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Abstract

Neutrino oscillations are well established and the relevant parameters determined with good

precision, except for the CP phase, in terms of a unitary lepton mixing matrix. Seesaw extensions of

the Standard Model predict unitarity deviations due to the admixture of heavy isosinglet neutrinos.

We provide a complete description of the unitarity and universality deviations in the light neutrino

sector. Neutrino oscillation experiments involving electron or muon neutrinos and anti-neutrinos

are fully described in terms of just three new real parameters and a new CP phase, in addition to the

ones describing oscillations with unitary mixing. Using this formalism we describe the implications

of non-unitarity for neutrino oscillations and summarize the model-independent constraints on

heavy neutrino couplings that arise from current experiments.
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I. INTRODUCTION

Neutrino masses, without which current neutrino oscillation data can not be under-

stood [1], are here to stay [2]. It has been long noted that small neutrino masses can

arise from an effective lepton number violation dimension-five operator O5 ∝ LLΦΦ , which

may arise from unknown physics beyond that of the SU(3)c ⊗ SU(2)L ⊗ U(1)Y model. Here

L denotes one of the three lepton doublets and Φ is the standard model scalar doublet [3].

After electroweak symmetry breaking takes place through the nonzero vacuum expectation

value (vev) 〈Φ〉 such operator leads to Majorana neutrino masses. In contrast to the charged

fermion masses, which arise directly from the coupling of the scalar Higgs, neutrino masses

appear in second order in 〈Φ〉 and imply lepton number violation by two units (∆L = 2) at

some large scale. This fact accounts for the smallness of neutrino masses relative to those

of the standard model charged fermions. This is all we can say from first principles about

the operator O5 in Fig. 1. In general we have no clue on the mechanism giving rise to O5,

nor its associated mass scale, nor the possible details of its flavour structure.

ΦΦ

LL

FIG. 1: Dimension five operator responsible for neutrino mass.

SU(3)⊗ SU(2)⊗ U(1)

La = (νa, la)
T (1, 2,−1/2)

eca (1, 1, 1)

Qa = (ua, da)
T (3, 2, 1/6)

uca (3̄, 1,−2/3)

dca (3̄, 1, 1/3)

Φ (1, 2, 1/2)

TABLE I: Matter and scalar multiplets of the Standard Model.

One may assume thatO5 is induced at the tree level by the exchange of heavy “messenger”

particles, whose mass lies at a scale associated to the violation of the global lepton number
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symmetry by new physics, beyond that of the SU(3)c ⊗ SU(2)L ⊗ U(1)Y model,

mν = λ0
〈Φ〉2

MX

,

where λ0 is some unknown dimensionless constant. For example gravity, which in a sense

”belongs” to the SM, could induce the dimension-five lepton number violation operator

O5 [4, 5]. In such a minimalistic scenario [6] the large scale MX in the denominator is the

Planck scale and hence the neutrino mass that results is too small to account for current

neutrino oscillation data. Hence we need genuine “new physics” in order to generate neutrino

masses this way.

Neutral heavy leptons (NHL) arise naturally in several extensions of the Standard Model.

Their possible role as messengers of neutrino mass generation constitutes one of their

strongest motivations and a key ingredient of the type-I seesaw mechanism [7–11] in any of

its variants. If realized at the Fermi scale [12–20], it is likely that the “seesaw messengers”

responsible for inducing neutrino masses would lead to a variety of phenomenological impli-

cations. These depend on the assumed gauge structure. Here for definiteness and simplicity,

we take the minimal SU(3)c ⊗ SU(2)L ⊗ U(1)Y structure which is well tested experimentally.

In this case one can have, for example,

1. Light isosinglet leptons are usually called “sterile”. If they lie in the eV range they

could help accommodate current neutrino oscillation anomalies [21, 22] by taking part

in the oscillations. Sterile neutrinos at or above the keV range might show as distor-

tions in weak decay spectra [23] and be relevant for cosmology [24].

2. Heavy isosinglet leptons below the Z mass could have been seen at LEP I [25–27].

Likewise, TeV NHLs might be seen in the current LHC experiment, though in the

latter case rates are not expected to be large in the SU(3)c ⊗ SU(2)L ⊗ U(1)Y theory.

3. Whenever NHL are too heavy to be emitted in weak decay. processes, the correspond-

ing decay rates would decrease, leading to universality violation [28].

4. The admixture of NHL in the charged current weak interaction would affect neutrino

oscillations, since they would not take part in oscillations. These would be effectively

described by a non-unitary mixing matrix [29].

5. If Majorana-type, NHL would modify rates for lepton number violation processes such

as neutrinoless double beta (0νββ) decays through long-range (mass mechanism), as

well as induce short-range contributions [30–32].

6. NHL would induce charged lepton flavour violation processes [29, 33]. However the

corresponding restrictions depend on very model-dependent rates.
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In what follows we consider the generic structure of the lepton mixing matrix relaxing

the unitarity approximation 1. We show that their most general form is factorizable, so that

current experiments involving only electron and muon neutrinos or anti-neutrinos can be

effectively described in terms of just three new real parameters and one new CP violation

phase. We illustrate how these parameters affect oscillations and discuss the main restric-

tions on such generalized mixing structure that follow from universality tests. For logical

completeness we also present a brief compilation of various model–independent constraints

on NHL mixing parameters within the same parametrization, including those that follow

from the possibility of direct NHL production at high energy accelerator experiments.

