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We report a measurement of the branching fraction of B+ → τ+ντ decays using a data sample
of 772 × 106BB̄ pairs, collected at the Υ(4S) resonance with the Belle detector at the KEKB
asymmetric-energy e+e− collider. We reconstruct the accompanying B meson in a semileptonic
decay and detect the recoiling B candidate in the decay channel B+ → τ+ντ . We obtain a branching
fraction of B(B+ → τ+ντ ) = [1.25±0.28(stat.)±0.27(syst.)]×10−4. This result is in good agreement
with previous measurements and the expectation from the calculation based on the Standard Model.

PACS numbers: 13.20.He, 14.40.Nd

In the Standard Model (SM), the branching fraction of
the purely leptonic decay B+ → τ+ντ [1] is given by

B(B+ → τ+ντ )SM =
G2
FmBm

2
τ

8π

(
1− m2

τ

m2
B

)2

f2B |Vub|2τB ,

(1)
where GF is the Fermi coupling constant, Vub the
Cabibbo-Kobayashi-Maskawa matrix element, mB and
mτ the masses of the B meson and the τ lepton, re-
spectively, τB the lifetime of the B meson, and fB the
B-meson decay constant. The branching fraction de-
pends strongly on the mass of the lepton due to he-
licity suppression, and thus B+ → τ+ντ is expected

to have the largest leptonic branching fraction of the
B+ meson and is the only decay of this kind for which
there is experimental evidence. All of the inputs of
Eq. 1 are measured experimentally [2] except for fB ,
which is calculated in the framework of lattice quantum-
chromodynamics [3]. An estimate of the branching frac-
tion, which uses a unitarity-constrained Vub value aggre-
gated from other measurements and lattice calculations
of fB , gives B(B+ → τ+ντ ) = (0.75+0.10

−0.05)× 10−4 [4].

Physics beyond the SM, such as the presence of addi-
tional charged Higgs bosons [5, 6], could interfere con-
structively or destructively with the SM weak decay pro-
cess. Measurements by the BaBar [7, 8] and Belle [9]
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collaborations showed a slight disagreement with the
SM expectation, but the most recent measurement by
Belle [10], using a hadronic tagging method, is in very
good agreement. The current world average, B(B+ →
τ+ντ ) = (1.14±0.27)×10−4 [2], shows no sign of physics
beyond the SM.

The analysis described here contains the following im-
provements over our previous measurement [9]: an im-
proved semileptonic tagging method; the reconstruction
of an additional τ decay channel; a newly optimized se-
lection, including a dedicated suppression of background
containing converted photons and a multivariate suppres-
sion of continuum e+e− → qq̄ (q = u, d, s, c) background;
the inclusion of a second variable, the momentum of the
decay product of the τ , in the final fit; and the usage of
the full Belle data set, which contains almost 20% more
data than in the previous analysis.

The measurement is performed using the final Belle
data sample consisting of an integrated luminosity of
711 fb−1, containing (772± 11)× 106BB̄ pairs, collected
at the Υ(4S) resonance at the KEKB asymmetric-energy
e+e− collider [11]. We use a smaller data sample with
an integrated luminosity of 79 fb−1 taken at an energy
60 MeV below the Υ(4S) mass to study background from
continuum e+e− → qq̄ events. We generate Monte Carlo
(MC) samples of signal and background events. We
model the decays of unstable particles using the software
package EvtGen [12] and we simulate the detector re-
sponse using GEANT3 [13]. The simulated signal events
are overlaid with beam-related background events that
were recorded with a random trigger.

