
This is the accepted manuscript made available via CHORUS. The article has been
published as:

One-loop matching for transversity generalized parton
distribution

Xiaonu Xiong and Jian-Hui Zhang
Phys. Rev. D 92, 054037 — Published 29 September 2015

DOI: 10.1103/PhysRevD.92.054037

http://dx.doi.org/10.1103/PhysRevD.92.054037


One-Loop Matching for Transversity

Generalized Parton Distribution

Xiaonu Xiong1 and Jian-Hui Zhang2

1Istituto Nazionale di Fisica Nucleare,

Sezione di Pavia, Pavia, 27100, Italy
2Institut für Theoretische Physik, Universität Regensburg,

D-93040 Regensburg, Germany

Abstract
Recent developments showed that light-cone parton distributions can be studied by investigating

the large momentum limit of the so-called quasi parton distributions, which are defined in terms of

space-like correlators, and therefore can be readily computed on the lattice. These two distributions

can be connected to each other by a perturbative factorization formula or matching condition that

allows one to convert the latter into the former. Here we present the one-loop matching condition

for the transversity generalized quark distribution in the non-singlet case.
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I. INTRODUCTION

Understanding the internal structure of the proton is an important goal of hadron physics.
Although the fundamental constituents of the proton–quarks and gluons–can be well de-
scribed by the QCD Lagrangian, we are still lacking of a systematic framework enabling us
to fully calculate the proton properties from its quark and gluon constituents. Therefore,
we have to resort to phenomenological functions to characterize the proton structure and
determine them by fitting to experimental data. One example of such functions is the parton
distribution functions, which characterize the momentum distribution of quarks and gluons
inside the proton, and play a crucial role in computing physical cross sections at hadron
colliders such as the Large Hadron Collider.

The parton distributions are defined as the forward hadronic matrix element of non-local
light-cone correlations where the initial and final hadron have identical four-momenta. They
have been intensively studied in the literature in the past few decades. In recent years, their
generelization to non-forward kinematics, the generalized parton distributions (GPDs) [1–4]
also received considerable attention. In contrast to the parton distributions, the GPDs en-
code more information about the internal structure of nucleons, and can shed light on the
three-dimensional spatial picture [5–7] and the spin structure of the nucleon [1]. Experi-
mentally, the GPDs can be accessed in exclusive processes such as deeply virtual Compton
scattering or meson production. However, they are rather difficult to access theoretically
from lattice QCD, since their definition explicitly involves light-cone correlations.

Recent developments [8–19] showed that hadronic matrix elements involving light-cone
correlations can be studied by moving the hadron slightly off the light-cone and then boosting
back. In the case of parton distributions, their light-cone definition can be approached by
first considering the hadronic matrix element of suitable spacelike correlations at a finite but
large hadron momentum and then taking the infinite momentum limit. Of course, taking the
infinite momentum limit does not directly yield the light-cone result, as it contains a singular
dependence on the hadron momentum. However, this singular momentum dependence can
be traded into the renormalization scale dependence of the light-cone result by a perturbative
factorization formula or matching condition. Some explicit examples of such a matching have
been given in Refs. [8, 11], where the perturbative matching factor was computed up to one-
loop level. The advantage of the above approach is that it offers a practical possibility to
tackle the difficult task of computing hadronic matrix elements of light-cone correlations by
dividing it into two parts that are separately computable: the matrix elements of spacelike
correlations at a finite hadron momentum can be computed on the lattice, and the matching
condition is perturbative.

