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Effective field theory (EFT) formulations of dark matter interactions are a convenient and popular
way to quantify LHC bounds on dark matter. However, some EFT operators considered do not
respect the weak gauge symmetries of the Standard Model. These operators break down at the
electroweak scale, rather than the energy scale of new physics, and are invalid at LHC energies. We
carefully discuss the circumstances in which such operators can arise, and use the mono-W process
to illustrate potential issues in their interpretation and application. We also discuss a simple UV
complete model that avoids such difficulties.
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I. INTRODUCTION

Despite overwhelming evidence that dark matter (DM) is
the dominant form of matter in the universe, we remain
ignorant about its fundamental nature. An appealing
class of DM candidates which enjoy considerable theo-
retical motivation are weakly interacting massive parti-
cles (WIMPs): heavy particles with weak-scale mass and
interaction strengths. Indeed, the production of WIMP-
type particles at the LHC is now one of the foremost
goals of the particle physics community.

Given the large number of WIMP-type theories, it is
desirable to express the DM interactions in a model-
independent manner. This can be achieved with an effec-
tive field theory (EFT) framework, in which a set of non-
renormalizable effective operators is used to parametrise
the interaction of a pair of DM particles with Standard
Model (SM) particles. The EFT operators would be ob-
tained as a low energy approximation to a renormalizable
theory by integrating out the particle(s) that mediates
the interaction. A standard set of operators have been
listed in Refs.[1, 2] (see also [3]).

For fermionic dark matter χ interacting with SM
fermions f , these operators take the form:

1

Λ2
(χΓχχ)

(
fΓff

)
, (1)

where Λ has dimensions of mass and is related to the
mass M and coupling constants gi of a heavy mediator
as Λ = M/

√
g1g2, and Γχ,f are various Gamma matrices.

While the EFT description is very useful at low ener-
gies, such as those relevant for direct detection, it now
well appreciated that the EFT approach may be unsuit-
able at LHC energies. Specifically, if the momentum
transfer in a process is comparable to or larger than the
mass of the mediator, the EFT will not provide an accu-
rate description of the underlying physics. Many recent
papers have attempted to quantify the point at which an
EFT description is no longer valid [4–8] or have proposed
the use of simplified models as an alternative framework
for undertaking DM searches at colliders [8–14].

Here we make a more subtle point: if an EFT operator
does not respect the weak gauge symmetries of the SM, it
may be invalid at energies comparable to the electroweak
scale, vEW ≈ 246 GeV, rather than the energy scale of
new physics, Λ. For example, if we attempt to use elec-
troweak gauge symmetry violating operators at LHC en-
ergies, serious difficulties can be encountered soon above
the EW scale, such as the bad high energy behaviour of
cross sections. An example is the well-known unitary vi-
olation rising as s/(4m2

W ) in WLWLscattering, due to
the longitudinal modes induced by the symmetry break-
ing of SU(2)L invariance. In the SM, the violations are
removed by an internal Higgs particle, but in the EFT
formalism internal fields are “integrated out”. Thus, the
limit of validity for the operator is the weak scale if any
internal W , Z or Higgs particle, or a Higgs vev insertion,
is present in theFeynman diagram. More generally, sa-
cred symmetries like the electroweak Ward identity can
be violated, which implies a weak-scale cutoff, as we ex-
plain later in this paper.

II. EFT OPERATORS AND GAUGE
INVARIANCE

The standard list of DM-SM effective operators [2] con-
tains several operators which violate the SM weak gauge
symmetries. We argue that if an EFT operator does not
respect the weak gauge symmetries of the SM, it neces-
sarily carries a pre-factor of the Higgs vev to some power,
a remnant of the SU(2)L scalar doublet

Φ ≡
(

φ+

φ0 = 1√
2
(H + vEW + i=φ0)

)
. (2)

Acting as an SU(2)L doublet, enough powers of Φ are re-
quired to form an SU(2)L-invariant operator. The fields
φ± and =φ are gauged away to become, in unitary gauge,
the longitudinal modes of the W± and Z. So, in fact, it
is the real, neutral field 1√

