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The potential of precision spectroscopy as a tool in systematic searches for effects of Lorentz
and CPT violation is investigated. Systems considered include hydrogen, antihydrogen, deuterium,
positronium, and hydrogen molecules and molecular ions. Perturbative shifts in energy levels and
key transition frequencies are derived, allowing for Lorentz-violating operators of arbitrary mass
dimensions. Observable effects are deduced from various direct measurements, sidereal and annual
variations, comparisons among species, and gravitational responses. We use existing data to place
new and improved constraints on nonrelativistic coefficients for Lorentz and CPT violation, and
we provide estimates for the future attainable reach in direct spectroscopy of the various systems
or tests with hydrogen and deuterium masers. The results reveal prospective sensitivities to many
coefficients unmeasured to date, along with potential improvements of a billionfold or more over
certain existing results.

I. INTRODUCTION

Hydrogen spectroscopy has been intimately linked with
precision tests of the foundations of relativity since the
exact solution of the Dirac equation for hydrogen [1, 2]
matched relativistic quantum mechanics with experi-
ments. Indeed, a famous classic test of special relativ-
ity, the Ives-Stilwell experiment confirming time dilation
[3], was first performed using a hydrogen clock. Another
classic experiment, Gravity Probe A [4], verified the rel-
ativistic frequency shift in a gravitational field using a
hydrogen maser launched on a suborbital rocket.
The underlying symmetry of relativity, Lorentz invari-

ance, can naturally be broken in some approaches to the
unification of gravity with quantum physics such as string
theory [5]. This possibility opens the door to the ex-
perimental detection of new physics emerging from the
Planck scaleMP ≃ 1019 GeV, and it has led to numerous
sensitive tests of relativity using techniques from vari-
ous subdisciplines of physics [6]. In the present work
we further this program, studying the prospects for sig-
nals of Lorentz violation using spectroscopy of hydrogen,
antihydrogen, and related systems, including deuterium,
positronium, and hydrogen molecules and molecular ions.
The methods of effective field theory offer a powerful

and general approach to describing physical phenomena
at accessible scales when the fundamental theory at a
larger scale is unknown [7]. The general realistic effective
field theory for Lorentz violation, the Standard-Model
Extension (SME) [8, 9], is built from General Relativity
and the Standard Model of particle physics by adding
to the action all coordinate-independent contractions of
Lorentz-violating operators with controlling coefficients.
Operators of larger mass dimension d can be viewed as
higher-order effects in a large-distance expansion of the
underlying physics. Since CPT violation in effective field
theory breaks Lorentz symmetry [8, 10], the SME also
provides a general description of CPT violation. The
limit of the SME restricted to operators with d ≤ 4 is
called the minimal SME, and it is power-counting renor-
malizable in Minkowski spacetime [11].

The minimal-SME terms generate striking effects in
the spectra of hydrogen and antihydrogen, including
CPT-violating signals and shifts in the hyperfine and 1S-
2S transitions that depend on sidereal time [13]. Pub-
lished searches for these effects have measured the hyper-
fine splitting using a hydrogen maser [14–16] and com-
pared the 1S-2S transition in atomic hydrogen to a ce-
sium fountain clock [17, 18]. Related experiments with
antihydrogen are being developed [19–22], and experi-
ments with hydrogen molecules and molecular ions have
been proposed as well [23]. In the context of the minimal
SME, theoretical modifications to the spectra of hydro-
gen and antihydrogen have been widely studied [13, 24–
31], while spectral shifts are also known to arise from
specialized nonminimal SME interactions with d = 5 [32]
and from d = 6 terms originating in noncommutative
quantum field theory [33, 34]. The minimal SME also
introduces CPT-violating effects in positronium decay
[35, 36].

Here, we investigate the prospects for spectroscopic
searches for Lorentz and CPT violation using hydro-
gen, antihydrogen, deuterium, positronium, and hydro-
gen molecules and molecular ions. We focus on effects
that arise from general Lorentz and CPT violation in the
propagators of electrons, protons, neutrons, and their an-
tiparticles. An analysis of this type has recently become
feasible following the detailed classification and enumera-
tion of Lorentz-violating modifications to the Dirac equa-
tion at arbitrary d [37], which includes operators of both
renormalizable and nonrenormalizable dimensions. Op-
erators of higher d are of crucial interest in several con-
texts including, for example, foundational perspectives
such as causality and stability [38, 39] or the underly-
ing pseudo-Riemann-Finsler geometry [40, 41], practi-
cal issues such as the mixing of operators of different d
through radiative corrections [42], and phenomenological
effects arising in certain theories such as supersymmetric
Lorentz-violating models [43] or noncommutative quan-
tum electrodynamics [33, 34, 44]. The spectroscopic ex-
periments proposed here therefore have potential to bear
on many aspects of Lorentz and CPT violation.
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Dimensional analysis reveals that operators with larger
d can be expected to produce signals growing with en-
ergy, whereas the spectroscopic experiments of interest
here typically involve nonrelativistic species. Remark-
ably, however, the nonrelativistic observables for Lorentz
violation turn out to be combinations of operators of ar-
bitrary d [37], while spectroscopic methods can achieve
high sensitivity, so the experiments proposed here are
competitive with other techniques. Our treatment dis-
regards possible Lorentz-violating interactions, as these
produce suppressed effects. For instance, the dominant
contributions to the various spectra obtained below are
independent of the internal electromagnetic four-vector
potential in Coulomb gauge, while any applied exter-
nal electromagnetic fields are minuscule compared to the
electron and proton masses and so their Lorentz-violating
effects are heavily suppressed. This approach is consis-
tent with other studies of both minimal and nonminimal
effects in conventional and muonic atoms [45–47]. We
also disregard possible flavor-changing effects, which in-
volve simultaneous lepton- or baryon-number violation
with Lorentz violation and so can reasonably be taken as
smaller than the effects considered here.

Including the present introduction, the main text of the
paper is divided into eight sections. In Sec. II, we initi-
ate the explicit discussion of Lorentz and CPT violation
in hydrogen by presenting the underlying theoretical cal-
culations required to analyze spectroscopic experiments.
Some basic background information about perturbation
theory involving operators of arbitrary d is provided in
Sec. II A, followed by a discussion in Sec. II B establishing
the coefficients for Lorentz violation relevant for hydro-
gen spectroscopy. Sec. II C contains the derivation of the
matrix elements for the calculation of the perturbative
energy shift due to Lorentz and CPT violation, including
both general results and analytical expressions for special
cases. In Sec. II D, we address the modifications arising
from the presence of a external magnetic field, includ-
ing the key equations underlying the resulting sidereal
and annual variations of the Lorentz- and CPT-violating
energy-level shifts.

With the theory in hand, the analysis of various exper-
imental scenarios for hydrogen spectroscopy becomes fea-
sible. This is addressed in Sec. III. We first consider the
case of free hydrogen in the absence of applied fields. The
effects of Lorentz and CPT violation on the transition
probabilities and line shapes are discussed in Sec. III A,
along with the prospects for measuring signals. We then
turn in Sec. III B to the hyperfine Zeeman spectroscopy
of hydrogen, presenting the perturbative frequency shift
and studying signals from sidereal variations and from
changes in the orientation of the applied magnetic field,
corrections due to boosts, and the prospects for a space-
based mission. This is followed in Secs. III C and III D by
an investigation of potentially observable effects in vari-
ous nL-n′L′ transitions for which precision measurement
in hydrogen is experimentally feasible. Where possible in
all these applications, we use existing data to extract first

or improved constraints on nonminimal coefficients and
estimate sensitivities attainable in future experiments.
Following the discussion of hydrogen, we turn atten-

tion in Sec. IV to searches for Lorentz and CPT viola-
tion using antihydrogen. We begin in Sec. IVA with an
overview of the perturbation theory and effects on the
spectrum. Signals in hyperfine transitions are the sub-
ject of Sec. IVB, while effects on the 1S-2S and similar
transitions are considered in Sec. IVC. We conclude the
treatment of antihydrogen in Sec. IVD with a discussion
of the prospects for an anomalous gravitational response
of antihydrogen.
Three sections are devoted to signals of Lorentz and

CPT violation in other related systems. Deuterium spec-
troscopy is considered in Sec. V. The perturbative ap-
proach adopted is presented in Sec. VA, followed in
Sec. VB by a discussion of frequency shifts relevant to
high-sensitivity spectroscopy. Observable effects from
isotropic coefficients are considered in Sec. VC, while
Sec. VD contains a discussion of the prospects for hy-
perfine measurements using a deuterium maser. Positro-
nium spectroscopy is the subject of Sec. VI, while spec-
troscopy of hydrogen molecules and related species is con-
sidered in Sec. VII. We conclude with a summary in Sec.
VIII. Throughout this paper we follow the notation of
Ref. [37], with a few exceptions noted in the text.

II. THEORY

In this section, we present the general theoretical
framework and calculations for determining the per-
turbative shifts in the hydrogen spectrum arising from
Lorentz and CPT violation. The basic framework for the
calculation is discussed, and then the symmetries of the
system are used to identify the subset of coefficients for
Lorentz and CPT violation that can contribute to mod-
ifications of the hydrogen spectrum. The general ma-
trix elements of the perturbative hamiltonian are calcu-
lated, and analytical expressions for the resulting energy
shifts are presented in simple cases. We finally address
generic effects arising in the presence of an applied mag-
netic field, including in particular the time dependence
of the energy-level shift due to sidereal and annual vari-
ations.

A. Basics

The dominant Lorentz-violating perturbations to the
spectrum of hydrogen arise from corrections to the prop-
agators of the electron e and the proton p. Introducing a
flavor index w taking values e and p, the Lagrange density
for the quantum fermion field ψw of mass mw including
all kinetic effects from Lorentz and CPT violation can be
written as [37]

L ⊃ 1
2ψw(γ

µi∂µ −mw + Q̂w)ψw + h.c., (1)
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where Q̂w is the sum of all possible terms formed by con-
tracting SME coefficients for Lorentz and CPT violation

with derivatives i∂µ. The operator Q̂w is a spinor ma-
trix. It can be expanded in Dirac matrices, converted to
momentum space, and decomposed in spherical coordi-
nates, which permits the classification and enumeration
of the corresponding effects. At each mass dimension d
and for each flavor w, only certain combinations of coef-
ficients for Lorentz violation are observable, due to the
freedom to redefine the spinor basis without affecting the
physics. Each of these combinations, called effective co-
efficients, controls a physically distinct Lorentz-violating
effect. Spectroscopy of the hydrogenic systems consid-
ered in this work offers access in principle to about half
of these effective coefficients, including some with sensi-
tivities corresponding to Planck-suppressed signals.

The leading-order perturbation δhH to the free Dirac
hamiltonian hH for the hydrogen atom can be obtained
from the Lagrange density (1) by adding the Lorentz-
violating contributions from the electron and the proton.
In the center-of-mass frame, the kinetic energies of the
electron and proton are small compared to their masses,
so it suffices to consider the hamiltonian perturbation in
the nonrelativistic limit,

δhNR
H = δhNR

e + δhNR
p . (2)

For calculational purposes, the operator δhNR
e is under-

stood to represent the tensor product of an operator act-
ing on e states with the identity operator acting on p
states, and similarly for δhNR

p . Note that the operators

δhNR
w depend on the fermion momentum p.

For much of the spectroscopic analysis that follows,
it is useful to perform a spherical decomposition of the
hamiltonian perturbation δhNR

H because tests of rotation
symmetry are the predominant focus of many searches
for Lorentz violation. The perturbation δhNR

w can be
decomposed as [37]

δhNR
w = hw0 + hwrσ · ǫ̂r + hw+σ · ǫ̂− + hw−σ · ǫ̂+, (3)

where σ = (σ1, σ2, σ3) is the vector of Pauli matrices.

The unit basis vectors ǫ̂r = p̂ ≡ p/|p|, ǫ̂± = (θ̂± iφ̂)/
√
2

are defined by introducing the usual unit vectors θ̂ and
φ̂ for the polar angle θ and azimuthal angle φ in mo-
mentum space, so that p̂ = (sin θ cosφ, sin θ sinφ, cos θ).
The component hamiltonians hw0, hwr, hw± can be ex-
panded in a series of terms involving products of pow-
ers of |p|, spin-weighted spherical harmonics sYjm(p̂) of
spin weight s, and nonrelativistic spherical coefficients for
Lorentz violation. This permits a quantitative distinc-
tion among physical effects resulting from different mag-
nitudes and orientations of the particle momenta. For
the spin-independent term the expansion gives

hw0 = −
∑

kjm

|p|k 0Yjm(p̂)Vw
NR
kjm, (4)

while for the spin-dependent terms the result is

hwr = −
∑

kjm

|p|k 0Yjm(p̂)TwNR(0B)
kjm ,

hw± =
∑

kjm

|p|k ±1Yjm(p̂)
(
iTwNR(1E)

kjm ± TwNR(1B)
kjm

)
.(5)

The quantities Vw
NR
kjm and TwNR(qP )

kjm , where the super-
scripts qP take the values 0B, 1B, 1E, are the nonrela-
tivistic spherical coefficients for Lorentz violation, which
we denote generically by Kw

NR
kjm. Each of these can be

separated into two pieces, controlling either CPT-even or
CPT-odd effects, [37]

Vw
NR
kjm = cw

NR
kjm − aw

NR
kjm,

TwNR(qP )
kjm = gw

NR(qP )
kjm −Hw

NR(qP )
kjm , (6)

following the standard convention [8] in which a- and
g-type coefficients are associated with CPT-odd opera-
tors and c- and H-type coefficients with CPT-even ones.
Expressions involving antiparticles can therefore be ob-
tained by reversing the sign of the a- and g-type coeffi-
cients. The reader is cautioned that the a- and H-type
coefficients contain contributions only from operators of
odd mass dimensions d, while the c- and g-type coeffi-
cients contain ones only from operators of even d. Note
that the mass dimension of each nonrelativistic coefficient
is 1− k.
A primary target of spectroscopic experiments is mea-

surements of the nonrelativistic spherical coefficients (6).
These coefficients are linear combinations of the complete
set of spherical coefficients for Lorentz violation, given in
Eqs. (111) and (112) of Ref. [37]. The allowed range
of the indices k, j, m and the counting of independent
coefficient components are provided in Table IV of Ref.
[37]. The subscript index k is used in the present work
instead of n to avoid confusion with the principal quan-
tum number of the atom. Note that the indices j, m
determine the rotational behavior of the spin-weighted
spherical harmonics and hence of the corresponding op-
erators for Lorentz violation, so these indices are distinct
from the angular-momentum quantum numbers J ,M as-
sociated with the atomic states. The basic properties of
the spin-weighted spherical harmonics are presented in
Appendix A of Ref. [48]. The usual spherical harmonics
are recovered when s = 0, so Yjm(θ, φ) ≡ 0Yjm(p̂).
For the special index choices jm = 00 the correspond-

ing physical effects are isotropic, and following Eq. (114)
of Ref. [37] it is convenient to adopt a ring-diacritic nota-
tion for the associated coefficients. For the applications
in this work, it suffices to define

aw
NR
k00 ≡

√
4π åNR

w,k, cw
NR
k00 ≡

√
4π c̊NR

w,k. (7)

We emphasize that the isotropic nonrelativistic coeffi-
cients åNR

w,k and c̊NR
w,k contain isotropic spherical coeffi-

cients å
(d)
k and c̊

(d)
k of arbitrarily large d. For example,
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using Eqs. (93) and (111) of Ref. [37] gives

åNR
w,0 = å

(3)
0 +m2

wå
(5)
0 +m4

wå
(7)
0 + . . . ,

åNR
w,2 = å

(5)
0 + 2m2

wå
(7)
0 + . . .+ å

(5)
2 +m2

wå
(7)
2 + . . . , (8)

and

c̊NR
w,0 = mwc̊

(4)
0 +m3

wc̊
(6)
0 +m5

w c̊
(8)
0 + . . . ,

c̊NR
w,2 =

1

2mw
c̊
(4)
0 + 3

2mw c̊
(6)
0 + 5

2m
3
w c̊

(8)
0 + . . .

+
1

mw
c̊
(4)
2 +mw c̊

(6)
2 +m3

wc̊
(8)
2 + . . . . (9)

The dominant Lorentz-violating perturbative shifts in
the spectrum of atomic hydrogen are obtained by cal-
culating the matrix elements of the perturbation hamil-
tonian (2) with respect to the unperturbed states of
the system. Lorentz-violating effects involving transi-
tions between different states appear at higher order
in this scheme. We take the unperturbed states to be
the Schrödinger-Coulomb eigenstates for a reduced mass
mr ≡ memp/(me+mp), coupled to Pauli spinors for each
particle. When the perturbative shifts are smaller than
the hyperfine structure, the total angular momentum J
of the electron and the total angular momentum F of
the atom are good quantum numbers. Other relevant
quantities for the system include the principal quantum
number n and the orbital angular momentum L.
The scales of the perturbative frequency shifts are con-

trolled by the nonrelativistic coefficients Kw
NR
kjm. The lat-

ter can be viewed as background fields in the chosen iner-
tial frame, which in the above equations for δhNR

w is the
zero-momentum frame for the hydrogen atom. However,
an Earth-based laboratory for spectroscopic experiments
is poorly suited to report coefficient measurements be-
cause it represents a noninertial frame due to the Earth’s
rotation about its axis and its revolution around the Sun.
Instead, a specified inertial frame can be used, widely
chosen to be the canonical Sun-centered frame [6, 49].
This frame adopts coordinates T,X, Y, Z with the ori-
gin of the time T chosen as the vernal equinox 2000, the
X axis pointing towards the vernal equinox, and the Z
axis aligned along the Earth’s axis of rotation. The Sun-
centered frame is inertial to an excellent approximation
on the timescale of laboratory experiments, so it provides
a standard and conveniently accessible frame for report-
ing and comparing experimental results.
The nonrelativistic spherical coefficients Kw

NR
kjm can

reasonably be taken as uniform and constant on the scale
of the solar system [8, 9] and hence are constants when ex-
pressed in the Sun-centered frame. The Earth’s rotation
and revolution therefore introduces variations with side-
real time in many coefficients expressed in the laboratory
frame, which implies time variations in physical signals
[50]. Since the Earth’s orbital speed β⊕ ≃ 10−4 is small,
the orbital motion can be disregarded for experimental
analyses focusing on searches for rotation violations. The
transformation between the Sun-centered and laboratory

frames then reduces to a simple rotation, so the spherical
decomposition summarized above offers definite calcula-
tional simplifications. Suppose for convenience the lab-
oratory frame coordinates x, y, z are specified with the
z axis pointing towards the zenith and the x axis lying
at an angle φ measured east of south. Then, the coef-

ficients Kw
NR,lab
kjm in the laboratory frame are related to

the coefficients Kw
NR,Sun
kjm in the Sun-centered frame by

Kw
NR,lab
kjm =

∑

m′

eim
′ω⊕T⊕+imφdjmm′(−χ)Kw

NR,Sun
kjm′ , (10)

where ω⊕ ≃ 2π/(24 h 56 m) is the Earth’s sidereal fre-
quency, T⊕ is the local Earth sidereal time, and χ is the
colatitude of the experiment. The little Wigner matrices
djmm′ are defined in Eq. (136) of Ref. [48]. The result
(10) reveals that the sidereal dependence of the transi-
tion frequencies is controlled by the azimuthal indices on
the coefficients contributing to the perturbation.

B. Coefficient selection rules

Before calculating explicitly the matrix elements of
δhNR

H in the unperturbed states, it is useful to study the
symmetries of the system. We show here that various
symmetries imply vanishing values for many matrix el-
ements of operators in the decomposition (3)–(5). This
identifies a subset of effective spherical coefficients that
are inaccessible at leading order via spectroscopy.
A first observation is that the unperturbed states are

parity eigenstates. It follows that only even-parity per-
turbations can contribute to the energy shift at first or-
der. Since all operators in the decomposition (3)–(5) have
definite parity [37], it is straightforward to identify the in-
accessible coefficients. For the coefficients aw

NR
kjm, cw

NR
kjm,

which are associated with the usual spherical harmon-
ics, j must be even to contribute, which turns out to
imply that k must be even as well. For the coefficients

gw
NR(qP )
kjm , Hw

NR(qP )
kjm , the parity is even if k is even and

either P = E with even j or P = B with odd j.
A second observation is that the sums over j in Eqs. (4)

and (5) can be truncated according to the angular mo-
menta of the unperturbed state of interest. The key to
implementing this truncation is the following proposition:
if Tjm transforms as a spherical-tensor operator under the
transformation generated by an angular-momentum op-
erator K with associated quantum numbers K and mK ,
then the matrix element 〈Km′

K |Tjm|KmK〉 vanishes un-
less j ≤ 2K. This result is a direct consequence of the
triangular condition |j1−j2| ≤ j3 ≤ j1+j2 of the Clebsch-
Gordan coefficients 〈j1m1j2m2|j3m3〉 and the Wigner-
Eckart theorem [51].
To illustrate the use of this proposition to truncate the

sums over j, consider first the spin-independent terms in
Eq. (4). These operators transform as spherical opera-
tors with K identified as L, J , or F . Now, if K is good
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TABLE I: Contributing nonrelativistic spherical coefficients.

Kw
NR
kjm kjm number condition C PT CPT

aw
NR
kjm 200, 22m, 400, 42m, 44m 21 j ≤ 2J − 1 − + −

cw
NR
kjm 200, 22m, 400, 42m, 44m 21 j ≤ 2J − 1 + + +

gw
NR(0B)
kjm 01m, 21m, 23m, 41m, 43m, 45m 34 j ≤ 2F − 1 + − −

gw
NR(1B)
kjm 01m, 21m, 23m, 41m, 43m, 45m 34 j ≤ 2F − 1 + − −

Hw
NR(0B)
kjm 01m, 21m, 23m, 41m, 43m, 45m 34 j ≤ 2F − 1 − − +

Hw
NR(1B)
kjm 01m, 21m, 23m, 41m, 43m, 45m 34 j ≤ 2F − 1 − − +

quantum number, then a matrix element in the unper-
turbed state can be expressed as a linear combination of
matrix elements in the states |KmK〉 with K fixed. As a
result, if the matrix elements in the states |KmK〉 van-
ish, then so does the matrix element in the unperturbed
state. For K = J , the proposition then implies that only
operators satisfying the inequality j ≤ 2J can contribute
to the energy shift. Since 2J is an odd number and since
only even values of j contribute to the energy shift as
noted above, we can express the condition on j for the
caseK = J as j < 2J . For K = L or K = F , no stronger
constraints on the allowed values of j are obtained. For
example, if F = J − 1/2 then j ≤ 2F = 2J − 1, which is
equivalent to j < 2J because j is an integer. To summa-
rize, among the spin-independent operators only those
satisfying the condition j < 2J can contribute to the en-
ergy shift of a state with angular momentum J . A sim-
ilar argument applies to the spin-dependent terms with
B-type parity, leading to the conclusion that among this
set of terms only those satisfying j ≤ 2F − 1 can con-
tribute to the energy shift of a state with total angular
momentum F .
Invariance under time reversal is another symmetry of

the system. This symmetry can be used along with the
Wigner-Eckart theorem to show that the spin-dependent
terms with E-type parity in Eq. (5) cannot contribute
to the energy shift at first order in perturbation theory.
To see this, we begin by considering a spin-dependent
operator of E-type parity having fixed j and m = 0,
which takes the schematic form

TE
j0 =

√
2
∑

k

|p|kT NR(1E)
kj0 +1Yj0(p̂)(σ

2 cosφ− σ1 sinφ).

