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Abstract

Deuteron disintegration by charged-current neutrino (CCν) scattering offers the possibility to

determine the energy of the incident neutrino by measuring in coincidence two of the three resulting

particles: a charged lepton (usually a muon) and two protons, where we show that this channel can

be isolated from all other, for instance, from those with a pion in the final state. We discuss the

kinematics of the process for several detection scenarios, both in terms of kinematic variables that

are natural from a theoretical point of view and others that are better matched to experimental sit-

uations. The deuteron structure is obtained from a relativistic model (involving an approximation

to the Bethe-Salpeter equation) as an extension of a previous, well-tested model used in deuteron

electrodisintegration. We provide inclusive and coincidence (semi-inclusive) cross sections for a va-

riety of kinematic conditions, using the plane-wave impulse approximation, introducing final-state

hadronic exchange terms (plane-wave Born approximation) and final-state hadronic interactions

(distorted-wave Born approximation).
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I. INTRODUCTION

Deuterium has been used in the past as a target in several neutrino quasielastic scattering

experiments for average energies in the range 0.5 – 27 GeV, where the final-state particles

in the reaction were detected in bubble chambers [1]. For reactions below pion production

threshold, a neutrino interacts with a neutron bound in deuteron, which turns into a proton

and a negatively-charged lepton is produced. The two resulting protons are no longer bound

and one or both of them can be detected in coincidence with the charged lepton.

From a theoretical point of view, the advantage of using deuterium as a target with coin-

cidence detection lies in the fact that the kinematics of the remaining nucleon, and of all of

the particles taking part in the process, are fully determined by energy-momentum conser-

vation. This includes the energy of the incoming neutrino, which usually has a broad energy

spectrum, an issue for neutrino oscillation experiments when nuclei other than deuterium

are used. In the case of nuclei in general, the nucleus is in general excited to configurations

at high missing energy (see [2] for a discussion of semi-inclusive CCν reactions including

the definition of missing energy) and, even when both a charged lepton and a proton are

detected in coincidence, one cannot reconstruct the incident neutrino energy. However, the

deuteron does not share this problem and all kinematic variables can be reconstructed from

measurements of a subset of final-state particles. The details of such procedures are dis-

cussed later. We note that, insofar as a cut can be made to separate events where pions

are produced from those where they cannot, i.e., where the “no-pion” cross section can

be isolated (the kinematics for making such a cut are discussed below), what we continue

to call the semi-inclusive cross section is actually an exclusive cross section, meaning that

the energies and momenta of all particles are determined by measuring only the subsets

summarized above.

In addition to determining the neutrino energy using only the kinematics of the reaction

being studied, namely, νµ + 2H→ µ− + p+ p, the cross section for this reaction can be used

to determine the neutrino flux. This, of course, requires that one knows that cross section,

and indeed, especially under favorable conditions, this is the case as discussed later. Such is

not the case, however, for complex nuclei such as carbon or oxygen where considerable effort

has gone into evaluating the level of theoretical uncertainty in modeling neutrino reactions

in those cases.
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Aside from providing a means to determine the energy and flux of the incident neutrino in

such semi-inclusive CCν reactions, neutrino disintegration of the deuteron has the potential

to yield valuable new information on the nucleonic content in the problem. Specifically,

given that the vector EM form factors of the nucleon are relatively well-determined from

electron scattering on protons and light nuclei, the prime candidate for such an approach

is the isovector, axial-vector form factor of the nucleon, G
(1)
A . Once the uncertainties in the

modeling of the deuteron and pp systems have been evaluated, i.e., the extent to which

different ground-state wave functions yield different results and to which the treatment of

the pp final state gives different answers, the reaction can be used to determine G
(1)
A . Both

aspects of the problem are discussed below.

The paper is organized as follows: In Sect. II the basic kinematics of the process is

described, and the formalism of the weak responses and the neutrino-deuteron cross section

is given in Sect. III. In Sect. IV the deuteron structure model is summarized. In Sect.

V results are presented and discussed for inclusive and semi-inclusive neutrino-deuteron

scattering for several choices of kinematics. Finally, in Sect. VI our conclusions are given.

II. KINEMATICS

Let us begin from a “theoretical” point of view and presume that the energy of the incident

neutrino is known, having mass m with three-momentum k and total energy ε =
√
k2 +m2,

contained in the four-momentum Kµ = (ε,k). Later we will work backwards, assuming only

final-state momenta are known and show how the neutrino energy may be reconstructed.

The four-momentum corresponding to the outgoing charged lepton, with mass m′, is K ′µ =

(ε′,k′), and the four-momentum transfer is Qµ = (ω,q), with −Q2 = |Q2| = q2 − ω2 ≥ 0

(spacelike). The three-momentum transfer q is assumed to be along the 3-axis so that the

lepton momenta define the 13-plane (see Fig. 1), and the angle between them is the scattering

angle θ. With these definitions the components of the above mentioned four-momenta can
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FIG. 1. Kinematics for coincidence neutrino-deuteron reactions.

be written as

K0 = ε K ′0 = ε′ Q0 = ε− ε′ = ω

K1 = 1
q
kk′ sin θ K ′1 = 1

q
kk′ sin θ Q1 = 0

K2 = 0 K ′2 = 0 Q2 = 0

K3 = 1
q
k (k − k′ cos θ) K ′3 = −1

q
k′ (k′ − k cos θ) Q3 =

√
k2 + k′2 − 2kk′ cos θ = q .