2
(H + vEW) whose nth power

appears in the operator. Commonly, the H part of the
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expression is omitted, leaving just an implicit vnEW in the
coefficient. Of course, the vnEW must come with a Λ−n.
Omission of the H part in the operator may ignore some
interesting phenomenology. In this paper, we will also
ignore the H contributions to operators, and focus on
the operators proportional to (vEW/Λ)n. Such terms in
the coefficients of SU(2)-violating operators clearly sat-
isfy the criterion that as SU(2) symmetry is restored,
vEW → 0, the operator’s coefficient vanishes, and the
operator decouples. 1

A. Scalar operator

Consider the scalar (or pseudo scalar) operators

mq

Λ3
(χχ) (qq) =

mq

Λ3
(χχ) (qLqR + h.c.) . (3)

This operator is clearly not SU(2)L invariant, as χ and
qR are SU(2)L singlets, while qL is a component (either
uL or dL) of the usual left-handed SM doublet, QL. A
coupling to the Higgs boson has been anticipated by the
factor of mq in the coefficient. Most authors invoke mini-
mal flavor violation to motivate this choice of normaliza-
tion. Although this SU(2)L violating effective operator
can be a good low energy description of new physics, no-
tice that its coefficient cannot be arbitrarily large as it is
controlled by the Higgs vev. Although formally a dimen-
sion 6 operator, it is competitive only with dimension 7
operators, given its 1/Λ3 normalization.

B. Vector operator:

Now consider vector (or axial vector) operators of the
form

1

Λ2
(χγµχ) (qγµq) =

1

Λ2
(χγµχ) (qLγµqL + qRγµqR) .

(4)
These operators respect SU(2)L provided that the co-
efficients of the uL and dL operators are equal2. Any
(uLγµuL) operator that does not have a matching dL
term should be suppressed by two powers of vEW/Λ (one
for each unmatched uL):

v2EW

Λ4
(χγµχ)(uLγµuL). (5)

1 In what follows, we will assume that there is but a single vev,
vEW. If there were further vevs, the good relation mW =
cos θW mZ requires the additional vevs to come from additional
doublet fields, or to be be small if coming from non-doublet fields.
The vevs then add in quadrature to give (2mW /g2)2. Thus, any
individual vev will offer an energy-scale below the SM vev. In the
sense that we will argue against larger energy-scales for effective
operators, our assumption of a single EW vev is conservative.

2 Isospin violating operators, such as those invoked in [15, 16], can
obviously be crafted from the right handed quark fields.

Including the suppressed coefficient, this SU(2)-violating
operator competes with dimension 8 operators, i.e., while
the SU(2) conserving (axial)vector operators are dimen-
sion 6, SU(2) violating (axial)vector operators compete
with subdominant, higher-order, dimension 8 operators.

III. MONO-W AND SU(2)L INVARIANCE

Issues arise if one tries to use gauge symmetry violating
operators at LHC energies. For particular processes, the
lack of gauge invariance can manifest as a violation of
unitarity in high energy scattering. As an example of
a problem encountered with an SU(2)L violating EFT,
consider the following operator:

1

Λ2
(χγµχ)

(
uγµu+ ξdγµd

)
. (6)

This Lagrangian violates SU(2)L, unless ξ = 1. The
case of unequal u and d couplings was considered in
Ref. [17], where a very strong constructive(destructive)
“interference effect” was found for ξ = −1(+1), the de-
gree of which depends on the energy scale. The analysis
of Ref. [17] was subsequently repeated by the LHC exper-
imental collaborations ATLAS [18, 19] and CMS [20, 21].
We shall demonstrate that the large cross section en-
hancement for ξ 6= +1 is in fact due the production of
longitudinally polarized W ’s as a result of breaking gauge
invariance.