In Ref. [19], we have considered the one-loop matching for the unpolarized and lon-
gitudinally polarized GPDs. The main purpose of the present paper is to establish the
one-loop matching for the quark’s transversity GPD, which is defined through the following
parametrization of the non-forward nucleon matrix element [20]

F T
q (x, ξ, t) =

∫

dz−

4π
eixp

+z−〈p′′|ψ̄(−
z

2
)iσ+⊥L

(

−
z

2
,
z

2

)

ψ(
z

2
)|p′〉z+=0,~z⊥=0

=
1

2p+

[

HT (x, ξ, t)ū(p
′′)iσ+⊥u(p′) + H̃T (x, ξ, t)ū(p

′′)
p+∆⊥ −∆+p⊥

m2
u(p′)

+ET (x, ξ, t)
γ+∆⊥ −∆+γ⊥

2m
u(p′) + ẼT (x, ξ, t)ū(p

′′)
γ+p⊥ − p+γ⊥

m
u(p′)

]

, (1)
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where L
(

−z
2
, z
2

)

is the gauge link along the light-cone and

pµ =
p′′µ + p′µ

2
, ∆µ = p′′µ − p′µ, ξ =

p′′+ − p
′+

p′′+ + p′+
, t = ∆2. (2)

In the forward limit ξ, t → 0, HT (x, ξ, t) reduces to the quark transversity distribution
δq (x), while H̃T (x, ξ, t) and ET (x, ξ, t) are absent because they are associated with the
momentum transfer ∆µ. Also ẼT (x, ξ, t) drops out due to the Gordon identity. Unlike the
unpolarized and longitudinally polarized GPD that preserve quark helicity, the transversity
GPD describes quark helicity flip due to the σ+⊥ structure in the bilocal field correlator
which also appears in the quark transversity distribution. Therefore, the transversity GPD
is a chiral-odd distribution and difficult to probe in experiments, since to access it requires
hard processes allowing for the quark to change its chirality, e.g., the double vector meson
photoproductionγ∗TN → ρLρTN

′ and the exclusive π0, η electroproduction γ∗N → π0(η)N ′

[21–24]. The transversity GPDs H̃ and E can be related to the quark contribution to the
nucleon transverse anomalous magnetic moment by [25]

κqT =

∫ 1

ξ−1

dx
[

2H̃q
T (x, ξ, t) + Eq

T (x, ξ, t)
]

ξ=0,t=0
. (3)

The impact parameter space probability interpretation of GPDs can also be extended
to the chiral-odd GPDs: the two-dimensional Fourier transform of the combination
2H̃q

T

(

x, ξ = 0,−~∆2
⊥

)

+ Eq
T

(

x, ξ = 0,−~∆2
⊥

)

has been shown to measure the distortion of

quark distribution on the transverse impact parameter plane inside a transversely polarized
nucleon [25].

The rest of the paper is organized as follows. In Sec. II, we present the definition of the
quasi transversity GPD, and the one-loop results for the quasi and light-cone transversity
GPD in the non-singlet case. In Sec. III, we present the factorization formula for the quasi
transversity GPD and the one-loop matching factor. Sec. IV contains our conclusion.

II. ONE-LOOP RESULT FOR TRANSVERSITY QUARK GPDS

According to Ref. [9], the quasi quark transversity GPD can be defined in complete
analogy with its light-cone counterpart as

FT
q (x, ξ, t) =

∫

dz

4π
e−ikzz〈p′′|ψ̄(−

z

2
)iσz⊥L

(

−
z

2
,
z

2

)

ψ(
z

2
)|p′〉z0=0,~z⊥=0

=
1

2pz

[

HT (x, ξ, t, p
z)ū(p′′)iσz⊥u(p′) + H̃T (x, ξ, t, p

z)ū(p′′)
pz∆⊥ −∆zp⊥

m2
u(p′)

ET (x, ξ, t, p
z)
γz∆⊥ −∆zγ⊥

2m
u(p′) + ẼT (x, ξ, t, p

z)ū(p′′)
γzp⊥ − pzγ⊥

m
u(p′)

]

.

