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Abstract

Recently it was shown that in QCD-like theories with Nf > N , where Nf is
the number of light flavors and N is the number of colors, there are correlation
functions that vanish in perturbation theory and at short distances receive dom-
inant, calculable contributions from small instantons. Here we extend the set of
such objects to theories with Nf = N , which includes real QCD, and discuss their
application as a calibration of lattice computations at small quark mass. We re-
visit the related issue of the u quark mass and its additive renormalization by small
instantons, and discuss an alternative test of mu = 0 on the lattice.



1 Introduction

Two particularly interesting questions in QCD are the origin of the η′ mass and the

possibility that a small mass for the u quark might solve the strong CP problem. Both

questions are inherently non-perturbative. Lattice gauge theory has made enormous

strides in the last decade on each: the η′ mass is reasonably well reproduced (see, for

example, [1, 2, 3]), while the quark masses are known at the 5% level, with simulations

bracketing the physical quark masses at lattice spacings of order (3 GeV)−1 or smaller

(see, for example, the detailed review [4]).

The elimination of the possibility that mu vanishes is particularly important. The

other known solutions to the strong CP problem, the Peccei-Quinn and Nelson-Barr

mechanisms, both exhibit substantial challenges from the theoretical point of view. The

computations of the light quark masses are quite complex, so it is reassuring that simula-

tions performed by different methods yield similar results [5, 6, 7, 8, 9, 10, 11]. However,

it would be useful to establish independent cross-checks of mu > 0 on the lattice, separate

from fits of the light quark spectrum. More generally, it would be interesting to have

analytic probes of nonperturbative physics that could serve as a calibration of lattice

computations sensitive to the chiral anomaly.

At first sight, mu = 0 appears inconsistent with results of current algebra, but

Georgi and McArthur [12], Choi, Kim, and Sze [13], and Kaplan and Manohar [14]

pointed out reasons why this might be misleading. In [12] and [13] it was shown that

instantons contribute to an effective mass for the u quark at QCD scales, proportional to

mdms and an IR-divergent integral over instanton scale sizes. Ref. [14] discussed more

generally what can be learned by fitting chiral lagrangians to meson spectra, noting

that there are other operators quadratic in masses which transform like the linear terms

under the underlying chiral symmetries, and that these effects are parametrically of order

mdms/ΛQCD, plausibly as large as the naive mu. Banks, Nir, and Seiberg [15] developed

these arguments further, clarifying the connection between the chiral lagrangian and the

underlying microscopic theory, and discussing the circumstances under which a massless

or nearly massless u quark might accidentally emerge from underlying symmetries.

We will study probes of both the low energy constants (LECs) controlling the

Kaplan-Manohar operator in the chiral lagrangian and the instanton configurations that

contribute to them. In the first part of this work we discuss the dependence of m2
π on ms,
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which is sensitive to the relevant combination of LECs. We point out that the coefficient

of this operator can already be estimated from existing lattice data on the LECs, but the

uncertainty is substantial. Interestingly, it is suppressed in large N [15, 16]. It would be

desirable if this parameter could be fit more precisely with well-established systematic

and statistical errors. A small value not only corroborates mu > 0, but lends quantitative

support to the large N picture as a good description and instantons as less important

for describing QCD at low scales.

In the second part of this work we discuss a more general tool for studying small

instantons in QCD and on the lattice. While instantons are suggestive of the origin of the

η′ mass, and can provide a potentially substantial contribution to the u quark mass, their

precise role is unclear. Instanton computations are plagued with infrared divergences, and

Witten long ago argued that instantons are not the dominant players in understanding

the mass of the η′ [17, 18, 19].1 However, there are certain correlation functions in

gauge theories that, at short distances, receive dominant, calculable contributions from

instantons. A limited set of such objects was noted in [23] for N > Nf ; here we extend

the class of theories to include the phenomenologically relevant case of QCD with three

light quarks2. These Green’s functions provide a set of benchmark, non-perturbative

quantities accessible to both analytic calculation and numerical simulation. At short

distances, they should in principle match well between the two. At larger separations,

they could provide a lattice measure of how the instanton IR divergences are physically

cut off. The rest of this paper is organized as follows. In Sec. 2 we review the theory of

the up quark mass. We repeat (and slightly correct) the instanton calculation of Georgi

and McArthur and describe the issue from the perspective of chiral perturbation theory.