At parton level, the mono-W process is u(p1)d(p2) →
χ(k1)χ(k2)W+(q). The relevant diagrams are given in
Fig.1, and the corresponding contributions to the ampli-
tude M≡Mαελα(q) ≡ (Mα

1 +Mα
2 )ελα(q) are

Mα
1 =

1

Λ2

[
v̄(p2)γα

−gW
/p2 − /q

γµ
PL√

2
u(p1)

]
[ū(k1)γµv(k2)] ,

Mα
2 =

ξ

Λ2

[
v̄(p2)γµ

gW

/p1 − /q
γα

PL√
2
u(p1)

]
[ū(k1)γµv(k2)] , (7)

where gW is the weak coupling constant, and ελα is the
polarization vector of the W . We note that the W lon-
gitudinal polarization vector at high energy is

εLα =
qα
mW

+O
(mW

E

)
∼
√
s

mW
. (8)

Thus the high energy WL contribution to the usual po-
larization sum,

∑
λ ε

λ
αε
λ ∗
β = −gαβ +

qαqβ
m2
W

, is εLαε
L ∗
β ≈

qαqβ/m
2
W ∼ s/m2

W .
We can verify that the sum of the two amplitudes of

Fig.1 is not gauge invariant unless ξ = 1, by observ-
ing that the relevant Ward identity is not satisfied. At
high energy, the Goldstone boson equivalence theorem re-
quires that the amplitude for emission of a longitudinally
polarized WL is equivalent to that for the emission of the
corresponding Goldstone boson. Since the Goldstone bo-
son couples to quarks with strength proportional to their
mass, these terms are close to zero. (See Ref.[22] for a
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similar discussion about the related process χχ→ νeW .)
The Ward identity for the longitudinal W at high energy
therefore takes the form

MαεLα ≈
qα
mW
Mα(q, ...) = iM(φ+(q)) ' 0. (9)

For the sum of the mono-W amplitudes of Fig.1 we find

qαMα =
gW
Λ2

[
v̄(p2) (1− ξ) γµ PL√

2
u(p1)

]
[ū(k1)γµv(k2)] ,

(10)
which clearly vanishes only for ξ = 1.

The “interference effect” seen in the mono-W process
is not truly due to constructive/destructive interference
as previously claimed, but is just a manifestation of the
fact that the breaking of electroweak gauge-invariance
has given rise to a WL component. The increased cross
section for ξ 6= 1 is in fact due to unphysical terms that
grow like s/m2

W , which originate from the +qαqβ/m
2
W

term in the polarization sum. At high energy, these terms
would grow large enough to violate unitarity. But even
at lower energy, their presence may be problematic.

To explicitly demonstrate this behaviour, we now de-
rive an analytic expression for the parton-level mono-W

process du → χχW+. We work in the center-of-mass
frame, and follow the phase space parametrization de-
scribed in Section V of Ref.[23]. We define θ to be the
angle of the W w.r.t. the beam line and x = 2EW /

√
s,

where
√
s is the total invariant mass. For simplicity we

take mχ = 0 (the cross section will be approximately in-
dependent of mχ for m2

χ � s). We include a factor of
1/3 from averaging over initial state quark colors.

For ξ = 1 the differential cross section is well behaved
and is given by

χ

χd

u

W
(a)M1

χ

χd

u W

(b)M2

FIG. 1. Contributions to the mono-W process u(p1)d(p2) →
χ(k1)χ(k2)W+(q), in the effective field theory framework.

d2σ

dxd cos θ

∣∣∣∣
ξ=1

=
A

3228π3Λ4
(
s2x2 sin2 θ + 2sm2

W (cos (2θ)− 2x+ 1) + 4m4
W

)2 , (11)

where

A = s2g2W

√
x2 −

4m2
W

s

(
1− x+

m2
W

s

)[
s3x2 sin2 θ

(
cos (2θ)x2 + 3x2 − 8x+ 8

)
+ 2s2m2

W

(
cos (4θ)x2 + 2 cos (2θ)

(
x3 − x2 − 4x+ 4

)
− 2x3 + 17x2 − 24x+ 8

)
− 4sm4

W

(
cos (4θ) + cos (2θ)

(
x2 + 4x− 8

)
− x2 + 20x− 17

)
+ 16m6

W (cos (2θ) + 3)
]
,

If we take the limit mW → 0, remove the color factor 1/3, and replace gW /
√

2 with the electron charge e, we find
Eq. 11 reproduces the cross section for the e+e− → χχγ monophoton process reported by Ref.[23, 24] for mχ = 0 and
unpolarized e+e− beams. This provides a useful check for our more complicated mono-W calculation.