The Belle detector is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector (SVD),
a 50-layer central drift chamber (CDC), an array of
aerogel threshold Cherenkov counters (ACC), a barrel-
like arrangement of time-of-flight scintillation counters
(TOF), and an electromagnetic calorimeter (ECL) com-
posed of CsI(Tl) crystals located inside a superconduct-
ing solenoid coil that provides a 1.5 T magnetic field. An
iron flux-return located outside the coil (KLM) is instru-
mented to detect K0

L mesons and to identify muons. The
detector is described in detail elsewhere [14]. Two SVD
configurations were used. A 2.0 cm beam pipe and a 3-
layer SVD were used for the first sample of 152× 106BB̄
pairs, while a 1.5 cm beam pipe, a 4-layer SVD and a
small-cell inner drift chamber were used to record the
remaining 620× 106BB̄ pairs [15].

Since the detectable signature of a B+ → τ+ντ de-
cay is often only a single charged track and thus inad-
equate for an efficient signal-background discrimination,
we reconstruct the accompanying B meson (referred to as
Btag) in the semileptonic decay channels B+ → D̄∗0`+ν`
and D̄0`+ν`, where ` can be an electron or muon.
The D∗0 mesons are reconstructed through the decays
D∗0 → D0π0 and D0γ and the D0 mesons through
the decays D0 → K−π+π0, K−π+π+π−, K0

Sπ
+π−π0,

K−π+, K0
Sπ

+π−, π+π−π0, K0
Sπ

0, K0
SK

+K−, K+K−,
and π+π−. Neutral pions are reconstructed as π0 → γγ

and K0
S as K0

S → π+π−.
To maximize the efficiency in identifying Btag candi-

dates, loose selection criteria are applied throughout their
reconstruction. Charged final state particles are selected
from well-measured tracks and are required to have a
distance to the interaction point along (perpendicular
to) the beam direction, denoted as dz (dr), of less than
4 (2) cm. Photons used for the reconstruction of neutral
pions are required to have an energy of at least 30 MeV
and the invariant mass of the two-photon system (Mγγ)
must satisfy |Mγγ −mπ0 | < 19 MeV/c2; this corresponds
to a width of 3.2 standard deviations (σ). The invariant
mass of the two charged tracks that are used to form K0

S
candidates must lie within 30 MeV/c2 (4.5σ) of the nom-
inal K0

S mass. The momenta of D(∗)0 meson candidates

are required to be below 2.5 GeV/c to reject D(∗)0 mesons
from e+e− → cc̄ events.

All further selections related to the Btag candidate are
performed by training multiple instances of a multivari-
ate selection (MVS) method based on the NeuroBayes
package [16]. An MVS classifier is trained for each of the
reconstructed decay channels, where a large sample of
simulated B mesons that decay generically is used. The
variables used in the training of the MVS related to the
intermediate particles are identical to those used for the
hadronic full-reconstruction method [17] and the same hi-
erarchical approach is used. The mass, momentum, and
decay channel of the particle candidate, as well as the mo-
menta, angles, and the output of the separately-trained
MVS of daughter particles are used in the training, if ap-
plicable, in addition to particle-specific information like
the output of the particle identification. The training
related to the Btag candidate is performed using the fol-
lowing information, sorted by their discriminating power
in descending order: the outputs of the MVS of the de-
cay products; the mass of the D0 meson candidate or the
difference of the masses of the D∗0 and the D0 meson
candidates, depending on the decay channel; the angle
between the D(∗)0 meson candidate and the lepton in the
center-of-mass system of the Υ(4S) (CM); the angle be-
tween the Btag candidate and the D(∗)0 meson candidate
in the center-of-mass system of the Btag candidate; the

distance of minimum approach between the D(∗)0 decay
vertex and the trajectory of the lepton; the decay channel
of the D(∗)0 meson; and the angle of the reconstructed
Btag candidate with respect to the beam axis in the CM.