II. THE FORMALISM

Isosinglet neutral heavy leptons couple in the weak charged current through mixing with

the standard isodoublet neutrinos. The most general structure of this mixing matrix has

been given in the symmetric parametrization in Ref. [8]. Here we consider an equivalent

presentation of the lepton mixing matrix which manifestly factorizes the parameters asso-

ciated to the heavy leptons from those describing oscillations of the light neutrinos within

the unitarity approximation. Here we present its main features, details are given in the

appendix 2.

For the case of three light neutrinos and n − 3 neutral heavy leptons, one can break up

the matrix Un×n describing the diagonalization of the neutral mass matrix as [35]

Un×n =

(
N S

V T

)
, (1)

where N is a 3×3 matrix in the light neutrino sector, while S describes the coupling param-

eters of the extra isosinglet states, expected to be heavy (for a perturbative expansion for

Un×n see [9]). As shown in the appendix, the matrix N can be expressed most conveniently 3

as

N = NNP U =

 α11 0 0

α21 α22 0

α31 α32 α33

 U, (2)

1 In sections II-VI we mainly consider isosinglet neutrinos above 100 GeV or so, hence too heavy to take

part in oscillations or low energy weak decay processes.
2 We consider stable neutrinos, neutrino decays were discussed, for instance, in Ref. [34].
3 There are other forms for the light-neutrino mixing matrix, where the pre-factor off-diagonal zeroes

are located at different entries. However Eq. (2) is the most convenient to describe current neutrino

experiments.
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where U is the usual unitary form of the 3 × 3 leptonic mixing matrix probed in neutrino

oscillation studies 4 corrected by the left triangle pre-factor matrix, NNP , characterizing

unitarity violation.

Note that Eq. (2) provides a most convenient, general and complete description of the

propagation of solar, atmospheric and terrestrial neutrinos from reactors, radioactive sources

and accelerators beams, relaxing the unitarity approximation. Due to the zeroes in the first

two rows of the pre-factor matrix in Eq. (2) it is clear that the only extra parameters beyond

those characterizing unitary mixing are four: the two real parameters α11 and α22 plus the

complex parameter α21 which contains a single CP phase. Indeed the existence [37] and

possible effects [38] extra CP phases associated to the admixture of NHL in the charged

leptonic weak interaction had already been noted in the early paper in [8]. The new point

here is that, despite the proliferation of phase parameters, only one combination enters

the “relevant” neutrino oscillation experiments. This holds irrespective of the number of

extra heavy isosinglet neutrino states present. Other studies, such as [39–41], appear as

particular cases with a fixed number of extra heavy isosinglet neutrino states, any of which

can be expressed in terms of the same set of parameters αij. Similarly, the matrix U may

be expressed in different ways, such as in PDG form or in our fully symmetric description,

particularly useful for phenomenological analyses. The diagonal elements, αii, are real and

expressed in a simple way as

α11 = c1n c 1n−1c1n−2 . . . c14,

α22 = c2n c 2n−1c2n−2 . . . c24, (3)

α33 = c3n c 3n−1c3n−2 . . . c34,

in terms of the cosines of the mixing parameters [8], cij = cos θij.

Now the off-diagonal terms α21 and α32 are expressed as a sum of n− 3 terms

α21 = c2n c 2n−1 . . . c2 5 η24η̄14 + c2n . . . c2 6 η25η̄15 c14 + . . . + η2nη̄1n c1n−1 c1n−2 . . . c14 ,

α32 = c3n c 3n−1 . . . c3 5 η34η̄24 + c3n . . . c3 6 η35η̄25 c24 + . . . + η3nη̄2n c2n−1 c2n−2 . . . c24,(4)

where ηij = e−iφij sin θij and its conjugate η̄ij = −eiφij sin θij contain all of the CP violating

phases. Finally, by neglecting quartic terms in sin θij, with j = 4, 5, · · · one finds a similar

expression for α31,

α31 = c3n c 3n−1 . . . c3 5 η34c2 4η̄14 + c3n . . . c3 6 η35c2 5η̄15 c14 + . . .

+ η3nc2nη̄1n c1n−1 c1n−2 . . . c14 . (5)

4 As discussed in Ref. [36], this may, for example, be parameterized in the original symmetric way or

equivalently as prescribed in the Particle Data Group.
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In summary, by choosing a convenient ordering for the products of the complex rotation

matrices ωij (see appendix), one obtains a parametrization that separates all the information

relative to the additional leptons in a simple and compact form, containing three zeroes. We

will now concentrate on this specific parametrization.

III. NON-UNITARY NEUTRINO MIXING MATRIX

Given the above considerations and the chiral nature of the SU(3)c ⊗ SU(2)L ⊗ U(1)Y

model, we notice that the couplings of the n neutrino states in the charged current weak

interaction can be described by a rectangular matrix [8]

K =
(
N S

)
, (6)

with N a 3 × 3 matrix described by Eq. (2) and S a 3 × (n − 3) matrix. This can be

parametrized in the symmetric form or as prescribed in the Particle Data Group. The

relative pros and cons of the two presentations are considered in Ref. [36].

The presence of extra heavy fermions that mix with the active light neutrinos would

imply the effective non-unitarity of the 3× 3 light neutrino mixing matrix, hence modifying

several SM observables. For example, note that the unitarity condition will take the form

KK† = NN † + SS† = I, (7)

with

NN † =

 α2
11 α11α

∗
21 α11α

∗
31

α11α21 α2
22 + |α21|2 α22α

∗
32 + α21α

∗
31

α11α31 α22α32 + α31α
∗
21 α2

33 + |α31|2 + |α32|2

 . (8)

We will show that, with the parametrization discussed here, one can, at least in principle,

introduce all of the information of the extra n− 3 states into the αij parameters in a simple

compact form. The method is completely general and includes all the relevant CP phases.