(1)

Concerning the hadronic part of the process, the deuteron at rest carries four-momentum

P µ
d = (Md, 0, 0, 0), where Md =1875.61 MeV is its mass. The protons resulting from the

CCν disintegration of the target have four-momenta P µ
1 = (E1,p1) and P µ

2 = (E2,p2)

respectively. Let θ′1 and θ′2 be, respectively, the angles of the proton momenta with respect

to the incident neutrino momentum and φ′1 and φ′2 their angles with respect to the leptonic
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plane; the components of the proton four-momenta can then be written as

P 0
1 = E1 P 0

2 = E2

P 1
1 = p1 [sin θ′1 cosφ′1 cos θq + cos θ′1 sin θq] P 1

2 = p2 [sin θ′2 cosφ′2 cos θq + cos θ′2 sin θq]

P 2
1 = p1 sin θ′1 sinφ′1 P 2

2 = p2 sin θ′2 sinφ′2

P 3
1 = p1 [− sin θ′1 cosφ′1 sin θq + cos θ′1 cos θq] P 3

2 = p2 [− sin θ′2 cosφ′2 sin θq + cos θ′2 cos θq] ,

(2)

where θq is the angle between the incident momentum k and the momentum transfer q, so

that

sin θq =
1

q
k′ sin θ and cos θq =

1

q
(k − k′ cos θ) . (3)

The primed angles θ′1, θ
′
2, and φ′1, φ

′
2, defined with respect to the incident neutrino mo-

mentum, are related to the unprimed ones defined with respect to the momentum transfer,

as were used in [2], through

sin θ′i cosφ′i = sin θi cosφi cos θq − cos θi sin θq

sin θ′i sinφ
′
i = sin θi sinφi (4)

cos θ′i = sin θi cosφi sin θq + cos θi cos θq

with φ2 = φ1 + π. Let us next turn to the reverse situation, the “experimental” point of

view where only final-state particles are presumed to be detected and where the goal is to

determine the incident neutrino energy.

A. Neutrino energy determination

On the one hand, energy and momentum conservation in the hadronic vertex implies

ω = E1 + E2 −Md and q = p1 + p2, or q = p1 cos θ1 ±
√
p22 − p21 sin2 θ1 for its magnitude.

On the other hand, from the lepton vertex one has, as shown in Eqs. (1), ω = ε − ε′ and

q =
√
k2 + k′2 − 2kk′ cos θ. The transfer variables ω and q must be equal in both vertices,

and positive. Hence, the energy-momentum conservation conditions yield two relationships

between the undetected proton energy E2, or corresponding momentum p2, and the incident

neutrino energy ε, or corresponding momentum k; the only possible values of E2 and ε (or

p2 and k) for the process are those that fulfill both conditions simultaneously. It should be

noted that this procedure cannot be followed with a general nuclear target, since the rela-

tionship between E2 and p2 is not fixed. Indeed, although on-shellness always holds, namely
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FIG. 2. (Color online) Left: An example of using energy conservation (dashed curve) and momen-

tum conservation (solid curve), to determine the incident neutrino momentum k as a function of

the undetected proton momentum p2 for a deuteron disintegration with emitted muon momentum

k′ = 1 GeV, scattering angle θ = 60◦, emitted proton momentum p1 = 0.5 GeV, and proton emis-

sion angle θ1 = 20◦. The intersection of the curves gives the only possible combination of incoming

neutrino and undetected proton momenta for this process (1.45 GeV and 0.83 GeV, respectively).

Right: Using this procedure, and for the same kinematic conditions for θ, p1 and θ1, resulting

incident neutrino momentum k (solid curve) and undetected proton momentum p2 (dotted curve)

as a function of the emitted muon momentum k′.

E2
A−1 = p2A−1 +W 2

A−1, the rest mass of the residual system WA−1 is in general unknown (see

[2]); however, in the specific case of the deuteron target, WA−1 = mp without ambiguity.

Fig. 2 shows a graphical example of how the constraints work. In the following subsection

we develop this possibility of neutrino energy determination in deuteron scattering analyt-

ically by defining and studying specific kinematic scenarios, as well as the pion production

threshold and other kinematic constraints.

B. Kinematic scenarios

We consider two scenarios, the first (‘scenario A’) where the two protons in the final

state are presumed to be detected, but not the muon, and the second (‘scenario B’) where

the final-state charged lepton and one proton (called proton number 1) are presumed to be

detected, but not the other proton (proton number 2). Using the nomenclature given above,
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we define the following four-momenta:

P µ
A = (EA,pA) ≡ P µ

1 + P µ
2 (5)

P µ
B = (EB,pB) ≡ K ′µ + P µ

1 , (6)

which yield the following relationships:

EA = E1 + E2 = Md + ω (7)

pA = p1 + p2 = q (8)

EB = ε′ + E1 (9)

pB = k′ + p1 . (10)

Note that in scenario A this means that q and ω are immediately known. The angles between

the incoming neutrino direction and the three-vectors pA and pB are known and denoted

θA and θB, respectively. Referring to Fig. 1 we see that θA = θq. Let us now develop the

two scenarios one at a time.

Scenario A: In this case one knows q and ω through q = pA and ω = EA−Md. Noting

that k′ = k − q, one has

k′2 = k2 + q2 − 2kq cos θq (11)

and together with ε′ = ε− ω, and using the fact that ε′2 − k′2 = m′2, one obtains

k q cos θq − ω ε = XA (12)

with

XA ≡
1

2

[
q2 − ω2 +m′2 −m2

]
> 0 . (13)

This immediately leads to values of the incoming neutrino momentum and energy:

k =
1

aA

[
q cos θqXA + ω

√
X2
A +m2aA

]
(14)

ε =
1

aA

[
ωXA + q cos θq

√
X2
A +m2aA

]
, (15)

where

aA ≡ (q cos θq)
2 − ω2 ≥ 0 . (16)
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One can show that 0 ≤ θq ≤ θ0q ≤ π/2, where θ0q ≡ arccos(ω/q). Knowing the neutrino

beam energy ε then yields the charged lepton energy ε′ = ε − ω and thus its momentum

k′ =
√
ε′2 −m′2, together with the angle θ through

k′ cos θ = k − q cos θq (17)

k′ sin θ = q sin θq . (18)

That is, one now has all of the kinematic variables in scenario A.