In Sec. 3 we then discuss our first test of mu = 0 using the linear dependence of the

pion mass on the strange quark mass. In Sec. 4 we turn to the family of correlators

that probe small instantons in QCD. We establish that small instantons are sensible

configurations, not only in theories with Nf > N , but also in QCD-like theories, including

the case of Nc = 3 = Nf , and that the notion of an instanton density is well-defined

for small instantons.3 Subsequently we compute the leading semiclassical contribution

1Possible ways in which the instanton and large N viewpoints might be reconciled are discussed in
[20, 21]. For a recent discussion in theories under semiclassical control, see [22].

2The arguments of Ref. [23] are self-consistent. They rely on a set of assumptions explained in that
work, and some further elaboration will be provided in this paper.

3We thank R. Kitano for discussions of his program to extract this quantity by different lattice
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to a particular Green’s function at short distances and analyze subleading corrections,

organized with the operator product expansion. We discuss optimal sets of correlators

and considerations for lattice simulations before turning to the more speculative question

of the role of instantons in quantities where the semiclassical analysis leads to infrared

divergences. The most basic model for such calculations is to introduce a sharp cutoff on

the instanton scale size. We consider the effects of simple cutoffs and note that the finite

Green’s functions may suggest a lower bound on the cutoff parameter. Finally, in Sec. 5

we consider some of the theoretical issues associated with a small bare mu. We explain

that the status of small mu is similar to that of a high quality Peccei-Quinn symmetry.

It might be an accidental consequence of horizontal symmetries in a theory of flavor, as

in [15]; alternatively, the low energy theory may simply possess apparently anomalous

discrete symmetries, a phenomenon familiar in string theory[24].

2 Review of the Theory and Status of mu

In this section we briefly review the nonperturbative renormalization of the up-quark

mass, its relation to the Kaplan-Manohar ambiguity in the chiral Lagrangian, and the

status of lattice computations of the light quark spectrum.

2.1 Nonperturbative Renormalization

Even if the up-quark mass vanishes somewhere in the ultraviolet, symmetries permit a

nonperturbative additive renormalization of the form

∂tmu = γmu + C(g)am∗dm
∗
s , (1)

where γ is the perturbative anomalous dimension and a is the Wilsonian length cutoff.

Small instanton contributions to second term in this RGE were first discussed in Refs. [12,

13]. The instanton computations suffer an IR divergence in the integral over instantons

sizes. As an estimate, we can compute the contribution to mu from instantons with

size less than a sharp cutoff, ρ < ρ0. Of course, this computation does not capture

the complete set of corrections to the Wilsonian mu, and may not be the dominant

contribution, but it can give us a sense of the order of magnitude of QCD corrections.

methods.
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Figure 1: The effective mu generated by small instantons as a function of a hard IR cutoff
on the instanton size. Thick line: RG-improved result. Thin line: Georgi-McArthur
approximation (partial RG-improvement). Dashed line: one loop result. In all cases we
take ms = 93 MeV, md = 4 MeV, set the renormalization scale to 2 GeV, and take the
limit of a large UV cutoff, ignoring small corrections from heavy-quark thresholds.

We find, for the correction between the charm threshold and ρ0,

mu[ρ0] = 1.15
8π6

3
Λ̃9ms(µ)md(µ)

α(µ)22/9

∫ ρ0

m−1
c

dρρ9
(
α(µ)

α(ρ)

)22/9(
α(ρ)

α(µ)

)8/9(
α(ρ0)

α(ρ)

)4/9

+mu[m
−1
c ] .

In this expression we include factors of αγ/β generated by resumming higher-loop per-

turbative corrections at leading log (solving Eq. (1)). This expression differs from that

in [12], which only included some of the higher-order perturbative corrections, resulting

in a numerically rather different effect as a function of ρ0.

The additive contribution to mu is shown in Fig. 1 as a function of ρ0. If ρ0 is as

small as 0.8 GeV−1, roughly the charm threshold, the contribution to mu from smaller

instantons is less than a hundredth of an MeV; mu = 2 MeV corresponds to ρ0 = 1.5

GeV−1.