In what follows we will consider different direct or indirect tests of the existence of the extra

heavy fermions, expressing the relevant observables in terms of these parameters, in order

derive the relevant constraints.

IV. UNIVERSALITY CONSTRAINTS

First one notes that if, as generally expected due to their gauge singlet nature, the

heavy leptons can not be kinematically emitted in various weak processes such as muon or

beta decays, these decays will be characterized by different effective Fermi constants, hence
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breaking universality. One can now apply the above formalism in order to describe the

various weak processes and to derive the corresponding experimental sensitivities. We first

discuss the universality constraint, already reported in the literature [28, 42–49], in order to

cast it within the above formalism. Comparing muon and beta decays one finds

Gµ = GF

√
(NN †)11(NN †)22 = GF

√
α2

11(α2
22 + |α21|2), (9)

and

Gβ = GF

√
(NN †)11 = GF

√
α2

11. (10)

Therefore, all the observables related to Fermi constant will be affected by this change, for

instance, the quark CKM matrix elements [42]. In particular, the CKM matrix elements Vud

and Vus are proportional to Gµ. These matrix elements are measured in β-decay, Ke3 decay,

and hyperon decays. The effect on Gµ, therefore, modifies Vui and the unitarity constraint

for the first row of the CKM is now expressed as [42, 43]:

3∑
i=1

|Vui|2 =

(
Gβ

Gµ

)2

=

(
GF

√
(NN †)11

GF

√
(NN †)11(NN †)22

)2

=
1

(NN †)22

, (11)

where the Eq. (9) has been used in the last equality. Following the previous equation one

gets [50]:
3∑
i=1

|Vui|2 =
1

α2
22 + |α21|2

= 0.9999± 0.0006, (12)

and, therefore, 1− (NN †)22 = (SS†)22 = 1− α2
22 − |α21|2 < 0.0005 at 1σ.

There are other universality tests that give constraints on these α parameters. For ex-

ample, universality implies that the couplings of the leptons to the gauge bosons are flavor

independent, a feature that emerges in the the standard model without heavy leptons. In

the presence of heavy isosinglets, these couplings will be flavor dependent; the ratios of these

couplings can be extracted from weak decays and they are expressed as [42]:(
ga
gµ

)2

=
(NN †)aa
(NN †)22

a = 1, 3 . (13)

For a = 1, this ratio can be constrained by comparing the experimental measurement

and the theoretical prediction of the pion decay branching ratio [45]:

Rπ =
Γ(π+ → e+ν)

Γ(π+ → µ+ν)
. (14)

One obtains [45, 51]:

rπ =
Rπ

RSM
π

=
(NN †)11

(NN †)22

=
α2

11

α2
22 + |α21|2

=
(1.230± 0.004)× 10−4

(1.2354± 0.0002)× 10−4
= 0.9956± 0.0040 (15)
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FIG. 2: Constraints on the deviations from unitarity.

which implies 1 − α2
11 < 0.0084 at 1σ for the least conservative case of α2

22 + |α21|2 = 1.

This procedure was adopted in Ref. [47]. However, in general, [(NN †)22] 6= 0, and it can be

estimated using the unitarity constraints on the CKM matrix discussed above. Combining

both constraints (from Eqs. (12) and (15)) we obtain the results shown in Figure 2, restricting

the parameter combinations shown in the plot. These translate in the constraints

1− α2
11 < 0.0130 ,

1− α2
22 − |α21|2 < 0.0012 , (16)

at 90% C.L. for 2 d.o.f. One can make use of a third observable in order to have constraints

for every independent parameter. This will be discussed in the next section.

For the sake of completeness we now show the constraints coming from the µ− τ univer-

sality which, using Eq. (13), give the bound:

(NN †)33

(NN †)22

= 0.9850± 0.0057 . (17)

This implies 1 − (NN †)33 = (SS†)33 < 0.0207 at 1σ for the least conservative case of

(SS†)22 = 0. The experimental value was taken from Ref. [52]. We now turn to neutrino

oscillations.
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V. NON-UNITARITY EFFECT ON NEUTRINO OSCILLATIONS

In this section we focus on neutrino oscillation experiments. First we obtain general

expressions for neutrino survival and conversion probabilities in this parametrization and

confront them with the existing experimental data. The general expressions will be relatively

simple, especially if we neglect cubic products of α21, sin θ13, and sin(
∆m2

21

4E
), which is a

reasonable approximation for many applications. The results of this approach for the three

probabilities discussed in this section are shown in Eqs. (21), (27) and (33).

For the case of the muon neutrino conversion probability into electron neutrino we have:

Pµe =
3∑
i,j

N∗µiNeiNµjN
∗
ej − 4

3∑
j>i

Re
[
N∗µjNejNµiN

∗
ei

]
sin2

(
∆m2

jiL

4E

)

+ 2
3∑
j>i

Im
[
N∗µjNejNµiN

∗
ei

]
sin

(
∆m2

jiL

2E

)
. (18)

And now, instead of the usual unitarity condition for the 3×3 case, we must use the condition

given in Eqs. (7) and (8), arriving to the expression

Pµe = α2
22|α21|2 − 4

3∑
j>i

Re
[
N∗µjNejNµiN

∗
ei

]
sin2

(
∆m2

jiL

4E

)

+ 2
3∑
j>i

Im
[
N∗µjNejNµiN

∗
ei

]
sin

(
∆m2

jiL

2E

)
. (19)

Using Eq. (2) one can substitute the values of Nαi in terms of Uαi and αij to obtain

Pµe = α2
11|α21|2

(
1− 4

3∑
j>i

|Uej|2|Uei|2 sin2

(
∆m2

jiL

4E

))