Scenario B: In this situation EB and pB are presumed to be known, and the unknown

proton variables can be expressed as E2 = ε− (EB −Md) and p2 = k− pB; from the latter

one gets

p22 = k2 + p2B − 2 k pB cos θB , (19)

and then using the fact that E2
2 − p22 = m2

p one has

k pB cos θB − (EB −Md) ε = XB (20)

with

XB ≡
1

2

[
p2B − (EB −Md)

2 +m2
p −m2

]
> 0 (21)

from which one obtains

k =
1

aB

[
pB cos θBXB + (EB −Md)

√
X2
B +m2aB

]
(22)

ε =
1

aB

[
(EB −Md)XB + pB cos θB

√
X2
B +m2aB

]
, (23)

where

aB ≡ (pB cos θB)2 − (EB −Md)
2 . (24)

In this case, one now has q and ω using the usual relationships in Eqs. (1) and can then

find E2 and p2 using Eqs. (7) and (8), yielding all of the kinematic variables in scenario B.

We now study the incident neutrino energy or momentum threshold to produce the

lightest possible extra particle in the scattering process, namely a neutral pion, π0. One

assumes the knowledge of the three emitted particles variables, and then defines

P µ
C = (EC ,pC) ≡ K ′µ + P µ

1 + P µ
2 , (25)
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so that EC = ε′ + E1 + E2 and pC = k′ + p1 + p2. One then has Eπ0 = Md + ε − EC and

pπ0 = k − pC , whence

p2π0 = k2 + p2C − 2 k pC cos θC , (26)

and using the on-shell relation for an emitted neutral pion, E2
π0 − p2π0 = m2

π0 , one obtains

k pC cos θC − (EC −Md) ε = XC , (27)

with

XC ≡
1

2

[
p2C − (EC −Md)

2 +m2
π0 −m2

]
. (28)

From these expressions one obtains the following pion production threshold values of the

incident neutrino momentum and energy:

kπ0 th. =
1

aC

[
pC cos θC XC ± (EC −Md)

√
X2
C +m2aC

]
(29)

επ0 th. =
1

aC

[
(EC −Md)XC ± pC cos θC

√
X2
C +m2aC

]
, (30)

where

aC ≡ (pC cos θC)2 − (EC −Md)
2 . (31)

For given energies of the emitted particles ε′, E1, E2, neutral pion production is ruled out

in the scattering process if the incident neutrino beam energy fulfills ε ≤ επ0 th. (and equiv-

alently for the momenta).

A potential strategy for measurements of the desired kinematic variables might be the fol-

lowing: one might assume that the three particles in the final state, say, a muon and the

two protons, are all measured with adequate precision first to eliminate the possibility of

π0 production, or, more generally, to isolate processes where a pion is produced from those

where it is not, since the former is interesting in its own right. Given this first cut, one can

then safely proceed to analyze the reaction

νµ + 2H→ µ− + p+ p

as above in either of the scenarios, whichever proves to be the more favorable from an

experimental point of view.

Finally in this section, for completeness it is also useful to make contact with the general
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developments of semi-inclusive CCν reactions presented in [2]. The variables introduced

there translate into the present ones in the following way:

M0
A ↔Md ; mN ↔ mp ; WA−1 ↔ mp ; pN ↔ p1 ; p↔ −p2 . (32)

The momentum of what is labeled particle 2 above is usually called the missing momentum:

pm = p2 = −p. For simplicity below we will show results as functions of p = |p|. The

quantity called E in [2] and in previous scaling analyses (see [3–5]) is zero here, since the

daughter system in the general case is simply the second proton in the present study. This

leads to the following for the scaling variable y and the quantity Y :

y =
1

2

[
(Md + ω)

W

√
W 2 −W 2

T − q
]

(33)

Y = q + y , (34)

where the invariant mass in the final state is given by

W =

√
(Md + ω)2 − q2 (35)

and its threshold value by WT = 2mp, so that W ≥ WT . A useful relationship that emerges

is

Md + ω =
√
m2
p + y2 +

√
m2
p + Y 2 , (36)

and an important constraint in the reaction is the following:

|y| ≤ p ≤ Y . (37)

Furthermore the cosine of the angle θpq in [2] is given by

cos θpq =
1

2pq

[
W 2 − 2(Md + ω)

√
m2
p + p2

]
. (38)

III. WEAK RESPONSES AND CROSS SECTION

Using the Feynman rules and integrating over the undetected nucleon three-momentum,

the cross section of the process can be written as

dσχ =
G2 cos2 θc

2(2π)5
m2
p v0

k ε′ E1 E2

F2
χ d

3k′ d3p1 δ(ε+Md − ε′ − E1 − E2) , (39)

where F2
χ is the matrix element squared (see below), v0 ≡ (ε+ ε′)2− q2 and the differentials

can be expressed as d3k′ = k′2dk′dΩk′ = k′ε′dε′dΩk′ and d3p1 = p21dp1dΩp1 = p1E1dE1dΩp1 .
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From this expression one can construct the differential cross section with respect to any set

of variables, taking into account that the integration of the delta function δ(f(x, ...)) with

respect to the variable x forces the variables of f to fulfill the condition f ≡ 0 and introduces

an extra factor |∂f(x, ...)/∂x|−1.

As an example, if the energy distribution of the incoming neutrino beam, P (ε), is known,

the differential cross section averaged over incident energies is given by∫
dσχ

dε′ dΩk′ dE1 dΩp1

P (ε) dε =
G2 cos2 θc

2(2π)5
m2
p

p1 k
′ v0

k E2

P (ε) |FP |−1 F2
χ , (40)

with

FP = 1−
ε
(

1− p1 cos θ1
q

) (
1− k′ cos θ

k

)
E2

. (41)

As another example, by a further integration of Eq. (39) over the undetected nucleon

energy one gets the following differential cross section:

dσχ
dk′ dΩk′ dΩp1

=
G2 cos2 θc

2(2π)5
m2
p

Md

p1 k
′2 v0

k ε′
|F |−1 F2

χ (42)

with

F = 1 +
ω p1 − q E1 cos θ1

Md p1
, (43)

which becomes in extreme relativistic limit

dσχ [ERL]

dε′ dΩk′ dΩp1

=
G2 cos2 θc

16π5

m2
p

Md

p1 ε
′2 cos2(θ/2) |F |−1 F2

χ . (44)

The energy and momenta in these expressions fulfill conservation laws and thus the unde-

tected energies ε and E2 (or momenta k and p2) take only specific values that can be deduced

as described in the previous section.

