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Recently the Yang-Mills gradient flow of pure SU(3) lattice gauge theory has been calculated in
the range from β = 6/g20 = 6.3 to 7.5 (Asakawa et al.), where g20 is the bare coupling constant of the
SU(3) Wilson action. Estimates of the deconfining phase transition are available from β = 5.7 to 6.8
(Francis et al.). Here it is shown that the entire range from 5.7 to 7.5 is well described by a power
series of the lattice spacing a times the lambda lattice mass scale ΛL, using asymptotic scaling in the
2-loop and 3-loop approximations for aΛL. In both cases identical ratios for gradient flows versus
deconfinement observables are obtained. Differences in the normalization constants with respect to
ΛL give a handle on their systematic errors.

PACS numbers: 11.15.Ha

I. INTRODUCTION

We consider pure SU(N), N = 3, lattice gauge theory
(LGT) with the Wilson action (see, e.g., [1])

S = − β

N
Re
∑

p

TrUp , β =
2N

g2
0

, (1)

where the sum is over all plaquettes of a 4D hypercu-
bic lattice with periodic boundary conditions. Up is the
SU(N) plaquette variable, g20 the bare coupling constant
and β the usual convention, which emphasizes the in-
terpretation as a 4D statistical mechanics, but gives up
the β = 1/(kT ) relation with the physical temperature.
Namely, T = 1/(aNτ) holds in LGT, where the integer
Nτ is the extension of the lattice in Euclidean time and
a is the lattice spacing.
For every physical observable m with the dimensions

of a mass the relation

m = cm ΛL (2)

holds in the continuum limit a(β) → 0 for β → ∞, where
ΛL sets the mass scale of the lattice regularization and
cm are calculable constants. Their actual computation
faces difficulties, because one has to rely on simulations
at finite lattice spacings a(β), introducing corrections to
the continuum relation. The subject of a good refer-
ence scale arises. This topic gained renewed interest after
Lüscher [2] introduced the Yang-Mills gradient flow scale,√
t0, which comes by now in several variants. As antici-

pated by Sommer in his review of the subject [3], gradient
scales allow for an unprecedented precision, when com-
pared with traditional scales like r0 or rc [4] defined by
the force between static quarks at intermediate distance.
In recent work Asakawa et al. [5] pushed estimates for

gradient scales in SU(3) gauge theory all the way up to
β = 7.5. The SU(3) deconfining phase transition de-
fines another precise scale, second only to gradient scales.
Francis et al. [6] managed to extend estimates of the
SU(3) transition temperature Tt from lattice sizes of pre-
viously Nτ ≤ 12 up to Nτ = 22, βt = 6.7986 (65).

Remarkably, neither Asakawa et al. nor Francis et al.
fit the β dependence of their estimates so that there is
a β → ∞ continuum limit as predicted by the universal
part of asymptotic scaling. Instead, a parametrization
for a limited β range is used and the continuum limit of
ratios is subsequently estimated by fits in variables like
(a/r0)

2, (a/
√
t0)

2 and so on. This is in accord with a
majority of publications on the subject, which all have
given up on approaching the asymptotic scaling limit.
Reasons for this, and why the decision to give up on

asymptotic scaling may have been premature, are out-
lined in section II. Inspired by an earlier approach of
Allton [7], we are led to write the corrections to the mass
relation (2) as a simple Taylor series in the lattice spacing
times the lambda lattice mass scale, aΛL. In section III
this is seen to yield excellent results for fitting the data
of Ref. [5] and [6] (see the abstract). Summary and con-
clusions follow in the final section IV.