− (α11α22)24
3∑
j>i

Re
[
U∗µjUejUµiU

∗
ei

]
sin2

(
∆m2

jiL

4E

)

+ (α11α22)22
3∑
j>i

Im
[
U∗µjUejUµiU

∗
ei

]
sin

(
∆m2

jiL

2E

)

− 4α2
11α22

3∑
j>i

Re
[
α21|Uei|2U∗µjUej + α∗21|Uej|2UµiU∗ei

]
sin2

(
∆m2

jiL

4E

)

+ 2α2
11α22

3∑
j>i

Im
[
α21|Uei|2U∗µjUej + α∗21|Uej|2UµiU∗ei

]
sin

(
∆m2

jiL

2E

)
. (20)

Substituting the terms Uαi in our parametrization, and neglecting cubic products of α21,

sin θ13, and ∆m2
21, one obtains
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Pµe = (α11α22)2P 3×3
µe + α2

11α22|α21|P I
µe + α2

11|α21|2, (21)

where we have denoted the standard three-neutrino conversion probability P 3×3
µe as [2, 53, 54]

P 3×3
µe = 4

[
cos2 θ12 cos2 θ23 sin2 θ12 sin2

(
∆m2

21L

4Eν

)
+ cos2 θ13 sin2 θ13 sin2 θ23 sin2

(
∆m2

31L

4Eν

)]
(22)

+ sin(2θ12) sin θ13 sin(2θ23) sin

(
∆m2

21L

2Eν

)
sin

(
∆m2

31L

4Eν

)
cos

(
∆m2

31L

4Eν
− I123

)
,

while P I
µe refers to a term that depends on the 3× 3 mixing angles, plus an extra CP phase:

P I
µe = −2

[
sin(2θ13) sin θ23 sin

(
∆m2

31L

4Eν

)
sin

(
∆m2

31L

4Eν
+ INP − I123

)]
− cos θ13 cos θ23 sin(2θ12) sin

(
∆m2

21L

2Eν

)
sin(INP ), (23)

with I123 = −δCP = φ12 − φ13 + φ23 and INP = φ12 − Arg(α21).

Notice that the conversion probability depends on just two phases, the standard one,

I123 = −δ and another phase describing the new physics, INP . This new phase contains the

information of the imaginary part of α21, that is, the overall effect of all the additional phases

associated with the heavy states. Notice that, besides the standard CP term in Eq. (23), two

new CP phase-dependent terms appear; the first involves the difference between standard

and non standard phase: I123− INP , while the second one depends only on INP . One sees in

Eq. (23) that the first term is proportional to sin θ13, while the second one depends on the

solar mass difference ∆m2
21 and, therefore, both terms should be small. In order to illustrate

their impact upon current neutrino data analysis, we show in Fig. 3 how this new phase

parameter influences the conversion probability. In this figure we compare the standard

three neutrino probability (with a “best-fit” phase δ = −I123 = 3π/2), with the case of an

additional neutral heavy lepton with overall contribution given by α11 = 1, α22 = 0.997,

|α21| = 0.078, and for the particular new physics phase parameter of either π/2 or 3π/2

(left panel) or 0, π (right panel). One sees that the effect of the additional phase in future

oscillation appearance experiments could be sizeable and, depending on the specific value of

this new phase, the survival probability could either increase or decrease.

For the sake of completeness, we also give the expression for the survival probability Pµµ:

Pµµ =
3∑
i

|Nµi|2|Nµi|2 +
3∑
j>i

2|Nµj|2|Nµi|2 cos

(
∆m2

ji

2E
L

)
, (24)
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FIG. 3: Conversion probability for a fixed neutrino energy Eν = 1 GeV. The solid (black) curve

shows the standard conversion probability, with δ = −I123 = 3π/2. The non-unitary case is

illustrated for α11 = 1, α22 = 0.997, and |α21| = 0.078. In the left panel, two values for the new CP

phase parameter INP are considered: π/2 (dashed/magenta line) and 3π/2 (dotted/green line),

while in the right panel we take INP = 0 (dashed/magenta line) and π (dotted/green line).

Pµµ = (|α21|2 + α2
22)2 − 4

3∑
j>i

|Nµj|2|Nµi|2 sin2

(
∆m2

ji

4E
L

)
, (25)

Pµµ = (|α21|2 + α2
22)2 − 4

3∑
j>i

|α21Uej + α22Uµj|2|α21Uei + α22Uµi|2 sin2

(
∆m2

ji

4E
L

)
, (26)

so that, neglecting cubic products of α21, sin θ13, and ∆m2
21, we will obtain

Pµµ = α4
22P

3×3
µµ + α3

22|α21|P I1
µµ + 2|α21|2α2

22P
I2
µµ (27)

with P 3×3
µµ , the standard oscillation formula, given by:

P 3×3
µµ ≈ 1− 4

[
cos2 θ23 sin2 θ23 − cos(2θ23) sin2 θ23 sin2 θ13

]
sin2

(
∆m2

31L

4E

)
+ 2

[
cos2 θ12 cos2 θ23 sin2 θ23 − cos(I123) cos θ23 sin(2θ12) sin3 θ23 sin θ13

]
sin

(
∆m2

31L

2E

)
sin

(
∆m2

21L

2E

)
− 4

[
cos2 θ12 cos2 θ23 sin2 θ23 cos

(
∆m2

31L

2E

)
+ cos2 θ12 cos4 θ23 sin2 θ12

]
sin2

(
∆m2

21L

4E

)
,

(28)
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FIG. 4: Correction to the standard muon neutrino survival probability for different values of the

new CP phase parameter INP , with the remaining parameters fixed as in Fig. 3.