The matrix element squared is given by the contraction of the leptonic and hadronic

tensors, which can be written in terms of products of generalized Rosenbluth factors V and

hadronic responses w for charge, longitudinal and transverse projections:

F2
χ = VCC (wV VCC + wAACC) + VCL (wV VCL + wAACL) + VLL (wV VLL + wAALL ) +

VT (wV VT + wAAT ) + VTT (wV VTT + wAATT ) + VTC (wV VTC + wAATC) +

+VTL (wV VTL + wAATL ) + χ
[
VT ′wV AT ′ + VTC′wV ATC′ + VTL′wV ATL′

]
, (45)

where χ = +1 for neutrino scattering and χ = −1 for antineutrino scattering. The gen-

eralized Rosenbluth factors contributing to this matrix element are given in [2] for general
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lepton masses using the quantities δ ≡ m/
√
|Q2| and δ′ ≡ m′/

√
|Q2| and for general val-

ues of the vector and axial-vector coupling constants aV and aA. Here we reproduce those

expressions particularized to the Standard Model tree-level values of the coupling constants

(aV = −aA = 1) and to (anti)neutrino scattering with m = 0:

VCC = 1− δ′2 tan2 θ̃/2 (46)

VCL = −ν − 1

ρ′
δ′2 tan2 θ̃/2 (47)

VLL = ν2 +

(
1 +

2ν

ρ′
+ ρ δ′2

)
δ′2 tan2 θ̃/2 (48)

VT =
1

2
ρ+

(
1− ν

ρ′
δ′2 − 1

2
ρ δ′4

)
tan2 θ̃/2 (49)

VTT = −1

2
ρ+

[
1 +

ν

ρ′
+

1

2
ρ δ′2

]
δ′2 tan2 θ̃/2 (50)

VTC = − 1

ρ′
tan θ̃/2

√
−1

ρ
VTT (51)

VTL = −
(
ν + ρρ′ δ′2

)
VTC (52)

VT ′ =

(
− 1

ρ′
+ ν δ′2

)
tan2 θ̃/2 (53)

VTC′ = tan θ̃/2

{
1

2
− 1

ρ

[
1 +

ν

ρ′
+

1

2
ρ δ′2

]
δ′2 tan2 θ̃/2

}1/2

(54)

VTL′ = −νVTC′ . (55)

The following definitions have been used in the expressions above:

ν ≡ ω
q

tan2 θ̃/2 ≡ |Q2|
v0

ρ ≡ |Q2|
q2

ρ′ ≡ q
ε+ε′

. (56)

The deuteron responses w, on the other hand, can be constructed as functions of the three

independent four-momenta of the hadronic part of the process, namely Qµ, P µ
d , and P µ

1 , in 17

different V V , AA and V A combinations, each associated to an invariant function of the four

dynamical invariants constructed with the same set of four-momenta [2]. The computation

of these deuteron responses will be described in the next section for a sophisticated model

of the nucleon structure.

IV. DEUTERON STRUCTURE

The calculation of matrix elements for electro-weak breakup of the deuteron requires

that some care be exercised in the construction of a consistent model of the reaction in
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order that basic symmetries, such as electromagnetic current conservation, be maintained.

This is a problem that has been discussed by many authors in the context of deuteron

electrodisintegration. A detailed discussion in the context of the Bethe-Salpeter equation

[6] and the related spectator equation [7, 8] can be found in [9, 10]. In general, for all

approaches a nucleon-nucleon (NN) interaction is parameterized in terms of a potential or

interaction kernel which can be iterated in the appropriate equation, such as the Schrödinger

equation or Bethe-Salpeter equation, to produce the deuteron bound-state wave function and

scattering amplitudes which is then fit to data for laboratory kinetic energies up to Tlab ∼

350 MeV, which is slightly above pion production threshold. Since the NN interaction

generally involves the exchange of electro-weak charges, it is necessary in constructing the

model to include two-body currents that contain coupling to the exchanged particles that

carry the charges. This program generally relies on the ability to relate the NN interaction

to some set of effective meson exchanges and has been carried out rigorously, for example, in

the context of chiral effective field theory [11] and the covariant spectator equation [12–14].

However, attempts to extend this approach to invariant masses well above pion threshold

have been relatively unsuccessful and at large four-momentum transfers and invariant masses

it is necessary to construct models which are not fully consistent as a result of the inability

to produce interaction kernels that can successfully describe NN scattering in this region.

The calculations presented in this paper use a model related to the Bethe-Salpeter equa-

tion, which is designed to be used at large four-momentum transfers and invariant masses

and has been used previously to describe deuteron electrodisintegration [15–19]. A brief

outline of the model containing the modifications required for calculation of the CCν reac-

tion will be presented here. This model is constructed primarily for use at large Q2 where

relativistic effects are important and where there are open meson-production channels that

must appear as inelasticities in the scattering matrix producing the final-state interaction.

However, the plane-wave contributions can be used at all values of Q2. At this stage no

two-body meson-exchange currents (MEC) are included in the calculations, although these

will be included in the future, meaning that the calculations shown here are in the impulse

approximation (IA). As a rough estimate of what this approximation might entail, we note

that in [20] the scaling behavior of EM (vector) MEC was found to be such that the results of

the ratio between MEC and IA goes as k4A, where kA is some characteristic three-momentum

for a given nucleus (roughly the Fermi momentum kF ). This ratio is typically found to be
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FIG. 3. (Color online) Feynman diagrams representing charge-changing neutrino reactions in the

impulse approximation.

about 15-20% at the maxima of the quasielastic and MEC contributions for nuclei such as

12C where kA ∼= 228 MeV. However, the characteristic momentum for 2H is about 55 MeV,

which yields a rough estimate for this ratio in the present situation of ∼5–7×10−4, namely,

contributions from MEC should be very small. As a result, this calculation is limited to the

IA.