The training variables were chosen to be uncorrelated
with the cosine of the angle between the momentum of
the B meson and the D(∗)` system, calculated under the
assumption that only one massless particle is not recon-
structed. It is given by

cos θB,D(∗)` =
2EbeamED(∗)` −m2

Bc
4 −m2

D(∗)`
c4

2p∗Bp
∗
D(∗)`

c2
, (2)

where p∗B is the nominal B meson momentum calculated
from the beam energy and the nominal mass, ED(∗)`,
mD(∗)`, and p∗

D(∗)`
are the energy, mass, and momen-

tum of the D(∗)` system, respectively, and Ebeam is the
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energy of the beam (all in the CM). While the indepen-
dence between the angle and the output of the MVS is
not exploited in this analysis, it can be used in prin-
ciple to produce signal-free sideband samples to study
backgrounds and to extract the number of correctly re-
constructed Btag candidates. It is also used later for a
refined selection since correctly reconstructed Btag can-
didates have values between −1 and 1 while background
events, where the assumption of only one missing mass-
less particle fails, have a much larger range of values.
Some Btag candidates are reconstructed partially because
of a missing slow pion or soft photon and lie in a broader
range that still peaks around the signal region.

The Btag candidates are combined with B mesons re-
constructed in the decay B+ → τ+ντ ; the latter are de-
noted as Bsig. The τ lepton is reconstructed as τ+ →
µ+ν̄τνµ, e+ν̄τνe, π

+ν̄τ , and ρ+ν̄τ , with ρ+ → π+π0.
Since the neutrinos cannot be detected, the Bsig can-
didate consists of a single charged track or a ρ+ candi-
date. The ρ+ candidate is required to have an invariant
mass within 195 MeV/c2 of the nominal ρ+ mass. The
signal-side decay modes are separated based on parti-
cle identification variables. The pion and kaon sepa-
ration uses information from the ACC, TOF, and the
dE/dx measurement in the CDC; the electron identi-
fication is based on the same information in addition
to the shape of the shower and the energy measure-
ment in the ECL; and muon candidates are identified
using hits in the KLM matched to a charged track. The
selections of the signal-side decay modes are mutually
exclusive. The momentum of the signal-side particle
(e+, µ+, π+, or ρ+) in the CM (p∗sig) must be in the range

0.5 GeV/c < p∗sig < 2.4 GeV/c.

The combination of a Btag and a Bsig candidate pro-
vides an Υ(4S) candidate. The fact that the Υ(4S) is
produced without any accompanying particles allows for
a powerful selection: we reject events with additional π0

candidates or charged tracks with |dz| < 100 cm and
|dr| < 20 cm. We also perform a selection in the re-
maining energy in the ECL (EECL), defined as the sum
of the energies of clusters in the ECL that are not as-
sociated with final state particles of the reconstructed
Υ(4S) candidate. To mitigate beam-induced background
in the energy sum, only clusters satisfying minimum en-
ergy thresholds of 50, 100, and 150 MeV are required for
the barrel, forward, and backward end-cap calorimeter,
respectively. Signal events peak near low values of EECL

as only photons from beam-related background and mis-
reconstructed events contribute, while the background is
distributed over a much wider range. We require EECL

to be smaller than 1.2 GeV.

In the decay channel τ+ → e+ν̄τνe, a significant back-
ground arises from events containing converted photons.
To suppress this, we combine the electron used in the
reconstruction of either Bsig or Btag with every other
oppositely-charged track in the event. Using the electron
mass hypothesis for the second track, we require the in-
variant mass of the electron-track pair to be greater than

200 MeV/c2 for any of the pairs. To suppress background
from continuum events, we train another MVS with the
following input variables: the angle of the Btag candi-
date with respect to the beam direction in the CM; the
angle between the thrust axis of the Btag candidate and
the remaining tracks in the event in the CM; 16 modi-
fied Fox-Wolfram moments [18]; and the momentum flow
in nine concentric cones around the thrust axis of the
Btag candidate [19]. The background contributions differ
significantly between the τ decay channels. Therefore,
the requirements on the output of the two MVS (for the
Btag and continuum suppression) depend on the τ de-
cay channel. This is also true for the requirement on
cos θB,D(∗)`: it must be less than 1 in all channels and
greater than −1.7, −1.9, −1.3, and −2.6 for the τ de-
cay channels to muon, electron, pion, and ρ, respectively.
The selections related to the output of the two MVS clas-
sifiers, cos θB,D(∗)`, the particle identification of the π+

from hadronic τ decay channels, and Mπ+π0 are opti-
mized using samples of simulated signal and background
events to give the highest figure-of-merit NS/

√
NS +NB ,

where NS and NB are the number of expected signal
and background events in the region EECL < 0.2 GeV,
respectively, as estimated from simulation and assuming
B(B+ → τ+ντ ) = 0.75× 10−4.