(11)
Under time reversal p → −p and σ → −σ, so the opera-
tor transforms as TE

j0 → (−1)j+1TE
j0. Also, states trans-

form as |FmF 〉 → |F (−mF )〉 up to a phase factor, which
implies

〈FmF |TE
j0|FmF 〉 = (−1)j+1〈F (−mF )|TE

j0|F (−mF )〉.
(12)

The Wigner-Eckart theorem and the properties of
the Clebsch-Gordan coefficients permit the replacement
−mF → mF on the right-hand side of this equation, ac-
companied by a phase factor (−1)j. We thus obtain the

equality

〈FmF |TE
j0|FmF 〉 = −〈FmF |TE

j0|FmF 〉, (13)

revealing that all the matrix elements of Tj0 van-
ish. Using the Wigner-Eckart theorem again, this re-
sult can be extended to the general matrix elements
〈Fm′

F |TE
jm|FmF 〉 via the identity

〈Fm′
F |TE

jm|FmF 〉 =
〈FF |TE

j0|FF 〉
〈FFj0|FF 〉 〈FmF jm|Fm′

F 〉,
(14)

because the Clebsch-Gordan coefficient 〈FFj0|FF 〉 al-
ways differs from zero when 2F ≥ j. We can thus confirm
that 〈Fm′

F |TE
jm|FmF 〉 vanishes and hence that the spin-

dependent terms with E-type parity in Eq. (5) cannot
contribute to perturbative energy shifts.
While the various constraints above restrict the sums

over j in the decomposition (3)–(5), the sums over k re-
main unconstrained. Evaluation of the matrix elements
of operators |p|k with k > 4 reveals that they diverge
when n and L are small. This technical problem might
be resolved by a suitable regularization. However, on di-
mensional grounds the size of the matrix elements is gov-
erned by a factor (αmr)

k, where α is the fine-structure
constant. This factor heavily suppresses the resulting
energy shifts even for sizeable coefficients for Lorentz vi-
olation. For instance, a large k = 6 coefficient of order 1
GeV−5 produces a spectroscopic frequency shift of only
about a nanohertz. We therefore limit attention to k ≤ 4
in this work. This choice further restricts the allowed
values of j [37], with the maximum allowed value jmax

given as jmax = k for the spin-independent terms and
jmax = k + 1 for the spin-dependent terms of B-type
parity.
Combining all the results in this subsection, we can

identify the subset of nonrelativistic spherical coefficients
of interest for spectroscopic experiments. Table I sum-
marizes the situation for each type of coefficient. The
first column of the table lists coefficients that in princi-
ple can contribute at first order in perturbation theory
to a spectral shift of a state with quantum numbers F
and J . The second column shows the allowed values of
the triplet kjm of indices, where −j ≤ m ≤ j as usual.
The third column gives the total number of independent
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components for each type of coefficient. Since there are
two flavors for each coefficient for hydrogen, w = e and
w = p, a total of 356 independent nonrelativistic spheri-
cal components are measurable in principle via spectro-
scopic experiments on hydrogen, with each correspond-
ing to a distinct physical effect. The fourth column lists
the constraint on j for a measurement involving a state
of angular momentum J or F . The final three columns
display the C, PT, and CPT handedness of the corre-
sponding operators.
Note that among the listed coefficients only the eight

with jkm = 200 or jkm = 400 govern isotropic effects
that are spectroscopically observable. They correspond
to the coefficients åNR

w,2, å
NR
w,4, c̊

NR
w,2, and c̊

NR
w,4 given by the

definitions (7). The coefficients with jkm = 000, which
satisfy all the above criteria, have been omitted from Ta-
ble I because they produce only constant energy shifts
in a given frame and hence are undetectable via spec-
troscopy. Detecting them might be feasible, for example,
by studying anisotropies of the dispersion relation for hy-
drogen in a boosted frame, but investigating this lies out-
side our present scope. They also become detectable in
principle in the presence of interactions such as gravity
[9]. This issue is revisited in the context of studies of
the gravitational response of antihydrogen in Sec. IVD
below.

C. Matrix elements

In this subsection, we present some explicit results for
matrix elements of the perturbation hamiltonian δhNR

H

introduced in Eq. (2). For each nonrelativistic spherical
operator in δhNR

H , a given matrix element can be decom-
posed as the product of two pieces, one depending on the

principal quantum number n and the other independent
of it. In what follows, we provide general expressions for
each of these two pieces. For free-atom states with arbi-
trary total quantum number F , the energy shift cannot
be expressed in closed form due to the algebraic complex-
ities of degenerate perturbation theory. However, we can
obtain an analytical result for the cases F = 0 and F = 1.
The situation in the presence of an applied magnetic field
is discussed in Sec. II D.

1. General case

The piece of the matrix element that depends on the
principal quantum number n is given by the expectation
value of the operator |p|k in the unperturbed states. For
the cases k = 0, 2, and 4 of interest here, we find

〈|p|0〉nL = 1,

〈|p|2〉nL =
(αmr

n

)2

,

〈|p|4〉nL =
(αmr

n

)4
(

8n

2L+ 1
− 3

)
. (15)

The first of these equations reflects the normalization of
the unperturbed states. Note that only the case k = 4
depends on the angular-momentum quantum number L.

The second piece of the matrix element is independent
of n. Using the spherical decomposition, it can be ex-
pressed in terms of the Clebsch-Gordan coefficients.

To illustrate this fact, we begin by considering the spin-
independent term (4). Denoting the unperturbed states
by the ket |nFJLmF 〉, a calculation of the expectation
value of the usual spherical harmonics gives

〈nFJLmF | 0Yjm(p̂)|nFJLmF 〉 =
√

2j + 1

4π

∑

mLmJ

∑

m1m2

〈L0jm|L0〉〈LmLjm|LmL〉〈12m1LmL|JmJ〉2〈JmJ
1
2m2|FmF 〉2.

(16)
Note that the result is independent of the flavor w. In this equation, the Clebsch-Gordan coefficients involving J and
F arise from the addition of orbital and spin angular momenta. The other Clebsch-Gordan coefficients originate in
the triple integral of the spherical harmonics. This result and the Wigner-Eckart theorem in the generic form (14)
can be combined to derive the spin-independent matrix elements in the fixed-F subspace. We find

〈nFJLm′
F |he0 + hp0|nFJLmF 〉 = −

∑

wkjm

Vw
NR
kjm〈|p|k〉nL〈FmF jm|Fm′

F 〉
〈FJLF | 0Yj0(p̂)|FJLF 〉

〈FFj0|FF 〉 , (17)

which demonstrates that the calculation of the matrix elements for the spin-independent term can be reduced to a
determination of Clebsch-Gordan coefficients. A similar result holds for the spin-dependent term.
More generally, the above methods can be used to determine the matrix elements of the full perturbation δhNR

H .
Explicitly, after some calculation we find

〈nFJLm′
F |δhNR

H |nFJLmF 〉 =
∑

jm

Ajm〈FmF jm|Fm′
F 〉, (18)
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where the weights Ajm(nFJL) are given by

Ajm = −
∑

wk

〈|p|k〉nL
[
Λ
(0E)
j Vw

NR
kjm +

Λ
(0B)
j

2J + 1
TwNR(0B)

kjm − Λ
(1B)
j

(
δwe

2(L− J)
+

δwP

2(J − F )

)
TwNR(1B)

kjm

]
, (19)

with δab = 1 if a = b and δab = 0 otherwise. In this

expression, the factors Λ
(qP )
j are related to the ratio of the

expectation value of the operator and the corresponding
Clebsch-Gordan coefficient. This can be verified for the
spin-independent term by comparing Eqs. (17) and (19).
Note that the weights obey the identity

A∗
jm = (−1)mAj(−m), (20)

by virtue of the properties of the coefficients for Lorentz
violation [37].

The factors Λ
(qP )
j can be expressed explicitly in terms

of the quantum numbers of the state involved. For the

factors Λ
(0E)
0 (F, J) associated with the spin-independent

terms, we find

Λ
(0E)
0 (F, J) =

1√
4π

(21)

when j = 0, and

Λ
(0E)
j (F, J) = ij

j − 1

22j

(
1− 2j

F − J

2J + 1

)
(J − j/2)!

(J + j/2)!

×
√

(2j + 1)(2F + j + 1)!

π(2F + 1)(2F − j)!
(22)

when j = 2 or j = 4. For the factors Λ
(1B)
j (F ) associated

with the spin-dependent terms, we obtain

Λ
(1B)
j (F ) =

(
1
2 (j − 1)

)
!

√
2(1−j)/2

j!!
Λ
(0B)
j (F )

= ij−1

√
j!!(2j + 1)

(
F + 1

2 (j + 1)
)
!(2F − j)!!

2(j−1)/2π(2F + 1)
(
F − 1

2 (j + 1)
)
!(2F + j)!!

(23)

for j = 1, 3, 5. In these expressions, the double-factorial
symbol !! is defined as usual by N !! = N(N − 2) · · · 1 for
odd N and N !! = N(N − 2) · · · 2 for even N .
For convenience, Table II presents the numerical values

for some instances of the factors Λ
(qP )
j . The table lists

the numerical values of the factors for energy levels with
orbital angular momentum L ≤ 2. The left-hand side

of the table concerns the factors Λ
(0E)
j (F, J) associated

with the spin-independent perturbation, displaying their
values for j = 2, 4, J = 3

2 ,
5
2 , and F = 1, 2, 3. The

right-hand side gives values of the factors Λ
(0B)
j (F ) and

Λ
(1B)
j (F ) for spin-dependent effects, for the ranges j =

1, 3, 5 and F = 1, 2, 3.

TABLE II: Some numerical values of the factors Λ
(qP )
j .

j J F Λ(0E) j F Λ(0B) Λ(1B)

2
3

2
1 − 1

2
√
2π

1 1

√
2

3π

√
2

3π

2 −1

2

√
7

10π
2

3

5

√
2

π

3

5

√
2

π

5

2
2 −2

√
2

35π
3

6

7
√
π

6

7
√
π

3 −2

7

√
3

π
3 2 −6

5

√
2

π
−2

5

√
3

π

4
5

2
2

1√
14π

3 −2

√
6

7π
− 2√

7π

3
1

7

√
11

2π
5 3

10

7

√
3

π

2

7

√
5

π

To illustrate the methods described in this subsection,
we construct the matrix element for the perturbative en-
ergy shift in the F = 1 subspace of the ground state
J = 1/2. Inspecting Table I reveals that only the spin-
independent terms with j = 0 and the spin-dependent
terms with j = 1 can contribute, while k can take the
values 0, 2, and 4. From the general expression (18), the
matrix element δh(m′

F ,mF ) in the F = 1 subspace takes
the form

δh(m′
F ,mF ) = A00δm′

F
mF

+
∑

m

A1m〈1mF 1m|1m′
F 〉.

(24)
To determine the weight A00(11

1
20) using Eq. (19), we

need the expectation values (15) evaluated at n = 1 and

L = 0 and the factor Λ
(0E)
0 (1, 12 ) obtained from Eq. (21).

To calculate the weight A1m(11 1
20) requires the values of

Λ
(0B)
1 (1) and Λ

(1B)
1 (1) obtained from Table II. Collecting

all the pieces, we find

A00(11
1
20) =

2∑

q=0

−(αmr)
2q(1 + 4δq2)

∑

w

Vw
NR
(2q)00√
4π

(25)

for the spin-independent weight, and

A1m(11 1
20) =

1√
6π

2∑

q=0

−(αmr)
2q(1 + 4δq2)

×
∑

w

(
TwNR(0B)

(2q)1m + 2TwNR(1B)
(2q)1m

)
(26)
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for the spin-dependent one.

2. Analytical energy shifts for F = 0 and F = 1

Since the unperturbed hydrogen energy levels are
(2F +1)-fold degenerate, the perturbative corrections to
the energy levels for fixed F are obtained by the eigenval-
ues of a (2F +1)× (2F +1) matrix, which is specified by
Eq. (18). In general, these eigenvalues are determined by
the roots of a polynomial of degree 2F +1 corresponding
to the secular equation of the matrix (18). This implies
that a closed-form expression for the energy shifts at ar-
bitrary F is unattainable. However, for the special cases
F = 0 and F = 1 the secular polynomial can be solved
in closed form. An analytical expression for the energy
shifts can therefore be found, as we demonstrate next.
For simplicity, we suppress the arguments nFJL of the
weights Ajm(nFJL) in what follows.
Consider first the energy shift δǫ(n, L) for the case F =

0. Since this energy state is nondegenerate, the shift can
be obtained directly from Eq. (18). The result is

δǫ(n, L) = A00 = −
∑

wk

〈|p|k〉nL
Vw

NR
k00√
4π

. (27)

From Eqs. (19) and (21), we can infer that the weight A00

depends only on the quantum numbers n and L. In fact,
this feature holds for any F and J because the identity
〈FmF 00|Fm′

F 〉 = δmFm′
F

implies that the contribution
involving the isotropic coefficients with jm = 00 to the
matrix element of the perturbation in the fixed-F sub-
space is given by A00 times the identity matrix. The en-
ergy shift can therefore always be expressed as the sum
of contributions from the isotropic coefficients with ones
from the anisotropic coefficients, with the former being
given by A00(nL) independent of the values of F and
J . One consequence of this observation is that isotropic
coefficients can only contribute to frequency shifts for
transitions with ∆n 6= 0 or ∆L 6= 0.
The expression for the F = 1 case is more involved be-

cause it is obtained from the solution of a cubic equation.
The energy shift δǫ(n, L, J, ξ) for this case takes the form

δǫ(n, L, J, ξ) = A00 +
1− iξ

√
3

9ξ2 − 3

3

√
∆1 −

√
∆2

1 − 4∆3
0

2

+
1 + iξ

√
3

9ξ2 − 3

∆0

3

√
∆1 −

√
∆2

1 − 4∆3
0

2

, (28)

where ξ = −1, 0, 1. The quantities ∆0 and ∆1 can be
written in terms of the weights Ajm(n1JL) and Clebsch-
Gordan coefficients. The expression for ∆0,

∆0 = 9
2

∑

jm

AjmA
∗
jm

2j + 1
, (29)

explicitly shows that it is a rotational scalar because Ajm

transforms dually to A∗
jm under observer rotations. Sim-

ilarly, we can conclude from the structure of ∆1,

∆1 = −
∑

jm3

∑

m1m2

27
√
(2j + 1)(2j + 3)

2× 5j−1/2
〈jm1jm2|2m3〉

×〈2m32(−m3)|00〉Ajm1
Ajm2

A2(−m3), (30)

that it too is a rotational scalar. One way to under-
stand this is to notice that the weights Ajm transform
under observer rotations like 〈jm|, and the equation for
∆1 can be viewed as the sum of singlets 〈00| obtained
by the angular-momentum coupling of 〈jm1| with 〈jm2|
and then to 〈2m3|.
The result (28) holds for both allowed values of J .

However, its complexity reduces significantly for J = 1/2.
As can be seen from Table I, the j = 2 coefficients pro-
vide no contribution for J = 1/2 and so the weight A2m

vanishes. This implies that ∆1 = 0, thereby reducing Eq.
(28) to

δǫ(n, L, 12 , ξ) = A00 +
1√
2
ξA, (31)

where A ≡
√∑

mA∗
1mA1m. The contribution from the

anisotropic coefficients to the energy shift thus takes the
form of a linear Zeeman shift, where ξ can be interpreted
as the eigenvalues of the component of the total angu-
lar momentum F in the direction of the pseudovector
A∗

1m. In terms of the unperturbed state |n1 1
2LmF 〉, the

corresponding eigenvectors |nL 1
2ξ〉 take the form

|nL 1
20〉 =

1

A

∑

m

A1m|n1 1
2Lm〉,

|nL 1
2 (±1)〉 =

1

N±

[
A∗

11(A10 ∓A)2|n1 1
2L(−1)〉

+2(A10 ∓A)|A11|2|n1 1
2L0〉

+2A11|A11|2|n1 1
2L(+1)〉

]
, (32)

where the factors N± are normalizations.
In the expressions (27), (28), and (31) for the energy

shifts, the weights Ajm containing the nonrelativistic co-
efficients for Lorentz violation appear only in combina-
tions that are observer rotation scalars. This is a general
feature of energy shifts for any F , which can be under-
stood as follows. Recall that an observer transforma-
tion amounts merely to changing a basis, without chang-
ing the physics [8, 9]. However, to specify completely
a quantum observer transformation requires also defin-
ing its effect on the basis of states in the Hilbert space.
The definition can be chosen freely, and it is convenient
for the argument here to require quantum observer rota-
tions to leave the basis states |nFJLmF 〉 invariant. This
choice has similarities to the adoption of the Heisenberg
picture in quantum mechanics. By construction, the op-
erator δhNR

H is a scalar under observer rotations. The
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matrix elements 〈nFJLm′
F |δhNR

H |nFJLmF 〉 then explic-
itly form a rotation scalar, consistent with the notion that
the perturbed energy of the atom should be invariant un-
der observer rotations. However, the weights Ajm with
jm 6= 00 transform nontrivially under observer rotations,
so in the final expression for the energy shift they can
appear only in combinations that are rotational scalars.
In fact, the combinations are also scalars under particle
rotations, which transform the system while leaving un-
changed the coefficients for Lorentz violation. As a result,
neither observer nor particle rotations affect the expres-
sions for the energy shifts. The physical manifestation
of Lorentz violation appears as the lifting of the degen-
eracy of the unperturbed energy levels of the free atom,
reflected in the appearance of the parameter ξ, with the
size of the splitting determined by the magnitude of the
coefficients for Lorentz violation.

D. Applied magnetic field

The complications in calculating the spectral shifts for
free hydrogen arise in part from the rotational symmetry
of the unperturbed states. Applying an additional known
perturbation to the system can break this symmetry and
can thereby considerably simplify the analysis. As an ex-
ample with crucial relevance to many experimental sit-
uations, we study here some consequences of applying a
constant uniform magnetic field. We assume the associ-
ated energy shift is small compared to the scale of the
hyperfine structure but large compared to any Lorentz-
violating shifts. In this scenario, the applied magnetic
field lifts the (2F +1)-fold degeneracy, so nondegenerate
perturbation theory can be used to determine the overall
energy shifts.
Choosing for convenience the laboratory frame so that

the applied magnetic field is aligned with the z axis, the
energy shifts δǫ(nFJLmF ) of the Zeeman levels are de-
termined by the diagonal components of the matrix ele-
ments (18), which have m′

F = mF . This gives

δǫ(nFJLmF ) =
∑

j

Aj0(nFJL)〈FmF j0|FmF 〉, (33)

where the weights Aj0 are defined in Eq. (19). Only
weights with m = 0 contribute, as the Clebsch-Gordan
coefficients 〈FmF jm|FmF 〉 vanish unless m = 0.
The Clebsch-Gordan coefficients 〈FmF j0|FmF 〉 are

even functions of mF for even j and are odd functions
of mF for odd j. This implies that 〈F0j0|F0〉 = 0 for
odd values of j. However, a glance at Table I shows that
the only Lorentz-violating operators with even j produc-
ing spectroscopic contributions are spin independent. As
a result, spin-dependent Lorentz-violating terms cannot
contribute at leading order to the shift of any energy level
with mF = 0. This means, for example, that the tran-
sition frequency for any two levels with mF = 0 can at
most depend on spin-independent terms.

A key feature of an applied magnetic field is that it sets
a definite orientation for the experimental system. Since
nonzero coefficients for Lorentz violation imply a fixed
orientation in the background, generic changes of direc-
tion of the magnetic field alter its alignment with the
coefficients and so can produce corresponding changes
in the perturbative energy shifts. Possible origins of a
changing magnetic-field orientation relative to the coef-
ficients include the rotation of the Earth, the revolution
of the Earth around the Sun, and any effects in the lab-
oratory due, for example, to placing the apparatus on a
turntable. In the laboratory frame, these appear as a con-
sequence of time-dependent coefficients for Lorentz vio-
lation, as outlined in Sec. II A. The motion of the Earth
thus naturally produces sidereal and annual variations in
some energy levels and hence in certain spectroscopic fre-
quencies. Next, we present some general considerations
for these variations. More explicit experimental applica-
tions are presented in Sec. III.

1. Sidereal variations

First, consider effects arising from the Earth’s rota-
tion about its axis. In the laboratory frame with the
magnetic field along the z direction as above, the rele-

vant nonrelativistic spherical coefficients Kw
NR,lab
kjm have

m = 0 and vary with sidereal time due to the rotation.

