10−8g level for
Ny = 100. The required value of Ny would ultimately
need to be determined from the experimentally measured
patch variations.
The Casimir-Polder force can also produce a back-

ground systematic effect if the screening provided by the
uniform gold coating on the wall is not adequate due to
its finite thickness and conductivity. This can lead to a
differential acceleration for the cases where the sphere is
close to a gold section versus silicon section of the wall,
despite the uniform metal coating on the surface. Using
the method developed in Ref. [46] to determine the fi-
nite conductivity and thickness effects, we estimate that
for a uniform gold thickness of 200 nm, the screening
is adequate for measurements at the projected level of
sensitivity.

V. DISCUSSION

The matter wave accelerometer we have presented
can be advantageous when compared with light-pulse
atom interferometry for use in surface-force measure-
ments where localization of the sensor is required. This
technique could lead to advances in tests of inverse-square
law violations of gravity at µm distances and Casimir
force measurements between nanospheres and surfaces.
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Appendix: Effect of the grating in the Wigner

function formalism

The initial state Wigner distribution associated with
the sphere’s center of mass (CM) mode in the x− direc-
tion is given as

w0(x, p) =
1

2π~

∫ ∞

−∞
dseisp/~〈x− s/2|ρ̂|x+ s/2〉, (A.1)

where ρ̂ is the density matrix for the CM mode. If
the sphere is cooled to the ground state of center of
mass motion, its initial wave function will be that of a
pure quantum harmonic oscillator ground state of po-
sition spread σx and momentum spread σp = ~/σx, so

w0(x, p) = A · exp
[

− x2

σ2
x
− p2

σ2
p

]

, where A is fixed by nor-

malization. After falling for a time t0, the Wigner dis-
tribution is sheared accordingly as w1(x, p; t0) = w0(x −
p
M t0+

1
2at

2
0, p−Mat0), where w0 is the Wigner distribu-

tion at time t = 0 and a is the acceleration in the x− di-
rection [32]. At the grating, the wave function undergoes
a transformation of the form |ψCM 〉 7→ U |ψCM 〉, so the
density matrix transforms as ρ 7→ UρU †. Because the de
Broglie wavelength of the sphere is small compared to the
range of the grating potential, we may employ the eikonal
approximation, in which U(x) = exp(iφ(x)) and φ(x) =
− 1

~

∫∞
−∞ V (x, t)dt = αωIτ

~cǫ0
sin2(πx/d) ≡ φ0 sin

2(πx/d) is
an integral over a straight line in the z-direction, where
αω = 4πR3ǫ0(

ǫ−1
ǫ+2 ) is the polarizability of the sphere, I is

the peak laser intensity, and τ is the pulse duration. Af-
ter propagating to the grating over a time t0, the sheared
Wigner distribution w1 transforms at the grating into a
new Wigner fucntion w2 via the integration kernel [33]

w2(x, p; t0) =

∫ ∞

−∞
dp0dx0K(x, p;x0, p0)w1(x0, p0; t0),

(A.2)
where

K(x, p;x0, p0) =
1

2π~

∫

dsds0e
i(p0s0+ps)/~〈x− s/2|U |x0 + s0/2〉〈x+ s/2|U∗|x0 − s0/2〉 (A.3)

=
1

2π~
δ(x− x0)

∑

j,m∈Z

bjb
∗
j−me

2πimx/dδ

(

p− p0 − (j −m/2)
2π~

d

)

. (A.4)

The integration kernelK is obtained by transforming the
wave function by the phase exp(iφ(x)), and plugging the
transformed wave function into Eq. (A.1) to obtain Eq.
(A.3). After Fourier expanding we obtain Eq. (A.4). The
bm = (−i)meiφ0/2Jm(φ0/2) are called Talbot-Lau coeffi-

cients [34]. After propagating for an additional time t1 to
the detector, the final fringe pattern can be obtained by
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integrating the sheared distribution w2 over momentum:

W3(x) = |ψCM (x)|2

=

∫ ∞

−∞
dpw2(x− p

M
t1 +

1

2
at21, p−Mat1).

The final fringe pattern is a sum of wave packets weighted
by the Bessel functions bjb

∗
j−m, each with spatial period

D ≈ d

m

(

1− t1
t0 + t1

)−1

. (A.5)

Because the bm’s decrease quickly as |m| grows, to very
good approximation the period of the fringe pattern is
that of the m = 1 term. So if the sphere falls for the

same amount of time before and after interacting with
the grating, t0 = t1 and D ≈ 2d. This period is different
from the period d which one normally associates with the
Talbot effect, for example in the diffraction of beams of
molecules as in Ref. [34]. However, this result requires a
position spread of the matter-wave at the grating which
is very large compared to the grating spacing. For the
experimental parameters given in Table 1, by the time
the sphere reaches the grating, its wave function has a
position spread only of order the grating spacing. In the
limit where the sphere falls for a very long time before
reaching the grating, i.e. t0 >> t1, its position spread
would become large, and we would obtain from Eq. (A.5)
a period of D ≈ d, as expected.
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