The fraction of signal events having multiple candi-
dates is 7%. In such events, we choose the candidate
with the maximal value of the tag-side MVS classifier
output. From MC simulation, we find that this method
selects the correct candidate 70% of the time. The overall
reconstruction and selection give a total reconstruction
efficiency of ε = (23.1 ± 0.1) × 10−4, where the uncer-
tainty is due to MC statistics only. It is described in
detail in Table I. The given efficiencies contain all rel-
evant branching fractions, including the corresponding
branching fractions of the τ lepton.

TABLE I. Reconstruction efficiency (in 10−4) for each τ de-
cay mode, determined from MC and calibrated according to
control sample studies. The uncertainty due to limited MC
sample size is below 0.1 for all values. The row denotes the
generated decay mode, and the columns represent the recon-
structed final state. The off-diagonal entries reflect the cross-
feed between channels.

Final State e+νeν̄τ µ+νµν̄τ π+ν̄τ π+π0ν̄τ
e+νeν̄τ 6.6 0.1 0.2 0.1

µ+νµν̄τ 0.1 4.7 0.6 0.2

π+ν̄τ 0 0.1 1.6 0.5

π+π0ν̄τ 0 0.1 1.4 4.9

π+π0π0ν̄τ 0 0 0.2 1.3

Other 0 0 0.1 0.2

All 6.8 5.1 4.0 7.2

Total 23.1

To study possible differences between real and simu-
lated data, we use samples where Bsig is reconstructed in
the decays B+ → D̄∗0`+ν` and B+ → D̄0π+ (further
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denoted as double-tagged samples). The D∗0 mesons
are reconstructed as D∗0 → D0π0 and D0γ, and the
D0 meson as D0 → K−π+. The D0 meson candi-
dates are selected based on their mass. For the D∗0

meson candidates, additionally, the mass difference be-
tween the D∗0 and the D0 meson candidates is used for
selection. We apply the same four sets of different cri-
teria on cos θB,D(∗)` and the two MVS classifiers corre-
sponding to the four τ decay channels of the nominal
analysis to each of the double-tagged B-decay samples.
We measure the branching fractions of the Bsig decays,
determine the ratios with respect to the world average
values [2], and calculate weighted averages of the ratios
of the B-decay channels. The reconstruction efficiency is
found to be overestimated in MC simulation by a factor
of 1.09 ± 0.09, 1.08 ± 0.08, 1.17 ± 0.22, and 1.02 ± 0.10
for the τ decay channels to muon, electron, pion, and
ρ, respectively. The reconstruction efficiency is corrected
based on this ratio, depending on the decay channel of
the Btag and the τ .

To extract the number of reconstructed signal
events, we perform an extended two-dimensional un-
binned maximum-likelihood fit in p∗sig and EECL. We
use smoothed histogram probability density functions
(PDFs) [20] obtained from MC simulation to describe the
signal and background components arising from events
containing a BB̄ pair. We use the product of one-
dimensional PDFs for all components except for the sig-
nal in τ+ → π+ν̄τ and τ+ → ρ+ν̄τ . In these modes, there
is a significant cross-feed from channels with additional
undetected neutral pions, resulting in a correlation be-
tween EECL and p∗sig that is taken into account by using
two-dimensional histogram PDFs. The continuum back-
ground, including e+e− → qq̄ (q = u, d, s, c), τ+τ−, and
two-photon events, is described using the off-resonance
data and is scaled according to the relative luminosities.
Since the off-resonance data sample is very limited, its
EECL distribution is described by a signal-mode-specific
linear function. The slope of these functions is compat-
ible with zero in all but the τ+ → ρ+ν̄τ decay chan-
nel, which shows a slope of 37 events per GeV. The
uncertainties are 14, 6, 16, and 14 events per GeV, corre-
sponding to a relative uncertainty of 20, 16, 25, and 13%
on the number of events in the range EECL < 0.2 GeV
for the τ+ → µ+ν̄τνµ, τ