The relationship between the coefficients Kw
NR,Sun
kjm in the

Sun-centered frame and the coefficients Kw
NR,lab
kj0 in the

laboratory frame is given by

Kw
NR,lab
kj0 =

∑

m

eimω⊕T⊕dj0m(−ϑ)Kw
NR,Sun
kjm . (34)

This differs from Eq. (10) due to the choice of the labora-
tory frame coordinates. In particular, the angle ϑ is now
the relative angle between the applied magnetic field and
the Earth’s axis of rotation. A possible constant phase
factor shifting ω⊕T⊕ has been chosen by setting the ori-
entation of the magnetic field in the XZ plane of the
Sun-centered frame at T⊕ = 0.
Combining Eqs. (33) and (34) yields the energy shift

δǫ(nFJLmF ) in the presence of an applied magnetic field
expressed in the Sun-centered frame. We find

δǫ(nFJLmF ) =
∑

jm

d
(j)
0|m|(−ϑ)〈FmF j0|FmF 〉

×
[
ReASun

j|m| cos (|m|ω⊕T⊕)

−ImASun
j|m| sin (|m|ω⊕T⊕)

]
, (35)

where the weights ASun
jm (nFJL) are defined in the Sun-

centered frame by an expression of the same form as the
weights (19).
The sidereal variations (35) induce oscillations of the

spectroscopic lines as a function of sidereal time. The
frequencies of these oscillations are harmonicsmω⊕ of the
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Earth’s sidereal frequency ω⊕, where −jmax ≤ m ≤ jmax

and jmax is the maximum j value for the two energy
levels involved in the transition. As shown in Sec. II B,
jmax is determined by the quantum numbers J and F .
Denoting by Kmax the maximum among F and J for
both energy levels, the harmonics that appear are given
by −2Kmax + 1 ≤ m ≤ 2Kmax − 1.
The above result for the harmonic frequencies of spec-

troscopic lines holds for general Lorentz violation. How-
ever, as discussed in Sec. II B, we are limiting attention in
the present work to terms with k ≤ 4. This corresponds
to the restriction j ≤ 5, as can be confirmed from Table I,
and hence involves only harmonic frequencies ω ≤ 5ω⊕.
An example generating fifth-harmonic oscillations is the
transition 2S1/2-3D

F=3
J=5/2, which is one of a family of

transitions considered in Sec. III D below. Higher har-
monics are also signals of Lorentz violation and could be
sought experimentally, but they involve more suppressed
effects.

2. Annual variations

The transformation (34) between the Sun-centered
frame and the laboratory frame holds at zeroth order
in the laboratory speed. However, the orbital motion of
the Earth around the Sun offers another source of vari-
ations for tests of Lorentz and CPT symmetry, which to
date has been used to extract constraints on SME coef-
ficients in comparatively few analyses [18, 49, 52]. Next,
we consider some leading-order boost effects.
The instantaneous Lorentz transformation from the

Sun-centered frame to the laboratory frame can be
viewed as the combination of a boost from the Sun-
centered frame to a frame comoving with the instanta-
neous laboratory frame, followed by a rotation to align
the latter two frames [49]. The required boost velocity
β is the vector sum β = β⊕ + βL of the instantaneous
Earth orbital velocity β⊕ in the Sun-centered frame and
the instantaneous velocity βL of the laboratory frame
relative to the Earth’s rotation axis. The Earth’s orbital
speed β⊕ ≃ 10−4 is much greater than the typical ro-
tation speed βL ≈ r⊕ω⊕ sinχ ≃ 10−6 for a laboratory
at colatitude χ ≃ 45◦, but both motions are considered
here as they yield distinct phenomenological effects. To
a sufficient approximation the Earth’s orbit can be taken
as circular, so the velocity β⊕ can be written as

β⊕ = β⊕ sinΩ⊕T X̂ − β⊕ cosΩ⊕T (cos η Ŷ + sin η Ẑ),
(36)

where Ω⊕ ≃ 2π/(365.26 d) is the Earth’s orbital fre-
quency, T is the time in the Sun-centered frame, and
η ≃ 23.4◦ is the angle between the XY plane and the
Earth’s orbital plane. Similarly, the velocity βL takes
the form

βL = −βL sinω⊕T⊕ X̂ + βL cosω⊕T⊕ Ŷ , (37)

where T⊕ is the local Earth sidereal time. Note that

the difference T − T⊕ is merely a phase that physically
represents a convenient choice of local time zero for a
specified tangential velocity.
One advantage to considering boost effects arises be-

cause the boost and parity operators fail to commute,
implying that parity-even operators in the laboratory
frame incorporate parity-odd ones in the Sun-centered
frame. The connection between the two sets of opera-
tors is provided by the boost velocity, which changes sign
under parity. The experimental sensitivity to parity-odd
Lorentz violation is therefore suppressed by at least a fac-
tor of 10−4, but as shown below the observable signals are
distinct. Another advantage arises because in addition to
mixing operators of different parity, the transformation
between the two frames also mixes the irreducible rota-
tion representations. This can enrich the expected signals
for Lorentz violation. For example, laboratory measure-
ments of an isotropic Lorentz-violating effect can also test
anisotropic effects in the Sun-centered frame, which then
appear combined with the boost velocity. The mixing of
irreducible rotation representations does, however, imply
a significant calculational issue for boost effects because
performing the spherical decomposition is no longer nat-
ural, yielding cumbersome transformation rules for the
spherical operators. To avoid this issue, we work here
with the cartesian basis, for which calculations are more
direct.
In the context of the applications discussed in Sec. III

below, two types of parity-even laboratory observables
are of particular interest, scalars and axial 3-vectors. For
example, the former is relevant for the 1S-2S transi-
tion, while the latter is relevant to hyperfine Zeeman
transitions. Consider first the simplest case involving
the laboratory-frame measurement of a parity-even ob-
server rotational scalar Slab such as the weight A00(nL)
in Eq. (33). The scalar Slab can be expressed in the Sun-
centered frame as

Slab = SSun + V JβJ , (38)

where V J is defined in the Sun-centered frame and trans-
forms as a vector under observer rotations. Note that V J

can receive only contributions from anisotropic parity-
odd Lorentz-violating operators in the Sun-centered
frame. Substituting for β

J using Eq. (36) then reveals
that in the laboratory frame the measurement of S ex-
hibits annual variations. Similarly, Eq. (37) predicts side-
real variations of S. The two effects have distinct experi-
mental signatures and are sensitive to different combina-
tions of the components of V J in the Sun-centered frame.
As a result, experiments performing a boost analysis on a
scalar observable can achieve interesting and distinctive
sensitivities to coefficients for Lorentz violation.
Next, we consider a measurement of the z component

Az of an observer axial 3-vector AJ in the laboratory
frame, such as the weight A10(nFJL) in Eq. (33). At

first order in βJ and in terms of quantities in the Sun-
centered frame, Az can be written as

Az = RzJASun,J +RzJβKT JK , (39)
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where T JK is defined in the Sun-centered frame and
transforms as a rank-2 pseudotensor under spatial ro-
tations. The quantity RzJ is the zth row of the rotation
matrix RjJ between the boosted frame and the labora-
tory frame, with entries given by

RzX = sinϑ cos (ω⊕T⊕ + ϕ),

RzY = sinϑ sin (ω⊕T⊕ + ϕ),

RzZ = cosϑ, (40)

where as before ϑ is the angle between the magnetic field
and the Earth’s rotation axis. The phase ϕ is the angle
between the X axis and the projection of the magnetic
field on the XY plane at T⊕ = 0. A useful perspective is
to view RzJ as a unitary vector pointing in the direction
of the applied magnetic field.
The first term in Eq. (39) is just the j = 1 component

of the right-hand side of Eq. (35), expressed in the carte-
sian basis. This produces sidereal signals as discussed in
Sec. II D 1, so it suffices here to consider the second term
RzJβKT JK in Eq. (39). To compare the pseudotensor
T JK to the spherical decomposition, it is convenient to
decompose T JK into irreducible rotation representations.
This decomposition gives

RzJβKT JK = 1
3R

zJβJTKK +RzJβKT [JK]

+RzJβK
(
T (JK) − 1

3δ
JKTLL

)
, (41)

where indices in brackets and parentheses indicate anti-
symmetrization and symmetrization, respectively, both
with a factor of 1/2.
The first term in Eq. (41) contains the trace TKK ,

which in the spherical basis corresponds to combina-
tions of nonrelativistic coefficients of B-type parity with
jm = 00. Its contribution is proportional to RzJβ

J , so
the corresponding signals can be altered significantly by
manipulating the direction of the magnetic field. For ex-
ample, if the magnetic field is chosen orthogonal to βL,

then RzJβJ
L = 0 and only annual variations arise from

this term. If instead the magnetic field is parallel to βL,

then RzJβJ = βL + RzJβJ
⊕. For more generic orienta-

tions the signal can be complicated, with coupled sidereal
and annual variations.
The contribution in Eq. (41) involving the antisymmet-

ric representation T [JK] contains nonrelativistic spherical
coefficients of E-type parity with j = 1. This term can

be viewed as being contracted with a factor Rz[JβK],
which represents the components of the cross product
of the vector RzJ with the velocity βK . If the mag-
netic field is parallel to βL, then the contributions from

SRzJβKT [JK] vary only at the annual frequency Ω⊕. If
the magnetic field is parallel to the Earth’s rotation axis,
then the configuration is insensitive to the combination
of coefficients contained in ǫZJKT JK . Generic orienta-
tions of the magnetic field again lead to coupled sidereal
and annual variations.
The final term in Eq. (41) involves the traceless sym-

metric part of the pseudotensor, which corresponds to

nonrelativistic spherical coefficients ofB-type parity with
j = 2. If the magnetic field is chosen along the Earth’s
rotation axis, the term of order β⊕ exhibits only annual
variations and the experiment is sensitive to the combi-
nations of coefficients contained in T (ZJ) and T JJ . In
this configuration, the term of order βL involves only the
fundamental frequency ω⊕. For other orientations of the
magnetic field, the signal also incorporates variations at
the second harmonic 2ω⊕.

III. APPLICATIONS

This section discusses observable experimental signals
for Lorentz and CPT violation that could appear in spec-
troscopic studies of hydrogen. We begin by addressing
the case of free hydrogen in the absence of applied fields,
characterizing the resulting level splitting and possible
experimental signals. Experiments with hyperfine Zee-
man transitions are treated next. We obtain the energy-
level and frequency shifts due to Lorentz and CPT vio-
lation and study several types of time variations in ex-
perimental signals, including sidereal and annual modu-
lations together with turntable and orbital effects. Ex-
isting experimental data are used to place constraints on
nonrelativistic coefficients. Two subsections treat spec-
troscopy involving the transitions nL-n′L′, including in
particular the 1S-2S transition. We obtain the associated
frequency shifts and discuss new constraints and the fu-
ture reach available via a self-consistent analysis or via
sidereal and annual variations.

A. Signals without background fields

In the absence of applied fields, the physical manifes-
tation of Lorentz violation in free atomic hydrogen is a
splitting of otherwise degenerate energy levels. In the
Sun-centered frame, the perturbed states can be con-
structed by diagonalizing the Lorentz violation in the
degenerate subspace. For example, as discussed in Sec.
II C 2, Lorentz violation causes the ground state of free
hydrogen to split into four sublevels in a pattern analo-
gous to hyperfine Zeeman splitting, despite the absence
of a magnetic field. At leading order, the ground states
are eigenstates of the operator A·F restricted to the cor-
responding subspace, where A is the vector formed from
the A1m coefficients in Eq. (31) and F is the total angu-
lar momentum. In this subsection, we consider prospects
for experimental investigations of this degeneracy lifting.

1. Transition probabilities

In the Sun-centered frame, the splitting of the energy
levels in free hydrogen is time independent because the
coefficients for Lorentz and CPT violation can be taken
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as constant in this frame. Suppose an experiment is de-
signed to excite transitions between these states using a
laser with a fixed polarization in the laboratory frame. In
the Sun-centered frame, the laboratory is rotating due to
the Earth’s spin and the laser polarization rotates with it.
The relative orientation between the polarization of the
laser and the split hydrogenic states therefore changes
as a function of sidereal time, affecting the transition
probabilities. This represents a unique signal of Lorentz
violation.
To see more explicitly the effect, we restrict attention

to the comparatively simple case with J = 1/2. Suppose
the laser has linear polarization aligned along the labora-
tory z axis, and suppose we want to excite the transition
between the eigenstates F = 0 and F = 1, ξ = 0 with en-
ergies fixed by Eq. (31). Using the dipole approximation,
the transition probability is proportional to the squared
magnitude of the dipole matrix element Tfi between the
initial state |i〉 and the final state |f〉, |Tfi|2 ∝ |〈i|z|f〉|2.
In terms of the basis states |nFJLmF 〉 and the weights
(26) introduced in Sec. II C, we have

|i〉 = |n0 1
2L0〉, |f〉 = 1

A

∑

m

A1m|n′1 1
2L

′m〉. (42)

These expressions are valid in any frame. The basis
|nL 1

2FmF 〉 can be taken as quantum observer invariant
under frame transformations, as discussed in Sec. II C 2,
but the weights A1m transform under rotations. In the
laboratory frame, the squared magnitude of the dipole
matrix element becomes

|Tfi|2 ∝ |〈i|z|f〉|2 =
|Alab

10 |2
A2

|〈nL 1
200|z|n

′L′ 1
210〉|

2. (43)

We assume here an adiabatic rotation so that the pertur-
bation method is valid. This is reasonable as the Earth’s
sidereal period is much greater than the timescale for
photon absorption. Finally, converting this result to the
Sun-centered frame using Eq. (10) reveals the time vari-
ation of the transition probabilities at harmonics of the
sidereal frequency ω⊕.
An interesting insight obtained from Eq. (43) is that

the sidereal variation of the transition probability can be
an unsuppressed effect, as it depends only on the ratio
of coefficients for Lorentz and CPT violation rather than
their absolute values. This distinctive feature has no par-
allel in typical experiments performed in applied fields,
such as the observations of Zeeman hyperfine transitions
discussed in Sec. III B below. The catch here is that an
experiment measuring the unsuppressed transition prob-
abilities must be able to resolve the energy splitting due
to the Lorentz and CPT violation, which itself is a sup-
pressed effect.

2. Line shapes

Since the transition probabilities vary with sidereal
time, so do the observed line shapes. To illustrate this, we

assume that the Lorentz-violating splitting is detectable
and that an ensemble of particles in the state F = 1,
ξ = 0 can be produced. If this system is exposed to
an oscillating magnetic field B = B0 cosωt, the time-
dependent perturbation can be taken as

∆h(t) = µB(geSe ·B0 + gpSp ·B0) cosωt, (44)

where µB is the Bohr magneton and gw is to the gyromag-
netic ratio of the particle of flavorw. The time t coincides
with the local Earth sidereal time T⊕ up to a phase. Note
that the frequency for the transition ∆F = −1, ∆ξ = 0
is unaffected by Lorentz violation, so it coincides with
the ground-state hyperfine-splitting frequency ω0.
Suppose now the oscillation frequency ω of the mag-

netic field is tuned near resonance, ω = ω0 +∆ω, where
∆ω ≪ ω0. For generic orientations of the field, the setup
can then be approximated as a two-state system. Us-
ing the rotating-field approximation [53], the transition
probability is given by

P(t) =
γ2

γ2 +∆ω2
sin2

(
1
2

√
γ2 +∆ω2 t

)
, (45)

where γ = (ge − gp)(B · Â). The magnetic field rotates
with the laboratory and the Earth at angular frequency

ω⊕, so in the Sun-centered frame the product B · Â and
hence γ depends on sidereal time. The explicit depen-
dence is

B̂ · Â = A10 cosϑ−
√
2 sinϑReA11 cos(ω⊕T⊕ + φ0)

+
√
2 sinϑImA11 sin(ω⊕T⊕ + φ0), (46)

where ϑ is the angle between the magnetic field and the
rotation axis of the Earth. The phase φ0 is the azimuthal
angle of the magnetic field in the Sun-centered frame at
time T⊕ = 0. Substituting this expression into Eq. (45)
determines the line shape for the transition, including its
variation with sidereal time.
The two-state approximation used above fails for con-

figurations with orthogonal or near-orthogonal B and A

because the probability of the stimulated transition with
∆ξ = 0 then becomes smaller and comparable to other
allowed transitions. None of the transitions are on reso-
nance in this scenario, so the probability for a stimulated
transition can be disregarded. For example, if A10 cosϑ
is negligible compared to the other terms in Eq. (46),

then B̂ ·Â fluctuates to zero and back, implying that the
signal for Lorentz violation includes peaks and valleys in
the transition probability as a function of the sidereal
time.

3. Prospects

The vector A is determined by the coefficients for
Lorentz and CPT violation. Assuming this vector is
nonzero and known, the amusing possibility arises that a



13

hydrogen maser could be created based on the Lorentz-
violating level splitting. Constructing the oscillating
magnetic field B to be aligned with A would generate an
approximate two-state system without the need for the
usual applied external field to break the system degen-
eracy. The necessary population inversion could be pro-
duced, for example, by overlapping the Lorentz-violating
background field with an inhomogeneous magnetic field
to select the states seeking low field. A possible advan-
tage of a Lorentz-violation maser is that the vector A is
expected to be highly homogeneous because the coeffi-
cients for Lorentz violation can be assumed uniform and
constant in the Sun-centered frame [8], so the issues for
conventional masers arising from the inhomogeneity of
the applied magnetic field would be irrelevant. However,
realizing a Lorentz-violation maser in an Earth-based
laboratory would face the challenge of overcoming the
effective sidereal oscillation of A in the laboratory due
to the Earth’s rotation. This tends to skew its alignment
with B and hence would permit the excitation of tran-
sitions between the ground state and the levels F = 1,
ξ = ±1, destroying the two-state approximation and re-
ducing the emission of coherent microwaves.

More generally, the similarities between the Lorentz-
violating splittings and conventional linear Zeeman shifts
provide an intuitive guide to prospective experimental
options. For example, transitions between the different
F = 1 sublevels could be investigated using tools like
those adopted for studies of F = 1 Zeeman transitions
in the presence of a uniform magnetic field. Current sen-
sitivities to the F = 1 Lorentz-violating splittings have
attained about 1 mHz using measurements of hyperfine
Zeeman transitions [14–16], so we can assume the res-
onance frequency between the F = 1 levels lies below
this value. One option to improve the sensitivity might
be to prepare an ensemble of atoms in the F = 1 state
and probe them with a magnetic field oscillating at a fre-
quency below 1 mHz. Assuming a mechanism to monitor
induced transitions can be implemented, then sweeping
over decreasing frequencies could lead to better sensi-
tivities to the coefficients for Lorentz violation. Note,
however, that for J > 1/2 the Lorentz-violating splitting
lacks a Zeeman-type structure, so studies of the various
associated transitions would require developing the cor-
responding phenomenology.

Another possibility is to search for line separation or
broadening arising from the Lorentz-violating level split-
tings. Suppose a transition between two states with
J = 1/2 is studied. Ideally, the Lorentz-violating split-
ting would be detected in the form of multiple reso-
nance peaks. Even if individual peaks cannot be re-
solved, the modified line shapes could be calculated and
the minimum value of the effect leading to resolvable
peaks within the particular experimental scenario could
be determined. This would correspond to a constraint
on the coefficients for Lorentz violation. Note that the
parallel to the Zeeman hyperfine splitting implies that
the putative signal for Lorentz violation can be approxi-

mated experimentally by applying to the ensemble of hy-
drogen atoms a uniform external magnetic field rotating
with sidereal frequency. Moreover, the Lorentz violation
also produces line broadening, which could be studied di-
rectly. Consider, for example, the transitions F = 0 to
F = 1 under the assumption that levels with all values
of ξ are excited with equal probability. An estimate of
the Lorentz-violating line broadening ∆E can be found
by calculating the statistical deviation arising from the
availability of levels of different ξ. Ignoring the natural
linewidth, this gives

(∆E)2 = 1
3 |A|2. (47)

The result indicates that the Lorentz-violating broaden-
ing is related to the magnitude of the vector A.

B. Hyperfine Zeeman transitions

In this subsection, we consider effects of Lorentz and
CPT violation on the hyperfine levels of hydrogen in the
presence of a weak magnetic field. The 1S1/2 level in
hydrogen is split into two sublevels, a ground state with
total atomic angular momentum F = 0 and an excited
state with F = 1. Applying a weak magnetic field further
splits the F = 1 hyperfine level into three Zeeman sub-
levels with energies determined by the eigenvalue mF of
the component of F along the magnetic field. We deter-
mine the frequency shifts from Lorentz and CPT viola-
tion, and we discuss some signals involving sidereal vari-
ations, changes of the orientation of the magnetic field,
and boosts. Signals in space-based missions and in other
hydrogenic systems are also described.

1. Frequency shift

The Lorentz-violating energy shifts of the hyperfine
Zeeman sublevels for J = 1/2, L = 0 or 1, and any n
can be obtained from Eq. (33) along with the expression
(19) for the weights A00(n1

1
2L). The result is

δǫ(mF ) = −
2∑

q=0

(αmr

n

)2q
(
1 +

(
8n

2L+ 1
− 4

)
δq2

)

×
∑

w

[
Vw

NR
(2q)00√
4π

+
mF

2
√
3π

(
TwNR(0B)

(2q)10 + 2TwNR(1B)
(2q)10

)]
,

(48)

where the quantities Vw
NR
(2q)00, TwNR(0B)

(2q)10 , TwNR(1B)
(2q)10 are

expressed in terms of nonrelativistic spherical coefficients
by Eq. (6). Note that this extends the known result for
the minimal SME [13] to include contributions from the
d = 4 coefficients gλµν along with ones involving opera-
tors of arbitrary d.
The frequency shifts for the hyperfine Zeeman transi-

tions of the ground state follow from this result. Denoting
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by ∆mF the difference between the values of mF for the
initial sublevel and the final one, we obtain

2πδν = −∆mF

2
√
3π

2∑

q=0

(αmr)
2q(1 + 4δq2)

×
∑

w

[
gw

NR(0B)
(2q)10 −Hw

NR(0B)
(2q)10

+2gw
NR(1B)
(2q)10 − 2Hw

NR(1B)
(2q)10

]
. (49)

Note that the isotropic coefficients, which are contained
in VNR

k00 and modify the energies according to Eq. (48), are
absent from this frequency shift. This agrees with the
result obtained in Sec. II C 2 that isotropic coefficients
only contribute to transitions with ∆n 6= 0 or ∆L 6= 0.
Note also that the result (49) contains the minimal-SME
limit via the restriction

gw
NR(0B)
010 + 2gw

NR(1B)
010 −Hw

NR(0B)
010 − 2Hw

NR(1B)
010

→ 2
√
3π[bw3 −mwd

w
30 −Hw

12 −mwg
w(A)
3 +mwg

w(M)
120 ],

(50)

where the superscripts (A) and (M) indicate the irre-
ducible axial and irreducible mixed-symmetry combina-
tions of the minimal-SME coefficients gwκλν , respectively
[81, 82]. The frequency shift (49) thereby matches the
result reported in Ref. [13] with only bwµ , d

w
µν , and Hw

µν

contributing at leading order, which neglects the g-type
minimal-SME coefficients as suppressed by the necessary
accompanying breaking of the electroweak SU(2)×U(1)
symmetry [8].
The expression (49) reveals that only transitions with

∆mF 6= 0 are sensitive to Lorentz violation at leading
order, independent of the operator mass dimension d.
One implication of this observation is that the standard
transition used in hydrogen masers, F = 0 → F = 1
with ∆mF = 0, is insensitive to Lorentz violation. The
Lorentz violation considered in this work involves only
propagator effects, which cannot shift the standard tran-
sition frequency because the reduced density matrices for
the spin singlet and entangled triplet are identical and so
yield identical expectation values for any operator that
acts on only one subsystem.