II. ASYMPTOTIC SCALING AND

CONTINUUM LIMIT

The realization that the continuum limit of LGT
may not just in theory but in practice be reached by
computer simulations started with a paper by Creutz
[8], where he observed for the SU(2) string tension κ
a cross-over from its strong coupling behavior a2κ =
− ln(β/4) to the 1-loop asymptotic scaling behavior
a2κ = cκ exp(−6π2β/11).
As the accuracy of Markov chain Monte Carlo calcu-

lations improved, it was soon realized that there were,
in particular for SU(3) with the Wilson action, strong
violations of the asymptotic scaling relation and this did
not improve noticeably by moving from the 1-loop to the
2-loop relation

aΛL = f0

as(g
2

0
) =

(

b0 g
2

0

)

−b1/2b
2

0 exp

(

− 1

2b0g20

)

, (3)

where b0 = 11N/(48π2) and b1 = (34/3)N2/(16π2)2

are, respectively, the universal 1-loop [9, 10] and 2-loop
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[11, 12] coefficients of asymptotic freedom, called asymp-
totic scaling in our context. Universal means that all
renormalization schemes lead to the same b0 and b1 co-
efficients.
Next, the hope appeared to be that the situation would

improve by including further, non-universal, terms of the
expansion of aΛL:

aΛL = fas(g
2

0
) = f0

as(g
2

0
)



1 +

∞
∑

j=1

qj g
2j
0



 . (4)

Computing up to 3-loops, Allés et al. [13] calculated q1
for SU(N) LGT,

q1 = 0.1896 for SU(3) . (5)

But, the discrepancies between the asymptotic scaling
equation and data for physical quantities did not im-
prove.
Assuming that lattice artifacts are responsible for the

disagreements, Allton [7] suggested to include such cor-
rections while constraining them with results from per-
turbative expansions of the considered operators and ac-
tions. Doubting, due to uncertainties with the very defi-
nition of non-trivial continuum functional integrals, that
perturbative information beyond Eq. (4) is reliable, a
general Taylor series expansion in aΛL is proposed here
for corrections to Eq. (2),

m = cm ΛL

(

1 +

∞
∑

i=1

âi (aΛL)
i

)

, aΛL = fas(g
2

0
) , (6)

where one has to determine the normalization constants
cm and the expansion coefficients âi by computer sim-
ulations. This has the potential to eliminate the essen-
tial singularity of the perturbative expansion at g20 = 0.
However, the full sum (4) for fas(g

2

0
) is not available. In-

stead, we have to work with approximations and define
for q = 0, 1, . . .

aΛq
L = f q

as(β) = f0

as

[

g20(β)
]



1 +

q
∑

j=1

qj
[

g20(β)
]j



 , (7)

where we have presently the q = 0 (2-loop) and q = 1
(3-loop) asymptotic scaling functions f q

as at our disposal
and a conjecture for q2 if we believe in the Padé approx-
imation made in Ref. [14]. It is instructive to consider
the deconfining temperature Tt as reference scale. Then
a(βt) = 1/[Nτ (βt)Tt] implies Λq

L(β) = f q
as(β)Nτ (β)Tt.

Now, if the analyticity (6) is true when using the full
fas, it cannot be true at finite q. This is, for instance,
seen by assuming that the expansion (6) is correct for
f1
as and comparing it with the same expansion using f0

as.
The difference lies in terms of the form

(

f0

as

)i
[

(

1 + q1 g
2

0

)i − 1
]

. (8)

Expressing g2
0
by f0

as gives rise to powers of logarithms
like 1/ ln(f0

as), ln | ln(f0

as)| and so on, which are singular
for f0

as → ∞. Nevertheless, we continue to use (6) with
fas replaced by f q

as and come back to these issues after
presenting the fits.
In the following we consider observables with the di-

mension of a length, L ∼ 1/m and rewrite (6) as

Lk

a
= ck

[

aΛL

(

1 +

∞
∑

i=1

âi (aΛL)
i

)]

−1

(9)

=
ck

fas(g20)

(

1 +
∞
∑

i=1

ai [fas(g
2

0
)]i

)

, (10)

where ai are the parameters with which we deal in our
fits. There is no strong reason for using the expansion
(10) instead of (9). It just developed this way out of
Ref. [7]. To determine the expansion parameters ai by
numerical calculations one has to truncate the sum at
rather small values of i. For sufficiently large β this
should work well because (aΛq

L) falls for all q exponen-
tially off with β → ∞. We define the truncated functions,

lp,qλ (β) =
1

f q
as(β)

+

p
∑

i=1

ap,qi [f q
as(β)]

i−1
, (11)

with f q
as given by (7) and fit data according to

Lk

a cp,qk

= lp,qλ (β) , (12)

where the 2-loop (q = 0) and 3-loop (q = 1) asymptotic

scaling functions, l0,0λ and l0,1λ , are explicitly known (7).
The labels p, q on the normalization constants ck and
parameters ai indicate that their values depend on the
choice of p, q. For simplicity the labels will be dropped
when the association is obvious.
For q = 0 as well as for q = 1 it turns out that excellent

fits are obtained using p = 3 parameters ai besides the
ck normalization constants. In the following we present
l3,qλ , q = 0, 1, expansions for the Yang-Mills gradient flow
data [5] and for the deconfining transition estimates [6].