For ξ 6= 1, however, the cross section is not well behaved at high energy. The +qαqβ/m
2
W term in the polarization

sum contributes to the cross section a term

d2σ

dxd cos θ

∣∣∣∣
qαqβ/m2

W

=
(ξ − 1)2s2g2W

√
x2 − 4m2

W

s

(
2x2 sin2 θ − 16x+ 16 +

4m2
W

s (cos (2θ) + 3)
)

32213π3Λ4m2
W

, (12)

which violates unitarity when s� m2
W .

The total cross sections, for mχ = 0, are plotted in
Figs(2,3) as a function of

√
s. We also calculate the cross

sections in MadGraph [25], and find the results agree.
For brevity of notation, we have defined σ1 and σ2 to
be the contributions to the cross section from the −gαβ
and +qαqβ/m

2
W terms in the polarization sum, respec-

tively. The ξ = 0,−1 cross sections grow faster with
√
s

than for ξ = 1. At LHC energies the cross sections are
already dominated by the unphysical terms arising from
the longitudinal polarization, unless ξ ' 1.
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FIG. 2. Total parton-level cross sections as a function of en-
ergy, for Λ = 600 GeV and particular choices of ξ. Upper:
contribution from the +qαqβ/m

2
W term in the polarization

sum. The cross section scales simply as (1− ξ)2. Lower: con-
tribution of the −gαβ term in the polarization sum. At LHC
energies the qαqβ terms dominates unless ξ ' 1. (Notice the
differing vertical scales between the upper and lower panels.)

IV. RENORMALIZABLE MODELS AND EFTS

We now consider a renormalizable, gauge invariant,
model of DM interactions, and examine the way in which
unequal couplings to u and d quarks can be obtained.
Consider the case where qq → χχ is mediated by the
exchange of a t-channel scalar. The Lagrangian is given
by

Lint = fQLηχR + h.c

= fud
(
ηuuL + ηddL

)
χR + h.c., (13)

where QL = (uL, dL)T is the quark doublet, η =
(ηu, ηd)

T ∼ (3, 2, 1/3) is a scalar field that transforms
under the SM gauge group like QL, and f is a coupling
constant. Such couplings are present in supersymmetric
(SUSY) models, with χ identified as a neutralino and η a
squark doublet, and have been considered as a simplified
model for DM interactions in Refs. [26–29].

If we take the EFT limit, assuming the η are very

Ξ=1

Ξ=0

Ξ=-1

L=600 GeV

0 2 4 6 8 10 12 14

10- 3

10- 2

10-1

1

101

102

103

104

105

s @ TeVD

Σ
@pb

D

FIG. 3. Total parton-level cross sections for Λ = 600 GeV, for
particular choices of ξ. Solid lines are the analytic calculation
and dots are the MadGraph calculation.

heavy, the lowest order operators are of dimension 6:

1

Λ2
u

(uΓu)(χΓχ) and
1

Λ2
d

(dΓd)(χΓχ), (14)

where the suppression scales are Λu,d ∝ mηu,d/f . The
relevant Lorentz structure Γ is a sum of vector and ax-
ial vector terms as can be seen by Fierz transforming
the t-channel matrix elements obtained from Eq.13 to
s-channel form [30].

The strength of DM interactions with u and d quarks
can differ if the masses of ηu and ηd are non-degenerate.
However, given that (ηu, ηd) form an electroweak doublet,
their mass splitting must be controlled by vEW. The
relevant terms in the scalar potential are [31]

V = m2
1(Φ†Φ) +

1

2
λ1(Φ†Φ)2 +m2

2(η†η) +
1

2
λ2(η†η)2

+ λ3(Φ†Φ)(η†η) + λ4(Φ†η)(η†Φ). (15)

If m2
1 < 0 and m2

2 > 0, the SM Higgs doublet obtains a
non-zero vev, while the η does not. The presence of λ4
splits the η masses as

m2
ηd

= m2
2 + λ3v

2
EW + λ4v

2
EW , (16)

m2
ηu = m2

2 + λ3v
2
EW , (17)

implying that δm2
η ≡ m2

ηd
− m2

ηu = λ4 v
2
EW . However,

although we have engineered unequal scalar masses and
thus unequal DM couplings to u and d quarks, the sce-
nario of Ref. [17] can not be realised, as we shall explain
below.