(4)

The gauge link L now points along the spatial z-direction. We denote

p′µ = pµ −
∆µ

2
, p′′µ = pµ +

∆µ

2
, pµ =

(

p0, 0, 0, pz
)

, ξ =
p′′z − p′z

2pz
=

∆z

2pz
, (5)
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FIG. 1: One-loop diagrams for quark transversity GPD.

t = ∆2 is the same as in the light-cone GPD since it is Lorentz invariant, the skewness
parameter ξ is now defined in terms of the z-component of the external momenta. By con-
struction, the quasi GPD defined above approaches the light-cone one in the limit pz → ∞.
However, in a practical computation of hadronic matrix elements (e.g. in lattice computa-
tions), one has to start with a finite pz. The result then exhibits a different UV behavior
from that of the light-cone one, because the limit pz → ∞ and UV regularization are not
interchangeable. However, these two results can be related to each other by a perturba-
tive factorization formula or matching condition up to corrections suppressed by powers of
pz [9]. Note that in the quasi distribution, the functions HT , H̃T , ET and ẼT may have pz

dependence at a finite pz. In order not to lose generality, we choose ~∆⊥ to have both x-
and y-components, as the nucleon is now transversely polarized. ξ is constrained by the
requirement ~∆2

⊥ ≥ 0 which leads to

0 < ξ <
1

2pz

√

−t
(

(pz)2 +m2 − t
4

)

m2 − t
4

pz→∞
→

√

−t

−t + 4m2
. (6)

Here we assume ξ > 0, the case ξ < 0 can be related to ξ > 0 by time reversal invariance.
Let us first take a quark as the external state. It’s straightforward to show that the quasi

and light-cone transversity GPD yield the same result at tree-level, where

H
(0)
T (x, ξ, t) = H

(0)
T (x, ξ, t, pz) =δ (1− x) , (7)

while all the other functions H̃T , H̃T , ET , ET , ẼT , and ẼT vanish at this level.
The one-loop calculation can in principle be carried out in any gauge, since the definition

is gauge invariant. We will choose the axial gauge Az = n · A = 0, in which the gauge link
becomes unity. In this gauge, the contributing Feynman diagrams are shown in Fig. 1, and
the gluon propagator is

−i

k2 + iǫ

[

gµν −
nµkν + nνkµ

n · k
+ n2 kµkν

(n · k)2

]

, (8)

where n · k = kz and n2 = −1. If one chooses to work in the covariant Feynman gauge,
the second and last term in the above gluon propagator will correspond to the gauge link
diagrams in the Feynman gauge, and will yield the same one-loop result.

In the following, we separately compute the contribution coming from the three terms
in the gluon propagator in Eq. (8), and regularize the UV divergences by a transverse
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momentum cutoff µ. The gµν term leads to

Γ1 =CF

∫

d4k

(2π)4
ū

(

p+
∆

2

)

(−igsγ
µ)

i

k/+ ∆/
2
−m

iσz1 i

k/− ∆/
2
−m

(−igsγ
ν) u

(

p−
∆

2

)

×
−igµν

(p− k)2
δ

(

x−
kz

pz

)

=iCF g
2
s

∫

d4k

(2π)4
1

[

(

k + ∆
2

)2
−m2

] [

(

k − ∆
2

)2
−m2

]

(p− k)2
ū

(

p+
∆

2

)

×
{

−
(

γ⊥γzk/∆/+∆/k/γzγ⊥
)

+
(

γ⊥γz∆/k/+ k/∆/γzγ⊥
)

−m
[(

γ⊥γz∆/−∆/γ⊥γz
)

+ 2
(

γ⊥γzk/+ k/γ⊥γz
)]}

u

(

p−
∆

2

)

δ

(

x−
kz

pz

)

. (9)

After introducing a Feynman parametrization and integrating over k, one has

Γ1 =−
CFg

2
s

8π2

∫ 1

0

dλ

∫ 1−λ

0

dη
1

2
[

(pz)
2 (1−x−λ (1+ξ)−η (1− ξ))2+m2 (λ+η)2−tλη

]3/2

× ū

(

p+
∆

2

){

(

−t + 2m2
)