+ → e+ν̄τνe, τ
+ → π+ν̄τ , and

τ+ → ρ+ν̄τ decay channel, respectively. The relative un-
certainty on the normalization is about 10% due to the
limited size of the data sample.

The ratio of the normalizations of the background com-
ponents is fixed in the fit based on the yields estimated
from simulation and off-resonance data. We compare the
data and MC distribution of the signal component in
EECL and p∗sig using the double-tagged sample, which re-
veals no significant difference. This is illustrated in two
representative plots in Fig. 1. To validate the p∗sig dis-
tributions, we treat the lepton from the B decay as the
τ -decay product. We apply the same validation to other
control samples and variables such as cos θB,D(∗)`, the

outputs of the MVS classifiers, and the missing energy in
the event.
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FIG. 1. Comparison of the data and MC distribution in the
double-tagged sample after the efficiency correction. The
orange boxes show MC and the black markers the data.
The upper and lower plots show the EECL distribution in
the B+ → D̄0π+ sample and the p∗sig distribution in the

B+ → D̄∗0(→ D̄0π0)`+ν` sample, respectively. Both sam-
ples are selected corresponding to the τ+ → µ+ν̄τνµ decay
channel.

The following five parameters vary in our final fit to
the data: B(B+ → τ+ντ ) and the normalization of the
background in each of the four τ decay channels. The
relative signal yields in the τ decay channels are fixed to
the ratios of the reconstruction efficiencies. We obtain
a total signal yield of Nsig = 222 ± 50, and this results
in a branching fraction of B(B+ → τ+ντ ) = (1.25 ±
0.28)× 10−4, where the uncertainties are statistical only.
The signal yields and branching fractions, obtained from
fits for each of the τ decay modes separately, are given
in Table II. The results are consistent with a common
value with a p-value of 10%. The projections of the fitted
distributions are shown in Fig. 2.

The list of systematic uncertainties is given in Ta-
ble III. The following systematic uncertainties are de-
termined by varying the corresponding parameters by
their uncertainty, repeating the fit and taking the dif-
ference to the nominal fit result as the systematic un-
certainty: the normalization and slope of the continuum
background component, where the dominant uncertainty
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FIG. 2. Distributions for (a) τ+ → µ+ν̄τνµ, (b) τ+ → e+ν̄τνe,
(c) τ+ → π+ν̄τ , (d) τ+ → ρ+ν̄τ , and (e) the sum of them.
The left and right columns show the distributions of EECL

and p∗sig projected in the region EECL < 0.2 GeV, respec-
tively. The markers show the data distribution, the solid line
the total fitted distribution, and the dashed line the signal
component. The orange (red) filled distribution represents
the BB̄ (continuum) background.

originates from the error on the slope; the signal recon-
struction efficiency; the branching fractions of the dom-
inant background decays peaking in the EECL signal re-
gion, e.g., B+ → D̄0`+ν` followed by D0 → KLKL or
D0 → KLKLKL; the correction of the tagging efficiency,
obtained from the double-tagged samples and assumed to
be 100% correlated among the four τ decay modes; and
the branching fractions of the τ lepton. For branching
fractions of D mesons with multiple KL mesons in the

TABLE II. Signal yields and branching fractions, obtained
from fits for the τ decay modes separately and combined.
Errors are statistical only.