III. ANALYSIS OF THE NUMERICAL DATA

For the gradient length scale a dimensionless variable
t2〈E(t)〉 is measured as a function of t. Then tX at
which the observable takes a specific value X is used
as reference scale. An operator whose t dependence
has been extensively studied is E(t) = F a

µνF
a
µν/4, where

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] is the field strength. In
Ref. [5] solutions to the equations

t2〈E(t)〉
∣

∣

t=tX
= X and t2

d

dt
t2〈E(t)〉

∣

∣

∣

∣

t=w2

X

= X (13)

have been calculated for X = 0.2, 0.3 and 0.4. The as-
sociated length scales are

√
t0.2,

√
t0.3,

√
t0.4 and, intro-

duced in [15], w0.2, w0.3, w0.4. For adaption to Eq. (12)
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TABLE I: Error bars in percent of the signal, 100△Lk/Lk.

L1 L2 L3 L4 L5 L6 L7

β
√
t0.2

√
t0.3

√
t0.4 w0.2 w0.3 w0.4 βt Nτ

6.3 0.09 0.11 0.12 0.16 0.17 0.22 5.69275 0.07

6.4 0.07 0.09 0.08 0.11 0.12 0.14 5.89425 0.05

6.5 0.13 0.16 0.19 0.22 0.21 0.24 6.06239 0.06

6.6 0.12 0.14 0.16 0.19 0.21 0.23 6.20873 0.07

6.7 0.26 0.33 0.35 0.40 0.46 0.49 6.33514 0.06

6.8 0.18 0.22 0.25 0.27 0.30 0.32 6.4473 0.25

6.9 0.46 0.57 0.65 0.73 0.81 0.87 6.5457 0.54

7.0 0.14 0.17 0.19 0.21 0.25 0.26 6.6331 0.26

7.2 0.43 0.52 0.59 0.65 0.71 0.75 6.7132 0.34

7.4 0.30 0.34 0.41 0.50 6.7986 0.84

7.5 0.37 0.62

nk 11 10 9 11 10 9 10

they are renamed into L1, . . . , L6 according to the first
two rows of Table I. Their estimates are given in Table 1
of [5] and are not reproduced here. Instead, we give in our
Table I error bars in percent of the signal, 100△Lk/Lk,
for the data tagged by a ∗ in their paper, i.e., used in
their analysis.
Estimates of the SU(3) deconfining phase transition

couplings βt are given in Table I of Ref. [6]. Whenever
(for smaller lattices) a comparison is possible their es-
timates are consistent with previous work [16, 17].The
lengths associated with the deconfining phase transition
temperatures Tt are 1/(aTt) = Nτ . However, the statis-
tical errors are in βt with Nτ fixed. To allow for direct
comparison with the other quantities, we attach to Nτ

error bars relying on the later estimated l3,1λ (β) scaling
behavior from all data sets

△Nτ = Nτ

[

l3,1λ (βt +△βt)− l3,1λ (βt)
]

/ l3,1λ (βt) . (14)

Starting with a guess and iterating the fit, one finds rapid
convergence to the relative errors compiled in the L7 col-
umn of Table I. They are less than 0.25 for βt ≤ 6.33514
(Nτ ≤ 12) and ≥ 0.25 for βt ≥ 6.4473 (Nτ =14, . . . , 22),
implying that the fit parameters will be dominated by
the smaller βt values. This is not good as the truncated
parts of our expansion (11) become more important at
smaller β. Therefore, we adjust the L7 error bars for the
lowerNτ to 100△L7/L7 = 0.2, which is still smaller than
the best of the relative errors at the higher Nτ values.
For the gradient flow data the bias from smaller rela-

tive errors is less severe and with β = 6.3 the smallest β
is not so small. No adjustments are made in that case.
The χ2

dof values of our fits (12) to the seven length

scales are compiled in Table II (ndof = nk − 4 with nk

given in the last row of Table I). All fits are in very
good agreement with the data. Actually, the fits of the
gradient flows are in too good agreement. This could be
an accident, measurements of L1 to L6 were performed
on the same configurations so that they are all correlated,