The Feynman diagrams representing the impulse approximation are shown in Fig. 3.

Fig. 3a represents the direct plane-wave contribution, Fig. 3b represents the corresponding

exchange contribution and Fig. 3c represents the contribution from final-state interactions.

Use of Fig. 3a alone is called the plane-wave impulse approximation (PWIA), while adding

the exchange diagram Fig. 3b gives the plane-wave Born approximation (PWBA) [21,

22]. We refer to the inclusion of all three diagrams in Fig. 3 as the distorted-wave Born

approximation (DWBA). In the next section results are shown for all three assumptions to

ascertain the impact of antisymmetrization and final-state interactions on the predictions

made in this study.

The matrix element corresponding to 3a is given by

〈p1s1;p2s2| Jµ(Q) |pdλd〉a = −ū(p1, s1)Γ
µ
CC(q)G0(Pd − P2)Γ

T
λd

(P2, Pd)ū
T (p2, s2) , (57)

where the target deuteron has four-momentum Pd and spin λd, the two final-state protons
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have four-momentum and spin (P1, s1) and (P2, s2). The single-nucleon propagator is

G0(P ) =
γ · P +mN

m2
N − P 2 − iη

(58)

and the weak charged-current operator has vector and axial-vector contributions

ΓµCC(Q) = [ΓµV (Q)− ΓµA(Q)]τ+ (59)

ΓµV (Q) = F I=1
1 (Q2)γµ +

F I=1
2 (Q2)

2mN

iσµνQν (60)

ΓµA(Q) =

[
GA(Q2)γµ +GP (Q2)

Qµ

2mN

]
γ5 , (61)

where the vector-isovector form factors used here are from the GKex05 parameterization (see

[23] and references therein) of the nucleon electromagnetic form factors and the axial-vector

and induced pseudoscalar form factors are taken to be

GA(Q2) =
1.2695(

1 + Q2

M2
A

)2 (62)

and

GP (Q2) =
1(

1
185.05

+ Q2

4m2
p

)GA(Q2) . (63)

Unless stated otherwise we use MA = 1.03 GeV.

For this contribution, the one leg of the deuteron is on-shell. The deuteron vertex function

with nucleon 2 on-shell can be written as

Γλd(P2, Pd) = g1(P
2
2 , P2 · Pd)γ · ξλd(P ) + g2(P

2
2 , P2 · Pd)

P · ξλd(Pd)

mN

−
(
g3(P

2
2 , P2 · Pd)γ · ξλd(Pd) + g4(P

2
2 , P2 · Pd)

P · ξλd(Pd)

mN

)
γ · p1 +m

mN

C , (64)

where P1 = Pd−P2, P = 1
2
(P1−P2) = Pd

2
−P2, C is the charge-conjugation matrix and ξλd

is the deuteron polarization four-vector. The invariant functions gi are given by

g1(P
2
2 , P2 · Pd) =

2Eκ −Md√
8π

[
u(κ)− 1√

2
w(κ) +

√
3

2

mN

κ
vt(κ)

]
(65)

g2(P
2
2 , P2 · Pd) =

2Eκ −Md√
8π

[
mN

Eκ +mN

u(κ) +
mN(2Eκ +mN)√

2κ2
w(κ) +

√
3

2

mN

κ
vt(κ)

]
(66)

g3(P
2
2 , P2 · Pd) =

√
3

16π

mNEκ
κ

vt(κ) (67)
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g4(P
2
2 , P2 · Pd) = − m2

N√
8πMd

[
(2Eκ −Md)

(
1

Eκ +mN

u(κ)− Eκ + 2mN√
2κ2

w(κ)

)
+

√
3Md

κ
vs(κ)

]
,

(68)

where

κ =

√
(Pd · P2)2

P 2
d

− P 2
2 (69)

is the magnitude of the neutron three-momentum in the deuteron rest frame and

Eκ =
√
κ2 +m2

N . (70)

The functions u(κ), w(κ), vs(κ) and vt(κ) are the s-wave, d-wave, singlet p-wave and triple

p-wave radial wave functions of the deuteron in momentum space. For convenience, the

spectator deuteron wave function can be defined as

ψλd,s2(P2, Pd) = G0(Pd − P2)Γ
T
λd

(P2, Pd)ū
T (p2, s2) . (71)

We choose to normalize this wave function such that in the deuteron rest frame∑
s2

∫
d3p2
(2π)3

mN

Ep2
ψ̄λd,s2(P2, Pd)γ

0ψλd,s2(P2, Pd) = 1 , (72)

which is correct only in the absence of energy-dependent kernels [9]. This corresponds to a

normalization of the radial wave functions∫ ∞
0

dκκ2

(2π)3
[
u2(κ) + w2(κ) + v2t (κ) + v2s(κ)

]
= 1 . (73)

For the calculations in this paper we use the WJC 2 wave functions [12].