(1− λ− η) iσz⊥ + 2m2 [x− (1− λ− η)− (λ− η) ξ]
pz∆⊥

m2

−2m2 (λ+ η)
γz∆⊥ −∆zγ⊥

2m
− 2m2 (λ− η)

−pzγ⊥

m

}

u

(

p−
∆

2

)

. (10)

The spinor structure has been rewritten as the combination of H, H̃, E and Ẽ in Eq.(4) using
the Gordon identity and Dirac equation. Integrating out the Feynman parameters gives

HT,1 (x, ξ, t, p
z) =

αsCF

2π



























(

x
1−x

+ ξ
1+ξ

)

ln m2

−t
+
(

x
1−x

− ξ2

1−ξ2

)

ln ξ−x
ξ+x

− ξ
1−ξ2

ln
(1+ξ)2(ξ2−x2)

4(1−x)2ξ2
−ξ < x < ξ

2(x−ξ2)
(1−x)(1−ξ2)

ln m2

−t
+ 2ξ

1−ξ2
ln 1−ξ

1+ξ
ξ < x < 1

0 Otherwise,

H̃T,1 (x, ξ, t, p
z) = O

(

m2

(pz)2

)

,

ET,1 (x, ξ, t, p
z) =

αsCF

2π

2m2

−t



















1
1+ξ

ln −t
m2 −

2ξ
1−ξ2

ln 1+ξ
2ξ(1−x)

+ 1
1+ξ

ln(x+ ξ)− 1
1−ξ

ln(ξ − x) −ξ < x < ξ
2

1−ξ2
ln −t

m2 −
2ξ

1−ξ2
ln 1+ξ

1−ξ
ξ < x < 1

0 otherwise,

ẼT,1 (x, ξ, t, p
z) =

αsCF

2π

m2

−t



























− 2
1+ξ

ln −t
m2 −

2ξ
1−ξ2

ln ξ−x
ξ+x

− 2
1−ξ2

ln
(1+ξ)2(ξ2−x2)

4(1−x)2ξ2
−ξ < x < ξ

4
1−ξ2

(

ξ ln −t
m2 + ln 1−ξ

1+ξ

)

ξ < x < 1

0 otherwise.

(11)

From the above results, H̃T,1 is power suppressed by pz, and will be omitted.
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The second term in the gluon propagator gives

Γ2 =CF

∫

d4k

(2π)4
ū

(

p+
∆

2

)

(−igsγ
µ)

i

k/+ ∆/
2
−m

iσz⊥ i

k/− ∆/
2
−m

(−igsγ
ν)u

(

p−
∆

2

)

×
i [(p− k)µ nν + (p− k)ν nµ]

n · (p− k) (p− k)2
δ

(

x−
kz

pz

)

=iCF g
2
s

∫

d4k

(2π)4
ū

(

p+
∆

2

)

[

γzγ⊥
1

k/− ∆/
2
−m

γz + γz
1

k/+ ∆/
2
−m

γzγ⊥

]

u

(

p−
∆

2

)

×
1

n · (p− k) (p− k)2
δ

(

x−
kz

pz

)

, (12)

and the result is

HT,2 (x, ξ, t, p
z) =

αsCF

2π

1

1− x















































x+ξ
1+ξ

ln x−1
x+ξ

+ x−ξ
1−ξ

ln x−1
x−ξ

+ 1 x < −ξ
x+ξ
1+ξ

ln (pz)2

m2 + x−ξ
1−ξ

ln 1−x
ξ−x

+ 1−x
1+ξ

−x+ξ
1+ξ

ln 1−x
4(1+ξ)2(x+ξ)

−ξ < x < ξ

2(x−ξ2)
1−ξ2

(

ln (pz)2

m2 − 1
)

− x+ξ
1+ξ

ln 1−x
4(1+ξ)2(x+ξ)

−x−ξ
1−ξ

ln 1−x
4(1−ξ)2(x−ξ)