Although our computation improves on that of [12] for ultraviolet ρ0, due to the

strong IR sensitivity, it is still not possible to draw any sharp conclusion about the full

nonperturbative contribution to the running mu. We can only conclude, as [12] did4, that

it is plausible a priori that instantons and other nonperturbative effects could contribute

4Note that in [12] the limit ρ0 → Λ−1 was taken.
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O(1) MeV to mu.

2.2 Chiral Perturbation Theory

Although one might hope to test the nonperturbative renormalization in Eq. (1) with

meson phenomenology and second-order chiral perturbation theory, Kaplan and Manohar

(KM) pointed out a significant obstacle [14], exhibiting an ambiguity in the parametriza-

tion of the chiral lagrangian. The leading-order term in the lagrangian is:

L2 =
F 2

4
Tr
(
∂µU

†∂µU
)

+
F 2

4
Tr
(
χ†U

)
+ c.c. (2)

where χ and U are given by

χ = 2MB0 , U = ei
λAπA

F , (3)

M is the quark mass matrix, and B0 is proportional to the magnitude of the chiral

condensate. Second-order terms are parametrized by the Gasser-Leutweyler (GL) pa-

rameters L1−8 [25]. In brief, the KM ambiguity is the statement that there is a particular

combination of operators (with the quantum numbers of, and receiving contributions

from, small instantons) that has the potential to mimic the effects of a non-zero bare u

quark mass. Following [15], the operator can be written as

L ⊃ r1
(
Tr(χ†Uχ†U)− Tr(χ†U)2

)
, (4)

where in terms of the GL parameters,

r1 =
1

2
(L8 − L6 − L7) . (5)

By a redefinition of χ, r1 can be eliminated, providing an effective contribution to mu of

order mdms. Alternatively, having fixed the ambiguity by requiring – for instance – that

M is proportional to the UV quark mass matrix, a large value of r1 and a small value of

the bare mu would be compatible with the observed pseudoscalar meson masses, whereas

the orthogonal combinations of GL parameters are fixed by the spectrum. An r1 of order

10−3 would be sufficient if mu = 0. A non-zero r1, with orthogonal combinations of L’s

comparatively smaller, corresponds to:

−2L6 ≈ −2L7 ≈ L8 ≈ r1. (6)
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2.3 Lattice QCD

The only tool we have to reliably determine the light quark masses – and in particular

whether the u quark mass is nearly zero in the UV – is lattice gauge theory. Light quarks

are perhaps the biggest challenge for the lattice, but over the past decade, lattice com-

putations have yielded remarkably precise values for their masses. The FLAG review [4]

summarizes the results from several collaborations, and they are generally in good agree-

ment, giving values for mu (md) of order 2 MeV (4.5 MeV) at a scale of 2 GeV, with

systematic and statistical errors around 5%. From these results, mu deviates from zero

with high statistical significance. In the remainder of this work, we discuss two methods

of cross-checking of mu > 0, orthogonal to direct fits of the light quark specturm.

3 Testing mu = 0 with Low Energy Constants

As we will discuss in this section, testing themu = 0 hypothesis does not require obtaining

precise values for mu and md. This question can be addressed with meson spectra in

lattice simulations away from the physical point, and in particular their variation with

the quark masses.

The critical point is that the KM transformation is not a symmetry of QCD, and the

lattice can resolve it by measuring some quantity sensitive to r1. For example, consider

corrections to the average pion mass proportional to ms,

m2
π = β1(mu +md) + β2ms(mu +md) +O(m2

u,d) . (7)

Lattice calculations are often done with mu(a) = md(a) ≡ m̂. The parameters β1 and β2

can be extracted on the lattice by varying m̂ and ms(a) independently; e.g.,

β2
β1
≈

m2
π1
−m2

π2

m2
π2
ms1 −m2

π1
ms2

. (8)

if simulations are done at two values of ms.
5 Taking the simplified limit where GL

parameters orthogonal to r1 are negligible, the βi reduce to

β1 = B0 , β2 = −16
r1B

2
0

F 2
. (9)

5A related measurement was discussed in [16] as a method to fix the ambiguity.
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In this limit, if mu vanishes, then the combination of m2
π and the kaon masses can be

used to formulate the constraint

β2
β1
≈ 1

ms

m2
π − (m2

K0 −m2
K+)QCD

m2
π + (m2

K0 −m2
K+)QCD

, (10)

where the subscript indicates that only the QCD contribution to the kaon splitting is

used. Numerically, this constraint gives

β2
β1
≈ 5 GeV−1. (11)