The current matrix element corresponding to Fig. 3a can then be written as

〈p1s1;p2s2| Jµ(Q) |pdλd〉a = −ū(p1, s1)Γ
µ
CC(Q)ψλd,s2(P2, Pd) . (74)

The current matrix element corresponding to Fig. 3b is related to that of Fig. 3a by a

crossing of the two final-state protons. So,

〈p1s1;p2s2| Jµ(Q) |pdλd〉b = 〈p2s2;p1s1| Jµ(Q) |pdλd〉a . (75)

The contribution from final-state interactions represented by Fig. 3c requires the intro-

duction of a pp scattering amplitude M and an integration for the loop four-momentum
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k2, which involves both the deuteron vertex function and the pp scattering amplitude. In

this case, both of the protons are in general off-shell. However, an examination of the con-

tributions of the poles of the nucleon propagators shows that the contribution from the

positive-energy on-shell pole of proton 2 dominates the calculation. As in the previous elec-

trodisintegration calculations, we choose to put particle 2 on its positive-energy mass shell to

simplify the calculation. Using this approach, the contribution of the final-state interaction

to the current matrix element is given by

〈p1s1;p2s2| Jµ(Q) |pdλd〉c =

∫
d3k2
(2π)3

m

Ek2
ūa(p1, s1)ūb(p2, s2)Mab;cd(P1, P2;K2)

×G0ce(Pd +Q−K2)Γ
µ
CCef (q)G0fg(Pd −K2)

×Λ+
dh(k2)Γ

T
λdgh

(K2, P ) , (76)

where M is the pp scattering amplitude,

Λ+(p) =
∑
s

u(p, s)ū(p, s) =
γ · P +m

2m
(77)

is the positive energy projection operator and the Dirac indices for the various components

are shown explicitly.

At this point, only the incoming momentum for particle 1 is off-shell. For small values

of the final-state invariant mass, this poses no problem, since the spectator equation could

be used to construct a scattering matrix consistent with the deuteron bound state and a

consistent current operator could also be constructed. However, for invariant mass well above

pion threshold, there are no existing particle-exchange models of the kernel that reproduce

the data. For this reason, it is necessary to use scattering matrices that have been fit to data,

which limits the scattering amplitudes to the case where all legs of the scattering matrix

are on-mass-shell. In [15], the separation of the propagator for particle 1 into on-shell and

off-shell contributions is described in some detail. All contributions can be calculated if a

prescription is provided for taking the initial four-momentum of particle 1 off-mass-shell.

This problem has been discussed in [24]. In the calculations presented here, we will use only

the on-shell contribution which is well determined and is dominant.

The completely on-mass-shell scattering amplitude can be parameterized in terms of five

Fermi invariants as

Mab;cd = FS(s, t)δacδbd + FV (s, t)γac · γbd + FT (s, t)σµνac (σµν)bd
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+FP (s, t)γ5acγ
5
bd + FA(s, t)(γ5γ)ac · (γ5γ)bd , (78)

where s and t are the usual Mandelstam variables and amplitudes Fi can be separated into

isoscalar and isovector contributions using

Fi(s, t) = F I=0
i (s, t) + F I=1

i (s, t)τ (1) · τ (2) . (79)

The invariant amplitudes have been constructed in two ways. First, the helicity amplitudes

obtained from SAID [25–27] have been used to obtain the invariant functions as described in

[15]. In this case, the analysis of the pn amplitudes is limited to s ≤ 5.97 GeV2 and the pp are

limited to s ≤ 9.16 GeV2. The second method is the use of a Regge model of NN scattering

fit to cross sections and spin observables over the range 5.4 GeV2 ≤ s ≤ 4000 GeV2 [28, 29].

With this brief summary of the dynamics used in the present study, let us now proceed to

the presentation of some typical results both for inclusive and semi-inclusive CCν reactions

with deuteron.

V. RESULTS

A. Inclusive cross sections

We start by considering results for the inclusive cross section, i.e., where only the final-

state charged lepton is presumed to be detected. We assume that only the no-pion cross

section is allowed and that other channels are not involved. This, of course, is an issue for

experimental studies and any inclusive measurement must involve all open channels. Our

purpose in starting with modeling of the inclusive no-pion cross section is to ascertain where

in q, ω and scattering angle one should expect to find significant CCν strength before going

on to study the semi-inclusive reaction. We begin by showing in Figs. 4 and 5 the inclusive

no-pion CCν deuteron disintegration cross sections as a function of the momentum of the

outgoing muon for three incident neutrino momenta (k = 0.5, 1 and 3 GeV) and for four

small lepton scattering angles, θ = 2.5o, 5o, 10o, and 15o (Fig. 4) and four larger angles,

θ = 45o, 90o, 135o, and 180o (Fig. 5). In each plot the corresponding momentum transfer at

the peak (in MeV) is indicated, and results for PWIA, PWBA and DWIA calculations are

shown. From these curves we extract the muon momentum at the peak of the inclusive no-

pion cross section (k′0), as well as at one order of magnitude below the peak before and after
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k′0 (k′< and k′>, respectively). As can be seen in these plots, the general trend is a decrease

of the cross section when including exchange terms, i.e., from PWIA to PWBA, as well

as when considering final-state interactions, i.e., from PWBA to DWBA. For momentum

transfers around 500 MeV and larger the PWIA and PWBA results are indistinguishable;

and they are also indistinguishable from the DWBA result for momentum transfers between

500 and 1000 MeV, approximately. From the last we conclude that, at least for inclusive

no-pion scattering and for reasonably large values of the momentum transfer at the peak of

the cross section, the details of the modeling (i.e., as reflected in the three models used in

the present work) are not too important. In contrast, for kinematics where the exchanged

momentum is small, there are significant differences in going from model to model, and for

quantitative comparisons with data some care should be exercised.

B. Semi-inclusive cross sections

For each combination of initial and final lepton momenta, k = 0.5, 1 and 3 GeV and

k′ = k′<, k
′
0, k
′
> (the latter dependent on k and θ), we show in Figs. 6 and 7 CCν deuteron

disintegration semi-inclusive cross sections as a function of the missing momentum (residual

nucleon momentum) for two representative lepton scattering angles, θ = 10o and 135o, and

one representative nucleon emission angle φ = 0o. We show PWIA, PWBA and DWBA

results, which for θ = 0o follow the same trend as for the inclusive no-pion cross sections,

namely decreasing values in the order PWIA, PWBA, DWBA. For θ = 135o the three

calculations are very close.