TABLE II: χ2

dof for our fits to each of the length scales.

q L1 L2 L3 L4 L5 L6 L7

0 0.46 0.34 0.23 0.40 0.47 0.39 0.76

1 0.42 0.32 0.24 0.38 0.46 0.39 0.74

or their error bars are systematically somewhat too large.
For a visual presentation we have combined the entire

n = n1 + . . . + n7 = 70 data into two l3,qλ (β), q = 0, 1,
fits for Lk/(ack), which works astonishingly well. This
is done with an extension of the method of [18]. The
constants ck are defined as functions ck(a1, a2, a3; data),
which give the exact minimum of the fit for the particular
constants ai, effectively reducing the fitting procedure to
three parameters, though the ck are still counting against
the degrees of freedom. The number of ai parameters is
reduced by 6× 3 to 3 from the 7× 3 ai parameters used
altogether for the fits of Table II.

 128

 256

 512

 1024

 2048

 5.8  6  6.2  6.4  6.6  6.8  7  7.2  7.4

l3,
q

λ

β

q=0: χ2
dof = 0.81; 1.05.

q=1: χ2
dof = 0.80; 0.95.

Fits
1 / (c7aTt) data

w0.2 / (c4a) data

FIG. 1: Data for L7/(c7a) and L4/(c4a) versus the l3,qλ fits
(12) using the 2-loop f0

as (q = 0) and the 3-loop f1

as (q = 1)
asymptotic scaling functions.

In Fig. 1 the two fits are shown jointly with the data
points (i = 1, . . . , nk)

Lk

a ck
(i)± △Lk

a ck
(i) for k = 4, 7 . (15)

Both fits cover with splendid χ2

dof values the impressive
range 5.69275 ≤ β ≤ 7.5. One value of k is picked for the
gradient flow, because on the scale of the figure the data
for the other Lk/(ack) lie right on top of them. For each
q the first χ2

dof value is for a fit that excludes the 1/(aTt)

deconfinement data and the second χ2

dof value for the
shown fit, which includes them. However, the increase
from the χ2

dof values of Table II should be noted. This
and the fact that the data of L1 to L6 are all correlated,
as well as our “improvement” of the deconfinement data,
may well obscure differences of the ai parameters for dis-
tinct observables. In fact, it is obvious from Fig. 4 (right)
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of Ref. [5] that correlations greatly reduce the error bars
of ratios and that

√
t0.3/w0.4 is not entirely flat as in our

fits. To take these correlations into account one would
best jackknife our fits, which requires the original time
series. In the present context of simply demonstrating
the almost identical scaling of all data graphically this
would just be a distraction. Generally, one expects the
a1 parameters to agree for all Lk, so that corrections to
ratios are of order (aΛq

L)
2. There is no reason for a2 or

a3 to agree for all Lk. Only, it can be enforced within the
accuracy of the present data. When these fits are applied
to a single data set there is then a small bias due to the
input of the other data sets.
To make Fig. 1 reproducible, the fit parameters are

given with high precision in Table III. More decent val-
ues are obtained when one redefines the expansion pa-
rameters aΛq

L by multiplicative constants, e.g., so that
they become 1 at β = 6, xq(β) = f q

as(β)/f
q
as(6). The

second row of Table III gives the fits parameters for
this case with their error bars in the third row. The
range covered by the xq(β) goes from xq(5.7) ≈ 1.4
down to xq(7.5) ≈ 0.18, so that xq(7.5)2 ≈ 0.032 and
xq(7.5)3 ≈ 0.0058 become really small.

