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We investigate the inner structure of a general SU(2) (naturally including SO(3)) symmetry
system—the fermion-gauge field interaction system, and achieve naturally a set of gauge invariant
spin and orbital angular momentum operators of fermion and gauge fields by Noether theorem in
general field theory. Some new relations concerning non-Abelian field strengths are discovered, e.g.,
the covariant transverse condition, covariant parallel condition ( i.e., non-Abelian divergence, non-
Abelian curl ) and simplified SU(2) Coulomb theorem. And we show that the condition that Chen
et al obtained to construct their gauge invariant angular momentum operators is a result of some
fundamental equations in the general field theory. The results obtained in this paper present a new
perspective to look at the overall structure of the gauge field, and provide a new viewpoint to the final
resolution of the nucleon spin crisis in the general field theory. Specially, the achieved theory in this
paper can calculate the strong interactions with isospin symmetry and solves the serious problem
without gauge invariant angular momenta in strong interaction systems with isospin symmetry,
and then the achieved predictions in the calculations can be exactly measured by particle physics
experiments due to their gauge invariant properties.

PACS numbers: 11.15.-q, 12.38.-t, 14.20.Dh

Introduction: In 1954, C. N. Yang and R. Mills, for the
first time, generalized the abelian gauge theory ( quan-
tum electrodynamics ) to nonabelian SU(2) gauge theory
to present an explanation for strong interactions [1]. The
idea has been developed as the useful Yang-Mills field
theory. Isospin for SU(2) in particle physics is related
to the strong interaction, the particles can be treated as
different states with isospin values related to the number
of charged states.

The nonabelian SU(2) gauge theory has very im-
portant uses in different fields, e.g., genuine magnetic
monopoles can be created as regular solutions of the field
equations with SU(2) or SO(3) gauge symmetry [2]; K.
Langfeld and E.M.Ilgenfritz gave the confinement from
semiclassical gluon fields in SU(2) gauge theory [3]; P.
V. Buividovich, et al presented Magnetic-Field-Induced
insulator-conductor transition in SU(2) quenched lattice
gauge theory [4].

Ref.[5] studied QCD at finite isospin density, spin-
isospin resonances and the neutron skin of nuclei were
explored [6], Ref.[7] described isospin dependence in
the odd-even staggering of nuclear binding energies, ex-
act solution of the spin-isospin proton-neutron pairing
Hamiltonian was presented [8], Ref.[9] investigated spin-
isospin resonances: a self-consistent covariant descrip-
tion; isospin splittings in the Light-Baryon octet from lat-
tice QCD and QED are given [10]. But up to now all rele-
vant isospin interaction works, e.g., Refs.[5–10], have not
been able to give both their gauge invariant interactions
and the corresponding isospin angular momenta algebra
relations in the same time, which lead to key difficulties
in measuring their relevant observable physics quantities.

The situations here are analogous to that of nucleon spin
crisis, the method of this paper may solve these key prob-
lems and get an important progress in eventually solving
nucleon spin crisis due to the exact similarities between
the corresponding physics theory structures of nucleon
spin crisis and the strong interactions with isospin sym-
metry.

The renowned nucleon spin crisis concerns the follow-
ing question: how does the motions of quarks and glu-
ons, as its constituents, contribute to the total spin of
the nucleon? Various studies indicate that the spin of
the quarks can only be responsible for one third of the
nucleon spin [11–13], and hence, the remaining part must
come from other internal motions: the orbital movements
of the quarks and gluons as well as the spin of the gluons.
Theoretically, in order to understand how these motions
contribute to the total nucleon spin, the first job is with-
out doubt to define properly the operators that can fully
represent these movements. Various good endeavors have
been made [14–16].