+ 1 ξ < x < 1

−x+ξ
1+ξ

ln x−1
x+ξ

− x−ξ
1−ξ

ln x−1
x−ξ

− 1 x > 1,

H̃T,2 (x, ξ, t, p
z) = 0,

ET,2 (x, ξ, t, p
z) = 0,

ẼT,2 (x, ξ, t, p
z) = O

(

m2

(pz)2

)

. (13)

The third term in the gluon propagator gives

Γ3 =CF

∫

d4k

(2π)4
ū

(

p+
∆

2

)

(−igsγ
µ)

i

k/+ ∆/
2
−m

iσz⊥ i

k/− ∆/
2
−m

(−igsγ
ν)u

(

p−
∆

2

)

×
i [(p− k)µ (p− k)ν ]

[n · (p− k)]2 (p− k)2
δ

(

x−
kz

pz

)

=CF g
2
s

∫

d4k

(2π)4
ū

(

p+
∆

2

)

iσz⊥u

(

p−
∆

2

)

1

(pz − kz)2 (p− k)2
δ

(

x−
kz

pz

)

. (14)

It contributes to HT only with

HT,3(x, ξ, t, µ, p
z) =

αSCF

2π

√

µ2 + p2z (1− x)2 − |1− x| pz

pz (1− x)2
. (15)

Summing over all the above contributions, we obtain the complete result of the gluon
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exchange diagram in Fig. 1

H
(1)
T (x, ξ, t, pz) =

αsCF

2π











































































1
1−x

(

x+ξ
1+ξ

ln x−1
x+ξ

+ x−ξ
1−ξ

ln x−1
x−ξ

)

+ µ
(1−x)2pz

x < −ξ

ξ+x
(1−x)(1+ξ)

ln (pz)2

−t
+ 1

1−x

(

ξ+x
1+ξ

ln ξ+x
1−x

+ ξ−x
1−ξ

ln ξ−x
1−x

)

− 1
(1−x)(1−ξ2)

(

(ξ2 − x) ln ξ−x
ξ+x

+ (1− x)ξ ln
(1+ξ)2(ξ2−x2)

4(1−x)2ξ2

)

+ ξ+x
(1−x)(1+ξ)

(ln (4(1 + ξ)2)− 1) + µ
(1−x)2(pz)

−ξ < x < ξ
2(x−ξ2)

(1−x)(1−ξ2)
ln (pz)2

−t
−

2(x−ξ2)
(1−x)(1−ξ2)

− 2ξ
1−ξ2

ln 1+ξ
1−ξ

− x+ξ
(1−x)(1+ξ)

ln 1−x
4(1+ξ)2(ξ+x)

− x−ξ
(1−x)(1−ξ)

ln 1−x
4(1−ξ)2(x−ξ)

+ µ
(−1+x)2(pz)

ξ < x < 1

− 1
1−x

(

x+ξ
1+ξ

ln x−1
x+ξ

+ x−ξ
1−ξ

ln x−1
x−ξ

)

+ µ
(1−x)2pz

x > 1,

H̃T (x, ξ, t, pz) =O

(

m2

(pz)2

)

,

E
(1)
T (x, ξ, t, pz) =

αsCF

2π

2m2

−t



















1
1+ξ

ln −t
m2 −

2ξ
1−ξ2

ln 1+ξ
2ξ(1−x)

+ 1
1+ξ

ln(x+ ξ)− 1
1−ξ

ln(ξ − x) −ξ < x < ξ
2

1−ξ2
ln −t

m2 −
2ξ

1−ξ2
ln 1+ξ

1−ξ
ξ < x < 1

0 otherwise,

Ẽ
(1)
T (x, ξ, t, pz) =

αsCF

2π

2m2

−t



















− 1
1+ξ

ln −t
m2 −

2
1−ξ2

ln 1+ξ
2ξ(1−x)

− 1
1+ξ

ln(x+ ξ)− 1
1−ξ

ln(ξ − x) −ξ < x < ξ
2ξ

1−ξ2
ln −t

m2 +
2

1−ξ2
ln 1−ξ

1+ξ
ξ < x < 1

0 otherwise.