TABLE III: Fit parameters used for Fig. 1.

a3,0
1

a3,0
2

a3,0
3

a3,1
1

a3,1
2

a3,1
3

−155.559 24615.3 −5834850 −104.735 9926.28 −2673493

−0.365 0.135 −0.754 −0.292 0.773 −0.581

(13) (20) (82) (13) (42) (82)

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 5.8  6  6.2  6.4  6.6  6.8  7  7.2  7.4

∆ k
 l3,

1
λ 

 / 
l3,

1
λ

β

L7 ( Tc )  
L4 ( w0,2 )

FIG. 2: Relative deviations (16) of the L7 and L4 data points
from the l3,1λ fit.

Fig. 2 provides a visual impression for the quality of
the fits, by plotting the deviations of the k = 4 and 7
data points from the q = 1 fit of Fig. 1 in the form

△kl
3,1
λ (i)

l3,1λ (βi)
with △kl

p,q
λ (i) =

Lk

a ck
(i)− lp,qλ (βi) (16)

together with error bars △Lk/(ackl
3,1
λ ).

TABLE IV: Normalization constants ck × 100.

q 0 1 0 1

c1 0.4918 (37) 0.5569 (41) 0.492 (06) 0.557 (07)

c2 0.6198 (46) 0.7018 (52) 0.619 (11) 0.701 (12)

c3 0.7152 (53) 0.8099 (59) 0.695 (25) 0.789 (28)

c4 0.5392 (40) 0.6106 (45) 0.548 (10) 0.620 (11)

c5 0.6304 (47) 0.7139 (52) 0.638 (16) 0.722 (17)

c6 0.7028 (53) 0.7958 (59) 0.679 (34) 0.771 (38)

c7 2.4404 (71) 2.7754 (79) 2.357 (46) 2.693 (51)

Perhaps surprisingly, instead of one satisfactory de-
scription of the data we got two (seven more pairs for
the fits with their χ2

dof values listed in Table II). The
quality of the fits does not care about the log corrections
discussed after Eq. (8). Instead, the parameters adjust
and the normalization constants c1 to c7 get shifted as
shown in Table IV. Here the numbers in column 2 and 3
correspond to the joint fits of the six gradient flow opera-
tors, with exception of the last row, which corresponds to
the fits displayed in Fig. 1 for which all seven operators
are combined. Columns 4 and 5 give the results obtained
from individual fits to which one should fall back when
it comes to conservative estimates. Normalization con-
stants of corresponding q = 0, 1 fits differ by about 12%,
while their statistical errors are much smaller.

TABLE V: Ratios of normalization constants.

q 0 1 0 1

c17 0.19728 (22) 0.19724 (22) 0.209 (05) 0.207 (05)

c27 0.24861 (28) 0.24856 (28) 0.263 (07) 0.260 (07)

c37 0.28689 (33) 0.28683 (33) 0.295 (12) 0.293 (12)

c47 0.21630 (26) 0.21625 (26) 0.233 (07) 0.230 (06)

c57 0.25288 (32) 0.25283 (32) 0.271 (09) 0.268 (09)

c67 0.28188 (37) 0.28182 (37) 0.288 (16) 0.286 (15)

For ratios, ckl = ck/cl, of the normalization constants
these differences become tiny and are swallowed by the
statistical error bars as is seen in Table V for ck

7
(columns

are arranged as in Table IV). The deconfining transition
is used as reference scale, because L7 is statistically in-
dependent from L1 to L6. The estimates of the last row
can be compared with Asakawa et al. [5]. Using q = 1,
our values c67 = w0.4Tt = 0.28182 (37) and 0.286 (15) are
both well consistent with 0.285 (5) as given in their Ta-
ble 3. Our value from column 3 is inconsistent with the
precise estimate given in their Eq. (3.2), 0.2826 (3). The
discrepancy may be well explained by the small bias of
our result and/or the fact that Asakawa et al. rely en-
tirely on Nτ = 12, whereas here a continuum fit is used
that gives weight to all lattices, including Nτ = 14 to 22.
The χ2

dof of the fits (12) are not sensitive to including

or not including the q1g
2

0
term into the scaling function
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FIG. 3: Approach of the l3,qλ fits to the asymptotic 2-loop and

3-loop scaling functions l0,qλ (q = 0, 1) times 100/l0,1λ .