In this paper, we generalize our discussion in QED [17]
to investigate the inner structure of the fermion-gauge
field interaction system when the gauge potential is de-
composed. This generalization turns out to be nontriv-
ial and six additional conditions are required. However,
impressively, all these non-Abelian conditions can be ob-
tained by the proper rewriting of their Abelian counter-
parts that have been strictly proved in [17]. Two of the
conditions are related to the gauge potential and have
already been available in literature [18]. The other four
depict the properties of the gauge field strength and are
discovered here. Based on the six conditions, gauge in-
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variant definitions of four angular momentum operators
are naturally and strictly constructed through Noether
theorem. In strong interaction systems with isospin sym-
metry, there still exist the serious problem that gauge in-
variant angular momenta are still missing [5–10, 19], this
paper wants also to solve the serious problem.
The QED case–a review : For the convenience of the

discussion of the non-Abelian system, in this section we
will give a brief but comprehensive review of the Abelian
gauge potential decomposition [17].
In QED, projection operators are defined as [20]

L
j
k = ∂

j 1

∆
∂k, T

j
k = δ

j
k − L

j
k, (∆ = ∂k∂

k) (1)

and the Abelian gauge potential Ai is decomposed as

A
j
⊥ = T

j
kA

k, A
j

‖ = L
j
kA

k, (2)

with its two components satisfying naturally

∇·
⇀

A⊥ = 0, (3)

∇×
⇀

A‖ = 0. (4)

Using Eqs. (3)–(4), the Lagrangian for the electron-
photon system can be expanded into a new form [17]
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(5)

where De
µ = ∂µ + ieAµ is the covariant derivative, the

superscripts ′ep′ stand for the electron and photon, and
ψe is the electron field. From Eq. (5), the canonical
momentum, i.e. the electric field Ei, can be naturally
decomposed into two components:

Ek
⊥ = −∂0Ak

⊥, (6)

Ek
‖ = ∂kA0

− ∂0Ak
‖ , (7)

with Ei
⊥ and Ei

‖, conjugate to Ak
⊥ and Ak

‖ , respectively,

and satisfying

∇·
⇀

E⊥ = 0, (8)

∇×
⇀

E‖ = 0, (9)

∇·
⇀

E‖ = ρe, (10)
∫

d3xEk
⊥E

‖
k = 0, (11)

where ρe is the charge density. From the Lagrangian (5)
and by Noether theorem, we can get the total angular
momentum of the system:
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J
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The three terms in the left column are all gauge invariant
and to combine the three terms in the right column into

a gauge invariant one, we add a surface term ∇ · [
⇀

E‖ (
⇀

A‖

×
⇀
x)] to Eq. (12) and it becomes
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ep
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where
⇀

De
‖= ∇+ie

⇀

A‖ is the new covariant derivative.
⇀

Se,
⇀

Le
2
,

⇀

S
p
2
and

⇀

L
p
2
stand for the spin and orbital angular mo-

menta of the electron and photon, respectively. Because
⇀

A‖ has a vanishing curl (Eq. (4)),
⇀

Le
2
satisfies the commu-

tation algebra,
⇀

Le
2
×

⇀

Le
2
= i

⇀

Le
2
; the gauge independence

of
⇀

A⊥ [17] guarantees that
⇀

S
p
2
and

⇀

L
p
2
are gauge invari-

ant, which is to say that, from the Lagrangian (5) and by
Noether theorem, we realize a gauge invariant separation
of the photon’s total angular momentum. Adding to Eq.

(13) another surface term ∇·

⇀

[A⊥ (
⇀

E‖ ×
⇀
x)], we arrive

at Chen et al’s result [14]
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3

=

∫
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1
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⇀
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∫
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e

⇀
x ×

1

i

⇀
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⇀
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⇀
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⇀

L
p
3
, (14)

the difference of which from Eq. (13) is the substitution

of Ei for E⊥i.
⇀

S
p
3
and

⇀

L
p
3
are still gauge invariant.