(16)

The light-cone quark transversity GPDs are obtained by taking the limit pz → ∞ before
UV regularization. That is, we first integrate over k0, then make a pz → ∞ expansion and

integrate out ~k⊥. The corresponding results for the three terms in the gluon propagator are

HT,1 (x, ξ, t) =
αsCF

2π



























− x+ξ
(1+ξ)(1−x)

ln −t
m2 +

x−ξ2

(1−x)(1−ξ2)
ln ξ−x

ξ+x

− ξ
1−ξ2

ln
(1+ξ)2(ξ2−x2)

4(1−x)2ξ2
−ξ < x < ξ

−
2(x−ξ2)

(1−ξ2)(1−x)
ln −t

m2 −
2ξ

1−ξ2
ln 1+ξ

1−ξ
ξ < x < 1

0 Otherwise,

HT,2 (x, ξ, t) =
αsCF

2π



























(x+ξ)
(1+ξ)(1−x)

(

ln µ2

m2 + 2 ln 1+ξ
1−x

)

−ξ < x < ξ

2(x−ξ2)
(1−ξ2)(1−x)

ln µ2

m2 +
2(x+ξ)

(1+ξ)(1−x)
ln 1+ξ

1−x

+ 2(x−ξ)
(1−ξ)(1−x)

ln 1−ξ
1−x

ξ < x < 1

0 Otherwise,

H̃T,{1,2} (x, ξ, t) = O

(

m2

(pz)2

)

. (17)
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ET and ẼT are the same as ET and ẼT , respectively. The third term in the gluon propagator
clearly vanishes on the light-cone. Summing over all these contributions leads to the following
light-cone result

H
(1)
T (x, ξ, t, pz) =

αsCF

2π



































x+ξ
(1+ξ)(1−x)

ln µ2

−t
− ξ

1−ξ2
ln

(ξ+1)2(ξ2−x2)
4ξ2(1−x)2

+ x−ξ2

(1−ξ2)(1−x)
ln ξ−x

ξ+x
+ 2(x+ξ)

(1+ξ)(1−x)
ln 1+ξ

1−x
−ξ < x < ξ

2(x−ξ2)
(1−ξ2)(1−x)

ln µ2

−t
− 2ξ

1−ξ2
ln 1+ξ

1−ξ

+ 2(x−ξ)
(1−ξ)(1−x)

ln 1−ξ
1−x

+ 2(x+ξ)
(ξ+1)(1−x)

ln 1+ξ
1−x

ξ < x < 1

0 otherwise,

H̃T (x, ξ, t, pz) =O

(

m2

(pz)2

)

,

E
(1)
T (x, ξ, t, pz) =Ẽ

(1)
T (x, ξ, t, pz) ,

Ẽ
(1)
T (x, ξ, t, pz) =Ẽ

(1)
T (x, ξ, t, pz) . (18)

As in the case of unpolarized and longitudinally polarized quark GPDs, the quasi result
does not vanish in the full x region, whereas the light-cone result is non-vanishing only in
the ERBL and DGLAP region −ξ < x < ξ and ξ < x < 1. Moreover, there is no lnµ
dependence in the quasi result, instead it contains a ln pz dependence. The reason is that
the limit pz → ∞ does not commute with the UV regularization. However, the ln pz term in
the quasi distribution has the same coefficient as the lnµ term in the light-cone distribution,
the former can actually be traded into the latter by a matching factor of the form ln pz/µ.