(7), while there is a remarkable shift in the normalization
constants. It is then tempting, but entirely wrong, to
argue that the g2

0
dependence is so weak that it does not

matter and one could replace q1g
2
0 by a constant, say

q1g
2

0
→ qc

1
= 0.9 q1 for our β range. It is easy to see that

with this, or any other qc1, the normalization constants
of the q = 0 fits will not change at all. So, the shift in
the normalization constants comes entirely from the g20
dependence of the q1 term. These contributions re-sum
in a way that they become for large β responsible for the
difference between l0,1λ and l0,0λ .
We use our fits of all n = 70 data to illuminate the situ-

ation by Fig. 3, where for q = 0, 1 the inverse asymptotic
scaling functions l0,qλ and their l3,qλ fits are plotted times

100/ l0,1λ , i.e., as fractions of the inverse 3-loop asymptotic

scaling function l0,1λ . We see that the gap between the

l0,0λ and l0,1λ asymptotic scaling functions narrows slowly

and the fits l3,0λ and l3,1λ approach rapidly (exponentially
fast for increasing β) their respective asymptotic behav-

iors, where the l3,1λ fit stays closer to its asymptotic form

than the l3,0λ fit: l0,1λ /l3,1λ ≈ 0.8 l0,0λ /l3,0λ over the entire β
range of the figure..
How does it come that the data cannot figure out

whether the q = 0 or q = 1 fit is better? The answer lies
in their ratios: If the ratio of the two fits is a constant,
the difference between them will be entirely absorbed by
the normalization. Defining the change in the ratios with
respect to β = 6 as reference point by

dp(β) = 100

(

1− lp,0λ (β)/lp,1λ (β)

lp,0λ (6)/lp,1λ (6)

)

, (17)

we find for the asymptotic scaling (p = 0) functions a
change by 3.2% at β = 7.5. With 0.16% it is twenty
times smaller for the fits (p = 3).
What is then the effect of including more and more

qj terms in the expansion (4) of fas? We may expect

convergence of the resulting normalization constants ck
towards their correct value. But how fast? Repeating
the fits of all data with fake f2

as functions (7) defined by
q2 = ±0.19, so that q2 has a similar absolute value as q1,
there is again no sensitivity of the χ2

dof of the fits for the
additional term and corrections to the ck normalization
constants stay less than ±10%. On this basis we end up
with the result that our most reliable estimates of the
ck are those of column five of Table IV with a mainly
systematic uncertainty of ±10%. From c7 we get

Λ1

L/Tt = c7 ± 10% = 0.0269 (27) (18)

in good agreement with Francis et al. [6], who give
Tt/ΛMS = 1.24 (10). Using standard relations between
lambda scales [1] this becomes ΛL/Tt = 0.0280 (25). Sim-
ilarly, our estimate for w0.4ΛL,

L6Λ
1

L = c6 ± 10% = 0.0077 (9) , (19)

is in agreement with the one of Table 3 of Asakawa et al.
[5] and the more accurate value of their Eq. (3.3), which
translate, respectively, into w0.4ΛL = 0.00809 (35) and
w0.4ΛL = 0.00829 (5).
When we believe in the Padé approximation of [14],

we find q2 = −0.02467, which is in magnitude almost ten
times smaller than the range we allowed for our estimate
of the systematic error. Using then fits with f2

as(β) as
reference, Eq. (18) and (19) improve to

Λ2

L/Tt = 0.0266 (9) and L6Λ
2

L = 0.00762 (45) , (20)

where contributions of the statistical errors exceed now
the systematic errors. So, it is difficult to understand why
the error in Eq. 3.3 of Asakawa et al. is much smaller.
Anyway, a small q2 suggests rapid convergence of the
systematic errors of the normalization constants under
increasing q for the used f q

as functions.

IV. SUMMARY AND CONCLUSIONS

It appears that Eq. (6) is a natural parametrization
of lattice spacing corrections to the continuum limit of
SU(3) LGT. Incorporation of asymptotic scaling is still
a viable alternative to other fitting methods for the ap-
proach to the continuum limit, which are utilized in [5, 6]
and elsewhere. In a next step, our fitting procedure
should be tested for other asymptotically free theories,
in particular full QCD.
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