The SU(2) case: As a generalization of the QED case,
in this section, we are going to investigate a general SU(2)
(naturally including SO(3) case due to their identical
Lie algebra structure) symmetry system by the general
method of field theory. The general Lagrangian for the
SU(2) fermi-gauge field interaction system is [1, 19]

L =

∫

d3x[−
1

4
F aµνFaµν + ψ (iγµDµ −m)ψ], (15)

where Dµ = ∂µ − igWµ is the covariant derivative with
Wµ =W a

µT
a being the gauge potential and T a the gener-

ator of the SU(2) group, and ψ stands for the fermi field.
In SU(2) gauge field theory, the gauge field strength is
defined as

F aµν = ∂µW aν
− ∂νW aµ + gfabcW bµW cν . (16)
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We decompose the spacial part of the gauge potential
W ak into two components:

W ak =W ak
⊥ +W ak

‖ . (17)

Analogous to QED [17], under a SU(2) transformation
U , Wk

⊥ =W ak
⊥ T a and W

k
‖ =W ak

‖ T a transform as [14]

W
′k
⊥ = UW

k
⊥U

†, (18)

W
′k
‖ = UW

k
‖U

†
−
i

g
U∂kU †, (19)

respectively, which guarantee that

W
′k = UW

kU †
−
i

g
U∂kU †. (20)

Due to its nonlinearity, the non-Abelian system is
much more complicated than the Abelian one and it is
difficult to define a similar pair of projection operators
as Eq. (1) and to derive naturally all the conditions that
the gauge potentials and its conjugate momenta satisfy
as Eqs. (3)–(4) and Eqs. (8)–(10) have shown. How-
ever, we just generalize the six Abelian conditions to the
non-Abelian case with their forms restricted by the gauge
covariance and the theory’s consistency. All the general-
ized conditions are regarded to be valid axiomatically and
as our discussion processes, their indispensability will be-
come apparent. The following two are generalizations of
Eqs. (3) and (4) and related to the gauge potentials [18]

∂kW
ak
⊥ + gfabcW b

‖kW
ck
⊥ = 0. (21)

∂jW ak
‖ − ∂kW

aj

‖ + gfabcW
bj

‖ W ck
‖ = 0, (22)

It is easy to prove that Eqs. (21) and (22) are SU(2)
gauge covariant.
In terms of W ak

⊥ and W ak
‖ , F ak0 can be rewritten as

F ak0 = ∂kW a0
− ∂0W ak

‖ − ∂0W ak
⊥

+gfabcW bk
‖ W c0 + gfabcW bk

⊥ W c0. (23)

Using Eqs. (21), (23) and fabcfab
′

c
′

= δbb
′

δcc
′

− δbc
′

δcb
′

as well as two other conditions
∫

d3x∂0W ak
‖ (−∂0W

a
⊥k + gfabcW b

⊥kW
c0) = 0, (24)

gfabc(∂0W
ak
‖ W b

⊥kW
c0

− ∂kW a0W b
⊥kW

c
0 )

−g2(W bk
‖ W c0W b

⊥kW
c
0 −W bk

‖ W c0W c
⊥kW

b
0 ) = 0, (25)

the meanings of which will be discussed later, we can
expand the Lagrangian (15) to the following form:

L =

∫

d3x[−
1

4
F ajkF a

jk −
1

2
∂kW a0∂kW

a
0

−
1

2
∂0W ak

‖ ∂0W
a
‖k −

1

2
∂0W ak

⊥ ∂0W
a
⊥k

+∂kW a0∂0W
a
‖k − gfabc∂kW a0W b

‖kW
c
0

+gfabc∂0W ak
‖ W b

‖kW
c
0
+ gfabc∂0W ak

⊥ W b
⊥kW

c
0

−
1

2
g2(W bk

‖ W c0W b
‖kW

c
0 −W bk

‖ W c0W c
‖kW

b
0 )

−
1

2
g2(W bk

⊥ W c0W b
⊥kW

c
0
−W bk

⊥ W c0W c
⊥kW

b
0
)