2. Sidereal variations

At zeroth order in the boost, the nonrelativistic spher-
ical coefficients in the laboratory frame can be expressed
in terms of coefficients in the canonical Sun-centered
frame as

Kw
NR,lab
k10 = Kw

NR,Sun
k10 cosϑ

−
√
2 ReKw

NR,Sun
k11 sinϑ cosω⊕T⊕

+
√
2 ImKw

NR,Sun
k11 sinϑ sinω⊕T⊕, (51)

which is a special case of Eq. (34). As before, ω⊕ is
the Earth’s sidereal rotation frequency, T⊕ is the sidereal

TABLE III: Constraints on the moduli of the real and imag-
inary parts of electron and proton nonrelativistic coefficients
determined from hyperfine Zeeman transitions in hydrogen
using Eq. (52).

Coefficient Constraint on

K |ReK|, |ImK|
H

NR(0B)
011 , g

NR(0B)
011 < 9× 10−27 GeV

H
NR(1B)
011 , g

NR(1B)
011 < 5× 10−27 GeV

H
NR(0B)
211 , g

NR(0B)
211 < 7× 10−16 GeV−1

H
NR(1B)
211 , g

NR(1B)
211 < 4× 10−16 GeV−1

H
NR(0B)
411 , g

NR(0B)
411 < 9× 10−6 GeV−3

H
NR(1B)
411 , g

NR(1B)
411 < 5× 10−6 GeV−3

time, and ϑ is the angle between the applied magnetic
field and the Earth’s rotation axis. Together with the
expression (49) for the frequency shift, the above relation
predicts that the hyperfine Zeeman transition frequencies
oscillate with frequency ω⊕ in the presence of Lorentz
violation. This result is in agreement with the discussion
in Sec. II D 1, with the identification Kmax = F = 1 and
hence obtaining |mmax| = 2Kmax − 1 = 1.
An experiment performed with a maser located at the

Harvard-Smithsonian Center for Astrophysics searched
for sidereal variations of the hyperfine Zeeman transitions
with F = 1 and ∆mF = ±1, finding no signal to within
±0.37 mHz at one standard deviation [14–16]. Using the
frequency shift (49) for colatitude χ ≃ 48◦, this implies
the bound

∣∣∣∣
2∑

q=0

(αmr)
2q(1 + 4δq2)

∑

w

[
gw

NR(0B)
(2q)10 −Hw

NR(0B)
(2q)10

+2gw
NR(1B)
(2q)10 − 2Hw

NR(1B)
(2q)10

]∣∣∣∣

< 9× 10−27 GeV, (52)

which constrains a subset of the nonrelativistic spherical
coefficients in the Sun-centered frame.
Intuition about the implications of this constraint can

be gained by adopting the assumption that only one co-
efficient is nonzero at a time and extracting the resulting
limits. Table III presents the constraints on individual
nonrelativistic spherical coefficients obtained in this way.
The results hold equally for electron and proton coeffi-
cients. Note that several of these lie well below the level
at which Planck-scale signals might be expected to arise
in some models.
We emphasize that this type of measurement bounds

the effects of certain Lorentz-violating operators at ar-
bitrary d, even though only the subset of nonrelativistic
spherical coefficients with k ≤ 4 and j = 1 is accessible.
This is because a nonrelativistic spherical coefficient with
j = 1 is a linear combination of an infinite subset of the
basic spherical coefficients with d ≥ 3 [37]. Note also that
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in terms of the basic spherical coefficients the experiment
has greater reach for protons than for electrons due to the
mass factors that enter the relevant linear combinations.
For example, the sensitivity to the basic spherical coeffi-
cient at mass dimension d and with k = 0 is numerically
that of the corresponding nonrelativistic spherical coeffi-
cient suppressed by a factor of (0.94)3−d/3 for the proton
and a factor of (5.1× 10−4)3−d/3 for the electron.

3. Changes of magnetic-field orientation

The bound (52) is insensitive to nonrelativistic spher-
ical coefficients with m = 0 in the Sun-centered frame
because these coefficients enter the frequency (51) with-
out the dependence on T⊕ necessary for the experimental
signal. However, Eq. (51) predicts that these coefficients
do change with the angle ϑ between the magnetic field
and the Earth’s rotation axis. An experiment involving a
changing magnetic-field orientation is therefore of inter-
est. One possibility along these lines would be to place
the apparatus on a rotating turntable.
For simplicity, suppose the rotation axis of the

turntable points towards the zenith and the magnetic
field is perpendicular to it. Defining the laboratory-frame
z axis to lie along the magnetic field, the laboratory-
frame coefficients are given in terms of Sun-frame coeffi-
cients by

Kw
NR,lab
k10 = −Kw

NR,Sun
k10 sinχ cosTrωr

−
√
2 ReKw

NR,Sun
k11 cosχ cosωrTr cosω⊕T⊕

+
√
2 ImKw

NR,Sun
k11 cosχ cosωrTr sinω⊕T⊕

+
√
2 ReKw

NR,Sun
k11 sinωrTr sinω⊕T⊕

+
√
2 ImKw

NR,Sun
k11 sinωrTr cosω⊕T⊕, (53)

where χ is the colatitude of the experiment and ωr is the
angular rotation frequency of the turntable. For conve-
nience, we have introduced a time Tr shifted relative to
T⊕, with the origin Tr = 0 chosen to be the time when
the magnetic field points south. In this scenario, the
coefficients with m = 0 in the Sun-centered frame are in-
dependent of the sidereal frequency, producing variations
at the turntable angular frequency ωr of the coefficients
in the laboratory frame and hence of the measured tran-
sition frequencies. The attainable sensitivity to m = 0
coefficients in an experiment of this type is expected to
be similar to the sensitivities presented in Table III for
the corresponding m = 1 coefficients.

4. Annual variations

As described in Sec. II D 2, the inclusion of boosts in
the analysis implies the appearance of contributions from
parity-odd operators. The frequency shift in the labora-
tory frame transforms as the z component of a vector, so
for present purposes we denote it as δνz. Its expression

TABLE IV: Values of the pseudotensors T
(d)JK
w in Eq. (54)

for the electron and proton in atomic hydrogen for 3 ≤ d ≤ 8.

d V
(d)J
w

3 H̃JK
w,eff

4 −2mwg̃
K(TJ)
w,eff

5 3m2
wH̃

J(TKT )
w,eff + (αmr)

2H̃
J(KLL)
w,eff

6 −4m3
w g̃

J(TTTK)
w,eff − 4(αmr)

2mw g̃
J(TLLK)
w,eff

7 5m4
w H̃

J(TTTTK)
w,eff + 10(αmr)

2m2
w H̃

J(TTLLK)
w,eff

+5(αmr)
4H̃

J(KLLMM)
w,eff

8 −6m5
w g̃

J(TTTTTK)
w,eff − 20(αmr)

2m3
w g̃

J(TTTLLK)
w,eff

−30(αmr)
4mw g̃

J(KTLLMM)
w,eff

in the Sun-centered frame takes the generic form (39) at
first order in the boost velocity β,

2πδνz = 2πRzJδνSun,J+∆mF

∑

d f

RzJT (d)JK
w (βK

⊕+βK
L ),

(54)

where β⊕, β
J
L, andR

zJ are defined in Eqs. (36), (37), and

(40), respectively. The form of the pseudotensor T
(d)JK
w

depends on the operator mass dimension d and the par-
ticle flavor w.
Table IV provides explicit expressions for T

(d)JK
w with

3 ≤ d ≤ 8 in terms of the particle rest masses mw, the
fine-structure constant α, the reduced massmr of the sys-
tem, and the effective cartesian coefficients for Lorentz
violation defined in Eqs. (27) and (28) of Ref. [37]. Only
leading-order nonrelativistic contributions from each co-
efficient are included. In the table, parentheses around
sets of n indices indicate total symmetrization with re-
spect to all indices enclosed, including a factor of 1/n!.
Examining Eq. (54) and Table IV reveals that only

the first index of each effective cartesian coefficient is
contracted with the rotation matrix. This feature arises
because only the first two indices of the g- and H-type
effective cartesian coefficients are coupled to the particle
spin via contraction in the original Lagrange density [37].
The applied magnetic field interacts with the magnetic
dipole moment of the particle and so fixes the particle’s
spin orientation in the laboratory frame. The spin fol-
lows any adiabatic rotation of the magnetic field, which
thereby changes the value of the contraction between the
coefficients and the spin. However, the g- and H-type
effective cartesian coefficients are antisymmetric on the
first two indices, so the result can always be interpreted
as a rotation associated with the first index on any coef-
ficient.
The cartesian basis is convenient for boost corrections.

However, as outlined in Sec. II D 2, we can decompose

T
(d)JK
w in terms of irreducible representations of the ro-

tation group. These irreducible representations are asso-
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ciated with spherical coefficients. For example, for mass
dimensions d = 3 and d = 4, we obtain

ǫzJKT
(3)JK
w =

√
3

π
Hw

(3)(1E)
110 ,

ǫzJKT
(4)JK
w = −mw

√
3

π
gw

(4)(1E)
110 ,

T (4)JJ
w = −mw

√
9

π
gw

(4)(0B)
100 ,

T (4)zz
w − 1

3
T (4)JJ
w = −mw

√
5

π
gw

(4)(0B)
120 . (55)

These and similar expressions for d > 4 can be used to
relate results in the cartesian and spherical bases.

As discussed in Sec. II D 2, orienting the magnetic field
parallel to the Earth’s rotation axis decouples the side-
real and annual variations of the measured frequency,
with sidereal variations associated to terms of order βL
and annual variations to terms of order β⊕. At first order
in the boost parameter, the frequency shift for this orien-
tation of the magnetic field is given in the Sun-centered
frame by

δνz = δνSun,Z − ∆mF

2π

∑

wd

[
T (d)ZZ
w β⊕ sin η cosΩ⊕T

+T (d)ZY
w (β⊕ cos η cosΩ⊕T − βL cosω⊕T⊕)

+T (d)ZX
w (βL sinω⊕T⊕ − β⊕ sinΩ⊕T )

]
,

(56)

where Ω⊕ ≃ 2π/(365.26 d) is the Earth orbital frequency,
η ≃ 23.5◦ is the Earth’s orbital tilt, and χ is the colati-
tude of the experiment.

As an illustration of the expected sensitivity of an ex-
periment in this configuration, suppose a search finds no
signal for the annual variations δνz at the level of ±1
mHz. Then, constraints of order 10−23 GeV would be

implied on T
(d)JK
w . For minimal coefficients, this corre-

sponds to limits of order 10−23 GeV on HTX and HTY

in the electron and proton sectors, limits of order 10−19

on gXY Z , gYXX , gXY Y , gXTT and gY TT in the electron
sector, and limits of order 10−23 on the corresponding
coefficients in the proton sector. For the nonminimal sec-
tor, the disparity between the electron and proton masses
implies that the experiment is more sensitive to proton
coefficients. For example, limits on the d = 8 coefficients
proportional to m5

w would be about 10−23 GeV−4 in the
proton sector and about 10−6 GeV−4 in the electron sec-
tor.

For other orientations of the magnetic field, one read-
ily isolated signal of Lorentz violation associated with the
boost correction is the twice-sidereal variation of the fre-
quency, which decouples from other variations. We can

express this term as

δν2ω⊕
=

1

4π
βL∆mF sinϑ

×
∑

wd

[
cos 2ω⊕T⊕(T

(d)XY
w + T (d)YX

w )

+ sin 2ω⊕T⊕(T
(d)Y Y
w − T (d)XX

w )
]
, (57)

where ϑ is the angle between the magnetic field and the
Earth’s rotation axis. For simplicity, the direction of the
magnetic field at T⊕ = 0 is taken to lie in theXZ plane in
the Sun-centered frame, which eliminates a phase shift.
Assuming an experimental search establishes no signal
for the second-harmonic sidereal variations δν2ω⊕

at the
level of ±1 mHz, then constraints of order 10−21 GeV

would be implied for T
(d)JK
w . For minimal coefficients,

this corresponds to sensitivities of order 10−18 to gZXY ,
gY ZX , gZXX and gZY Y in the electron sector and of order
10−21 for the same coefficients in the proton sector.

5. Space-based experiments

Laboratory measurements of boost effects provide no
control over the orbital and rotational motion of the
Earth. As a result, space-based experiments offer broader
options for studies of the full range of possible boost ef-
fects due to the choice and variability of orbital and ro-
tational motions for various space platforms. Here, we
consider some prospects for measurements with a space-
based hydrogen maser. For example, the Atomic Clock
Ensemble in Space (ACES) mission [54] incorporates a
hydrogen maser in the payload to be delivered and op-
erated on the International Space Station (ISS). As dis-
cussed in Sec. III B 1, conventional maser transitions with
∆mF = 0 provide no leading-order sensitivity to ef-
fects from Lorentz violation. We therefore assume the
maser is configured instead to achieve sensitivity to tran-
sitions with ∆mF 6= 0, perhaps using a double-resonance
technique [55] similar to that already successfully imple-
mented in the laboratory for tests of Lorentz and CPT
invariance [14–16].
In the context of the minimal SME, specifics for analyz-

ing data from space missions studying Lorentz violation
are discussed in Ref. [56]. In the presence of nonmin-
imal operators, the expected experimental signals have
the same generic behavior because they too are governed
by the form (39). As a result, using the information in
Table IV permits the measurement of nonminimal co-
efficients as well. Satellite experiments offer a particu-
lar advantage for this purpose because the boost of the
space platform differs from the boost of laboratory exper-
iments on the Earth. More explicitly, consider the term
RzJβKT JK in Eq. (39). The rotation matrix can be al-
tered by changing the orientation of the magnetic field
in both Earth- and space-based experiments, producing
sensitivity to the combinations βKT JK . However, space-
based experiments can vary the boost βK more broadly
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as well, which offers the potential to disentangle more
components of T JK .
For space-based experiments, the frequency shift takes

the same form as Eq. (54) but with modified expressions
for the rotation matrix and boost parameter. For simplic-
ity, suppose the applied magnetic field is oriented parallel
to the direction of propagation of the satellite relative to
the center of mass of the Earth, and approximate the or-
bit as circular. This configuration could in principle be
realized in an experiment on the ISS, for example. We
can then view the instantaneous components RzK of the
rotation matrix as forming a unitary vector parallel to
the satellite velocity βs. It follows that RzJβJ

s = βs,
where βs is the average satellite speed, and also that
ǫJKLR

zJβK
s = 0. Comparing these results with Eq. (41)

reveals that only the symmetric piece of T JK varies with
the direction of the boost relative to the Earth. Note that
other orientations of the magnetic field relative to the di-
rection of motion would introduce variations involving
the trace and antisymmetric pieces of T JK .
For the parallel configuration, an explicit calculation

reveals that the term in the frequency that depends on
βs varies only at the second harmonic 2ωs of the mean
satellite orbital angular frequency ωs. The form of this
term is

δν2ωs
=

∆mF

16π

∑

wd

βs(As
(d)
w sin 2ωsTs +Ac

(d)
w cos 2ωsTs),

(58)
where Ts is a reference time in the Sun-centered frame
chosen such that Ts = 0 when the satellite crosses the
equatorial plane on an ascending orbit. The amplitudes
As and Ac are given by

As
(d)
w = 4 cos ζ sin 2α(T (d)XX

w − T (d)Y Y
w )

−8 cos ζ cos 2α T (d)(XY )
w

−8 sin ζ cosα T (d)(ZX)
w

+8 sin ζ sinα T (d)(Y Z)
w ,

Ac
(d)
w = −2 sin2 ζ(T (d)XX

w + T (d)Y Y
w − 2T (d)ZZ

w )

−2(3 + cos 2ζ) sin 2α T (d)(XY )
w

−(3 + cos 2ζ) cos 2α(T (d)XX
w − T (d)Y Y

w )

+4 sin 2ζ cosα T (d)(YZ)
w

−4 sin 2ζ sinα T (d)(XZ)
w , (59)

where ζ is the angle between the satellite orbital axis and
the Earth’s rotation axis, and α is the azimuthal angle
between the satellite’s orbital plane and the X axis in
the Sun-centered frame.
Direct inspection of the result (58) for the satellite ex-

periment demonstrates that distinct combinations of co-
efficients appear relative to the frequency shift (57) in-
volving the second harmonic of the sidereal frequency
for an Earth-based experiment. Note that for a ground-
based experiment at colatitude χ the frequency is pro-
portional to βL sinχ, which is the tangential speed of the
laboratory relative to the Earth’s axis of rotation. This

speed is an order of magnitude smaller than the speed
βs of a satellite such as the ISS relative to the Earth.
This shows that an experiment realized on a space plat-
form is more sensitive to this type of variation as well
as offering access to more coefficient components that a
ground-based counterpart.

C. nS1/2-n
′S1/2 and nS1/2-n

′P1/2 transitions

We next turn attention to the effects of Lorentz and
CPT violation on high-precision studies of the hydrogen
transitions with J = 1/2 and ∆J = 0, and in particu-
lar the transitions nS1/2-n

′S1/2 and nS1/2-n
′P1/2. The

most prominent of these is perhaps the 1S-2S transition,
which has recently been measured to a relative uncer-
tainty of 4.2× 10−15 [57]. Other transitions of this type
that are measured to high precision include [58] the clas-
sical 2S1/2-2P1/2 Lamb shift [59], the 1S1/2-3S1/2 tran-
sition [60], several 2S1/2-nS1/2 transitions [61–63], and
the 2S1/2-4P1/2 transition [64]. In this subsection, we
first present a general expression for the frequency shifts
due to Lorentz and CPT violation. We then outlining the
extraction of constraints by matching theoretical expec-
tations to experimental results and by studying sidereal
and annual variations involving boosts.

1. Frequency shift

In searching for most effects of Lorentz and CPT viola-
tion, the absolute sensitivity of an experiment is of more
significance than its relative precision because all nonrel-
ativistic coefficients for Lorentz and CPT violation carry
mass dimensions. It is therefore reasonable to neglect the
contribution from the spin-dependent coefficients to Eq.
(49) for any of the hydrogen transitions of interest here,
as the attainable absolute sensitivity is significantly be-
low that accessible to the hyperfine Zeeman transitions.
For example, the long lifetime of the 2S1/2 state and the
impressive relative precision achieved on the 1S-2S tran-
sition [57] yields the lowest absolute uncertainty of about
10 Hz among the optical transitions in hydrogen, but
this remains four or more orders of magnitude below the
absolute sensitivity reached in hyperfine measurements.
Studies of optical transitions involving variations with
sidereal time and colatitude at zeroth order in the boost
are therefore of lesser interest.
In contrast, the nS1/2-n

′S1/2 and nS1/2-n
′P1/2 transi-

tions offer sensitivity to isotropic coefficients for Lorentz
and CPT violation that cannot be acessed via Zeeman
hyperfine transitions. For example, Table I reveals that
only coefficients with j = 0 and j = 1 contribute to the
1S-2S transition. Effects involving the coefficients with
j = 1 can be neglected as above, but those involving the
isotropic components with j = 0 are of definite interest.
We therefore proceed in this subsection under the as-
sumption that any transition with ∆J = 0 and J = 1/2
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is sensitive only to isotropic coefficients in the laboratory
frame.
Within this scenario, we find that in the laboratory

frame the frequency shift of any hydrogen transition n, L-
n′, L′ with J = 1/2, ∆J = 0 due to Lorentz and CPT
violation can be written as

2πδν = 2mr(εn − εn′)
∑

w

(̊cNR
w,2 − åNR

w,2)

−4m2
r

[
ε2n

(
8n

2L+ 1
− 3

)
− ε2n′

(
8n′

2L′ + 1
− 3

)]

×
∑

w

(̊cNR
w,4 − åNR

w,4), (60)

where εn ≡ −α2mr/2n
2. Note that the quantities Vw

NR
k00

contain only isotropic coefficients, all of which are ab-
sent in the analogous expression (49) for the frequency
shift of the hyperfine Zeeman levels. Also, only contribu-
tions from coefficients with k ≥ 2 occur, a result consis-
tent with previous conclusions that minimal coefficients
have no effect on the 1S-2S transition at leading order in
Lorentz and CPT violation [13, 29]. We remark in pass-
ing that contributions to the 1S-2S transition are known
to appear when higher-order corrections in minimal co-
efficients are included [17, 29].

2. Self-consistent analysis

At leading-order in β⊕, the transformation of isotropic
coefficients from the laboratory frame to the Sun-
centered frame is the identity map, Klab

k00 → KSun
k00 . The

expression (60) for the frequency shift of any hydrogen
transition n, L → n′, L′ with J = 1/2, ∆J = 0 therefore
also holds in the Sun-centered frame. At zeroth order in
the boost, the result represents a constant shift in the
transition frequency. However, a tiny constant frequency
shift is challenging to measure experimentally.
One approach to studying the shift (60) is to com-

pare the experimental data to the theoretical prediction
for conventional Lorentz-invariant physics. To date, the
available experimental data all appear consistent with
theoretical expectations within the 10 Hz absolute uncer-
tainty. However, making a definitive theoretical predic-
tion requires knowledge of constants such as the Rydberg
constant and the proton radius, which at present are also
determined via hydrogen spectroscopy. For example, the
contribution due to the coefficients Vw

NR
200 acts to produce

a shift δR∞ in the Rydberg constant, given by

δR∞ =
4πm2

r

me
R∞

∑

w

(̊cNR
w,2 − åNR

w,2). (61)

Analogously, the contribution due to the coefficients
Vw

NR
400 produces a change δνLamb in the classical Lamb

shift, given by

2πδνLamb = − 2
3 (αmr)

4
∑

w

(̊cNR
w,4 − åNR

w,4), (62)

which could change the proton radius determined by hy-
drogen spectroscopy. This presents a self-consistency
issue for direct comparison of experiment with the-
ory, as the theoretical prediction based on Lorentz-
invariant physics cannot be immediately disentangled
from Lorentz-violating effects on the hydrogen spectrum.
Techniques to avoid this issue are possible, at least in

principle. One option could be to measure the coefficients
for Lorentz and CPT violation by comparing several tran-
sitions. For example, a best fit to the shift (60) could
be performed. A related option is to perform a careful
self-consistent comparison. In practice, the present lim-
iting absolute uncertainty of order 10 kHz on the various
transitions is likely to lead to maximal attainable sensi-
tivities of about 10−7 GeV−1 on coefficients with k = 2
and of about 105 GeV−3 on ones with k = 4. Perform-
ing an analysis of this type remains an interesting open
possibility to set first or improved constraints on several
coefficients. Moreover, the efforts underway to improve
the data from hydrogen spectroscopy with an eye to a
more precise determination of the Rydberg constant and
the proton radius [65–69] offer the potential for substan-
tially improved future sensitivities on Lorentz and CPT
violation.