In Fig. 8 we show semi-inclusive neutrino-deuteron cross sections for different nucleon

emission angles φ for representative neutrino momenta and scattering angle in DWBA at

the quasielastic peak (k′ = k′0). In order to clearly see the deviation of the cross sections due

to the interference responses (the φ-dependent terms) that contribute to the cross section in

DWBA, we show in Fig. 9 for the same kinematics at the peak and in Fig. 10 at k′ = k′<, the

ratios of semi-inclusive neutrino-deuteron cross sections for different nucleon emission angles

φ over the result for φ = 0o. The deviations increase with increasing angle φ, increasing

missing momentum p and decreasing incident momentum k, reaching up to a 40% at the

quasielastic peak and up to a 60% at k′ = k′<. Upon integrating to get the inclusive no-pion

cross section, all of these φ-dependent contributions disappear; however, for semi-inclusive
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FIG. 4. (Color online) CCν deuteron disintegration inclusive no-pion cross section as a function

of the outgoing muon momentum k′ for three incident neutrino momenta (k = 0.5, 1 and 3 GeV)

and four lepton scattering angles (θ = 2.5o, 5o, 10o, and 15o). Dotted lines correspond to PWIA

results, dashed lines to PWBA and solid lines to DWBA. Numbers in the top left corner of each

plot correspond to the momentum transfer q in MeV at the peak of the cross sections.
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FIG. 5. (Color online) As for Fig. 4, but now for larger scattering angles (θ = 45o, 90o, 135o, and

180o).

measurements there are clearly significant effects to be seen when comparing in-plane with

out-of-plane detection of the final-state protons.

For completeness we have also studied the effect of initial-state interactions by using

different deuteron wave functions. As an example we show in Fig. 11, for representative
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FIG. 6. (Color online) CCν deuteron disintegration semi-inclusive cross section as a function of

the missing momentum p for three incident neutrino momenta (k = 0.5, 1, and 3 GeV), and three

outgoing muon momenta (k′ = k′<, k′0, and k′> , see text). The lepton scattering angle is fixed to

θ = 10o and nucleon emission angle to φ = 0o. Results correspond to PWIA (dotted line), PWBA

(dashed line) and DWBA (solid line).

kinematics, the CCν deuteron disintegration semi-inclusive cross sections using different

deuteron wave functions. For the kinematics shown, this set of wave functions yields results

that differ by only a small amount. The largest deviation from the average is for the WJC 1

deuteron vertex function which differs for the rest at p = 0 by less than 5%. The interaction

kernel in this case contains a small admixture of pseudoscalar pion exchange which produces

a hard short-range force that causes cross section strength to be transfered from small to

large p resulting in an unusually small cross section at p = 0.
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FIG. 7. (Color online) As for Fig. 6, but now for lepton scattering angle θ = 135o.

C. Effect of axial mass

The above results have all been obtained using an axial mass MA = 1.03 GeV in the

parameterization of the axial form factor of Eq. (62). We have computed the same inclusive

no-pion cross sections using an increased value of the axial mass, MA = 1.3 GeV, and we

have found that for small momentum transfers (q <∼ 150 MeV), the results hardly change as

expected, since then the Q2-dependence in the form factors is small and they are determined

by their Q2 → 0 limit. For larger momentum transfers, however, the Q2-dependence is now

important and one sees that the increased axial mass gives noticeably larger inclusive no-pion

cross sections. For momentum transfers between 150 MeV and 500 MeV, approximately,

there is an overlap between the spread of results for different calculations (PWIA, PWBA

and DWBA) obtained with the two values of the axial mass. Therefore, in that kinematic
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FIG. 8. (Color online) Semi-inclusive neutrino-deuteron cross sections for different nucleon emission

angles φ within DWBA for three neutrino momenta k = 0.5, 1, and 3 GeV, scattering angle θ =

45o and muon momentum k′ = k′0 (at the quasielastic peak).

region the effect of exchange and/or distortion can be confused with a modified value of the

axial mass, which calls for extra caution when interpreting experimental data. For instance,

inclusive no-pion neutrino-deuteron measurements at incident momentum k = 0.5 GeV and

scattering angle θ = 45o (corresponding to q ≈ 360 MeV at the peak), compatible with an

axial mass MA = 1.03 GeV when interpreted through a PWIA calculation, would actually

correspond to a larger axial mass, close to MA = 1.3 GeV, if they were (more correctly)

interpreted using a DWBA calculation. This comparison is shown in Fig. 12 (results for

MA = 1.03 GeV were also shown in the first plot of Fig. 5).

As said above, the three types of modeling give very similar results at momentum transfers

between 500 and 1000 MeV. The negligible spread seen there might lead one to naively

think that those kinematic conditions are well-suited to determining the axial mass from

experiment, as long as data from other regions are ignored in the analysis to avoid confusion.

We show in Fig. 13 examples of results in that region for MA = 1.03 GeV and for MA =
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FIG. 9. (Color online) Ratios of the semi-inclusive neutrino-deuteron cross sections (σs.−i.) for

different nucleon emission angles φ over the result for φ = 0o, within DWBA for three neutrino

momenta k = 0.5, 1, and 3 GeV, scattering angle θ = 45o and muon momentum k′ = k′0 (at the

quasielastic peak).

1.3 GeV: at incident momentum k = 3 GeV and scattering angle θ = 10o, corresponding to

q ≈ 530 MeV at the peak (left), and at k = 0.5 GeV and θ = 135o, q ≈ 700 MeV (right).