+ψ (iγµDµ −m)ψ]. (26)

From the expanded Lagrangian (26), we derive the
canonical momenta conjugate to W a

‖k and W a
⊥k, respec-

tively, as follows

πak
‖ =

δL

δ(∂0W a
‖k)

= −∂0W ak
‖ + ∂kW a0 + gfabcW bk

‖ W c0, (27)

πak
⊥ =

δL

δ(∂0W a
⊥k)

= −∂0W ak
⊥ + gfabcW bk

⊥ W c0, (28)

which reduce to the QED forms (6) and (7) when the
structure constant fabc is zero. What’s more, it is ap-
parent that Eqs. (27) and (28) are both gauge covari-
ant and their summation is exactly the conventional πak.
The form of Eq. (28) is the same as the discussion in
[21].
By Noether theorem, the Lagrangian (26) leads to the

angular momentum of the SU(2) fermi-gauge field inter-
action system:

⇀

J1 =

∫

d3xψ† 1

2

⇀

Σ ψ +

∫

d3xψ† ⇀
x ×

1

i
∇ψ

+

∫

d3x
⇀

πa
⊥ ×

⇀

W a
⊥ +

∫

d3x
⇀

πa
‖ ×

⇀

W a
‖

+

∫

d3xπa
⊥k

⇀
x ×∇W ak

⊥ +

∫

d3xπa
‖k

⇀
x ×∇W ak

‖ .

(29)

Actually, Eq. (29) is a straightforward generalization
of Eq. (12). Let us consider the surface term

∇ · [
⇀

πa
‖ (

⇀

W a
‖ ×

⇀
x)]

= −

⇀

πa
‖ ×

⇀

W a
‖ −πa

‖i

⇀
x ×∇W ai

‖

−(∂kπ
ak
‖ + gfabcW b

‖kπ
ck
‖ )(

⇀
x ×

⇀

W a
‖ ), (30)

where Eq. (22) is used. As a gauge covariant generaliza-
tion of Eq. (10), we deduce the simplified SU(2) Coulomb
theorem:

∂kπ
ak
‖ + gfabcW b

‖kπ
ck
‖ = ρa = gψ†T aψ, (31)

where ρa is the non-Abelian charge density. Adding Eqs.

(30) and (31) to
⇀

J1, we have

⇀

J2 =

∫

d3xψ† 1

2

⇀

Σ ψ +

∫

d3xψ† ⇀
x ×

1

i

⇀

D‖ ψ

+

∫

d3x
⇀

πa
⊥ ×

⇀

W a
⊥ +

∫

d3xπa
⊥k

⇀
x ×∇W ak

⊥

=
⇀

Sq +
⇀

L
q
2
+

⇀

S
g
2
+

⇀

L
g
2
, (32)
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where, due to Eq. (19),
⇀

D‖= ∇ − ig
⇀

W‖ is the new

covariant derivative.
⇀

Sq,
⇀

L
q
2
,

⇀

S
g
2
and

⇀

L
g
2
stand for the

spin and orbital angular momenta of the fermi field and
gauge field respectively. Due to the properties of W ak

‖

shown in Eqs. (19) and (22),
⇀

L
q
2
satisfies the commuta-

tion law
⇀

L
q
2
×

⇀

L
q
2
= i

⇀

L
q
2
and is gauge invariant [14]. The

gauge invariance of
⇀

Sq and
⇀

S
g
2
is obvious; however, unlike

in QED, rather than invariant, W ak
⊥ is gauge covariant,

which means that
⇀

L
g
2
is not trivially gauge invariant, be-

cause there will be additional terms containing the spatial
derivatives of U(x).
In general, Noether’s theorem requires the invariances

of the Lagrangian density and Hamiltonian density of
the system under the Lorentz transformation of the fun-
damental fields [20, 22], e.g., the system is invariant
not under Wµ

⊥’s Lorentz transformation but under the
Lorentz transformations of Wµ’s all components, even
though Wµ

⊥’s Lorentz transformation is complicated, be-
cause the relevant complicated terms of the transforma-
tions of their all components can be canceled each other
in the whole system according to the symmetric invari-
ance property of this system, which is a general rule,
see Ref.[20, 22]. Besides, the frame-dependence issue has
important physics meaning, Refs.[23–25] have given the
very good investigations and descriptions relevant to the
issue and the other problems.