Decay Mode Nsig B(10−4)

τ+ → µ+ν̄τνµ 13±21 0.34±0.55

τ+ → e+ν̄τνe 47±25 0.90±0.47

τ+ → π+ν̄τ 57±21 1.82±0.68

τ+ → ρ+ν̄τ 119±33 2.16±0.60

Combined 222±50 1.25±0.28

TABLE III. List of systematic uncertainties.

Source Relative Uncertainty (%)

Continuum description 14.1

Signal reconstruction efficiency 0.6

Background branching fractions 3.1

Efficiency calibration 12.6

τ decay branching fractions 0.2

Histogram PDF shapes 8.5

Best candidate selection 0.4

Charged track reconstruction 0.4

π0 reconstruction 1.1

Particle identification 0.5

Charged track veto 1.9

Number of BB̄ pairs 1.4

Total 21.2

final state, we use the values for corresponding decays
with KS and take 50% of the value as the uncertainty.

To estimate the effect of the uncertainty on the shape
of the histogram PDFs due to the statistical uncertainty
in the MC, the content of each bin is varied following a
Poisson distribution with the initial value as the mean.
This is repeated 1000 times and the standard deviation
of the distribution of branching fractions is taken as sys-
tematic uncertainty. For the systematic uncertainty re-
lated to the best-candidate selection, we repeat the fit
without applying this selection. The result is divided
by the average multiplicity of 1.07 and compared to the
nominal fit result. The uncertainties on the efficiency
of the reconstruction of charged tracks and neutral pi-
ons and on the efficiency of the particle identification
have been estimated using high-statistics control sam-
ples. The charged-track veto is tested using the D0π+

double-tagged sample by comparing the number of addi-
tional charged tracks in MC and data events. We find
that it agrees well and so take the relative statistical un-
certainty on the control sample as the systematic un-
certainty. We also test an alternative description of the
continuum background in EECL by using a polynomial of
second order but the deviation is well covered by the re-
lated systematic uncertainty so we do not include it sep-
arately. The quadratic sum of all contributions is 21.2%.

We find evidence for B+ → τ+ντ decays with a signifi-
cance of 3.8σ, by convolving the likelihood profile with a
Gaussian whose width is equal to the systematic uncer-
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tainty. The significance is given by
√

2 ln(L/L0), where
L(L0) is the value of the likelihood function when the
signal yield is allowed to vary (set to 0).

In summary, we report the measurement of the branch-
ing fraction of B+ → τ+ντ decays using a sample of
772× 106 BB̄ pairs, which we analyze with the semilep-
tonic tagging method. Our result is

B(B+ → τ+ντ ) = [1.25±0.28(stat.)±0.27(syst.)]×10−4

with a significance of 3.8 σ. This result is consistent
with our previous measurement based on the semilep-
tonic tagging method of B(B+ → τ+ντ ) = [1.54 ±
0.38(stat.)± 0.37(syst.)]× 10−4 [9] and supersedes it. A
combination with the recent Belle measurement based on
the hadronic tagging method [10] of [0.72+0.27

−0.25(stat.) ±
0.11(syst.)] × 10−4, taking into account all correlated
systematic uncertainties, gives a branching fraction of
B(B+ → τ+ντ ) = [0.91±0.19(stat.)±0.11(syst.)]×10−4

with a combined significance of 4.6 σ. This value is con-
sistent with the SM expectation based on a fit using in-
dependent experimental input [4].

We thank the KEKB group for the excellent operation
of the accelerator; the KEK cryogenics group for the ef-
ficient operation of the solenoid; and the KEK computer
group, the National Institute of Informatics, and the
PNNL/EMSL computing group for valuable computing
and SINET4 network support. We acknowledge support
from the Ministry of Education, Culture, Sports, Science,
and Technology (MEXT) of Japan, the Japan Society for
the Promotion of Science (JSPS), and the Tau-Lepton
Physics Research Center of Nagoya University; the
Australian Research Council and the Australian De-
partment of Industry, Innovation, Science and Research;
Austrian Science Fund under Grant No. P 22742-