Corrections to Eq. (10) from keeping the other GL parameters are easy to include. More

precisely,

β2
β1

= 16
B0

F 2
(2L6 − L4) , (12)

and the same combination of the Li as well as the combination 2L8 − L5 appear again

in the kaon masses, so we can write a more general formula relating β2/β1 to m2
π, m2

K ,

ms, and B0. This relation increases the required β2
β1

to O(10) GeV−1. Alternatively, if

the quadratic dependence of m2
K on ms is measured on the lattice, the more general

constraint can be written in the form

β2
β1
≈ 1

ms

m2
π − (m2

K0 −m2
K+)QCD

m2
π + (m2

K0 −m2
K+)QCD

+
1

B0

m2
π(∂2m2

K/∂m
2
s)

m2
π + (m2

K0 −m2
K+)QCD

. (13)

From the results quoted in [4] for B0, ms, and 2L6 − L4, we can estimate

β2
β1
' (1± 1) GeV−1. (14)

Although the error bars are large (and here only crudely estimated), the ratio is too small

to account for the effects of the u quark mass. But β2/β1 is a fundamental prediction of

QCD and it would be interesting to see a dedicated study with increased precision. It

would provide another demonstration of mu 6= 0, as well as a probe of the contribution

of small instantons to the chiral lagrangian.

4 Instantons and Nonperturbative Green’s Functions

We turn now to a more general test of nonperturbative physics on the lattice, which is

sensitive to the same short-distance gauge field configurations that renormalize mu in the

UV.
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In [23] it was observed that in gauge theories with Nf > N massless flavors, certain

Green’s functions vanish in perturbation theory, and at short distances receive a contri-

bution from an instanton that is infrared-finite and calculable in a systematic expansion

in α(x). For the case of N = 2, Nf = 3, for example, one such Green’s function behaves

as

〈ūdd̄s(x) s̄u(0)〉 ∼ Λ16/3x−11/3 + nonsingular. (15)

The one-instanton computation generating the singular term in Eq. (15) is both infrared

and ultraviolet finite, and perturbative corrections can be computed. It was argued

in [23] that IR-divergent corrections from the instanton ensemble do not contribute to

the leading singular behavior.

The operator product expansion helps clarify the UV and IR structure. The OPE

for the operator in Eq. (15) has the form

ūdd̄s(x) s̄u(0) ∼
(
cΛ16/3x−11/3 + nonsingular

)
I +

(
1 +O(α)

)
:ūdd̄ss̄u(0): + . . . (16)

The coefficient of the unit operator is the sum of a singular contribution, which can be

computed systematically in perturbation theory about a single instanton, and nonsin-

gular, incalculable corrections generated by interactions with the full instanton ensem-

ble [23]. The coefficient of the six-fermion operator is nonsingular. In the one-instanton

background, its matrix element is UV divergent, so the operator must have a subtraction

applied as denoted by the normal-ordering in Eq. (16).6 With connected dilute gas cor-

rections, the matrix element acquires IR divergences and is not calculable analytically.

In principle it can be computed numerically, for example, on the lattice. In any case, in

each order of the perturbation expansion, we expect that the most singular term in (15)

is calculable.

The demonstration given in [23] that the (one-instanton, instanton-ensemble) contri-

butions to the correlation functions factorize as above into (most singular, less singular)

terms falls short of a rigorous proof. It is an assumption of this work that this factoriza-

tion holds.

We can generalize to other operators, replacing, for example, ūd(x) by ūσµνF
µνd(x).

The unit operator coefficient is now more singular by two more powers of x. Similarly,

6Infrared finiteness of certain matrix elements like this one in a one-instanton background has been
discussed in various works [26, 27, 28], and correctly noted to acquire incalculable contributions from
the instanton ensemble.
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the six fermion operator also appears, now with a singular coefficient proportional to

1/x2 and powers of (α/π). But again the most singular term is the unit operator and it

remains calculable.

It is interesting to consider whether other theories, and in particular N = Nf = 3,

possess Green’s functions with similar properties.