3. Sidereal and annual variations due to boost corrections

As described in Sec. II D 2, isotropic terms in the lab-
oratory frame can be used to study anisotropies in the
Sun-centered frame by incorporating boost corrections
in the analysis. Consider, for example, the 1S-2S tran-
sition. Using the expression (38), the frequency shift δν
due to Lorentz and CPT violation in the laboratory frame
can be converted to the Sun-centered frame, giving

2πδν = 2πδνSun +
∑

wd

V (d)J
w (β⊕ + βL)

J . (63)

The first term on the right-hand side is the constant shift
discussed in Sec. III C 2. The second term is suppressed
by boost factors but offers interesting prospects for mea-
suring anisotropic coefficients in the Sun-centered frame.
Analogous results for other transitions can also be ob-
tained.
The boost factors in Eq. (63) generate time variations

in the 1S-2S frequency. The dependence of δν on the
Earth’s velocity β⊕ introduces annual variations given
by

V (d)J
w βJ

⊕ = β⊕
[
sinΩ⊕T V (d)X

w

− cosΩ⊕T (cosη V
(d)Y
w + sin η V (d)Z

w )
]
, (64)

where Ω⊕ is the Earth orbital frequency. The depen-
dence on the laboratory velocity βL produces sidereal
variations, given by

V (d)J
w βJ

L = βL(cosω⊕T⊕ V (d)Y
w −sinω⊕T⊕ V (d)X

w ), (65)
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TABLE V: Values of the vectors V
(d)J
w in Eq. (63) for the

electron and proton in atomic hydrogen with 5 ≤ d ≤ 8.

d V
(d)J
w

5 3
4
(αmr)

2(2aw
(5)TTJ
eff + aw

(5)KKJ
eff )

6 −3(αmr)
2mw(cw

(6)TTTJ
eff + cw

(6)TKKJ
eff )

7 5
2
(αmr)

2m2
w(2aw

(7)TTTTJ
eff + 3aw

(7)TTKKJ
eff )

+ 67
16
(αmr)

4aw
(7)KKLLJ
eff

8 − 15
2
(αmr)

2m3
w(cw

(8)TTTTTJ
eff + 2cw

(8)TTTKKJ
eff )

− 201
8
(αmr)

4mwcw
(8)TKKLLJ
eff

where ω⊕ is the Earth sidereal frequency.

Table V provides explicit expressions for V
(d)J
w with

5 ≤ d ≤ 8 in terms of the rest masses mw of the particles
of flavor w = e and w = p, the fine-structure constant
α, the reduced mass mr of the system, and the effec-
tive cartesian coefficients for Lorentz violation defined
in Eq. (27) of Ref. [37]. Only leading-order contributions
from each coefficient are included. Note that all the spin-
independent minimal coefficients leave unaffected the 1S-
2S frequency at leading order in the nonrelativistic limit

[13, 29], so both V
(3)J
w and V

(4)J
w vanish at this order.

Studies at subleading nonrelativistic order are also of
interest. For example, an experimental search for annual
variations of the 1S-2S transition frequency has been

used to measure the coefficients c
(TJ)
e in the minimal

SME to parts in 1011 [18]. We can reinterpret the results
in terms of the nonrelativistic coefficients and thereby
extract first measurements of a variety of nonminimal

coefficients. At this order, the restriction of V
(4)J
w to the

coefficients c
(TJ)
e in the electron sector of the minimal

SME gives

∑

wd

V (d)J
w = 5

4α
2mec

(TJ)
e . (66)

Adopting this relation, the results in Eq. (4) of Ref. [18]
generalize to

∑

wd

V (d)X
w = −(5.3± 3.2)× 10−19 GeV (67)

and
∑

wd

(
2.3V (d)Y

w + V (d)Z
w

)
= −(1.1± 2.3)× 10−18 GeV.

(68)
We can now use the results in Table V to extract at-
tained sensitivities to nonminimal cartesian coefficients
in the electron and proton sectors. Table VI displays
the resulting sensitivities to the absolute values of carte-
sian a- and c-type coefficients for 5 ≤ d ≤ 8. As before,
we adopt the standard assumption that only one coeffi-
cient is nonzero at a time. The first column of this table

TABLE VI: Sensitivities to the absolute value of nonminimal
cartesian coefficients for 5 ≤ d ≤ 8 from Eqs. (67) and (68).

Coefficient J Electron Proton

K(d)νµ1...µd−3

eff

(
GeV4−d

) (
GeV4−d

)

a
(5)TTJ
eff X < 3.4 × 10−8 < 3.4× 10−8

Y < 5.6 × 10−8 < 5.6× 10−8

Z < 1.3 × 10−7 < 1.3× 10−7

a
(5)KKJ
eff X < 6.7 × 10−8 < 6.7× 10−8

Y < 1.1 × 10−7 < 1.1× 10−7

Z < 2.5 × 10−7 < 2.5× 10−7

c
(6)TTTJ
eff X < 3.3 × 10−5 < 1.8× 10−8

Y < 5.5 × 10−5 < 3.0× 10−8

Z < 1.3 × 10−4 < 6.9× 10−8

c
(6)TKKJ
eff X < 3.3 × 10−5 < 1.8× 10−8

Y < 5.5 × 10−5 < 3.0× 10−8

Z < 1.3 × 10−4 < 6.9× 10−8

a
(7)TTTTJ
eff X < 3.9 × 10−2 < 1.1× 10−8

Y < 6.5 × 10−2 < 1.9× 10−8

Z < 0.15 < 4.4× 10−8

a
(7)TTKKJ
eff X < 2.6 × 10−2 < 7.6× 10−9

Y < 4.3 × 10−2 < 1.3× 10−8

Z < 0.1 < 2.9× 10−8

a
(7)KKLLJ
eff X < 8.7 × 102 < 8.7× 102

Y < 1.5 × 103 < 1.5× 103

Z < 3.4 × 103 < 3.4× 103

c
(8)TTTTTJ
eff X < 51 < 8.1× 10−9

Y < 85 < 1.4× 10−8

Z < 2.0 × 102 < 3.1× 10−8

c
(8)TTTKKJ
eff X < 25 < 4.1× 10−9

Y < 43 < 6.8× 10−9

Z < 98 < 1.6× 10−8

c
(8)TKKLLJ
eff X < 2.8 × 105 < 1.5× 102

Y < 4.7 × 105 < 2.6× 102

Z < 1.1 × 106 < 6.0× 102

lists the cartesian coefficient and the second column its
component. The third and fourth columns contain the
resulting constraints in the electron and proton sectors,
respectively.

In contrast to tests using annual variations, sidereal-
variation studies of the 1S-2S transition remain unex-
plored to date. While this type of experiment is expected
to be about two order of magnitude less sensitive to the

vectors V
(d)J
w , different combinations of coefficients for
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Lorentz and CPT violation are involved. Pursuing this
possibility remains an interesting open avenue for future
research.

D. nS1/2-n
′P3/2 and nS1/2-n

′D transitions

The interest in improving the experimental values
of the Rydberg constant and the proton radius has
spurred the development of high-precision spectroscopy
with atomic hydrogen. Experiments have measured or
plan to study the transitions 2S1/2-nP3/2 [64–67], 1S1/2-
3D [68], and 2S1/2-nD [61–63, 69]. The absolute uncer-
tainties achieved for the corresponding frequencies are
typically in the 10 kHz range, reaching values as low as
about 1 kHz in some cases [58].
In the context of searching for Lorentz and CPT vi-

olation, the sensitivities of these measurements to the
nonrelativistic spherical coefficients with j = 0 and j = 1
are weaker than those from hyperfine Zeeman and 1S-2S
transitions. However, a glance at Table I reveals that the
involvement in a transition of a level with J ≥ 3/2 or
F ≥ 3/2 means that nonrelativistic spherical coefficients
with j ≥ 2 can be measured. For example, a transition
to a state nD with F = 3 could be sensitive to all the
coefficients with k ≤ 4 contributing to the matrix ele-
ment (18). The nS1/2-n

′P3/2 and nS1/2-n
′D transitions

therefore offer excellent prospects for studying certain ef-
fects from Lorentz and CPT violation that otherwise are
difficult to observe.
The Lorentz-violating perturbative corrections to a

specific frequency of interest depend on the particular de-
tails of the experiment. For example, the magnitudes of
applied fields and the nature of the measurement need to
be considered to obtain expressions for the corrections.
For an experiment sensitive to the hyperfine structure
with the hyperfine energy dominating all perturbations,
the Lorentz-violating corrections may be obtained from
the matrix elements (18). Comparatively simple expres-
sions can be obtained in some cases, as illustrated for a
weak applied magnetic field in Sec. II D. In this scenario,
the signals for Lorentz and CPT violation are similar
to those discussed in previous sections of this work, in-
cluding sidereal and annual variations of the measured
frequency.
For definiteness and simplicity, we limit attention here

to the scenario with a weak applied magnetic field. The
analysis of experiments with more involved configura-
tions, which can often include large applied Zeeman or
Stark fields, is of substantial interest but lies outside our
present scope. Nonetheless, the discussion here demon-
strates the potential for discovery in these types of ex-
periments and serves to motivate future investigations of
Lorentz- and CPT-violating signals using other experi-
mental configurations.
High-precision spectroscopy of atomic hydrogen typi-

cally concerns transitions involving the 1S ground state
or the metastable 2S state. The Lorentz- and CPT-

TABLE VII: Potential sensitivities from sidereal variations to
the moduli of the real and imaginary parts of electron and
proton nonrelativistic coefficients in Table I.

KNR
kjm K values nLF

J Sensitivity

aNR
22m, cNR

22m J ≥ 3/2 2P 2
3/2 6× 10−8 GeV−1

H
NR(0B)
23m , g

NR(0B)
23m F ≥ 2 2P 2

3/2 2× 10−7 GeV−1

H
NR(1B)
23m , g

NR(1B)
23m F ≥ 2 2P 2

3/2 1× 10−7 GeV−1

aNR
42m, cNR

42m J ≥ 3/2 2P 2
3/2 7× 103 GeV−3

H
NR(0B)
43m , g

NR(0B)
43m F ≥ 2 2P 2

3/2 2× 104 GeV−3

H
NR(1B)
43m , g

NR(1B)
43m F ≥ 2 2P 2

3/2 1× 104 GeV−3

aNR
44m, cNR

44m J ≥ 5/2 3D3
5/2 7× 104 GeV−3

H
NR(0B)
45m , g

NR(0B)
45m F ≥ 3 3D3

5/2 7× 104 GeV−3

H
NR(1B)
45m , g

NR(1B)
45m F ≥ 3 3D3

5/2 3× 104 GeV−3

violating corrections to these levels have been discussed
in previous subsections, so the discussion here focuses
on the energy corrections to the nP3/2 and nD states.
The nonrelativistic spherical coefficients that can con-
tribute to the corrections are displayed in Table I. In
the Sun-centered frame and at zeroth order in the boost,
the explicit form of the energy corrections in the pres-
ence of a weak magnetic field is given by Eq. (35). The
weights ASun

jm (nFJL) are specified by the result (19) with

the factors Λ
(qP )
j given for J ≤ 5/2 in Table II, while the

expectation values 〈|p|k〉nL are provided in Eq. (15).
The expression (35) displays the sidereal variations in

the energy shifts. Any nonrelativistic spherical coefficient
KNR

kjm contributing to the shift introduces oscillations at
the mth harmonic of the sidereal frequency ω⊕. The
allowed harmonics are determined by J and F , as de-
scribed in Sec. II D 1. As an explicit example, consider a
transition to a state nDF=2

5/2 . Table I shows that contribu-

tions arise from spin-independent terms with j = 0, 2, 4
and spin-dependent ones with j = 1, 3. We therefore
can expect variations up to the fourth harmonic of the
sidereal frequency. The first harmonic receives contribu-
tions from coefficients with 1 ≤ j ≤ 4, the second from
2 ≤ j ≤ 4, the third from 3 ≤ j ≤ 4, and the fourth only
from j = 4. Table I also shows the relation between the k
and j indices. For example, only coefficients with k ≥ 4
can contribute to the fourth harmonic.
Using this information, we can form estimates of

the potential sensitivities to nonrelativistic coefficients
from searches for sidereal variations in nS1/2-n

′P3/2 and
nS1/2-n

′D transitions. Table VII provides the results
obtained under the assumption that the absolute ex-
perimental uncertainty for these variations is 10 kHz.
The first column of the table displays the relevant non-
relativistics spherical coefficients, generically denoted as
KNR

kjm. The second column shows the range of K ≡ J, F
for the relevant transitions. The third column presents
the values of nLF

J for the excited energy levels used in
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obtaining the specific estimates. The smallest value of n
producing contributions is chosen for these levels, as an
experiment with fixed absolute uncertainty is less sensi-
tive to coefficients with k 6= 0 and larger n. The final col-
umn lists the potential sensitivities to the moduli of the
real and imaginary parts of the coefficients taken one at
a time, derived with values of mF and χ chosen to max-
imize the sensitivity. Note that the coefficients shown
in Table VII remain unmeasured in any experiments to
date. Note also that sensitivity to both electron and pro-
ton coefficients is achieved despite the mass difference
between the particles, which can be traced to their equal
but opposite angular momenta.

IV. ANTIHYDROGEN

The techniques developed in the previous sections to
search for Lorentz and CPT violation using spectroscopy
of atomic hydrogen can also be applied to other hydro-
genic systems. In this section, we turn attention to the
emerging field of antihydrogen spectroscopy. A num-
ber of collaborations have as goal the precision spec-
troscopy of antihydrogen, including the Antihydrogen
Laser Physics Apparatus (ALPHA) collaboration [19],
the Atomic Spectroscopy and Collisions Using Slow An-
tiprotons (ASACUSA) collaboration [20], and the An-
tihydrogen Trap (ATRAP) collaboration [21]. Several
studies of the gravitational response of antihydrogen are
under development, including ones by the Antihydro-
gen Experiment: Gravity, Interferometry, Spectroscopy
(AEGIS) collaboration [70], the ALPHA collaboration
[71], and the Gravitational Behavior of Antihydrogen at
Rest (GBAR) collaboration [72]. A proposal for an An-
timatter Gravity Experiment (AGE) also exists [73].
Since CPT violation in realistic effective field theory

necessarily comes with Lorentz violation [8, 10], which
implies the breaking of rotation and boost symmetry, a
natural question to ask is whether experiments with an-
tihydrogen spectroscopy can attain sensitivities to new
physics that is inaccessible or impractical to access with
experiments using rotated or boosted ordinary matter.
The answer is affirmative, as might intuitively be ex-
pected. Indeed, the form of Eq. (6) already reveals that
coefficients for Lorentz violation for a given species al-
ways appear in summed pairs, one controlling CPT-odd
and one CPT-even operators, and this feature holds in
the full relativistic theory as well [37]. As a result, exper-
iments with strictly nonrelativistic electrons or protons
in any combination cannot explore the full parameter
space for the coefficients and hence cannot study the full
range of possible physical effects. For example, although
the individual nonrelativistic spherical coefficients mod-
ifying the antihydrogen spectrum are the same as those
for hydrogen listed in Table I, the nonrelativistic spectral
modifications involve disparate coefficient combinations
and so experiments on both are necessary to discern the
relevant CPT-violating physics. Situations can even be

envisaged in which no effect exists in nonrelativistic hy-
drogen but a large signal occurs in antihydrogen, such
as the isotropic invisible model discussed in Sec. IX B of
Ref. [86], which allows comparatively large effects in the
antihydrogen hyperfine structure while damping those in
hydrogen.

In principle, high-precision experiments with heavily
boosted electrons and protons offer additional options
for a complete coverage of possible effects because the

combinations Vw
NR
kjm and TwNR(qP )

kjm in Eq. (6) involve co-
efficients of different dimensions accompanied by distinct
momentum dependences. However, precision measure-
ments involving significant boosts come with additional
experimental challenges. Typical analyses take advan-
tage of the comparatively small boost ∼ 10−4 due to
the Earth’s orbital motion [18, 49, 52]. In this scenario,
for example, the dominant sensitivities to nonminimal
coefficients available to antihydrogen spectroscopy are
enhanced by about eight orders of magnitude relative
to those of hydrogen spectroscopy using annual varia-
tions due to the parity selection rules described in Sec.
II D 2. In practice, a comprehensive search for Lorentz
and CPT violation therefore requires performing experi-
ments with positrons and antiprotons in various combi-
nations as well.

Among studies of Lorentz and CPT symmetry using
positrons and antiprotons, antihydrogen has distinctive
sensitivity due to its intrinsic spherical symmetry and fla-
vor content. The symmetries of other experiments, such
as the cylindrical symmetry of ones trapping and study-
ing individual positrons or antiprotons in Penning traps
[74–78], make them sensitive to different sets of coeffi-
cients and thus different physical effects [79]. Positro-
nium and protonium do have spherical symmetry but
involve C-invariant particle-antiparticle combinations of
only one flavor and hence also have distinct physical sen-
sitivities. Moreover, other intrinsic factors can enhance
the difference between various types of experiments. For
example, certain coefficients for Lorentz and CPT vio-
lation are accompanied by factors of the particle mo-
mentum, which is about meα ≃ 3.7 keV for antihydro-
gen but differs in other types of experiments. In short,
spectroscopy of antihydrogen represents a unique tool to
probe Lorentz and CPT violation, and one that is es-
sential for the definitive and unambiguous detection of
CPT violation involving the nonrelativistic spherical co-
efficients considered in this work.

In this section, we begin with a description of the im-
plementation of the CPT transformation on the hydrogen
spectrum. We then address the effects of nonminimal co-
efficients on hyperfine and 1S-2S transitions. Finally, we
offer some comments on experiments testing the gravita-
tional response of antihydrogen.
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A. Basics

The form of the leading-order Lorentz- and CPT-
violating perturbation δhNR

H
to the nonrelativistic hamil-

tonian for free antihydrogen is similar to that for hydro-
gen,

δhNR
H

= δhNR
e + δhNR

p , (69)

involving the sum of perturbative contributions from the
positron e ≡ e+ and the antiproton p. The individual
perturbations are given by expressions similar to Eqs.
(3)-(5) for hydrogen,

δhNR
w = hw0 + hwrσ · ǫ̂r + hw+σ · ǫ̂− + hw−σ · ǫ̂+, (70)

where w represents either e or p. The spin-independent
term is

hw0 = −
∑

kjm

|p|k 0Yjm(p̂)Vw
NR
kjm, (71)

while the spin-dependent ones are

hwr = −
∑

kjm

|p|k 0Yjm(p̂)TwNR(0B)
kjm ,

hw± =
∑

kjm

|p|k ±1Yjm(p̂)
(
iTwNR(1E)

kjm ± TwNR(1B)
kjm

)
.

(72)

In these equations, the quantities Vw
NR
kjm and TwNR(qP )

kjm
are CPT-transformed versions of those given for hydro-
gen in Eq. (6),

Vw
NR
kjm = cw

NR
kjm + aw

NR
kjm,

TwNR(qP )
kjm = −gwNR(qP )

kjm −Hw
NR(qP )
kjm . (73)

These expressions include operators of arbitrary mass di-
mension d. When restricted to the minimal-SME co-
efficients, the above equations reduce to those used in
the previous literature on CPT violation in antihydrogen
[13].
The physical effects of Lorentz and CPT violation in

antihydrogen are determined by the matrix elements of
δhNR

H
in the unperturbed states. The coefficient selection

rules for hydrogen presented in Sec. II B are valid for an-
tihydrogen, and in particular the nonrelativistic spheri-
cal coefficients contributing to modify the antihydrogen
spectrum are those listed in Table I. The methods used
in Sec. II C to derive the matrix elements for hydrogen
can also be applied, but the corrections to the antihydro-
gen spectrum must be obtained by performing a CPT
transformation on the hydrogen matrix elements. This
involves both using the antihydrogen perturbative hamil-
tonian δhNR

H
and the antihydrogen states, which are CPT

transformations of the hydrogen ones. Specifically, the
CPT counterpart of an energy state |nFJLmF 〉 in hy-
drogen is the state |nFJL(−mF )〉 in antihydrogen, as

the net result of the CPT transformation is to replace
the atom with the antiatom and to invert the direction
of the total angular momentum F .
To illustrate the idea, consider the antihydrogen en-

ergy shift δǫ(nFJLmF ) in the presence of a weak uni-
form magnetic field. For hydrogen, the energy shift
δǫ(nFJLmF ) of the Zeeman levels is provided by Eq.
(33). For antihydrogen, noting that the uniform mag-
netic field and the magnetic dipole moment are both in-
variant under CPT, we find instead

δǫ(nFJLmF ) =
∑

j

Aj0(nFJL)〈F (−mF )j0|F (−mF )〉

=
∑

j

(−1)jAj0(nFJL)〈FmF j0|FmF 〉,

(74)

where the weights Aj0 are given by Eq. (19) with the
replacement w → w throughout. In the second line, we
have used the Wigner-Eckart theorem and the properties
of the Clebsch-Gordan coefficients. As shown in Sec. II B,
the weights Ajm can acquire contributions for even j only
from coefficients associated with spin-independent oper-
ators and for odd j only from coefficients associated with
spin-dependent operators. This reveals a simple relation-
ship between the shifts of the hydrogen and antihydrogen
spectra: given the expression for the shift in a hydrogen
energy level, the shift of the corresponding antihydrogen
level is obtained by implementing the replacements

aw
NR
kjm → −awNR

kjm, Hw
NR(qP )
kjm → −Hw

NR(qP )
kjm . (75)

Comparing this rule to the operator transformations
listed in Table I, we infer that the antihydrogen spec-
tral shifts can be obtained by charge conjugation of the
hydrogen ones. This result extends the minimal-SME
result obtained in Ref. [13].
The reader is cautioned that the spectral map (75)

is a formal statement of correspondence between energy
levels, which depends on the labeling of the states. In
the above example, the spectra are described using the
orientation of the total angular momentum relative to
the applied magnetic field, which is a C-invariant notion.
If instead the spectra are described using the orientation
of the magnetic moment relative to the magnetic field,
which is a CPT-invariant notion, then the two spectra
would be related by a CPT transformation. Moreover,
the spectral map is distinct from observable quantities
such as frequency differences, which in practical scenarios
may depend on other factors. For instance, magnetically
trapped states in hydrogen have opposite values of mF

from those in antihydrogen, so frequency comparisons of
trapped atoms and antiatoms amount to measuring the
effect of the CPT replacements

aw
NR
kjm → −awNR

kjm, gw
NR(qP )
kjm → −gwNR(qP )

kjm (76)

instead of the C replacements (75). This is intuitively
reasonable for tests of the CPT theorem, which specifi-
cally concerns invariance under CPT transformations but
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makes no statement about invariance under C transfor-
mations.