To make πa
⊥k

⇀
x ×∇W ak

⊥ in the last term of Eq.(32)
gauge invariant, one should impose a new condition [14]:

gfabcW b
⊥kπ

ck
⊥ = 0, (33)

which, as well as Eqs. (24) and (25), can be naturally
derived as follows.
First, the Coulomb law in QCD is [22]

∂kπ
ak + gfabcW b

kπ
ck = ρa, (34)

and referring to the structure of Eq. (21), we generalize
Eq. (8) to

∂kπ
ak
⊥ + gfabcW b

‖kπ
ck
⊥ = 0. (35)

As a consequence of Eqs. (31), (34) and (35), we have

gfabcW b
⊥kπ

ck = 0. (36)

Then, substituting Eq. (28) into Eq. (35) and using
Eq. (21), we can prove that

∂kπ
ak
⊥ + gfabcW b

‖kπ
ck
⊥

= g2W a
‖kW

bk
⊥ W b0

− g2W b
‖kW

bk
⊥ W a0

+gfabcW bk
⊥ ∂kW

c0
− gfabc∂0W c

‖kW
bk
⊥ . (37)

Multiplying its right side by W a
0 and rearranging the

SU(2) group indices, Eq. (37) results in Eq. (25).

Moreover, we rewrite the right side of Eq. (37) as

gfabcW bk
⊥ (gf ca

′

b
′

W a
′

‖kW
b
′

0 + ∂kW
c0

− ∂0W c
‖k)

= gfabcW bk
⊥ πc

‖k = 0. (38)

It is easy to see that Eq. (33) can be obtained by de-
tracting Eq. (38) from Eq. (36), i.e. we show that Eq.
(33) is a natural result of Eqs. (31), (34) and (35).
Besides, using Eqs. (27), (28) and (35) as well as the

partial integral, we prove that Eq. (24) is just the or-
thogonal relation (in the sense of the whole space) of the
two components of the canonical momentum, i.e.

∫

d3xπak
‖ πa

⊥k = 0. (39)

which is a non-Abelian generalization of Eq. (11).
As a result, all the assumptions we have made so far

to keep our discussion consistent, i.e. Eqs. (24), (25)
and (33), can be deduced from Eqs. (21), (31), (35)
and (39), which are directly generalized from the Abelian
conditions in a gauge covariant way.
Now, let’s consider the following surface term,

∇ · [
⇀

W a
⊥ (

⇀

πa
‖ ×

⇀
x)]

=
⇀

πa
‖ ×

⇀

W a
⊥ +πak

‖

⇀
x ×∇W a

⊥k

+W a
⊥kε

lmnxn
⇀
el (D

k
‖π

a
‖m − D‖mπ

ak
‖ ), (40)

where Eqs. (21), (22) and (38) are used (
⇀
el is the spatial

unit vector), and

D
k
‖π

a
‖m = ∂kπa

‖m + gfabcW bk
‖ πc

‖m. (41)

As a generalization of the Abelian Eq. (9), we set

D
k
‖π

a
‖m − D‖mπ

ak
‖ = 0. (42)

Though slightly different from Eq. (22), the form of Eq.
(42) guarantees its gauge covariance. Adding Eqs. (40)
and (42) to Eq. (32), we get Chen et al’s separation of
the angular momentum [14]:

⇀

J3 =

∫

d3xψ† 1

2

⇀

Σ ψ +

∫

d3xψ† ⇀
x ×

1

i

⇀

D‖ ψ

+

∫

d3x
⇀

πa
×

⇀

W a
⊥ +

∫

d3xπa
k

⇀
x ×∇W ak

⊥

=
⇀

Sq +
⇀

L
q
3
+

⇀

S
g
3
+

⇀

L
g
3
, (43)

However, we here show that Eq. (43) can be de-
duced strictly and naturally from the Lagrangian (15)
by Noether theorem in general field theory, i.e. Eq. (43)
is spontaneously involved in our theory. Similar to Eq.

(33), the gauge invariance of
⇀

L
g
3
requires the condition

(36) (or more precisely, Eqs. (31) and (35)), which also
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plays a key role in transforming Eq. (43) to the conven-
tional form [14]

⇀

J4 =

∫

d3xψ† 1

2

⇀

Σ ψ +

∫

d3xψ† ⇀
x ×

1

i

⇀

∇ ψ

+

∫

d3x
⇀

πa
×

⇀

W a +

∫

d3xπa
k

⇀
x ×∇W ak

=
⇀

Sq +
⇀

L
q
4
+

⇀

S
g
4
+

⇀

L
g
4
, (44)

which means that, under certain conditions,
⇀

J2,
⇀

J3 and
⇀

J4 will give the same value of the total angular momen-

tum. Apparently, however, the last three terms of
⇀

J4 are

all gauge dependent, so
⇀

J4 is not properly defined. By

contrast, both
⇀

J2 and
⇀

J3 are physically sound. Never-

theless,
⇀

J2 is the simplest and the most rational one for
the sake of simplicity, since it eliminates the terms that
fail to contribute to the total angular momentum, as Eq.
(40) shows.
Discussion and conclusion: The nonlinearity of the

non-Abelian system causes considerable complexity and
the theory’s consistency spontaneously demands the es-
tablishments of six equations: (21), (22), (31), (35), (39)
and (42), the rationality of which lies in the fact that
they can be straightforwardly and uniformly generalized
from their Abelian counterparts with the consideration of
gauge covariance, and will reduce to the Abelian forms
when fabc is zero. To illustrate this more explicitly, re-
ferring to Eq. (41), we rewrite the six conditions in a
compact form:

∂jW ak
‖ − ∂kW

aj

‖ + gfabcW
bj

‖ W ck
‖ = 0, (45)

D
j

‖π
ak
‖ − D

k
‖π

aj

‖ = 0, (46)

D‖kW
ak
⊥ = 0, (47)

D‖kπ
ak
⊥ = 0, (48)

D‖kπ
ak
‖ = ρa, (49)

∫

d3xπak
‖ πa

⊥k = 0, (50)

Unlike Eqs. (4) and (9) in QED, Eq. (45) does not
have the same formation as Eq. (46), and because of
the gauge dependence of W ak

‖ , Eq. (45) must possess

the same structure as the definition of the gauge field
strength (16). Actually, it is just a coincidence that Eq.
(9) has the same structure as Eq. (4), since the form of
the field strength in QED is a curl.
As generalizations of Eqs. (3) and (4), Eqs. (45) and

(47) are obtained by Wang et al [18]. Except Eqs. (45)
and (47), which are related to the gauge potentials, all
the other four conditions that concern the gauge field
strengths are discovered here. Corresponding to Eqs. (9)
and (8), Eqs. (46) and (48) are the non-Abelian curl and
divergence conditions (i.e., the non-Abelian parallel and
transverse conditions), respectively; Eq. (49) is general-
ized from Eq. (10) and is the new SU(2) Coulomb law;

the orthogonal relation (50) has the similar form as the
Abelian one (11). In addition, we also show that the
condition (36) imposed by Chen et al [14], which is es-

sential to keep
⇀

L
g
3
gauge invariant, is just a direct conse-

quence of Eqs. (48) and (49). Under the six conditions,
we obtain naturally the simplest gauge invariant sepa-
ration of the total angular momentum (32) of a general
SU(2) system—the fermion-gauge field interaction sys-
tem by Noether theorem in general field theory.