If we attempt to naively connect our renormalizable
model with an EFT like that of Eq.6, we find that the
parameter ξ is given by ξ = 1/(1 + δm2

η/Λ
2) = 1/(1 +

λ4 v
2
EW /Λ

2). For Λ >∼ 1 TeV and a perturbative value for
λ4, ξ will not deviate far from 1. (Negative ξ can not be
obtained from this renormalizable model.) Furthermore,
it is clear that SU(2)L violating effects enter the EFT at
order v2EW /Λ

4, i.e., the same order in Λ as a dimension
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FIG. 4. Contributions to the mono-W process u(p1)d(p2)→ χ(k1)χ(k2)W+(q), in a UV complete model.

8 operator. If we consider effects of this order we must,
for self consistency, consider other dimension 8 operators
that arise from the model. Inclusion of these operators,
with appropriate coefficients, will be essential for gauge
invariance.

In the renormalizable model, the mono-W process
proceeds via the gauge invariant set of diagrams in
Fig.4 3 4 [32–34]. In the EFT limit, the diagrams in
Fig.4(a) and (b) map onto those in Fig.1(a) and (b) re-
spectively. The diagram in Fig.4(c), in which the W is
radiated from the η propagator, is suppressed by an addi-
tional heavy scalar propagator and is hence subdominant
to the ISR diagrams. It enters the EFT as a dimension
8 operator [35], contributes on an equal footing with the
SU(2) violating contributions of diagrams (a) and (b),
and enforces the cancellation of unphysical WL contribu-
tions to cross sections.

Although we have framed the discussion in terms of
a particular renormalizable model, the general features
will hold for all UV completions of Eq.6 in which ξ 6= 1.
The violation of the Ward Identity in Eq.10 indicates
that the two diagrams of Fig.1 are not a gauge invariant
set, hence there must be an additional diagram. While
the form of the missing diagram(s) will depend on the
particular UV completion, their presence is dictated by
gauge invariance. No matter the size of ξ, these ex-
tra diagrams prevent large unphysical WL enhancements.

V. CONCLUSION

An important observation of Ref.[17] is that, of the mono-
X processes, the mono-W is unique in its ability to probe
different DM couplings to u and d quarks. This impor-
tant insight is correct. However, we have argued that
the size of any SU(2)L violating difference of the u and
d quark couplings must be protected by the EW scale,
and therefore cannot be arbitrarily large. SU(2)L vio-
lating operators can be obtained by integrating out the
SM Higgs or by including Higgs vev insertions. There-
fore, they should have coefficients suppressed by powers
of (vEW/Λ) or (mfermion/Λ) and thus are of higher or-
der in 1/Λ than they would naively appear. To include
SU(2) violating effects in a way that is self consistent
and properly respects the EW Ward identity, one should
use a renormalizable, gauge invariant, model rather than
an EFT, to avoid spurious WL contributions. These ob-
servations will be an important guide to the LHC collab-
orations in the interpretation of their current [18–21] and
forthcoming mono-W dark matter search results, and to
theorists constructing dark matter models.
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3 In the good EW SU(2) limit, the ηu and ηd are mass degener-
ate, and the massless W± emitted in diagram (c) establishes the
validity of the EW Ward identity [32, 33]. When EW SU(2) is
broken, the ηu and ηd masses are split, and the new massive-W
longitudinal mode must restore the EW Ward identity by cou-
pling to the η proportional to δm2

η [31]. This argument provides
an interpretation of the result found earlier in [31] that the in-
ternal longitudinal mode couples proportional to δm2

η . In fact,
in [31] it was shown that this longitudinal W mode will dominate
the W emission probability for some range of model parameters.

4 Note that in the renormalizable theory, in the high energy limit,
WL production arises solely from the amplitude of Fig.4(c), and
only when δm2

η 6= 0.
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