B. Hyperfine transitions

The application of a comparatively weak external mag-
netic field to antihydrogen splits the two 1S1/2 levels into
four distinct hyperfine Zeeman sublevels, one with F = 0
and three with F = 1. These splittings can be in principle
be studied experimentally. For example, the ASACUSA
collaboration plans to measure the corresponding hyper-
fine transitions using an ultracold beam of antihydrogen
atoms [80]. For simplicitly, we neglect any boost effects
in what follows, and we work in the strict Zeeman or
Paschen-Back regimes so that the magnetic mixing of
states in intermediate regimes can be neglected. Exten-
sions of the results below to include these more general
cases are possible and may be of interest for some future
applications but lie beyond our present scope.
The Lorentz- and CPT-violating shifts in the antihy-

drogen energies can be found from the expression (48) for
hydrogen by implementing the coefficient map (75). The
resulting hyperfine frequency shifts 2πδν for transitions
with a given ∆mF take the form

2πδν = −∆mF

2
√
3π

2∑

q=0

(αmr)
2q(1 + 4δq2)

×
∑

w

[
gw

NR(0B)
(2q)10 +Hw

NR(0B)
(2q)10

+2gw
NR(1B)
(2q)10 + 2Hw

NR(1B)
(2q)10

]
(77)

in the laboratory frame. In the minimal-SME limit, the
combination of nonrelativistic spherical coefficients ap-
pearing in this expression reduces to minimal cartesian
coefficients according to

gw
NR(0B)
010 + 2gw

NR(1B)
010 +Hw

NR(0B)
010 + 2Hw

NR(1B)
010

→ 2
√
3π[bw3 +mwd

w
30 +Hw

12 −mwg
w(A)
3 +mwg

w(M)
120 ],

(78)

where the superscripts (A) and (M) denote the irre-
ducible axial and irreducible mixed-symmetry combina-
tions of the coefficients gwκλν , respectively [81, 82]. The
result (77) therefore reproduces and extends the minimal-
SME expression obtained in Ref. [13] under the assump-
tion that only the cartesian coefficients bwµ , d

w
µν , and H

w
µν

are nonzero, with the g-type coefficients set to zero in ac-
cordance with their expected additional suppression due
to the breaking of the electroweak SU(2)×U(1) symme-
try [8].
The laboratory-frame coefficients appearing in Eq. (77)

are time dependent by virtue of the rotation of the Earth
and its revolution about the Sun. As a result, all the
signals for Lorentz and CPT violation discussed for hy-
drogen in Sec. III B have counterparts in antihydrogen

experiments. The measured hyperfine Zeeman frequen-
cies in antihydrogen can exhibit sidereal and annual time
variations and can be sensitive to the orientation of the
magnetic field and the colatitude of the laboratory. For
example, at zeroth boost order, the relation between the
coefficients in the laboratory and Sun-centered frames is
given by Eq. (51), revealing that the frequency shifts δν
undergo sidereal variations at the Earth’s rotation fre-
quency ω⊕.
In addition to searching for the above hyperfine Zee-

man signals of Lorentz and CPT violation in antihydro-
gen alone, interesting prospects for focusing specifically
on CPT violation are offered by direct comparisons of
measurements with hydrogen and antihydrogen. Note
that some caution is required in performing these com-
parisons, as differences between hydrogen and antihydro-
gen involving only CPT-even effects can appear unless
the assorted time variations and orientation and colati-
tude dependences are carefully incorporated in the anal-
ysis.
As an illustration of a direct comparison, consider the

hyperfine Zeeman frequency difference between hydrogen
and antihydrogen for transitions with ∆mF = 1, which
in the presence of CPT violation is given by

2π∆ν ≡ 2πδν − 2πδν

= − 1√
3π

2∑

q=0

(αmr)
2q(1 + 4δq2)

×
∑

w

(gw
NR(0B)
(2q)10 + 2gw

NR(1B)
(2q)10 ). (79)

This expression depends only on coefficients controlling
CPT-odd operators in the perturbation hamiltonians for
hydrogen and antihydrogen. In the minimal-SME limit,
this result reduces to

∆ν → − 1

π

(
be3 −meg

e(A)
3 +meg

e(M)
120

+bp3 −mpg
p(A)
3 +mpg

p(M)
120

)
, (80)

which extends the result presented in Ref. [13] to include
g-type coefficients. Note that the result (79) is expressed
in the laboratory frame and therefore still generically
depends on time. For example, time variations at the
Earth’s sidereal frequency are given by converting the co-
efficients to the Sun-centered frame using Eq. (51). This
reveals that only the g-type components involving Sun-
frame coefficients with kjm = 010, 210, and 410 are as-
sociated with signals independent of sidereal time.
Studies of the antihydrogen spectrum in the presence

of a strong external magnetic field are also of experi-
mental interest. For example, the ALPHA and ATRAP
collaborations plan to perform spectroscopy on antihy-
drogen trapped in the Paschen-Back limit of strong fields
[83, 84].
For the Paschen-Back splitting of the 1S1/2 levels, the

total angular momentum F is no longer a good quantum
number. Instead, the states can be labeled by the spins
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Se = ±1/2 and Sp = ±1/2 of the positron and antipro-
ton, respectively. Incorporating perturbative Lorentz
and CPT violation as before, the hyperfine Paschen-Back
frequency shifts δν for given ∆Sw in antihydrogen are
found to be

2πδν = − 1√
3π

2∑

q=0

(αmr)
2q(1 + 4δq2)

×
∑

w

∆Sw

[
gw

NR(0B)
(2q)10 +Hw

NR(0B)
(2q)10

+2gw
NR(1B)
(2q)10 + 2Hw

NR(1B)
(2q)10

]
(81)

in the laboratory frame. This agrees with the minimal-
SME result in Ref. [13] in the appropriate limit.
Converting the coefficients to the Sun-centered frame

leads to antihydrogen frequency signals similar to those
in the Zeeman limit, including sidereal and annual time
variations and dependences on the magnetic-field orien-
tation and laboratory colatitude. A significant differ-
ence between the Zeeman shift (77) and the Paschen-
Back shift (81) is the lack of sensitivity of the latter to
coefficients of one flavor in certain transitions, depend-
ing on the specific values of Se and Sp . For example,
the frequency difference ∆νc→d ≡ δνc→d − δνc→d for the
transition |c〉 → |d〉 essentially involves a proton spin flip
because |c〉 contains highly polarized electron and proton
spins with mSe

= 1/2 and mSp
= −1/2. We find

∆νc→d = − 1√
3π

2∑

q=0

(αmr)
2q(1 + 4δq2)

×(gp
NR(0B)
(2q)10 + 2gp

NR(1B)
(2q)10 ). (82)

This reduces in the minimal-SME limit to

∆νc→d → − 2

π

(
bp3 −mpg

p(A)
3 +mpg

p(M)
120

)
, (83)

in agreement with and extending the result found in Ref.
[13].

C. 1S-2S and nL1/2-n
′L′

1/2 transitions

In searching for CPT violation in the minimal SME,
hyperfine spectroscopy of antihydrogen has a theoretical
advantage over optical spectroscopy because the 1S-2S
transition is insensitive to minimal-SME coefficients in
free antihydrogen and exhibits only suppressed sensitiv-
ity in magnetically trapped antihydrogen [13]. Here, we
show this situation changes for nonminimal operators:
optical spectroscopy offers access to nonminimal SME co-
efficients with unsuppressed sensitivity. Moreover, some
of these coefficients are inaccessible to hyperfine spec-
troscopy.
The derivation of the relevant spectral shifts for free

antihydrogen parallels the one for free hydrogen outlined
in Sec. III C. Restricting attention to isotropic effects

as in the hydrogen case, we find that any antihydrogen
transition nL-n′L′ with J = 1/2, ∆J = 0 experiences
a frequency shift δν due to Lorentz and CPT violation
given in the laboratory frame by

2πδν = 2mr(εn − εn′)
∑

w

(̊aNR
w,2 + c̊NR

w,2)

−4m2
r

[
ε2n

(
8n

2L+ 1
− 3

)
− ε2n′

(
8n′

2L′ + 1
− 3

)]

×
∑

w

(̊aNR
w,4 + c̊NR

w,4), (84)

where εn ≡ −α2mr/2n
2. Note that this result contains

only contributions with k ≥ 2, confirming the absence
of unsuppressed effects from the minimal SME [13]. In
contrast, the nonminimal coefficients carry negative mass
dimensions and so appear accompanied by powers of the
relativistic energy of the states. For frequencies, this in-
volves the relativistic energy difference between two levels
and hence at leading order a nonzero contribution pro-
portional to powers of the particle masses.
Converting this expression to the Sun-centered frame

introduces sidereal and annual variations along with de-
pendences on the orientation of the magnetic field and
the laboratory colatitude. In principle, all the types of
searches for Lorentz and CPT violation discussed in the
hydrogen context in Secs. III C and III D are of interest
in the antihydrogen context as well. In addition, direct
comparisons of results for hydrogen and antihydrogen
could permit the extraction of clean constraints on co-
efficients for CPT violation. This includes not only coef-
ficients entering the 1S-2S transition but also coefficients
involved with high-J levels, thereby providing access to
coefficients with large values of j that are inaccessible to
hyperfine spectroscopy.
As an example of a direct comparison between hydro-

gen and antihydrogen, consider the isotropic coefficients
generating frequency shifts for the 1S-2S transition. The
shift for antihydrogen is given by

2πδν1S2S = 3
4 (αmr)

2
∑

w

(̊aNR
w,2 + c̊NR

w,2)

+
67

16
(αmr)

4
∑

w

(̊aNR
w,4 + c̊NR

w,4). (85)

The frequency difference ∆ν1S2S ≡ δν1S2S − δν1S2S be-
tween the 1S-2S transitions in hydrogen and antihydro-
gen is therefore

∆ν1S2S = − 1

8π

∑

w

[
12(αmr)

2åNR
w,2 + 67(αmr)

4åNR
w,4

]
.

(86)
This permits a clean measurement of isotropic CPT-
violating effects with unsuppressed signals in the compar-
ison between trapped atoms and antiatoms. If attained,
an absolute uncertainty of 1 Hz in the 1S-2S transition
for both hydrogen and antihydrogen would yield con-
straints of order 10−12 GeV−1 on the coefficients åNR

w,2
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and of order 10−2 GeV−3 on the coefficients åNR
w,4 in the

electron and proton sectors.
Note that in principle the anisotropic coefficients in

the general result (84) also contribute to δν1S2S . In the
weak-field regime, the spin-dependent contributions for
∆mF = 0 are

2πδν1S2S ⊃ mF

8

√
3

π

2∑

q=1

(αmr)
2q(1 + 67

12δ2q)

+
∑

w

(
gw

NR(0B)
(2q)10 +Hw

NR(0B)
(2q)10

+2gw
NR(1B)
(2q)10 + 2Hw

NR(1B)
(2q)10

)
. (87)

Note these are nonvanishing only for mF 6= 0. In the
strong-field regime and for ∆Sw = 0, the spin-dependent
contributions are

2πδν1S2S ⊃
√

3

16π

2∑

q=1

(αmr)
2q(1 + 67

12δ2q)

+
∑

w

Sw

(
gw

NR(0B)
(2q)10 +Hw

NR(0B)
(2q)10

+2gw
NR(1B)
(2q)10 + 2Hw

NR(1B)
(2q)10

)
. (88)

However, at present the planned ASACUSA measure-
ment, which is sensitive to the anisotropic coefficients,
is expected to reach an absolute uncertainty of about
100 Hz or better, while measurements of the 1S-2S tran-
sition in antihydrogen appear unlikely to approach this
benchmark in the near future. It is therefore reasonable
at present to disregard contributions from the anisotropic
coefficients to the 1S-2S transition. Nonetheless, as an-
tihydrogen is intrinsically a stable antiatom and the nat-
ural linewidth of the 2S state is about 1 Hz, the 1S-
2S transition may offer the most interesting long-term
prospects for sub-Hz sensitivities.
In parallel with the hydrogen case discussed in Sec.

III C 2, the presence of Lorentz and CPT violation can
also cause apparent shifts in various fundamental con-
stants measured in antihydrogen experiments. For in-
stance, the apparent shift δR∞ of the Rydberg constant
in antihydrogen due to Lorentz and CPT violation is
given by

δR∞ =
4πm2

r

me
R∞

∑

w

(̊aNR
w,2 + c̊NR

w,2). (89)

A direct comparison of a measurement of the Rydberg
constant (61) performed using hydrogen with one using
antihydrogen therefore can be expected to reveal a dis-
crepancy ∆R∞ given by

∆R∞ ≡ R∞ −R∞ = −8πm2
r

me
R∞

∑

w

åNR
w,2. (90)

This difference depends purely on CPT-odd effects.
Other fundamental constants may similarly be affected.

For example, if future experiments can perform high-
precision spectroscopy of the 2S-2P transition to deter-
mine the classical Lamb shift in antihydrogen,

2πδνLamb = − 2
3 (αmr)

4
∑

w

(̊aNR
w,4 + c̊NR

w,4), (91)

or of the two-photon transitions 2S-nD in antihydrogen,
then the radius of the antiproton could be determined.
Since Lorentz and CPT violation produces an apparent
shift in these transitions, a discrepancy between the pro-
ton and antiproton radii could emerge.

D. Antihydrogen and gravity

A long-standing question is whether antiparticles and
particles interact identically with gravity [85]. Several ex-
periments have been proposed to test this idea directly
using antihydrogen, including AEGIS [70], GBAR [72],
ALPHA [71], and AGE [73]. While the present work is
focused on the spectroscopic effects of nonminimal op-
erators for Lorentz and CPT violation in flat spacetime,
we offer in this subsection a few comments about the role
of nonminimal operators in the gravitational couplings of
antihydrogen.
A theoretical model in which the gravitational response

of antihydrogen differs from that of hydrogen is presented
in Sec. IX B of Ref. [86]. The model, called the isotropic
parachute model (IPM), is an effective quantum field the-
ory, constructed as a subset of the gravitationally cou-
pled minimal SME [9]. The IPM overcomes various ob-
jections to theories with different antimatter and matter
couplings to gravity, demonstrating explicitly that energy
can be conserved, that the binding-energy content can be
largely irrelevant to the gravitational response, and that
restrictions from other systems such as neutral kaons can
be evaded.
In the IPM, the anomalous gravitational response of

antimatter compared to matter is a consequence of CPT
violation and hence of Lorentz violation in the underly-
ing effective field theory. The IPM is an isotropic theory,
formulated in an asymptotically Minkowski spacetime
with a weak gravitational field and designed to produce
a predominantly null effect in matter by cancellation of
CPT-even and CPT-odd effects in the minimal SME. The
physical Lorentz and CPT violation in hydrogen is there-
fore countershaded from detection [87]. The anomalous
response in antihydrogen arises because for antimatter
the signs of the CPT-odd contributions change, disrupt-
ing the cancellation. Explicitly, in the IPM the uniform
constant background pieces awT and cwTT of the isotropic
minimal-SME cartesian coefficients awT and cwTT are re-
lated by

αawT = 1
3mc

w
TT , (92)

for particles of flavor w, where α is a model-dependent
quantity determined by the gravitational coupling for
Lorentz-violating effects.
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In the context of hydrogen and antihydrogen, the con-
ditions (92) for w = e and w = p represent two con-
straints on four independent coefficients, so the IPM is a
two-parameter model. The resulting inertial and gravi-
tational masses of hydrogen are equal while those of an-
tihydrogen differ,

mH
i = mH

g , mH
i 6= mH

g . (93)

However, the strength of the anomalous gravitational re-
sponse of antimatter in the IPM has recently been con-
strained to parts in 107 by an analysis combining data
from torsion-balance tests, matter-wave interferometry,
and microwave, optical, and Mössbauer clock-comparison
experiments, and by taking advantage of the differing
bound kinetic energies of nuclei [88]. Any IPM effects
in antihydrogen are therefore beyond the reach of the
currently proposed antihydrogen experiments.

The IPM uses only isotropic minimal operators in the
SME. However, the gravitational sector of the SME in-
cludes not only minimal pure-gravity and matter-gravity
couplings, but also nonminimal couplings [9] that have
definite experimental signatures [89]. These nonminimal
couplings are also of potential relevance in the present
context, and in particular we expect them to enhance
substantially the prospects for a strong anomalous grav-
itational response of antihydrogen. A detailed study of
nonminimal effects in this context is challenging and lies
well outside our present scope, although it is likely to of-
fer interesting insights. Nonetheless, we can provide some
intuition by following the conceptual path presented in
Ref. [86] in the special limit where only isotropic nonmin-
imal coefficients in the matter-gravity sector contribute,
keeping only zeroth-order nonrelativistic effects and first-
order gravitational couplings.

In this comparatively simple limit, starting with the
generalized Dirac equation incorporating both operators
for Lorentz and CPT violation of arbitrary mass dimen-
sion and gravitational couplings, the corresponding per-
turbative hamiltonian contains no momentum-dependent
Lorentz violation and the Lorentz-violating energy de-
pendence involves only the particle mass. The calcu-
lation therefore proceeds with the minimal-SME back-
ground coefficients awT and cwTT now accompanied by a
series of terms involving nonminimal background coeffi-
cients and the particle mass. Since these quantities are
all constants, the derivation has the same algebraic struc-
ture as that presented in Ref. [86], up to possible numer-
ical factors due to the increased multiplicity of indices on
nonminimal coefficients.

Noting that only the nonminimal isotropic coefficients
with k = 0 contain the minimal-SME isotropic coeffi-
cients and using Eqs. (93), (111), (129), and (130) of Ref.
[37], we can deduce that the net result of the calculation

involves the replacements

awT → åNR
w,0 = awT +

∑

odd d≥5

Nd
a,wm

d−3
w å

(d)

0 ,

cwTT → c̊NR
w,0 = cwTT +

∑

even d≥6

Nd
c,wm

d−4
w c̊

(d)

0 , (94)

where Nd
a,w and Nd

c,w are numerical factors. We can then
make these replacements in the discussion in Sec. IX B
of Ref. [86] and conclude that the vertical acceleration a

of an antihydrogen atom of inertial mass mH
i and gravi-

tational mass mH
g obeys

a =
mH

g

mH
i

g ≡
(
1 +

δg

g

∣∣∣∣
H

)
g, (95)

with

δg

g

∣∣∣∣
H

=
2

mH

∑

w

(α̊aNR
w,0 +

1
3mẘc

NR
w,0), (96)

where w takes the values e and p and mH is a constant
equal to the inertial mass of an antihydrogen atom in the
absence of Lorentz and CPT violation.
The above derivation suggests introducing a general-

ized IPM via the definition

α̊aNR
w,0 − 1

3mẘc
NR
w,0 = 0. (97)

The corresponding vertical acceleration for hydrogen is
then unaffected,

δg

g

∣∣∣∣
H

=
2

mH

∑

w

(α̊aNR
w,0 − 1

3mẘc
NR
w,0) = 0, (98)

while the gravitational response (95) of antihydrogen is
anomalous. Note that the presence of the nonminimal co-
efficients implies two new degrees of freedom at each di-
mension d. This provides intuition about the connection
between nonminimal coefficients and renewed prospects
for a comparatively large anomalous gravitational re-
sponse in antihydrogen. Note also that a complete deriva-
tion can be expected to generate a tensor relation be-
tween the acceleration of a test body and the acceleration
due to gravity, with horizontal components of the acceler-
ation affected. The relation involves spatial components
of nonminimal coefficients, along with momentum fac-
tors as well. In general, the motion of a freely falling
antihydrogen atom in the presence of Lorentz and CPT
violation is expected to follow a geodesic in a pseudo-
Finsler geometry determined by the Riemann metric and
the SME coefficients, while its motion in the IPM follows
a geodesic in pseudo-Randers spacetime [40].
On the experimental side, the above discussion reveals

that studies of the gravitational couplings of antihydro-
gen probe distinct effects from the spectroscopic tests
discussed in this work, as none of the latter can detect
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isotropic spherical coefficients with k = 0 for reasons dis-
cussed in Sec. II B. Also, we can use simple dimensional
analysis to provide an estimate of the sensitivity of grav-
itational experiments with antihydrogen to nonminimal
coefficients for CPT violation. A generic nonrelativistic
spherical coefficient Kw

NR
kjm has mass dimension 1− k, so

taking one coefficient nonzero at a time as before and
neglecting momentum effects yields expected constraints
of order

|Kw
NR
kjm| ∼< m1−k

w

δg

g

∣∣∣∣
H

. (99)

For an experiment with 10% uncertainty, this gives con-
straints of order 10−4−3k GeV1−k on nonrelativistic coef-
ficients in the electron sector and of order 10−1 GeV1−k

on ones in the proton sector.