The quark self-energy diagrams in Fig. 1 lead to the quark wave function renormalization
factor, which has been calculated in Ref. [19]. For completeness, we list the result here

Z
(1)
F = −

αSCF

2π

∫

dy



















































(

f(ξ, y) ln y−ξ
y−1

+ f(−ξ, y) ln y+ξ
y−1

)

− 1
1−ξ2

+ µ
pz(1−y)2

y < −ξ

−f(−ξ, y) ln p2z
m2 − f(ξ, y) ln 1−y

ξ−y
+ f(−ξ, y) ln 1−y

4(1+ξ)2(ξ+y)

+4f(−ξ, y)− 1
1−ξ2

+ 2
1−y

+ µ
pz(1−y)2

−ξ < y < ξ

−(f(ξ, y) + f(−ξ, y)) ln p2z
m2 + f(ξ, y) ln 1−y

4(y−ξ)(1−ξ)2

+f(−ξ, y) ln 1−y
4(y+ξ)(1+ξ)2

+ 4(f(ξ, y) + f(−ξ, y)) + 4
1−y

− 1
1−ξ2

+ µ
pz(1−y)2

ξ < y < 1

−f(ξ, y) ln y−ξ
y−1

− f(−ξ, y) ln y+ξ
y−1

+ 1
1−ξ2

+ µ
pz(1−y)2

y > 1,

Z
(1)
F = −

αSCF

2π

∫

dy



















−f(−ξ, y) ln µ2

m2 − 2f(−ξ, y) ln 1+ξ
1−y

+ 1
1+ξ

− 1
1−y

−ξ < y < ξ

−(f(ξ, y) + f(−ξ, y)) ln µ2

m2 − 2f(ξ, y) ln 1−ξ
1−y

−2f(−ξ, y) ln 1+ξ
1−y

+ 1
1−ξ

+ 1
1+ξ

− 2
1−y

ξ < y < 1

0 otherwise,

(19)

where Z
(1)
F , Z

(1)
F are for the quasi and the light-cone distribution, respectively, and

f(ξ, y) =
1

1− ξ
−

1

1− y
−

1− y

2(1− ξ)2
. (20)
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III. ONE-LOOP FACTORIZATION

Following Refs. [11, 19], the factorization connecting the quasi GPDHT and the light-cone
GPD HT can be written as

HT (x, ξ, t, µ, pz) =

∫ 1

−1

dy

|y|
ZHT

(

x

y
,
ξ

y
,
µ

pz

)

HT (y, ξ, t, µ) (21)

up to power corrections suppressed by pz, where the integration range is given by the support
property of the light-cone GPD. The matching factor ZHT

is completely perturbative, and
can be expanded as

ZHT

(

x

y
,
ξ

y
,
µ

pz

)

=δ

(

1−
x

y

)

+
αs

2π
Z

(1)
HT

(

x

y
,
ξ

y
,
µ

pz

)

+ h.o. (22)

where h.o. denotes higher-order corrections. Substituting the above expansion of ZHT
into

the matching condition, one obtains

Z
(1)
HT

(η, ζ, µ, pz) =
2π

αs

[

H
(1)
T (η, ζ, pz)−H

(1)
T (η, ζ, µ)

]

, (23)

which is given by

Z
(1)
HT

(η, ζ, µ/pz) /CF =



















































1
1−η

(

η+ζ
1+ζ

ln η−1
η+ζ

+ η−ζ
1−ζ

ln η−1
η−ζ

)

+ µ
(1−η)2pz

η < −ζ

η+ζ
(1+ζ)(1−η)

ln (pz)2

µ2 + 1
1−η

(

η+ζ
1+ζ

ln η+ζ
1−η

+ ζ−η
1−ζ

ln ζ−η
1−η

)

+ η+ζ
(1−η)(1+ζ)

(ln(4(1− η)2)− 1) + µ
(1−η)2pz

−ζ < η < ζ
2(η−ζ2)

(1−η)(1−ζ2)

(

ln (pz)2

µ2 + ln
(

4 (1− η)2
)

− 1
)

+ η+ζ
(1−η)(1+ζ)

ln η+ζ
1−η

+ η−ζ
(1−η)(1−ζ)

ln η−ζ
1−η

+ µ
(1−η)2pz

ζ < η < 1

− 1
1−η

(

η+ζ
1+ζ

ln η−1
η+ζ

+ η−ζ
1−ζ

ln η−1
η−ζ

)

+ µ
(1−η)2pz

η > 1.