4.1 Green’s functions in pure SU(N)

Based on the finite Green’s functions described above, one might hope to find similar

objects in other theories. Consider, for example, pure (Nf = 0) SU(2) gauge theory. In

perturbation theory, the Green’s function

G(x) = 〈F 2(x) FF̃ (0)〉 (17)

vanishes as a result of CP invariance. In an instanton background, with a nonzero vacuum

angle θ, G is proportional to sin θ:

G(x) = cΛ22/3x−2/3 sin θ. (18)

The leading instanton contribution is infrared finite and mildly singular for small x.

However, higher-order corrections, although suppressed by α, are more singular at short

distances. In the OPE description, the operator FF̃ appears:

F 2(x) FF̃ (0) ∼ cΛ22/3x−2/3 sin θ I + kx−4FF̃ (0) + . . . (19)

Although k is O(α/π), at sufficiently short distances, the FF̃ contribution dominates

over that of the unit operator. Moreover, the expectation value of FF̃ is incalculable

(unless θ = 0, in which case it vanishes along with the rest of G). Its leading instanton

contribution diverges as the 10/3 power of any would-be infrared cutoff.

In a lattice computation (capable of measuring θ-dependent effects), the unit oper-

ator might be isolated by working at moderate (not extremely small) x and subtracting

kαx−4 times a lattice-measured value of 〈FF̃ 〉. But at the very least the procedure

would be extremely challenging. The OPE structure in this example is general among

pure gauge theories, as well as theories with Nf < N . At best, the only computable

quantities in these theories are described by subleading terms in an operator product

expansion.
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4.2 Nf = N

As discussed in [23], Nf = N is a borderline case for fermionic correlators analogous to

Eq. (15). They are not strictly calculable in a 1-instanton background, possessing loga-

rithmic IR divergences that correspond in the OPE to matrix elements of the multiquark

local operators. However, these theories are particularly interesting both because of the

relevance to nature for Nf = N = 3 and because there is a wealth of lattice data.

Correlators of operators with field strength insertions provide a more effective probe.

In the Nf = N = 3 case, for example, consider the Green’s function

G(x) = 〈ūσµνF µνd(x) d̄σρσF
ρσss̄u(0)〉. (20)

G is finite in the 1-instanton background at leading order in α. Correspondingly, the OPE

includes the unit operator with a Λ9x−4 singularity. G acquires an infrared divergence

when the gauge fields are allowed to fluctuate due to the contraction of F (x)F (0) in the

correlation function. The OPE takes the form:

ūσµνF
µνd(x) d̄σρσF

ρσss̄u(0) ∼ cΛ9x−4
(
1 + k log(xµ)

)
I + kx−4:ūud̄ds̄s(0): + . . . (21)

where k is O(α/π). Here the six quark operator is schematic and stands for a family of

similar operators with different spin contractions. The log(xµ) term in the coefficient of

the unit operator includes nonperturbative operator mixing, generated by the logarithmic

UV divergence of 〈ūud̄ds̄s(0)〉 in the instanton background.

As mentioned above the six quark matrix elements are also IR log-divergent and

incalculable. However, their coefficients are not more singular than that of the unit

operator, and furthermore k is (α/π)-suppressed. Therefore, the calculable term is much

easier to isolate. As a first approximation, the incalculable matrix elements might simply

be ignored: at scales of order x ∼ m−1τ , for example, α/π is a 10% effect. More accurately,

in a lattice computation they could in principle be measured and subtracted from G.

We chose the form of G in Eq. (20) because it exhibits simply how such Green’s

functions may be decomposed into calculable and incalculable terms. With slightly dif-

ferent choices of G, the incalculable matrix elements can be pushed off to even higher
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orders in perturbation theory. For example:

〈ūσµνF µνd(x) d̄s(y) s̄u(0)〉 ,

〈ūσµνF µνd(x) d̄σρσF̃
ρσs(y) s̄u(0)〉 ,

〈ūσµνF µνd(x) d̄σρσF
ρσs(y) s̄σλπF

λπu(0)〉 ,

〈udsF µν(x) ūd̄s̄F̃µν(0)〉 , (22)

all have OPEs with the six-fermion operators appearing atO(α/π)2. Note that in Eq. (22)

we have also separated the operators in a way that prevents disconnected contributions

to the correlators.