The discovery of the inner-structure similarity of the
Abelian and non-Abelian systems depicts vividly the con-
sistency of the gauge field theory and will deepen our
understanding of some fundamental problems available
in physics. Because of the universality of Eqs. (45)-(50),
they can be applied to treat the inner structure and other
aspects of any gauge system.

As in general quantum field theory, because the
achieved Eq.(32) is just a general expression of angular
momentum of a Lorentz vector and is deduced by a gen-
eral method in a general field theory. Furthermore, the
general expression satisfies not only gauge invariant prop-
erty but also angular momentum commutation relation,
which satisfy the demand of the consistence of a general
physical system in a general field theory, make physical
measurement no dependent on gauge transformation and
insure the consistence of angular momentum commuta-
tion relation. These are not satisfied simultaneously in a
general field theory in the past, however, this paper, for
the first time, makes these satisfied in the same time in
a general field theory, without artificial choice.

In Eq. (32), ~π⊥ is used to construct the gluon spin
and orbital angular momentum operators, which is the
equivalent to using ~π to do the same thing, while their
differences are adding the two terms of equating zero
(surface term Eq.(40) that is equal to zero in its inte-
gration expression and the natural and exact non-curl
condition (42) of any longitudinal component vector field
) to Eq.(32) in deducing Eq.(43), so they have practi-
cal physics meanings according to general field theory,
e.g., as Eq.(43) does. Namely, we not only give the sim-
plest expression (32) but also achieve the current expres-
sion (43), and uncover the relation between Eq.(32) and
Eq.(43).

Because SU(2) gauge group has the exact contraction

relation of structure constants: fabcfab
′

c
′

= δbb
′

δcc
′

−

δbc
′

δcb
′

, which has been used in deducing the theory of
this paper, but for SU(3) gauge theory there is no such
simple or exact relation, therefore, generalizing the SU(2)
gauge theory to SU(3) gauge theory etc will have to be
written in our following works. And one can see that after
the general generalization, the non-Abelian SU(2) gauge
theory is very different from the original Abelian QED
theory, thus this paper opens a door of investigating lots
of strong interactions with isospin quantum numbers.

In this paper, especially, the usefulness of the achieved
expressions and their very important physical implica-
tions are bringing hope to the resolution of the nucleon
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spin crisis. There are two main reasons. First it is be-
cause the general generalization of the SU(2) theory to
SU(3) QCD theory is very direct and their mathematical
expressions are very similar, while the second reason is
that the theory of longitudinal and transverse fields of
Abelian gauge fields exactly reflects the real physics in
QED, so does the theory of longitudinal and transverse
fields of non-Abelian gauge fields in a general SU(2) sym-
metry system, i.e., the presented theory of the fermion-
gauge field interaction system in this paper does very
similarly. Many research works, including the different
gauge theories of the fundamental interactions of the uni-
verse, need to be renewed by using the new general the-
ory of decomposed non-Abelian gauge fields. And lots
of applications of this papers theory are being written in
following papers.

This paper solves the serious problem that there is
no gauge invariant angular momenta in strong interac-
tion systems with isospin symmetry, which is the very

key problem that is very similar to the nucleon spin cri-
sis. Therefore, this paper can unifyingly give solutions
to the both of the two very critical problems. Specially,
we want to stress that the achieved theory in this pa-
per can be utilized to calculate the strong interactions
with SU(2) isospin symmetry theory and give the precise
predictions, and further the achieved predictions in the
calculations can be exactly measured by current particle
physics experiments due to their gauge invariant prop-
erties, because any physical quantity ( relative to gauge
transformations ) without gauge invariant property can-
not be exactly measured [14].
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