(24)

The above result is valid only for y > ξ. However, it can be extended to the whole y region
as

1

|y|
Z

(1)
HT

(

x

y
,
ξ

y
,
µ

pz

)

/CF =
1

y

[

Z
(1)
HT ,1

(

x

y
,
ξ

y
,
µ

pz

)

θ(x < −ξ)θ(x < y)

+ Z
(1)
HT ,2

(

x

y
,
ξ

y
,
µ

pz

)

θ(−ξ < x < ξ)θ(x < y)

+ Z
(1)
HT ,3

(

x

y
,
ξ

y
,
µ

pz

)

θ(ξ < x < y) + Z
(1)
HT ,4

(

x

y
,
ξ

y
,
µ

pz

)

θ(x > ξ)θ(x > y)
]

,

(25)

where Z
(1)
HT ,i are the analytic continuation of the above matching factor in the four different

regions in Eq.(24) so that they are real functions (one simply needs to replace ln a with
1/2 ln a2), pz shall be replaced by yP z with P z the averaged longitudinal momentum of the
external hadrons. The validity of the above equation can be checked by explicit computa-
tions.
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The wave function renormalization factor introduces an extra contribution to the match-
ing factor near η = x/y = 1,

Z
(1)
HT

(

x

y
,
ξ

y
,
µ

pz

)

=δ (1− η) δZ
(1)
H /

(αs

2π

)

, (26)

where δZ
(1)
H has been calculated in Ref. [19]

δZ
(1)
H = −

αSCF

2π

∫

dη



















































(

f(ζ, η) ln η−ζ
η−1

+ f(−ζ, η) ln η+ζ
η−1

)

− 1
1−ζ2

+ µ
pz(1−η)2

η < −ζ

−f(−ζ, η) ln p2z
µ2 − f(ζ, η) ln 1−η

ζ−η
− f(−ζ, η) ln[4(ζ + η)(1− η)]

+4f(−ζ, η)− 1
1−ζ2

− 1
1+ζ

+ 3
1−η

+ µ
pz(1−η)2

−ζ < η < ζ

−(f(ζ, η) + f(−ζ, η)) ln p2z
µ2 − f(ζ, η) ln[4(η − ζ)(1− η)]

−f(−ζ, η) ln[4(ζ + η)(1− η)] + 4(f(ζ, η) + f(−ζ, η)) + 6
1−η

− 3
1−ζ2

+ µ
pz(1−η)2

ζ < η < 1

−f(ζ, η) ln η−ζ
η−1

− f(−ζ, η) ln η+ζ
η−1

+ 1
1−ζ2

+ µ
pz(1−η)2

η > 1.

(27)

Now we have the complete one-loop matching factor for HT . As for ET and ẼT , we can see
from the results in the previous section that the matching factor is a trivial δ-function

Z
(1)
ET

(η, ζ) = Z
(1)

ẼT

(η, ζ) =δ (η − 1) (28)

up to one-loop level and leading pz accuracy. The reason is that the light-cone GPDs ET ,
ẼT vanish at tree-level, and therefore must be UV finite at one-loop level. They do not have
a cutoff dependence. Accordingly, ET and ẼT do not have a logarithmic dependence on pz.
ET , ẼT can therefore be smoothly approached by the large momentum limit of their quasi
counterparts.

IV. CONCLUSION

We have presented the one-loop matching condition for the quark transversity GPD in
the non-singlet case. The matching factor for the GPD HT is non-trivial, and reduces to
that for the transversity quark distribution in the forward limit. The matching factor for
ET and ẼT is a trivial δ-function to one-loop and leading power accuracy. Both H̃T and
its quasi counterpart H̃T are power suppressed by the hadron momentum, and therefore are
omitted at leading power accuracy.
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