V. DEUTERIUM

The differing nuclear and spin structures of the vari-
ous hydrogen isotopes imply these systems have distinct
sensitivities to Lorentz and CPT violation. We focus
here on deuterium, a stable fermionic system that has
been widely studied since its discovery in the early 1930s
[90]. Tritium and the higher hydrogen isotopes are unsta-
ble and challenging to handle experimentally, although
an investigation of the spectroscopic properties of these
systems could be worthwhile as well. Note that tritium
decays are of interest in the context of precision mea-
surements of the neutrino mass [91] and the associated
searches for Lorentz and CPT violation in the neutrino
sector [92].
The isotope shift for the 1S-2S transition between deu-

terium and hydrogen has been measured with a poten-
tially competitive absolute uncertainty of about 15 Hz
[93], while the presence of the neutron in the deuteron
core changes the angular-momentum couplings and opens
opportunities for additional sensitivities to coefficients in
the neutron sector of the SME. Moreover, a deuterium
maser [94] could in principle be used to study the deu-
terium hyperfine structure at mHz sensitivity or better.
In this section, we consider these possibilities in turn.
We outline an approach to the perturbative hamiltonian,
obtain relevant frequency shifts, and summarize some im-
plications for experimental studies.
Note that our analysis here disregards the gravita-

tional couplings of deuterium. Although antideuterons
were first created in the laboratory about 50 years ago
[95], antideuterium remains only a theoretical possibil-
ity at present. It is expected to be stable, and compar-
isons of its gravitational response with that of deuterium
could conceivably be of interest for at least two theoreti-
cal reasons. Both deuterium and antideuterium incorpo-
rate neutron coefficients for Lorentz and CPT violation
and therefore a comparison of their gravitational prop-
erties would further extend tests of models such as the
generalized IPM discussed in Sec. IVD. Also, deuterium

and antideuterium are fermions, and as such their behav-
ior in weak gravitational fields involves a different set of
spin-dependent coefficients for Lorentz and CPT viola-
tion [9, 86, 96]. However, the production, trapping, and
experimental manipulation of antideuterium remains at
present a futuristic challenge, so detailed theoretical con-
siderations of the free fall of antideuterium lie outside our
present scope.

A. Isotropic Lorentz-violating perturbations

Since the deuteron is a bound state of two hadrons, for
which exact expressions for the energy levels are lacking,
the perturbative methods developed above for atomic
hydrogen cannot be applied directly. Nonetheless, the
dominant contributions from isotropic Lorentz and CPT
violation can be obtained within plausible assumptions.
These are of interest in the context of 1S-2S and similar
transitions in deuterium.
As a reasonable first approximation to the hamilto-

nian HD governing the dominant deuterium physics of
relevance here, we can write the three-body expression

HD ≈ p2
e

2me
+

p2
p

2mp
+

p2
n

2mn
+ V (rep) + U(rpd), (100)

where pw is the three-momentum of the particle of flavor
w = e, p, n, mw is the corresponding mass, rep is the
relative position of the electron and proton, and rpd is
the relative position of the proton and neutron. The
potential V accounts for the electromagnetic interaction
between the proton and electron, while U describes the
nuclear interactions between the proton and neutron. For
simplicity, we work in the zero-momentum inertial frame
of the deuterium atom.
To separate the hamiltonian while keeping the dom-

inant Lorentz-invariant physics, we can reinterpret the
dynamics of the proton and neutron in terms of the mo-
tion of the deuteron and the motion of the proton and
neutron relative to the deuteron center of mass. It is
therefore convenient to define p ≡ pp + pn = −pe and
ppd ≡ (pp − pn)/2, with the latter being the momen-
tum of the proton relative to the center of mass of the
deuteron. It is also a sufficient approximation for present
purposes to take mn ≈ mp and rep ≈ rd ≡ rep + rpd/2.
The vector rd can be viewed as the approximate posi-
tion of the deuteron center of mass with respect to the
electron. It follows that V (rep) ≈ V (rd). With these def-
initions and approximations, the hamiltonian HD takes
the form

HD ≈ p2

2mr
+ V (rd) +

p2
pd

mp
+ U(rpd), (101)

where mr ≈ 2mpme/(2mp +me) is the reduced mass of
deuterium. This expression is separable, so its solution is
the tensor product of the solutions of the two individual
systems.
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The next step is to express the Lorentz-violating per-
turbation in terms of these variables. Following the sce-
nario introduced in Sec. II A, we can suppose that each
of the three particles e, p, n experiences a perturbation
δhNR

w of the form (3). As discussed in Sec. III C 1, the
1S-2S and similar transitions are of interest primarily in
the context of measuring isotropic coefficients for Lorentz
violation, so we restrict attention here to the quantities
Vw

NR
kjm ≡ cw

NR
kjm−awNR

kjm defined in Eq. (6), but now with
w = e, p, n.
Under these assumptions, we find that the isotropic

part of the perturbation hamiltonian δhNR
D can be written

in the form

δhNR
D = − 1√

4π

∑

k=2,4

(
Ve

NR
k00 |p|k + Vp

NR
k00 | 12p+ ppd|k

+Vn
NR
k00 | 12p− ppd|k

)
. (102)

This operator expression describes the leading-order per-
turbative effects arising from isotropic Lorentz and CPT
violation.

B. 1S-2S transition

The deuterium energy-level shifts are given by expec-
tation values of the perturbation hamiltonian δhNR

D in the
Lorentz-invariant states. In performing the calculations,
only the cross terms p·ppd and (p·ppd)

2 that couple both
systems could in principle be challenging to handle. How-
ever, the former is odd under a parity transformation of
either momentum and hence yields zero contribution at
leading order. To treat the quadratic term, we can plau-
sibly assume the two systems are sufficiently decoupled
so that 〈(p · ppd)

2〉 ≈ 〈p2〉〈p2
pd〉/2. Also, the contribu-

tion to the 1S-2S and other nL-n′L′ transitions can be
expected to depend on a nonzero power of p. Moreover,
the magnitude of ppd is roughly 100 MeV while that of

p is about 1 keV, so 〈p2〉〈p2
pd〉 ≫ 〈p4〉.

Combining these considerations and using the expec-
tation values (15), we find that the frequency shift δνD
of the nL-n′L′ transition in deuterium due to isotropic
Lorentz and CPT violation is given by

2πδνD =
mr√
π
(εn′ − εn)

[
Ve

NR
200 +

1
4

(
Vp

NR
200 + Vn

NR
200

)

+〈p2
pd〉

(
Vp

NR
400 + Vn

NR
400

) ]

−2m2
r√
π

[
ε2n′

(
8n′

2L′ + 1
− 3

)
− ε2n

(
8n

2L+ 1
− 3

)]

×
(
Ve

NR
400 +

1
16 (Vp

NR
400 + Vn

NR
400)

)
, (103)

where εn ≡ −α2mr/2n
2 and 〈p2

pd〉 ≃ 104 MeV2. This

expression generalizes the result (60) for hydrogen and
reduces to it in the limit where the proton and neutron
are taken to have identical momenta, each of magnitude
half that of the electron momentum.

TABLE VIII: Values of the vectors V
(d)J
w in Eq. (63) for the

proton and neutron in deuterium with 5 ≤ d ≤ 8.

d V
(d)J
w

5 3
16
(αmr)

2(2aw
(5)TTJ
eff + aw

(5)KKJ
eff )

6 − 3
4
(αmr)

2mw(cw
(6)TTTJ
eff + cw

(6)TKKJ
eff )

7 5
8
(αmr)

2m2
w(2aw

(7)TTTTJ
eff + 3aw

(7)TTKKJ
eff )

+ 3
4
(αmr)

2〈p2
pd〉aw

(7)KKLLJ
eff

8 − 15
8
(αmr)

2m3
w(cw

(8)TTTTTJ
eff + 2cw

(8)TTTKKJ
eff )

− 9
2
(αmr)

2mw〈p2
pd〉cw

(8)TKKLLJ
eff

The 1S-2S transition in deuterium provides interesting
sensitivity to anisotropic coefficients in the Sun-centered
frame via boost corrections that produce sidereal and
annual variations. At leading order in the boost param-
eter, the deuterium 1S-2S transition frequency takes the
same form (63) as its hydrogen counterpart, except that
the sum over flavors now includes also the neutron. The
leading-order contributions for the electron vectors V

(d)J
e

have the same form as for hydrogen and so can be found
in Table V. The leading-order contributions for the pro-

ton and neutron vectors V
(d)J
p and V

(d)J
n with 5 ≤ d ≤ 8

can be obtained from Table VIII. In this table, mw rep-
resents the rest masses of the proton w = p and neutron
w = n. As before, α is the fine-structure constant, mr is
the reduced mass of the system, and the effective carte-
sian coefficients for Lorentz violation are defined in Eq.
(27) of Ref. [37]. The minimal-SME spin-independent co-

efficients V
(3)J
w and V

(4)J
w vanish at leading order in the

nonrelativistic limit and so have no effect on the 1S-2S
frequency, in parallel with the hydrogen case [13, 29].
The time variations in the deuterium 1S-2S transi-

tion are determined by the same expressions as for hy-
drogen, namely, Eq. (64) for the annual frequency Ω⊕

and Eq. (65) for the sidereal frequency ω⊕. However,
the deuterium transition offers some advantages over its
hydrogen counterpart. One is the sensitivity of deu-
terium to neutron coefficients. A more subtle advantage
is that the motion of the proton in the nucleus makes
the deuterium experiment substantially more sensitive
to some of the proton coefficients. The point is that
in hydrogen the proton is a comparatively placid ob-
ject with momentum opposite that of the electron, with
magnitude ∼ αme of a few keV. In contrast, the proton
and neutron in deuterium together have total momen-
tum opposite that of the electron, but each nucleon has
momentum of over 100 MeV, producing an expectation
value 〈p2

pd〉 ∼ 104 MeV2. As a result, measurements of
the deuterium 1S-2S transition offer about a billionfold
greater sensitivity than hydrogen to the proton coeffi-
cients ap

KKLLJ
eff and cp

TKKLLJ
eff , as can be deduced from

the entries for d = 7, 8 in Table VIII.
We remark in passing that a study of subleading ef-
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fects in the deuterium 1S-2S frequency along the lines
of the experiment with hydrogen performed in Ref. [18]
could also be used to constrain minimal SME coefficients
in the neutron sector. The analogue of the minimal-SME
match (66) for deuterium involves both proton and neu-
tron coefficients,

∑

wd

V (d)J
w = 5

4α
2mr[c

(TJ)
e + 1

4 (c
(TJ)
p + c(TJ)

n )], (104)

and this expression could be used to determine sensitivi-
ties to nonminimal coefficients in all three sectors w = e,
p, n as for the hydrogen case.

C. Comparative analyses

In atomic hydrogen, the isotropic coefficients produce
an effective shift of the Rydberg constant given by Eq.
(61). An analogous effect occurs in deuterium, but the
shift is instead given by

δR∞,D =
2
√
πm2

r

me
R∞

[
Ve

NR
200 +

1
4

(
Vp

NR
200 + Vn

NR
200

)

+〈p2
pd〉

(
Vp

NR
400 + Vn

NR
400

) ]
. (105)

Since the shift δR∞ in hydrogen and the shift δR∞,D in
deuterium are distinct, any difference between the val-
ues obtained for the Rydberg constant in experiments
with hydrogen and with deuterium could be a signal
for Lorentz and CPT violation. Similarly, the change
δνLamb,D in the classical Lamb shift (2SJ=1-2PJ=1) in
deuterium,

2πδνLamb,D = − (αmr)
4

3
√
π

[
Ve

NR
400 +

1
16

(
Vp

NR
400 + Vn

NR
400

) ]
,

(106)
differs from the change δνLamb in the hydrogen Lamb
shift given by Eq. (62). A signal for Lorentz and CPT
violation would therefore be an observed discrepancy be-
tween experimental values obtained in the two systems.
The above comparative analyses can also be extended

to physical effects in other transitions. These could in-
clude, for example, the transitions 2S-4D, 2S-8D, and
2S-12D, all of which have been measured in deuterium
[61, 63, 69]. To illustrate the extraction of constraints on
coefficients for Lorentz violation via this method, we con-
sider here a comparative analysis of the two experimental
values of the difference between the proton and deuteron
radii obtained in Refs. [61] and [98]. As before, only the
contributions from isotropic coefficients for Lorentz and
CPT violation are included, as other types of searches
are more sensitive to anisotropic coefficients.
Consider first the weighted difference

∆ = ν2S4S − 1
4ν1S2S (107)

between the 2S-4S frequency ν2S4S and the 1S-2S fre-
quency ν1S2S , measured for hydrogen and deuterium in

Ref. [61]. The change in the isotope shift δνshift be-
tween the two measurements is governed by the differ-
ence δ(r2d − r2p) between the square of the charge radii of
the proton and deuteron,

2πδνshift = −7πα4R∞

24r2e
δ(r2d − r2p), (108)

where re is the classical electron radius. The frequency
shift δνLV of ∆ due to Lorentz and CPT violation is given
by

2πδνLV = −89(αmr)
4

4096
√
4π

(15Vp
NR
400 − Vn

NR
400). (109)

Assuming the observed value of δνshift arises entirely from
δνLV, we find that the difference between the square of
the charge radii determined in Ref. [61] is approximately
given by

δ(r2d − r2p) ≈ (2 × 10−6)(15Vp
NR
400 − Vn

NR
400) GeV3 fm2,

(110)
where the coefficients for Lorentz and CPT violation have
units of GeV−3.
Next, consider the difference between the square of the

charge radii obtained in Ref. [98] from measurements of
the 1S-2S frequency ν1S2S in hydrogen and deuterium.
In this case, the change in the isotope shift δνshift is given
by

2πδνshift =
7πα4R∞

3r2e
δ(r2d − r2p), (111)

while the Lorentz-violating shift δνLV is

2πδνLV =
3(αmr)

2

16
√
4π

[
3Vp

NR
200 − Vn

NR
200

−4〈p2
pd〉(Vp

NR
400 + Vn

NR
400)

]
. (112)

The assumption that the observed frequency shift orig-
inates from Lorentz violation now gives the difference
between the square of the charge radii as approximately

δ(r2d − r2p) ≈ (2× 105)
[
3Vp

NR
200 − Vn

NR
200

−4〈p2
pd〉(Vp

NR
400 + Vn

NR
400)

]
GeV3 fm2. (113)

We see that this expression and the result (110) provide
two distinct measures of δ(r2d−r2p) in terms of coefficients
for Lorentz and CPT violation.
The two reported experimental values are essentially

in agreement. Note that the above results make use of
values of the Rydberg constant and the mass ratios of the
electron to the proton and to the deuteron. In principle,
these quantities could be shifted by Lorentz and CPT vi-
olation, so we take a conservative value of less than 0.02
fm2 for the uncertainty in |δ(r2d − r2p)| . Disregarding co-
efficients in the electron sector, which give contributions
proportional to the difference of powers of the reduced
masses of deuterium and hydrogen and so are suppressed
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by four or more orders of magnitude relative to coeffi-
cients in the proton and neutron sectors, we can finally
extract the constraint

∣∣3̊aNR
p,2 − åNR

n,2 − 4〈p2
pd〉(̊aNR

p,4 + åNR
n,4)

−3̊cNR
p,2 + c̊NR

n,2 − 4〈p2
pd〉(̊cNR

p,4 + c̊NR
n,4)

∣∣

< 2× 10−7 GeV−1 (114)

on coefficients for Lorentz and CPT violation.
Similar comparative analyses can be performed in

other systems. An example discussed in Ref. [46] is
a comparison of radii using the isotope shift between
muonic hydrogen and muonic deuterium. A complete
analysis of this system would place constraints on muon
coefficients for Lorentz and CPT violation as well as pro-
ton and neutron coefficients.

D. Deuterium maser

The successful construction and operation of a deu-
terium maser with absolute frequency uncertainty around
1 mHz [94] implies that high-precision spectroscopy of
the hyperfine structure of deuterium is a realistic possi-
bility. The high momenta of the proton and neutron in
the deuteron core, which as described in Sec. VB leads
to a billionfold gain in sensitivity to certain coefficients
for Lorentz and CPT violation in 1S-2S spectroscopy,
can similarly be expected to enhance the sensitivity to
coefficients affecting the hyperfine transitions of the deu-
terium maser relative to the hydrogen one. Moreover,
the deuteron core exists in an admixture of orbital an-
gular momentum 0 and 2, so the deuterium maser also
provides access to coefficients with larger values of j.
To study the corrections to the hyperfine structure in

deuterium, a reasonable description of the unperturbed
ground state is required. The angular part of this state
can be obtained by coupling the spin Sd of the deuteron
to the spin Se of the electron. The deuteron component
involves the coupling of the triplet state of the proton
and the neutron with a superposition of L = 0 and L = 2
orbital states of the nuclear motion [97]. As a result, the
unperturbed wavefunction for the ground state can be
expressed as

〈p,ppd|FmF 〉 = ψ10(p)
∑

SeSd

〈12Se1Sd|FmF 〉|Se〉〈ppd|Sd〉,

(115)
where ψ10 is the spin-independent piece, Se is the electron
spin, and Sd is the deuteron spin. The deuteron spin
wavefunction takes the form

〈ppd|Sd〉 =
1∑

l=0

Ψ2l(ppd)
∑

qm

〈1q(2l)m|1Sd〉Y(2l)m(p̂pd)χq,

(116)
where Ψ2l contains the radial piece and χm is the spin-
triplet wavefunction constructed from the proton and
neutron spin states.

Using this wavefunction, we can determine the per-
turbative shifts by calculating the expectation values of
the full perturbative hamiltonian δhNR

D obtained follow-
ing the discussion in Sec. II A, assuming each particle e,
p, n experiences a pertubation of the form (3). In the
hyperfine Zeeman regime, the effects from isotropic coef-
ficients cancel as usual. Neglecting these coefficients, we
find the energy-level shifts are

δε(F,mF ) = − mF

3
√
3π

2∑

q=0

(αmr)
2q

2(F − 1)
(1 + 4δq2)

×(TeNR(0B)
(2q)10 + 2TeNR(1B)

(2q)10 ). (117)

Comparison of this expression with the energy-level shifts
(48) and frequency shifts (49) for the hydrogen maser
shows that both types of maser are sensitive to the
same combination of electron coefficients. The deuterium
maser therefore has no particular advantage over the hy-
drogen maser in this regard. Note also that the two
deuterium-maser transitions F = 3/2 → F = 1/2 with
mF = ∓1/2 → mF = ±1/2, which are the most inde-
pendent of fluctuations in the applied magnetic field, are
insensitive to Lorentz and CPT violation at leading or-
der. This parallels the result for F = 1 → F = 0 with
mF = 0 for the hydrogen maser.
The calculation of the perturbative shifts due to the

proton and neutron coefficients is more involved. Since
the deuteron spin is a good quantum number, the coef-
ficient selection rules discussed in Sec. II B imply that
only proton and neutron coefficients with j ≤ 2 can con-
tribute, so only the cases j = 1 and j = 2 need be con-
sidered. Some identities are useful to evaluate the fac-
tors involving the momentum and spin-weighted spheri-
cal harmonics. Writing p ≡ pa + pb, we find for j = 1
the identities

|p| sY1m(p̂) = |pa| sY1m(p̂a) + |pb| sY1m(p̂b),

|p|σs(p̂) = |pa|σs(p̂a) + |pb|σs(p̂b). (118)

For j = 2, we obtain

|p|2Y20(p̂) = |pa|2Y20(p̂a) + |pb|2Y20(p̂b)

+ 1
2 |pa||pb|

√
5

π
(3 cos θa cos θb − cos γ), (119)

where cos γ ≡ p̂a · p̂b.
Armed with these identities, we can determine the per-

turbative level shifts. Consider first the expectation value
of the spin-dependent terms with j = 1. Choosing as
before the applied magnetic field to be aligned with the
laboratory z axis, we require the expectation value of Eq.
(3) for jm = 10. We find

δε(F,mF ) = − 1

3
√
6π

mF

2F−2

∑

k

〈p2k
pd〉

×
∑

w

(TwNR(0B)
(2q)10 + 2TwNR(1B)

(2q)10 ), (120)
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where w takes the values p and n.
For states with F = 1/2, only proton and neutron co-

efficients with j = 1 contribute to the hyperfine Zeeman
frequencies. However, when F = 3/2, contributions from
coefficients with j = 2 can appear. In this case, we find
the contribution to the energy-level shift is approximately

δǫ(F,mF ) =
1√
5π

2F − 1

(8m2
F − 10)

2∑

q=0

〈p2q
pd〉′

∑

w

Vw
NR
(2q)20,

(121)
where

〈p2q
pd〉′ ≡ 〈Ψ2|p2q

pd|Ψ2〉 −
√
8 Re 〈Ψ2|p2q

pd|Ψ0〉. (122)

This depends on the specific model used for the radial
deuteron wavefunctions Ψ0, Ψ2.
Combining the above results for electron, proton, and

neutron coefficients, we find that the anisotropic shifts in
the deuterium hyperfine Zeeman levels are given by

δǫ(F,mF ) =
1√
5π

2F − 1

(8m2
F − 10)

2∑

q=0

〈p2q
pd〉′

∑

w

Vw
NR
(2q)20

− 1

3
√
6π

mF

2F−2

2∑

q=0

〈p2q
pd〉

∑

w

(TwNR(0B)
(2q)10 + 2TwNR(1B)

(2q)10 )

− mF

3
√
3π

2∑

q=0

(αmr)
2q

2(F − 1)
(1 + 4δq2)(TeNR(0B)

(2q)10 + 2TeNR(1B)
(2q)10 ),

(123)

where the sum over w spans the values p and n. In

this expression, the quantities Vw
NR
(2q)20, TwNR(0B)

(2q)10 , and

2TwNR(1B)
(2q)10 are given in terms of the coefficients for

Lorentz and CPT violation by Eq. (6). Note that the
proton and neutron coefficients contribute to all possi-
ble hyperfine Zeeman transitions, including the ones that
are the most independent of fluctuations in the exter-
nal magnetic field. Another key feature of this result
is the appearance of coefficients with j = 2, which im-
plies experimental signals at the second harmonic 2ω⊕

of the sidereal frequency that can be measured in hyper-
fine Zeeman transitions with ∆F 6= 0. Moreover, the
dependence on the expectation values 〈p2q

pd〉 acts to en-
hance the sensitivity to the coefficients for Lorentz and
CPT violation by factors of a billionfold for coefficients
with k = 2 and by 1018-fold for coefficients with k = 4.
Generically, this suggests attainable sensitivities to non-
relativistic coefficients Kkjm with even k = 2, 4 at the
level of |K| ∼< 10−27+k GeV1−k, representing an impres-
sive potential improvement over the results in Table III as
well as sensitivity to numerous coefficients unmeasurable
using a hydrogen maser.
This remarkable potential reach naturally suggests in-

vestigating the possibility of additional constraints from
an analysis of the deuterium hyperfine Zeeman transi-
tions that incorporates the boost relative to the Sun-
centered frame, in analogy to the discussion for hydrogen

TABLE IX: Values of the pseudotensor T
(d)JKL
w in Eq. (54)

for the proton and neutron in deuterium for 5 ≤ d ≤ 8.

d T
(d)JKL
w

5 − 1
5
〈p2

pd〉(2aw
(5)TTJ
eff δKL + aw

(5)JKL
eff )

6 4
5
〈p2

pd〉mw(cw
(6)TTTJ
eff δKL + cw

(6)TJKL
eff )

7 − 2
3
〈p2

pd〉m2
w(2aw

(7)TTTTJ
eff δKL + 3aw

(7)TTJKL
eff )

− 2
7
〈p4

pd〉aw
(7)MMJKL
eff

8 2〈p2
pd〉m3

w(cw
(8)TTTTTJ
eff δKL + 2cw

(8)TTTJKL
eff )

+ 6
7
〈p4

pd〉mwcw
(8)TMMJKL
eff

in Sec. III B 4. Adopting a similar notation, we find that
the first-order shifts δǫ(1)(F,mF ) of the energies due to
the boost correction take the form

δǫ(1)(F,mF ) =
mF

3(F − 1)

∑

d

T (d)JK
e RzJ(βK

⊕ + βK
L )

+
(2F − 1)

5− 4m2
F

∑

wd

T (d)JKL
w MJK(βL

⊕ + βL
L)

+

√
2

3

mF

2F−2

∑

wd

T
(d)JK

w RzJ (βK
⊕ + βK

L ),

(124)

where the sums over w are over the flavors p and n. In
this expression, the quantities M IJ represent combina-
tions of rotations given by

MJK = 2RzJRzK −RxJRxK −RyJRyK . (125)

The pseudotensors T
(d)JK
e in the electron sector are given

by Table IV with w = e, while the pseudotensors T
(d)JK

w

in the proton and neutron sectors are also obtained from
this table with the substitutions (αmr)

2 → 〈p2
pd〉 and

(αmr)
4 → 〈p4

pd〉/5. The explicit forms of the pseudoten-

sors T
(d)JKL
w are listed in Table IX in terms of the ex-

pectation values 〈p2q
pd〉, the rest masses mw, the fine-

structure constant α, the deuterium reduced mass mr,
and the effective cartesian coefficients for Lorentz viola-
tion defined in Eqs. (27) and (28) of Ref. [37]. For each
coefficient, only the leading-order nonrelativistic contri-
butions are provided.
In parallel with the results for the boost-independent

terms, the expectation values 〈pk
pd〉 enhance the attain-

able sensitivity to spin-dependent coefficients relative to
the hydrogen maser by factors of about a billion for k = 2
and about 1018 for k = 4. Moreover, the reach for the a-
and c-type coefficients in Table IX is also substantially
enhanced relative to related measurements of the 1S-2S
transitions in hydrogen and deuterium. The prospects
for these boosted measurements with a deuterium maser
therefore appear excellent as well.
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VI. POSITRONIUM

Positronium is another hydrogenic system with poten-
tial for measurable signals from Lorentz and CPT vio-
lation. Studies of CPT violation in positronium decay
have been published for both experiment [35] and theory
[36]. Here, we offer some remarks on the potential role
of positronium spectroscopy the search for Lorentz and
CPT violation.