while the extra terms in the oscillation probability are given by:

P I1
µµ ≈− 8 [sin θ13 sin θ23 cos(2θ23) cos(I123 − INP)] sin2

(
∆m2

31L

4E

)
+ 2

[
cos θ23 sin(2θ12) sin2 θ23 cos(INP)

]
sin

(
∆m2

31L

2E

)
sin

(
∆m2

21L

2E

)
,

(29)

P I2
µµ ≈ 1− 2 sin2 θ23 sin2

(
∆m2

31L

4E

)
. (30)

As for the conversion probability, P (νµ → νe), we also compute the muon neutrino

survival probability and show its behaviour in Fig. 4. As one can see, this disappearance

channel is also sensitive to the new CP phase. The computations were performed for the same

parameter values used in the previous figure, that is, α11 = 1, α22 = 0.997, |α21| = 0.078,

and an overall phase of either π/2 or 3π/2 as well as 0 or π. The Standard Model phase was

fixed to be δ = −I123 = 3π/2).

We now turn our attention to oscillations of electron neutrinos or anti-neutrinos relevant,

say, for the description of solar neutrino experiments, as well as terrestrial experiments using

reactors or radioactive sources. The electron (anti) neutrino survival probability (in vacuum)

is given by the following expression:

Pee =
3∑
i

|Nei|2|Nei|2 +
3∑
j>i

2|Nej|2|Nei|2 cos

(
∆m2

ji

2E
L

)
, (31)

12



and, using Eq. (2), it is easy to see that Nei = α11Uei which leads to the expression

Pee = α4
11

[
3∑
i

|Uei|2|Uei|2 +
3∑
j>i

2|Uej|2|Uei|2 cos

(
∆m2

ji

2E
L

)]
. (32)

This transforms, in a straightforward way, to the equation

Pee = α4
11

[
1− cos4 θ13 sin2(2θ12) sin2(∆12)− sin2(2θ13) sin2(∆13)

]
, (33)

with ∆ij =
∆m2

ij

4E
L. Notice that in this case, the effect of a neutral heavy lepton will be an

overall factor that accounts for the violation of unitarity: α4
11, unlikely to produce visible

effects in oscillations of, say, reactor neutrinos, given the strong universality restrictions

derived in Fig. 2.

For completeness we mention that, should the extra neutrino states be light enough to

take part in oscillations, they could potentially play a role [55, 56] in the anomalies reported

by the MiniBooNE collaboration [22] or the reactor neutrino experiments [57]. We will not

consider this possibility here.

VI. NON-STANDARD INTERACTIONS

From the previous formulas for the oscillation probabilities one sees that, even at zero

distance, the survival and conversion probabilities differ from one and zero, respectively.

This is a well-known behaviour and it is a consequence of the effective non-unitarity of the

3× 3 leptonic mixing matrix [58]. We can express these probabilities, for the zero distance

case, as

Pee = [α11]4 = [(NN †)11]2 = [1− (SS†)11]2 ,

Pµµ = [|α21|2 + α2
22]2 = [(NN †)22]2 = [1− (SS†)22]2 , (34)

Pµe = α2
11α

2
22 = [(NN †)21]2 = [(SS†)21]2.

In order to make a quick estimate of the constraints on the new parameters, we write these

expressions in a different way, in order to compare them with the corresponding expressions

for a light sterile neutrino in the limit of ∆m2
ijL/(4E) � 1 (

〈
sin2(∆m2

ijl/(4E))
〉

= 1/2).

The result for our case can be expressed in an analogous way as in the case of extra light

neutrinos [59]:

Pee = 1− 1

2

[
sin2 (2θee)

]
eff
,

Pµµ = 1− 1

2

[
sin2 (2θµµ)

]
eff
, (35)

Pµe =
1

2

[
sin2 (2θµe)

]
eff
,

13



with [
sin2 (2θee)

]
eff

= 2(1− α4
11),[

sin2 (2θµµ)
]

eff
= 2[1− (|α21|2 + α2

22)2], (36)[
sin2 (2θµe)

]
eff

= 2α2
22|α21|2.

We can compare these expressions with the current constraints on light sterile neutrinos in

order to get the following 3σ limits [56][
sin2 (2θee)

]
eff
≤ 0.2 ,[

sin2 (2θµµ)
]

eff
≤ 0.06 , (37)[

sin2 (2θµe)
]

eff
≤ 1× 10−3 .

Apart from the MiniBooNE anomaly [22], there are strong constraints on the existence of

a fourth neutrino from νµ to νe oscillation experiments. The stronger bound comes from the

NOMAD experiment. Translated into the parametrization under discussion, this constraint

takes the form

α2
11|α21|2 ≤ 0.007 (90% C.L.) . (38)

If we combine this limit with those coming from universality at Eq. (16), the following

90% C.L. bounds are obtained

α2
11 ≥ 0.987, α2

22 ≥ 0.9918, |α21|2 ≤ 0.0071. (39)

VII. COMPILING CURRENT NHL CONSTRAINTS

Non-standard features such as unitarity violation in neutrino mixing could signal new

physics responsible for neutrino mass. For example, they could shed light upon the prop-

erties of neutral heavy leptons such as right-handed neutrinos, which are the messengers

of neutrino mass generation postulated in seesaw schemes. In many such schemes the

smallness of neutrino masses severely restricts the magnitudes of the expected NHL sig-

natures. However these limitations can be circumvented within a broad class of low-scale

seesaw realizations [12–20]. For this reason in this section we will present a compilation of

model-independent NHL limits, which do not require them to play the role of neutrino mass

messenger in any particular seesaw scheme. Results of this section are not original, but they

are included for logical completeness.