Returning to the Green’s function in Eq. (20) for illustration, we can evaluate the

contribution in the instanton background at leading order in α (the coefficient c):

G(x) = −144

(
2

π2

)3 ∫
d4x0dρ

ρ5
C(g)(Λρ)9

(
ρ

(x− x0)2 + ρ2

)5(
ρ

x20 + ρ2

)8

. (23)

Combining denominators with Feynman parameters, we obtain

G(x) = −2

7

(
2

π2

)2

C(g) Λ9|x|−4 . (24)

The functional determinant calculation fixes the coefficient C(g) [29]. For the case Nf =

N = 3 (in the MS scheme), we obtain

C(g)Λ9ρ9 = Λ9ρ9α−62π4e4×0.146−0.44 . (25)

Λ is the one loop renormalization group invariant scale, and the numerical factor from the

exponent is 1.15. Inserting Eq. (25) into Eq. (24) yields the complete singular contribution

to the Green’s function of Eq. (20) at leading order in α.

At one loop, the scale of the α−6 factor is arbitrary. We can define a two loop

RG-invariant scale:

Λ̃9 = µ9e−
2π
α(µ)α(µ)−

32
9 . (26)

Setting µ = mτ and α(mτ ) = 0.32 yields Λ̃ = 0.333 GeV. Then we can write the

determinant as

C(g)Λ9 ≡ C̃(g)Λ̃9 = 1.15× (2π4)× α−22/9 × Λ̃9. (27)
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The scale of the residual coupling factor can be generally be determined in each Green’s

function from renormalization group considerations. For instance, in Eq. (24), radiative

corrections must remove most of the renormalization scale dependence introduced by the

factor α−22/9, running α to a scale of order x and leaving only µ-dependence generated

by the anomalous dimension of G (a matrix in the presence of operator mixing). How-

ever, the variation of the one loop prediction with µ is logarithmic, and higher-precision

calculation will only valuable if it is shown that the lattice can compute the correlators

with O(50%) precision.

4.3 Finite Green’s Functions and Lattice Tests

The finite correlation functions provide a potentially interesting arena for lattice gauge

computations. First, they are inherently non-perturbative and test an interesting aspect

of lattice simulations. Second, they are sensitive to phenomena that are important to

understanding hadronic physics in the chiral limit. For example, a computation of these

Green’s functions on the lattice could be used to constrain a variety of models for possible

infrared cutoffs on the instanton size. In particular, consider a hard cutoff, ρ0. If, at

scales of order |x| = 1.5 GeV−1, the semiclassical expansion for G(x) is at least as good

as perturbation theory (i.e. G(x) is equal to the semiclassical value to order α
π
, or about

90%), then we would obtain a rather weak requirement on the infrared cutoff,

ρ0 & m−1c . (28)

If the instantons cut off more softly, the same criterion yields more stringent constraints.

For example, with an exponential cutoff, e−ρ/ρ0 , one finds ρ0 & Λ−1.

However, the effects of UV instantons are inherently small, and one can ask whether

they are observable.

Among the challenges to measuring such instanton dominated Green’s functions are

the effects of finite quark masses, which yield perturbative contributions. On the other

hand, current simulations achieve quite small masses, less than 10 MeV for light quarks

and 100 MeV for the strange quark, and quite small lattice spacings, a−1 ' 4 GeV in

some cases. In any simulation it would be important to choose the Green’s function

carefully so as to avoid disconnected parts, as in the correlators of Eq. (22).

Take the case 〈ūσµνF µνd(x) d̄σρπF
ρπs(y) s̄u(0)〉. The leading perturbative contribu-
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tion behaves as

mdmsmu

(4π2)4x10
, (29)

which can be compared with the non-perturbative contribution appearing at zeroth order

in quark masses,

C(g)Λ9x−4 . (30)

The latter term is already dominant for x & (30Λ)−1, for quark masses in the range

above.

Typically, for a fixed gauge configuration in a simulation ensemble, the correlator

receives a contribution of order the quark masses. Occasionally, a configuration will

contribute a much larger value (by a factor of order 1/(x3mumdms)). For very small

quark masses, the probability to find the latter configurations in an ensemble could be

suppressed by the fermion determinant. For very large ensembles, this effect cancels out

in Green’s functions (due to the 1/m behavior of the quasi-zero mode contribution to

the fermion propagator in the instanton background), but for smaller ensembles, it may

be more convenient to remove the suppression of the probability by hand, and restore it

later as a weight for the contribution of each configuration.