The perturbative corrections to the hydrogen spectrum
obtained in Secs. II and III cannot generically be applied
to determine shifts in the positronium spectrum because
the large magnetic moment of the positron implies the
fine and hyperfine structures in positronium are compa-
rable and so the hierarchy of angular-momentum cou-
plings of hydrogen and positronium are different. How-
ever, the nS1/2 levels present an exception to this, as the
two schemes for angular-momentum couplings coincide
when L = 0. We therefore focus here on experimental
scenarios involving transitions among the nS1/2 levels.
In particular, we consider potential signals for Lorentz
and CPT violation in the hyperfine splitting of the 1S
ground-state levels and in the 1S-2S transition.

The quantum states of free parapositronium (S = 0) or
orthopositronium (S = 1) are eigenstates of the charge-
conjugation operator C, so only C-even Lorentz-violating
operators can contribute to the energy shifts. Examining
Table I reveals that only the electron coefficients ce

NR
kjm

can contribute to spin-independent shifts of the positro-

nium ground-state splitting, while only ge
NR(0B)
kjm and

ge
NR(1B)
kjm can contribute to spin-dependent ones. This ba-

sic feature means that positronium naturally disentangles
CPT-even and CPT-odd operators in the electron sector
in the nonrelativistic limit.

In the limit of a weak applied magnetic field, the fre-
quency shift δνZ of the hyperfine Zeeman transitions in
positronium is given by

2πδνZ = −∆mF√
3π

2∑

q=0

(αmr)
2q(1 + 4δq2)

×
(
ge

NR(0B)
(2q)10 + 2ge

NR(1B)
(2q)10

)
. (126)

As expected, only contributions from coefficients control-
ling CPT violation appear. In contrast, in a strong ap-
plied magnetic field the quantum states of the system
are no longer eigenstates of the charge-conjugation oper-
ator due to mixing of the entangled spin-triplet and spin-
singlet levels. In this Paschen-Back limit, both CPT-odd
and CPT-even Lorentz-violating operators contribute to

the frequency shift,

2πδνPB = − 1√
3π

2∑

q=0

(αmr)
2q(1 + 4δq2)

×
[
(∆Se +∆Se)

(
ge

NR(0B)
(2q)10 + 2ge

NR(1B)
(2q)10

)

−(∆Se −∆Se)
(
He

NR(0B)
(2q)10 + 2He

NR(1B)
(2q)10

) ]
,

(127)

where ∆Se and ∆Se denote the electron and positron
spin changes, respectively.
Current precision measurements of the positronium hy-

perfine structure lie in the ppm range, with an absolute
uncertainty of order 1 MHz [99]. For example, this im-
plies a potential reach of about 10−17 GeV for the co-

efficients ge
NR(0B)
010 and 2ge

NR(1B)
010 , about 10−6 GeV−1

for ge
NR(0B)
210 and 2ge

NR(1B)
210 , and about 105 GeV−3 for

ge
NR(0B)
410 and 2ge

NR(1B)
410 . While these sensitivities are

about nine orders of magnitude below those presented
in Table III obtained via spectroscopy with a hydrogen
maser taking only one coefficient nonzero at a time, the
actual combinations of coefficients in the positronium
and hydrogen observables are distinct. This confirms
that positronium hyperfine measurements can be used to
separate CPT-even and CPT-odd spin-dependent effects
in the electron sector.
Positronium also has the advantage of being a purely

leptonic atom, allowing precision tests of quantum elec-
trodynamics or new physics via the direct comparison be-
tween experiment and theory. Paralleling the discussion
for hydrogen, isotropic coefficients for Lorentz violation
can be expected to shift the value of experimental mea-
surements of the 1S-2S transition in positronium relative
to the Lorentz-invariant theory. Comparing experiment
to theory therefore provides a constraint on Lorentz vio-
lation in the electron sector.
The Lorentz-violating frequency shift for the 1S-2S

transition in positronium is given by

2πδν = 3
2 (αmr)

2
(
c̊NR
e,2 + 67

12 (αmr)
2c̊NR

e,4

)
. (128)

As expected, it contains only CPT-even effects. The ob-
served difference between the theoretical and experimen-
tal values of the positronium 1S-2S frequency is 5.8±3.3
MHz [100]. Identifying this difference with the frequency
shift (128) yields the result

c̊NR
e,2 + 67

12 (αmr)
2c̊NR

e,4 ≃ (4.5± 2.5)× 10−6 GeV−1, (129)

representing a 1.8 sigma effect. It can conservatively be
taken as indicating an experimental reach of about 10−5

GeV−1 to the coefficients c̊NR
e,2 and about 105 GeV−3 to

c̊NR
e,4 . Improvements of about a factor of five in the exper-
imental sensitivity are within reach of future experiments
[101].
Measuring the free-fall acceleration of positronium has

been proposed as a test of the gravitational couplings of
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matter and antimatter [102], in a spirit similar to the
proposals for antihydrogen discussed in Sec. IVD. Fol-
lowing the line of reasoning leading to Eq. (96), we find
that nonzero isotropic coefficients for Lorentz violation
lead to a fractional change in the gravitational accelera-
tion of positronium given by

δg

g

∣∣∣∣
Ps

≈ 8
3 c̊

NR
e,0 . (130)

Note this depends only on C-even Lorentz violation. The
prospective measurements of the positronium gravita-
tional acceleration at the 10% level could therefore either
provide direct sensitivity to CPT-even Lorentz violation
in the electron sector or help disentangle CPT-even and
CPT-odd effects obtained in other experiments.

VII. HYDROGEN MOLECULES

High-precision molecular spectroscopy presents an in-
teresting alternative potential arena for tests of Lorentz
and CPT symmetry, albeit one that remains largely un-
explored to date. Although the primary focus of the
present work is hydrogenic systems, some of the tools
developed here can be applied in the context of compar-
atively simple molecules and molecular ions such as H2,
H+

2 , HD, and HD+. In this section, we offer a few com-
ments about the prospects for measuring nonrelativistic
spherical coefficients for Lorentz and CPT violation in
these systems.
Corrections to the energy levels and internuclear dis-

tances of H2, H
+
2 , HD, and HD+ arising from Lorentz

and CPT violation in the electron sector of the mini-
mal SME have previously been studied by Müller et al.

[23]. In this work, the unperturbed molecular states
are approximated by a wavefunction ansatz of the form
φγ(ra1)φγ(rb2) + φγ(rb1)φγ(ra2) for H2 or HD and
φγ(ra1) + φγ(rb1) for H+

2 or HD+, where φγ(r) ≡
exp(−γr) and the displacements between the pointlike
nuclei f = a, b and the electrons j = 1, 2 are denoted
by rfj . The electron wavefunctions depend on two pa-
rameters, the bond length R of the molecule and the
fall-off parameter γ, both of which are fixed by minimiz-
ing the expectation value of the electron hamiltonian in
the Born-Oppenheimer approximation.
Here, we extend this methodology to nonrelativistic

spherical coefficients with k = 2 in the electron sector,
which includes operators of arbitrary nonminimal dimen-
sion d. Incorporating coefficients with k > 2 is also of in-
terest in principle, but it turns out that the higher pow-
ers of the momentum operator accompanying the larger
values of k become unbounded with the simple wavefunc-
tion ansatz adopted here. A more sophisticated ansatz is
likely to overcome this issue and would be of interest to
investigate but lies beyond our present scope.
The relevant perturbation hamiltonian δhNR

e for
Lorentz and CPT violation in the electron sector is given

by Eqs. (3)-(6) with w = e and k = 2. Using the ap-
proproate ansatz for the wavefunction and working in a
frame in which the z axis is aligned along the displace-
ment R between the positions of the two nuclei, we find
the energy shift of the ground state of H2 due to Lorentz
and CPT violation is given by

〈δhNR
e 〉H2

=
−1√
π

〈
p2Ve

NR
200 +

√
5(p2z − p2x)Ve

NR
220

〉
, (131)

while the shift for H+
2 takes the form

〈δhNR
e 〉H+

2

=
−1√
4π

〈
p2Ve

NR
200 +

√
5(p2z − p2x)Ve

NR
220

〉

−〈σ3〉
√

3

4π

〈
TeNR(0B)

010 + p2zTe
NR(0B)
210 + 2p2xTe

NR(1B)
210

+
√

7
3 (p

2
z − p2x)Te

NR(0B)
230

〉
. (132)

In the above equations, Ve
NR
kj0, Te

NR(0B)
kj0 , and TeNR(1B)

kj0
are related to the electron coefficients for Lorentz and
CPT violation via Eq. (6). The derivation of these results
takes advantage of axial symmetry to replace factors of
p2y with p2x for convenience.
Numerical values for the expectation values of the mo-

menta in the above expressions are compiled in Table I
of Ref. [23]. These tabulated values must be divided by
a factor of two before substitution in Eq. (131) to match
our use of p for the electron momentum, but they can be
used directly in Eq. (132). For H+

2 , the expectation val-
ues of the electron spin operator σ appearing in Eq. (132)
can be taken in the electron spin state to an excellent ap-
proximation because the two protons are in a symmetric
singlet. Note that in principle operators with E-type par-
ity might contribute to the shift (132). However, these
are associated with the difference between 〈σ1〉 and 〈σ2〉.
The symmetry of the system suggests equality of these
expectation values and hence a zero contribution. This
symmetry might fail in a more realistic model, but any
corresponding effects are likely to be suppressed.
The analogue of the shift (132) for HD+ is also of

potential interest. However, the spin state of the electron
in HD+ is nontrivial, so expectation values involving all
the components of σ play a role. The contributions from
σm with m = ±1 for this case are given by

〈δhNR
e 〉HD+ ⊃ −

√
3

4π

∑

m

〈σm〉
〈∑

k

pkxTe
NR(0B)
k1m

+(p2z − p2x)Te
NR(1B)
21m

〉

−
√

7

6π

∑

m

〈σm〉
〈
(p2z − p2x)Te

NR(0B)
23m

〉
,

(133)

where the sum over m spans the values m = ±1 and the
sum over k the values k = 0, 2. The expectation values
are understood to be taken in the electron part of the full
spin wavefunction.
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In addition to shifting the ground-state energy, the
presence of Lorentz and CPT violation also modifies
other physical quantities [23]. The bond length R is
changed by an amount δR, which can be expressed as

δR = − 1

∂2Rǫ0
∂R〈δhNR

e 〉, (134)

where the unperturbed ground-state energy ǫ0 can be
taken as the miminum of the expectation value of the
hamiltonian in the absence of Lorentz violation. The
vibrational spectrum of the molecule within the elec-
tronic ground state is also shifted. An expression for
this shift can be obtained by approximating the vibrat-
ing molecule as a harmonic oscillator and calculating the
effective change δωv in the resonance frequency ωv due
to Lorentz and CPT violation. This yields

δωv =
ωv

2∂2Rǫ0
(∂3Rǫ0 δR+ ∂2R〈δhNR

e 〉). (135)

The rotational spectrum within the electronic ground
state is shifted by the Lorentz and CPT violation as well.
In the rigid rotor approximation, this shift can be under-
stood as an effective change δωr in the rotation frequency
ωr given by

δωr = −2ωr

R
δR. (136)

In the limit of zero nonminimal coefficients, all the
above results reduce to the minimal-SME expressions
presented in Ref. [23]. The nonminimal terms introduce
several qualitatively novel features. One is the depen-
dence of the bond length of H+

2 on the electron spin
state in the presence of Lorentz and CPT violation. An-
other noteworthy effect is the occurrence of contributions
from coefficients with j = 2 and j = 3 to the ground-
state energies of all the molecular species. This implies,
for example, a signal involving sidereal variations at the
third harmonic of the sidereal frequency, which could be
detected in measurements of suitable rovibrational tran-
sitions. Including terms with values k > 2 would result in
effects from coefficients with j ≥ 4 as well, together with
the concomitant sidereal signals at higher harmonics. In
contrast, as discussed in Sec. II C, the ground state in
atomic hydrogen only receives contributions from coeffi-
cients with j ≤ 1.
Rovibrational transitions with unchanged electronic

state in HD+ are dipole allowed. Current experiments
with HD+ have reached an impressive relative uncer-
tainty of about 10−9 [103]. The long lifetime of rovi-
brational excited states suggests considerable room for
improvement remains, and indeed it is believed possible
in principle for future experiments to achieve relative un-
certainties of about 5× 10−17 for H+

2 and of order 10−18

for HD+ [104]. For illustrative purposes here, consider
future prospective relative uncertainties of about 10−14

in frequency measurements. Using the expressions (131)

and (132), we find this corresponds to experimental sensi-
tivities of about 10−9 GeV−1 to the nonrelativistic spher-
ical coefficient with k = 2. For the coefficients with j = 2
and j = 3, a glance at Table VII reveals that this rep-
resents a sharper measurement by at least one order of
magnitude than would be available using atomic hydro-
gen.
The discussion in this subsection suffices to confirm

that spectroscopy of hydrogen molecules has the poten-
tial to provide competitive searches for Lorentz and CPT
violation in coming years. Several improvements on the
theoretical treatment can be envisaged. A comparatively
straightforward one would be to adopt improved unper-
turbed electron ground states. For example, a more de-
tailed form of the H+

2 wavefunction has been available
for many decades [105], and high-accuracy computations
of various systematic effects now exist [106]. This or
related improvements in the ground-state wavefunctions
could also make feasible the calculations for coefficients
with k > 2. Another improvement would be to incorpo-
rate contributions from the nucleons. The perturbative
rovibrational shifts established above can be traced to
the effective shift of the nucleon separation R. However,
in reality these transitions drastically change the vibra-
tional states of the nucleons, which could plausibly lead
to signals allowing sensitive measurements of coefficients
in the proton and neutron sectors of the SME.

VIII. SUMMARY

In this paper, we studied spectroscopic searches for
Lorentz and CPT violation using hydrogen, antihydro-
gen, deuterium, positronium, and hydrogen molecules
and molecular ions. Our considerations begin in Sec.
II with a treatment of theoretical aspects for hydrogen
spectroscopy. The leading-order perturbative hamilto-
nian (2) is constructed in the nonrelativistic limit, in-
corporating coefficients for Lorentz and CPT violation of
arbitrary mass dimension d. These coefficients can be
expressed in a spherical basis and separated into ones
controlling CPT-even and CPT-odd effects, as presented
in Eq. (6). The symmetries of the hydrogen atom re-
strict the possible perturbative contributions to certain
coefficients, listed in Table I along with some of their key
features. The formalism permits determining the general
matrix elements (18) of the full perturbation hamilto-
nian δhNR

H . The result is used in Sec. II C 2 to establish
analytical expressions for the perturbative energy shifts.
We follow this with a discussion of the general features
of effects on the hyperfine Zeeman transitions, includ-
ing notably the sidereal variations (35) and the annual
variations discussed in Sec. II D 2.
The potential applications of our methodology to mea-

surements using hydrogen spectroscopy are discussed in
Sec. III. We first address the issue of possible signals
for free hydrogen in Sec. III A, and then consider spec-
troscopy in an external magnetic field. We derive the
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explicit formula (49) for the Lorentz- and CPT-violating
shift of the hyperfine Zeeman frequency, and we com-
bine it with published results from experiments search-
ing for sidereal variations using a hydrogen maser [14–
16] to place the constraint (52) on a combination of non-
relativistic coefficients controlling spin-dependent effects.
Taken one coefficient at a time, this constraint yields the
results displayed in Table III. The prospects for hyperfine
Zeeman measurements using annual variations and stud-
ies on a space-based platform are discussed in Secs. III B 4
and III B 5. We then turn to precision spectroscopy with
nL-n′L′ transitions in hydrogen. The frequency shift
for any hydrogen transition of this type with J = 1/2,
∆J = 0 arising from isotropic Lorentz and CPT violation
is given by Eq. (60). In Sec. III C 3, we consider various
options for using annual variations of the 1S-2S tran-
sition frequency to measure coefficients for Lorentz and
CPT violation. Results from an existing experiment of
this type [18] are used to place first constraints on various
nonminimal cartesian coefficients with mass dimensions
5 ≤ d ≤ 8, as reported in Table VI. In Sec. III D the
possibility of measuring nonrelativistic coefficients with
j ≥ 2 using these types of transitions is discussed, and
estimates for the reach of future analyses are presented
in Table VII.
Antihydrogen spectroscopy in the context of the search

for Lorentz and CPT violation is the topic of Sec. IV. The
implementation of the CPT transformation on the hydro-
gen spectrum is provided in Sec. IVA. For hyperfine Zee-
man transitions, the induced frequency shift is presented
in Eq. (77), while for Paschen-Back transitions it is given
in Eq. (81). The 1S-2S transition in free antihydrogen
is shown to depend only on nonminimal coefficients for
Lorentz and CPT violation, with the corresponding fre-
quency shift specified in Eq. (84). For all these cases, we
provide estimates of attainable sensitivities both from di-
rect measurements and from comparisons with hydrogen
spectroscopy. In Sec. IVD, the prospects for detecting
an anomalous gravitational response of antihydrogen is
considered. Insight into the role of nonminimal opera-
tors is obtained by constructing a generalization of the
isotropic parachute model [86]. Sensitivity estimates for
future experiments are obtained.
Deuterium spectroscopy is the focus of Sec. V. We

obtain the corrections to the 1S-2S transition frequency

arising from isotropic Lorentz and CPT violation in Eq.
(103). Associated signals are discussed in Sec. VC. The
observed difference between the square of the charge radii
of the proton and deuteron [61, 98] is used to derive the
constraint (114) on nonrelativistic coefficients. Another
interesting approach to using deuterium spectroscopy to
search for Lorentz and CPT violation is performing hy-
perfine Zeeman measurements with a deuterium maser.
The implications of this are discussed in Sec. VD, where
we show that the Lorentz and CPT reach of a deuterium
maser represents in principle an improvement of many
orders of magnitude over that of a hydrogen maser.

Some aspects of positronium spectroscopy in the con-
text of the search for Lorentz and CPT violation are con-
sidered in Sec. VI. We obtain expressions for the mea-
surable frequency shifts and use the observed difference
between theoretical and experimental values of the 1S-2S
transition frequency to deduce the measurement (129) of
isotropic coefficients in the electron sector. Finally, spec-
troscopy with hydrogen molecules and molecular ions is
the subject of Sec. VII. We determine the energy shifts
(131) and (132) for the ground states of these systems,
and we discuss the sensitivities and potential advantages
of the corresponding frequency measurements.

The discussions in this paper provide a working sum-
mary of the prospects for observing Lorentz and CPT vi-
olation using precision spectroscopy of a number of com-
paratively simple systems. Although our analysis has led
to a variety of new or improved constraints, many coeffi-
cients for Lorentz and CPT violation remain unmeasured
at present. The numerous potential signals identified and
impressive attainable sensitivities in future experiments
offer strong motivation for further analyses, along with
encouragement for a potential breakthrough discovery in
this foundational subject.
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[45] V.A. Kostelecký and C.D. Lane, Phys. Rev. D 60,
116010 (1999); J. Math. Phys. 40, 6245 (1999).

[46] A.H. Gomes, V.A. Kostelecký, and A.J. Vargas, Phys.
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[76] R. Bluhm, V.A. Kostelecký, and N. Russell, Phys. Rev.
Lett. 79, 1432 (1997); Phys. Rev. D 57, 3932 (1998).

[77] S. Ulmer et al., J. Phys. Conf. Ser. 488, 012033 (2014).
[78] M. Niemann, A.-G. Paschke, T. Dubielzig, S. Ulmer,

and C. Ospelkaus, in Ref. [12].
[79] Y. Ding and V.A. Kostelecký, in preparation.
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