Isosinglet neutrinos have been searched for in a variety of experiments. For example, if

they are very light they may be emitted in weak decays of pions and kaons. Heavier ones,

but lighter than the Z boson, would have been copiously produced in the first phase of the

14



LEP experiment should the coupling be appreciable [25, 26]. Searches have been negative,

including those performed at the higher, second phase energies [27].
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FIG. 5: Bounds on the component of a heavy isosinglet lepton of mass mj in the electron neutrino.

A summary of constraints for the direct production of neutral heavy leptons is shown in

Fig. (5) and Fig. (6). In most cases, experiments have looked for a resonance in a given

energy window, for a given mixing of the additional state, described in this case by the

submatrix S of Eq. (1). Although the constraints for the mixing in these cases are stronger,

in most of the cases they rely upon extra assumptions on how the heavy neutrino should
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FIG. 7: Bounds on the component of a heavy isosinglet lepton of mass mj in the tau neutrino.

decay.

In particular, in Fig. (5), we summarize the constraints on |Sej|2 for a mass range from

10−2 to 102 GeV coming from the experiments TRIUMF [60, 61] (denoted as π → eν and

K → eν in the plot), PS191 [62], NA3 [63], CHARM [64], Belle [65], the LEP experiments

DELPHI [27], L3 [66], LEP2 [67], and the recent LHC results from ATLAS [68, 69]. Future

experimental proposals, such as DUNE [70] and ILC, expect to improve these constraints [71]

In Fig. (6) we show the corresponding constraints for the case of the mixing of a neutral

heavy lepton with a muon neutrino. In this case we show the experimental results coming

again from PS191, NA3, and Belle, from the LEP experiments L3, DELPHI, and from the

LHC experiment ATLAS; we also show the bounds coming from KEK [72, 73] (denoted as

K → µν in the plot), CHARM II [74], FMMF [75], BEBC [76], NuTeV [77], E949 [78], and

from the LHC experiments CMS [79] and LHCb [80]. Finally, for the less studied case of the

mixing of a neutral heavy lepton with a tau neutrino, the known constraints, coming from

NOMAD [81], CHARM [82], and DELPHI [27] are shown in Fig. (7).

Heavier neutrinos in the TeV range, natural in the context of low-scale seesaw, can also be

searched for at the LHC. However, within the standard SU(3)c ⊗ SU(2)L ⊗ U(1)Y model such

heavy, mainly isosinglet, neutrinos would be produced only through small mixing affects.

Indeed, it can be seen from Figs. 5, 6 and 7 that restrictions are rather weak. In contrast,

this limitation can be avoided in extended electroweak models. In such case a production

portal involving extra kinematically accessible gauge bosons, such as those associated with

left-right symmetric models, can give rise to signatures at high energies, such as processes

with lepton flavour violation [83, 84].
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A. Neutrinoless double beta decay

If neutrinos have Majorana nature, as expected on theoretical grounds, neutrinoless dou-

ble beta decay is expected to occur at some level [30]. We start our discussion by reminding

the definition of the effective Majorana neutrino mass [85],

〈m〉 = |
∑
j

(Un×n
ej )2mj|, (40)

where the sum runs only for the light neutrinos coupling to the electron and the W -boson.

From Eq. (2) one sees that, in the presence of the heavy neutrinos, the three light SM

neutrino charged current couplings will be modified to Un×n
ei = α11Uei, with i=1,2,3, and

their contribution to neutrinoless double beta decay will change correspondingly.
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FIG. 8: Sensitivity of neutrinoless double beta decay to isosinglet mass mj in the electron neutrino.

Moreover, the heavy states will induce also a short-range or contact contribution to neu-

trinoless double beta decay involving the exchange of the heavy Majorana neutrinos. Since

these are SU(3)c ⊗ SU(2)L ⊗ U(1)Y singlets they couple only through the mixing coefficients

Sej. The general form of the amplitude is proportional to

A ∝ mj

q2 −m2
j

, (41)

where q is the virtual neutrino momentum transfer. Clearly there are two main regimes for

this amplitude; for q2 � m2
j , we have

Alight ∝ mj, (42)
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while for q2 � m2
j

Aheavy ∝
1

mj

. (43)

This behaviour can be seen in the corresponding estimated sensitivity curve shown in Fig.

(5). This line is obtained for 76Ge assuming a single massive isosinglet neutrino [86]. The

change in slope takes place for masses close to the typical nuclear momentum, around

100− 200 MeV. Both light and heavy contributions must be folded in with the appropriate

nuclear matrix elements [87] whose uncertainties are still large. As a result it is not possible

to probe the indirect NHL effect upon the light neutrino contribution to the effective mass

in Eq. (40) which amounts to a multiplicative factor α2
11 in the amplitude, a difference well

below current sensitivities. Notice that, in contrast to bounds discussed in Figs. 5 6 and 7

the restriction from the neutrinoless double beta decay in Fig. 8 holds only if neutrinos have

Majorana nature.

B. Charged lepton flavour violation

Virtual exchange of NHLs would also induce charged lepton flavour violation processes

both at low energies [29] as well as in the high energies provided by accelerator experi-

ments [33]. However rates would depend on additional flavor parameters and upon details

on the seesaw mechanism providing masses to neutrinos. The possibility of probing it at

hadronic colliders such as the LHC may be realistic in low-scale seesaw models with ad-

ditional TeV scale gauge bosons beyond those of the SM gauge structure and with lighter

NHLs [83, 84, 88, 89]. However we do not consider this possibility any further here because

the corresponding rates depend on very model-dependent assumptions.