5 Theoretical Issues Associated with mu = 0

We conclude with a short discussion of the mu = 0 proposal from a theoretical perspec-

tive, commenting briefly on two issues: whether mu = 0 is well-defined, and whether it

is well-motivated.

First, a question raised in some of the lattice literature is whether mu = 0 has an

unambiguous meaning [30] (for a recent discussion, see the lecture notes of Sharpe7). A

concise counterargument to [30] was given in [31]; here we add a few additional com-

ments. In part, one’s view of this question is shaped by what one may view as possible

in lattice computations in practice and in principle. With the ability to compute with

arbitrarily small lattice spacing and small quark mass, the answer is clearly yes, at least

in principle, as can be seen from the following. Suppose the lattice spacing is extremely

7http://faculty.washington.edu/srsharpe/brazil13/sharpe_brazil4.pdf
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small, say a−1 = TeV. Instanton contributions to masses from smaller scales are com-

pletely negligible, as can be seen from Fig. 1. On this lattice, calculate a correlator such

as that of two currents, 〈ūγµu(x)ūγµu(0)〉, at distances a few times a. The lattice must

reproduce the massless perturbative result, with corrections behaving as m2
ux

2, m2
ua

2 (or

possibly mua). The question of whether the corrections vanish as mu → 0 is well-posed.

Of course in practice there may be numerical issues in achieving the required accuracy;

this would seem to be a question, however, of the size and nature of systematic errors.

A more interesting question is precisely how small mu has to be to solve the strong

CP problem, and what would be required to establish a suitable bound. The chiral

perturbation theory formula for dn, the neutron electric dipole moment [32], involves

ratios of current quark masses. But what masses are these?

To answer this question, we first sharpen what is meant by “instanton” contributions

to the quark masses by considering the question of θ-dependence. If at scale a, one

presents the lagrangian with θ appearing in front of FF̃ only, the contribution to mu from

instantons at scales larger than a is proportional to eiθ. This piece does not contribute to

dn. We lump together all contributions of this type (e.g. from dilute gas corrections to

the instanton, but more generally from unspecified non-perturbative sources) to define

the “instanton” contribution.

The masses appearing in the usual expression for dn clearly do not include the

instanton contribution, and if one chooses too small an energy scale, separating these out

is problematic. The simplest procedure (conceptually) is to choose the scale high enough

that the contribution to mq from instantons at shorter distances can be neglected. In

this situation, we require

mu

md

< 10−10. (31)

With the sort of lattice spacings achievable at present, however, instanton contri-

butions to mu (again the contributions from integrating out instantons at scales smaller

than a) are much larger than 10−10 md. Spacings of roughly a−1 ≈ 10 GeV or smaller

are required.

So there are two ingredients to establishing that mu is small enough to solve the

strong CP problem. The lattice spacing must be small enough that instanton contribu-

tions to mu from shorter scales are much smaller than 10−10 md, and the value of the

mass at a must be smaller that 10−10 md.
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Of course, lattices so small and analyses so precise would be very difficult to achieve,

and the analysis would require treatment of the chiral lagrangian to very high order.

At best, one could hope for qualitative evidence that the u quark mass vanishes, but it

would be unrealistic to prove that a small u quark mass was responsible for the solution

of the strong CP problem.

Separately, one can ask what is required of an underlying theory to obtain such a

small mu. A similar question arises for the axion solution to the strong CP problem: how

might one obtain a Peccei-Quinn symmetry of adequate quality [33] to solve the strong

CP problem. It is clearly interesting to compare these questions to establish, at a purely

theoretical level, whether one or the other solution is more plausible.

One formulation of the problem of a massless u quark was provided in [15]. The

authors considered possible non-anomalous symmetries spontaneously broken by an order

parameter S. Assuming the symmetry to be discrete, the u quark mass (Yukawa coupling)

should be suppressed relative to other quark masses by powers of S. If S is of order, say,

CKM angles, suppression by many powers of S is needed, and thus a large or complicated

discrete symmetry. As is well known, the situation for axions is similar. If the Peccei-

Quinn symmetry is broken by an order parameter φ, then if, say, φ ∼ 1011 GeV, one

needs to suppress operators such as φN+4

MN
p

, for quite large N (11 or 12). If implemented

with discrete symmetries, again, large symmetries are required.