N16 and P 26794-N20; the National Natural Science
Foundation of China under Contracts No. 10575109,
No. 10775142, No. 10875115, No. 11175187, and
No. 11475187; the Ministry of Education, Youth
and Sports of the Czech Republic under Contract
No. LG14034; the Carl Zeiss Foundation, the Deutsche
Forschungsgemeinschaft and the VolkswagenStiftung;
the Department of Science and Technology of India; the
Istituto Nazionale di Fisica Nucleare of Italy; National
Research Foundation (NRF) of Korea Grants No. 2011-
0029457, No. 2012-0008143, No. 2012R1A1A2008330,
No. 2013R1A1A3007772, No. 2014R1A2A2A01005286,
No. 2014R1A2A2A01002734, No. 2014R1A1A2006456;
the Basic Research Lab program under NRF Grant
No. KRF-2011-0020333, No. KRF-2011-0021196,
Center for Korean J-PARC Users, No. NRF-
2013K1A3A7A06056592; the Brain Korea 21-Plus
program and the Global Science Experimental Data Hub
Center of the Korea Institute of Science and Technology
Information; the Polish Ministry of Science and Higher
Education and the National Science Center; the Ministry
of Education and Science of the Russian Federation
and the Russian Foundation for Basic Research; the
Slovenian Research Agency; the Basque Foundation
for Science (IKERBASQUE) and the Euskal Herriko
Unibertsitatea (UPV/EHU) under program UFI 11/55
(Spain); the Swiss National Science Foundation; the
National Science Council and the Ministry of Educa-
tion of Taiwan; and the U.S. Department of Energy
and the National Science Foundation. This work is
supported by a Grant-in-Aid from MEXT for Science
Research in a Priority Area (“New Development of
Flavor Physics”) and from JSPS for Creative Scientific
Research (“Evolution of Tau-lepton Physics”).

[1] Throughout this paper, the inclusion of the charge-
conjugate decay mode is implied unless otherwise stated.

[2] K. A. Olive et al. (Particle Data Group), Chin. Phys. C
38, 090001 (2014).

[3] S. Aoki et al. (FLAG Working Group), arXiv: 1310.8555
[hep-lat] (2014).

[4] CKMfitter Group (J. Charles et al.), Eur. Phys. J. C
41, 1-131 (2005), updated result as of winter 2014 from
http://ckmfitter.in2p3.fr.

[5] W. S. Hou, Phys. Rev. D 48, 2342 (1993).
[6] A. Crivellin, C. Greub, and A. Kokulu, Phys. Rev. D 86,

054014 (2012).
[7] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D

81, 051101 (2010).
[8] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 88,

031102 (2013).
[9] K. Hara et al. (Belle Collaboration), Phys. Rev. D 82,

071101 (2010).
[10] K. Hara et al. (Belle Collaboration), Phys. Rev. Lett.

110, 131801 (2013).
[11] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A

499, 1 (2003) and other papers included in this volume;
T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001
(2013) and following articles up to 03A011.

[12] D. J. Lange, Nucl. Instr. and Meth. A 462, 152 (2001).
[13] R. Brun et al., GEANT, CERN Report No. DD/EE/84-1

(1984).
[14] A. Abashian et al. (Belle Collaboration), Nucl. Instr. and

Meth. A 479, 117 (2002); also see detector section in
J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012 04D001
(2012).

[15] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instr. and
Meth. A 560, 1(2006); Y. Ushiroda (Belle SVD2 Group),
Nucl. Instr. and Meth. A 511, 6 (2003).

[16] M. Feindt and O. Kerzel, Nucl. Instr. and Meth. A 559,
190 (2006).

[17] M. Feindt et al., Nucl. Instr. and Meth. A 654, 432
(2011).

[18] S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett.
91, 261801 (2003).

[19] D. M. Asner et al. (CLEO Collaboration), Phys. Rev. D
53, 1039 (1996).



8

[20] V. Blobel, “Smoothing of Poisson distributed data.”
http://www.desy.de/˜blobel/splft.f.