VIII. SUMMARY

Simplest seesaw extensions of the Standard Model predict unitarity deviations in the

leptonic mixing matrix describing the charged current leptonic weak interaction. This is due

to the admixture of heavy isosinglet neutrinos, such as “right-handed neutrinos”, which are

the “messengers” whose exchange generates small neutrino masses. Low-scale realizations of

such schemes suggest that such NHL may be light enough as to be accessible at high energy

colliders such as the LHC or, indirectly, induce sizeable unitarity deviations in the “effective”

lepton mixing matrix. In this paper we used the general symmetric parametrization of

lepton mixing of Ref. [8] in order to derive a simple description of unitarity deviations in

the light neutrino sector. Most experiments employ neutrinos or anti-neutrinos of the first

two generations. Their description becomes especially simple in our method, Eq. (2), as
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it involves only a subset of parameters consisting of three real effective parameters plus a

single CP phase. We have illustrated the impact of non-unitary lepton mixing on weak decay

processes as well as neutrino oscillations. For logical completeness we have also re-compiled

the current model-independent constraints on heavy neutrino coupling parameters arising

from various experiments in this notation. In short, our method will be useful in a joint

description of NHL searches as well as upcoming precision neutrino oscillation studies, and

will hopefully contribute to shed light on the possible seesaw origin of neutrino mass.
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IX. APPENDIX: NEUTRINO MIXING AND HEAVY ISOSINGLETS

As already explained, heavy gauge singlet neutrinos arise naturally in several extensions

of the Standard Model. The general form of the mixing matrix describing their charged

current weak interaction has been given in [8]. Here we will further develop the formalism

so as to describe not only the couplings of the additional heavy neutrinos but also their

effects in the light neutrino sector in a convenient but complete way, with no assumptions

about CP conservation. Using Okubo’s notation [90], we can construct the rotation matrix

Un×n as:

Un×n = ωn−1n ωn−2n . . . ω1n ωn−2n−1 ωn−3n−1 . . . ω1n−1 . . . ω2 3 ω1 3 ω1 2 , (44)

where each ωij (i < j) stands for the usual complex rotation matrix in the ij plane [36]:

ω13 =

 c13 0 e−iφ13s13

0 1 0

−eiφ13s13 0 c13

 , (45)

with sij = sin θij and cij = cos θij. This matrix can be expressed in general as:

(ωij)αβ = δαβ

√
1− δαiδβjs2

ij − δαjδβis2
ij + ηijδαiδβj + η̄ijδαjδβi , (46)
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where i < j and s2
ij = sin2 θij, ηij = e−iφij sin θij and η̄ij = −eiφij sin θij, generalizing the

matrix in Eq. (45) as:

ωij =



1 0 · · · 0 · · · 0

0 1
...

... cij · · · 0 · · · ηij
...

. . .
...

0 1 0
...

. . .
...

η̄ij · · · 0 · · · cij
...

... 1 0

0 · · · 0 · · · 0 1



. (47)

In general, one can decompose Eq. (44) in the following way

Un×n = Un−N UN , (48)

with

UN = ωN−1N ωN−2N . . . ω1N , (49)

Un−N = ωn−1n ωn−2n . . . ω1n ωn−1n−1 ωn−2n−1 . . . ω1N+1, (50)

so that the matrix decomposition will be given by

Un−NUN =



α11 0 · · · 0
...

α21 α22
. . .

...
...

...
. . . 0

... S

αN1 · · · αNN
...

· · · · · · · · · · · · ... · · · · · · · · ·
...

V ′
... T
...





UN
11 UN

12 · · · UN
1N

...

UN
21 UN

22

...
...

...
. . .

... 0

UN
N1 · · · UN

NN

...

· · · · · · · · · · · · ... · · · · · ·
...

0
... I
...



,

(51)

which turns out to be very convenient. The 3×3 neutrino mixing matrix, U3×3, determined

in oscillation experiments could be unitary, or it could be just a non-unitary submatrix of

the larger mixing matrix Un×n described in Eq. (44). Therefore, when dealing with more

than three neutrinos, we can write Un×n as the product of two matrices:

Un×n = UNP USM , (52)
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where ”NP” means ”new physics” and ”SM” stands for the “Standard Model” matrix,

UNP = ωn−1n ωn−2n . . . ω3n ω2n ω1n ωn−2n−1 . . . ω3n−1 ω2n−1 ω1n−1 . . . ω3 4 ω2 4 ω1 4 , (53)

USM = ω2 3 ω1 3 ω1 2 . (54)

The complete n× n matrix, Un×n, may be written as [35]

Un×n =

(
N S

V T

)
, (55)

where N is the 3× 3 matrix with the standard neutrino terms. From Eq. (52) one sees that

N can always be parametrized as

N = NNP U3×3 =

 α11 0 0

α21 α22 0

α31 α32 α33

 U3×3, (56)

where the zero triangle submatrix characterizes this decomposition. It is useful to see how

the components αij of this matrix can be found. First notice that ωi jωk l commutes when

i 6= k, l and j 6= k, l; therefore, Eq. (53) can be rewritten as

UNP = ωn−1n ωn−2n . . . ω4n ωn−2n−1 . . . ω4n−1 . . . ω4 5 ×

ω3n ω2n ω1n ω3n−1 ω2n−1 ω1n−1 . . . ω3 4 ω2 4 ω1 4 . (57)

Clearly, the first line of this equation has no influence in the submatrices N and S. On the

other hand, the second line of the above equation is a set of products of the form ω3 jω2 jω1 j,
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each of them having the form:

αj = ω3jω2jω1j =



c1j 0 0
... 0 η1j 0

η2j η̄1j c2j 0
... 0 η2jc1j 0

η3jc2j η̄1j η3j η̄2j c3j
... 0 η3jc2jc1j 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0
... I 0 0

c3jc2j η̄1j c3j η̄2j η̄3j
... 0 c3jc2jc1j 0

0 0 0
... 0 0 I



=



αj11 0 0
... 0 αj1j 0

αj21 αj22 0
... 0 αj2j 0

αj31 α32 αj33

... 0 α3j 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0
... I 0 0

αjj1 αj2j α
j
j3

... 0 αjjj 0

0 0 0
... 0 0 I


. (58)

We can see that the expression for NNP depends only on products of the type

αnαn−1 · · ·α5α4. After performing the multiplication one notes that the diagonal entries

of the matrix NNP are in general given by

α11 = αn11 α
n−1
11 αn−2

11 · · · α4
11 = c1n c 1n−1c1n−2 . . . c14 ,

α22 = αn22 α
n−1
22 αn−2

22 · · · α4
22 = c2n c 2n−1c2n−2 . . . c24 ,

α33 = αn33 α
n−1
33 αn−2

33 · · · α4
33 = c3n c 3n−1c3n−2 . . . c34 ,

while the off-diagonal entries αij are given as:

α21 = αn21 α
n−1
11 · · · α4

11 + αn22 α
n−1
21 · · · α4

11 + · · ·+ αn22 α
n−1
22 αn−2

22 · · · α4
21 ,

α32 = αn32 α
n−1
22 · · · α4

22 + αn33 α
n−1
32 · · · α4

22 + · · ·+ αn33 α
n−1
33 αn−2

33 · · · α4
32 ,

α31 = αn31 α
n−1
11 · · · α4

11 + αn33 α
n−1
31 · · · α4

11 + · · ·+ αn33 α
n−1
33 αn−2

33 · · · α4
31

+ αn32( αn−1
21 αn−2

11 · · · α4
11 + αn−1

22 αn−2
21 · · · α4

11 + · · ·+ αn−1
22 αn−2

22 · · · α4
21)

+ αn33 α
n−1
32 ( αn−2

21 αn−3
11 · · ·α4

11 + · · ·+ αn−2
22 αn−3

22 · · ·α4
21) + · · ·

+ αn33 α
n−1
33 αn−2

32 ( αn−3
21 αn−4

11 · · ·α4
11 + · · ·+ αn−3

22 αn−4
22 · · ·α4

21) + · · ·

+ αn33 α
n−1
33 αn−2

33 · · · α5
32 α

4
21 , (59)
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or, more explicitly,

α21 = c2n c 2n−1 . . . c2 5 η24η̄14 + c2n . . . c2 6 η25η̄15 c14 + . . . + η2nη̄1n c1n−1 c1n−2 . . . c14 ,

α32 = c3n c 3n−1 . . . c3 5 η34η̄24 + c3n . . . c3 6 η35η̄25 c24 + . . . + η3nη̄2n c2n−1 c2n−2 . . . c24 ,

α31 = c3n c 3n−1 . . . c3 5 η34c2 4η̄14 + c3n . . . c3 6 η35c2 5η̄15 c14 + . . .+ η3nc2n η̄1n c1n−1 c1n−2 . . . c14

+ c3n c 3n−1 . . . c3 5 η35η̄25η24η̄14 + c3n . . . c3 6 η36η̄26c2 5 η24η̄14

+ . . . + η3nη̄2nη2n−1η̄1n−1c1n−2 . . . c14 . (60)

With these formulas, and the known expression for U3×3, we already have the explicit

description of Eq. (56) for any number of extra neutrino states. Before concluding this

appendix, we would like to remark that the position of the three off-diagonal zeros in NNP

was chosen to conveniently make the matrix lower triangular. This simplifies the form of the

non-unitary lepton mixing matrix describing most situations of phenomenological interest,

involving solar, atmospheric, reactor and accelerator neutrinos. By choosing alternative

factor-orderings, one can have different parametrizations, with the zeros located at different

off-diagonal entries.

Application to 3 + 1 seesaw scheme

We will conclude this appendix by showing the expressions for αij in the case of one and

three additional neutrinos. For the case of just one additional neutrino, the mixing matrix

is given by

U4×4 =

(
N3×3 S3×1

T1×3 V1×1

)
. (61)

The corresponding expressions for the parameters αij will be given by

α11 = c14 ,

α22 = c24 ,

α33 = c34 ,

α21 = η24 η̄14 , (62)

α32 = η34 η̄24 ,

α31 = η34 c24 η̄14 .
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Application to 3 + 3 seesaw scheme

In this case the full mixing matrix will have the following structure

U6×6 =

(
N3×3 S3×3

T3×3 V3×3

)
. (63)

with the α parameters given by

α11 = c16 c15 c14 ,

α22 = c26 c25 c24 ,

α33 = c36 c35 c34 ,

α21 = η26 η̄16 c15 c14 + c26 η25 η̄15 c14 + c26 c25 η24 η̄14 , (64)

α32 = c36 c35 η34 η̄24 + c36 c35 η̄25 c24 + η36 η̄26 c25 c24 ,

α31 = c36 c35 c34 η34 c24 η̄14 + c36 η35 c24 η̄15 c14 + η36 c26 η̄16 c15 c14

+ c36 η35 η̄25 η24 η̄14 + η36 η̄26 c25 η24 η̄14 + η36 η̄26 η25 η̄15 c14 .
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