Neither of these solutions seems terribly plausible. A more compelling framework is

provided by string theory, where Peccei-Quinn symmetries controlled by small quantities

like e
− 8π2

g2 are familiar [34]. The problem becomes explaining the appearance of the

small exponentials, but these are at least possibly required by other considerations. Such

small exponentials can also explain a small mu; anomalous discrete are indeed familiar

in string theory [24]. So, in this framework, both solutions of the strong CP problem

have a level of plausibility, tied to the existence (or not) of small exponential factors.

We might, tentatively, argue that mu = 0 is slightly less plausible. The axion solution

simply requires an extremely small exponential; small mu requires a small exponential

and an approximate discrete symmetry. In addition, states with light axions might have

the additional virtue of possessing a dark matter candidate.
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6 Conclusions

In the first part of this paper we have argued that it would be interesting to have detailed

lattice fits to the parameter β2/β1 controlling the ms dependence of m2
π. Establishing a

bound significantly smaller than 5 GeV−1 provides an exclusion of the massless u quark

hypothesis that is independent of the direct fits of the light quark spectrum. We have

provided a rough estimate based on published data, and it appears to be five times too

small to allow for a massless u quark. But this is a fundamental QCD parameter, and a

dedicated analysis by the different collaborations would be highly desirable. This quantity

can be reliably obtained working with m̃ = mu = md, and quark masses significantly

larger than their values in nature.

In the second part of our work we have discussed analytic probes of nonperturbative

physics on the lattice more generally. We have seen that there are a set of correlation

functions in QCD for which, at short distances, instantons provide reliable results, and

we have argued that evaluation of such correlators on the lattice would provide a useful

calibration. Such computations may eventually be achievable, given the small lattice

spacings and quark masses currently accessible. Alternatively, the existence of these

correlators can be viewed as a demonstration that small instantons are physically mean-

ingful, and in principle they provide a way to extract the instanton density and the IR

cutoff on ρ from lattice computations.
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A Connections with the U(1) problem

Witten has argued that - given the qualitative successes of large N ideas in understanding

QCD - instantons are unlikely to provide a useful understanding of the η′ mass and other
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Figure 2: Contributions to mη′ from small instantons as a function of a hard IR cutoff.
In contrast to Fig. 1, the estimate here is taken only at 1 loop and will have small
logarithmic corrections.

phenomena. Still, we have seen that small instantons are meaningful, and it is interesting

to consider a model where both the η′ mass and mu receive contributions from small

instantons, suppressed in the infrared by a rigid cutoff on ρ. Correlating the two masses,

of course, requires that the cutoff is the same in both cases.

If the cutoff is not too large, then the η′ is the pseudo-Goldstone boson of a U(1)

symmetry, which gains mass as a consequence of the anomaly (this, of course, has parallels

with the large N treatment). The Goldstone bosons are then described by a unitary

matrix,

U = e
i
fπ

(πaσa+η′).

The effective action for U contains terms of the form:

L = f 2
π (µTr(MU) + a det(U)) . (32)

The latter term receives contributions from small instantons. The use of instantons here

is not in the spirit of large N (as stressed in [18, 19]); we are seeking, at most, a crude

connection between the mu and η′, and any detailed statement must be taken with a

grain of salt.

From the perspective of the instanton computation, the second term is the ’t Hooft

interaction, proportional to ūud̄ds̄s. To connect this with the operator U , we take 〈ūu〉 =

18



(250 MeV)3 and replace the six quark operators by a simple product. The contribution

from small instantons is very cutoff dependent. But, except for very large cutoff ρc, it will

not give an appreciable contribution to the η′ mass, as seen in Fig. 2. It may be hard to

make sense of this calculation for any cutoff below mη′ ∼ 1 GeV, and the cutoff required

to generate the full η′ mass is approximately 1/(0.7) GeV. The same cutoff applied to

the u quark mass computation would lead to a few MeV for mu.

The η′ mass and mu computations differ in that m2
η′ receives contributions from all

topological charge sectors. Thus there is no simple connection between the contributions

except when ρΛ� 1.
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