However, even if the adjustment of the data to a given axial mass could be done in principle

in that region, the corresponding momentum transfer is uncertain within a range related

to the incident neutrino flux. As we showed above, only semi-inclusive measurements, not

inclusive ones, allow one to determine the incoming neutrino momentum and therefore the

momentum transfer of the process (within the experimental uncertainties). Semi-inclusive

measurements and calculations are thus required to precisely determine the axial mass. We

show in Fig. 14, at the same kinematic conditions of the plots in Fig. 13 and at the

quasielastic peak (k′ = k′0), the comparison of semi-inclusive cross sections for different axial

masses. Clearly, measuring such semi-inclusive cross sections has the potential of yielding

an excellent way to determine the axial-vector form factor. The uncertainties from the

25



1

1.2

1.4

1.6

36 deg
72 deg
108 deg
136 deg
180 deg

1

1.2

1.4

1.6

σ s.-
i.(φ

) /
 σ

s.-
i.(φ

 =
 0

 d
eg

)

0.1 0.12 0.14 0.16 0.18 0.2

p [GeV]

1

1.2

1.4

1.6

k = 0.5 GeV

k = 1 GeV

k = 3 GeV

DWBA,  θ = 45 deg,  k' = k' <

FIG. 10. (Color online) Same as in Fig. 9 but for muon momentum k′ = k′<.

vector form factors from electron scattering are relatively small, and, as we have seen, the

uncertainties from modeling the initial- and final-state two-body problem is arguably the

smallest to be found in the entire periodic table.

VI. CONCLUSIONS

We have defined the kinematics of deuteron disintegration by neutrino scattering, νµ +

2H→ µ− + p + p, and analyzed different detection scenarios in terms of both theoretically

natural and experimentally practical kinematic variables. The deuteron as a target has the

peculiarity that a semi-inclusive (coincidence) measurement of any two of the three particles

in the final-state is actually exclusive, since the final state, consisting of a charged lepton and

two protons (below the pion production threshold), has no other open channel, in contrast

to the usual situation for complex nuclei where both missing momentum and missing energy

dependences occur. One obvious conclusion is that semi-inclusive studies of this reaction

hold promise for determining the incident neutrino energy using kinematics alone.

In this study we have presented results for both inclusive no-pion and semi-inclusive
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FIG. 11. (Color online) Semi-inclusive neutrino-deuteron cross sections using the deuteron wave

functions AV18 [30], CD Bonn [31], N3L0500 [32], Nijmegen 1, 2 and 3 [33], and WJC 1 and 2 [12]

for k = 3 GeV, θ = 45o and k′ = k′0.

CCν cross sections using for the underlying dynamics a relativistic model of the deuteron

and final-state pp structure that involves an approximation to the Bethe-Salpeter equation.

We note that such an approach is completely covariant: the kinematics, the initial-state

deuteron, the current operators and the final-state pp system are all fully relativistic, in

contrast to much of the modeling of CCν reactions in general, where approximations are

often employed (for a discussion of the role played by relativity for such reactions see [34]).

We have provided inclusive no-pion and semi-inclusive CCν deuteron disintegration cross

sections for a variety of kinematical conditions within PWIA, PWBA (i.e., introducing final-

state hadronic exchange terms) and DWBA (i.e., using final-state hadronic interactions

including exchange). The calculation of the two-body dynamics with the model used in this

work, particularly when including exchange terms and final-state interactions (DWBA), is

computationally demanding and therefore not well suited as direct input to neutrino event
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FIG. 12. (Color online) For axial masses MA = 1.03 GeV (dark curves) and MA = 1.3 GeV (lighter

curves), CCν deuteron disintegration inclusive no-pion cross section as a function of the outgoing

muon momentum k′ for incident neutrino momentum k = 0.5 GeV and scattering angle θ = 45o.

Dotted lines correspond to PWIA results, dashed lines to PWBA and solid lines to DWBA.
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FIG. 13. (Color online) Same as in Fig. 12 but for k = 3 GeV, θ = 10o (left), and for k = 0.5

GeV, θ = 135o (right).
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FIG. 14. (Color online) For axial masses MA = 1.03 GeV (dark curves) and MA = 1.3 GeV

(lighter curves), CCν deuteron disintegration semi-inclusive cross sections as a function of the

missing momentum p for the same kinematic conditions of Fig. 13, namely k = 3 GeV, θ = 10o

(left), and k = 0.5 GeV, θ = 135o (right), and the muon momentum at the peak, k′ = k′0. Dotted

lines correspond to PWIA results, dashed lines to PWBA and solid lines to DWBA.

generators. However, we anticipate being able to provide simple parameterizations of the

cross section in work that is currently in progress, and these will soon be made available for

event simulations.

At small and large momentum transfers (q <∼ 500 and q >∼ 1000 MeV) the approximation

used for the interaction (PWIA, PWBA, DWBA) plays a significant role. Clearly anti-

symmetrization (going from PWIA to PWBA) is seen to be important for such kinematics,

with a somewhat smaller effect seen to arise from final-state interactions (going to the full

DWBA). On the other hand, initial-state variations using state-of-the-art deuteron wave

functions are observed to be minor. In contrast, for intermediate values of q, the three

types of approximation lead to essential a universal result, showing very small sensitivity

to both initial- and final-state physics. Thus, with an appropriate choice of kinematics,

namely where the Q2-dependence of the axial-vector form factor plays a minor role (see

below), results of semi-inclusive CCν disintegration of deuterium could not only provide the

incident neutrino energy, as stated above, but could also yield the incident neutrino flux

with relatively minor uncertainties from the modeling.

Finally, in addition to the motivations for studying the νµ + 2H→ µ− + p + p reaction
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given above, it can also serve as a way to improve our knowledge of the Q2-dependence of the

isovector, axial-vector form factor. We have seen that the impact of changing the axial mass

MA used in a dipole parameterization of this form factor is significant in regions where the

dependence on the modeling of the two-body problem is weak. TheMA-dependence increases

for increasing momentum transfer, being negligible at q <∼ 150 MeV. We have shown that

there is a range of intermediate momentum transfers (150 <∼ q <∼ 500 MeV) where the

spreads of the curves for different approximations (PWIA, PWBA, DWBA) computed with

axial masses MA ∼ 1 and MA ∼ 1.3 GeV overlap, leading to a potential confusion in the

extraction of the axial mass from experimental data unless the full model is employed. We

close by noting that at some level inclusive measurements always suffer from their inability

to be performed at a specific value of q, whereas the ability to determine all kinematic

variables using semi-inclusive measurements, including the momentum transfer, provides a

unique tool for studies of this type.
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