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We explore the effect of the electrodynamics θ-angle on the macroscopic properties of black hole
horizons. Using only classical Einstein-Maxwell-Chern-Simons theory in (3 + 1)−dimensions, in the
form of the membrane paradigm, we show that in the presence of the θ-term, a black hole horizon
behaves as a Hall conductor, for an observer hovering outside. We study how localized perturbations
created on the stretched horizon scramble on the horizon by dropping a charged particle. We show
that the θ-angle affects the way perturbations scramble on the horizon, in particular, it introduces
vortices without changing the scrambling time. This Hall scrambling of information is also expected
to occur on cosmological horizons.

I. INTRODUCTION AND A SUMMARY

Black hole horizons have eluded physicists ever since
astronomer Karl Schwarzschild first found them in 1915
as a simple yet puzzling consequence of general theory
of relativity. The description of the near horizon re-
gion of a black hole in terms of quantum field theory
in curved spacetimes [1, 2] historically has provided us
a deep insight into the mysterious innards of quantum
gravity, e.g. thermodynamic descriptions of black holes.
It was believed that quantum field theory in curved
spacetimes provided a good physical description when
quantum gravitational effects do not play a significant
role, however this idea has recently been challenged [3].
Various puzzles and paradoxes [4, 5] indicate a possible
failure of quantum effective field theory in the near hori-
zon region of a black hole.

String theory, Matrix Theory [6], and the AdS/CFT
correspondence [7], which are the only models of quan-
tum gravity over which we have mathematical control,
strongly suggests that black hole evolution as seen by
an external observer, obeys the usual rules of unitary
quantum mechanics, and verify the Bekenstein-Hawking
entropy formula in a large class of special cases. Thus far
none of them gives us a comprehensive description of the
physics of the black hole, and in particular, there is no
definitive clue about the microscopic description of the
near horizon region of a black hole.

On the other hand, the membrane paradigm [8, 9] pro-
vides a powerful framework to study macroscopic prop-
erties of black hole horizons by replacing the true mathe-
matical horizon by a stretched horizon, an effective time-
like membrane located roughly one Planck length away
from the true horizon. Indeed, in astrophysics the mem-
brane paradigm has been successfully used to study phe-
nomena in the vicinity of black holes, outside their hori-
zons (see [9] and references therein). Macroscopic prop-
erties of black hole horizons can also provide crucial hints
about details of the microscopic physics [10]. Predictions
of the membrane paradigm are generally considered to be

robust since they depend on some very general assump-
tions: (i) the effective number of degrees of freedom be-
tween the actual black hole horizon and the stretched
horizon are vanishingly small, (ii) physics outside the
black hole, classically must not be affected by the dy-
namics inside the black hole.

Quantum chromodynamics (QCD) is an integral cor-
nerstone of our understanding of particle physics. It is
well known that Lorentz and gauge invariance allow QCD
action to have a CP-violating, topological θQCD sector
[13]

Lθ =
θQCDg

2

64π2
εαβµνF aαβF

a
µν ,

where F aαβ is the field strength and a priori parameter
θQCD can take any value between −π and π. This topo-
logical term can have physical effects, for example it con-
tributes to the neutron electric dipole moment. Experi-
ments set a rather strong limit: |θQCD| << 10−9, which
indicates that this term is unnaturally small. Similarly,
Lorentz and gauge invariance also allow the electrody-
namics action to have a CP-violating θ term

S =

∫
d4x

[
−
√
g

4
FµνF

µν +
θ

8
εαβµνFαβFµν

]
.

The electrodynamics θ-term is an elusive quantity; it does
not affect the classical equations of motion because it
is a total derivative. Therefore, it does not contribute
for perturbative quantum electrodynamics (QED), which
strongly indicates that the effects of the θ term in QED,
if any, are non-perturbative, making it difficult to detect.
However, as Witten showed [14], in the presence of illu-
sive magnetic monopoles, this term can have measurable
physical effect because it provides monopoles with elec-
tric charges proportional to θ. In this paper, by coupling
this theory to gravity we will show that the θ-term can
affect the electrical properties of the black hole horizon.
In particular, in the context of the membrane paradigm
by using only classical Einstein-Maxwell-Chern-Simons
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theory in (3 + 1)−dimensions, we argue that in the pres-
ence of the θ-term, a black hole horizon behaves as a Hall
conductor with Hall conductance ≈ θ(377Ω)−1.

We will provide, in this paper, evidence for this behav-
ior by analyzing a simple thought experiment, in which
an outside observer drops a charge onto the black hole
and watches how the perturbation scrambles on the black
hole horizon. In quantum mechanics, information con-
tained inside a small subsystem of a bigger system, is
said to be scrambled when the small subsystem becomes
entangled with the rest of the system and the informa-
tion can only be recovered by examining nearly all the
degrees of freedom of the system. It is indeed remark-
able, as pointed out by Sekino and Susskind, that black
hole horizons (and also de Sitter horizons) are the fastest
scramblers in nature [10, 11]; in particular, for a black
hole with temperature T and entropy S, the scrambling
time goes as tsT ≈ ~ lnS. This “fast-scrambling” on
black hole and de Sitter horizons strongly indicates that
the microscopic description of scrambling of information
on static horizons must involve non-local degrees of free-
dom [10, 11]. We will show that the θ-angle affects the
way charges scramble on the horizon, in particular, it in-
troduces vortices without changing the scrambling rate
– we will call this phenomenon “Hall scrambling”. Since
Hall scrambling depends only on the Rindler-like char-
acter of the black hole horizon but not on the details
of the metric, the same conclusion is also true for arbi-
trary cosmological horizons. A microscopic description
of fast-scrambling should be able to explain the origin of
Hall-scrambling in the presence of the θ-angle.

It is very tempting to apply the framework of mem-
brane paradigm in the context of holography. In fact the
AdS/CFT correspondence [7] has taught us that the low
frequency limit of linear response of a strongly coupled
quantum field theory is related to that of the membrane
paradigm fluid on the black hole horizon of the dual grav-
ity theory [16–18]. This raises a deeper question. Can
we then conclude that the same has to be true for holo-
graphic models of cosmological spacetimes?

The rest of the paper is organized as follows. We start
with a brief discussion of the membrane paradigm in sec-
tion II. In section III, we show that in the presence of
electrodynamics θ-term, the black hole horizon behaves
as a Hall conductor. Then in section IV, we introduce
Hall scrambling for Rindler, black hole and cosmological
horizons. Finally, we make some comments in section V
about its connection with the AdS/CFT correspondence
and conclude in section VI.

II. MEMBRANE PARADIGM

Let us begin with a brief discussion of the black hole
membrane paradigm [8, 9]. Finiteness of the black hole
entropy indicates that at distance less than the Planck

length from the black hole horizon, the effective number
of degrees of freedom should be vanishingly small. So, it
is more natural as well as convenient to replace the true
mathematical horizon by a stretched horizon, an effec-
tive time-like membrane M located roughly one Planck
length away from the true horizon.

Advantages of having a stretched horizon will be more
apparent if we consider some fields in the black hole back-
ground with an action

Stot =

∫
dd+1x

√
gL(φI ,∇µφI) , (1)

where φI with I = 1, 2, ... stands for any fields. It is nec-
essary to impose some boundary conditions on the fields
φI in order to obtain equations of motion by varying this
action. We will impose Dirichlet boundary conditions
δφI = 0 at the boundary of space-time. The stretched
horizon M divides the whole space-time in regions: A
(outside the membraneM) and B (inside the membrane
M). Therefore, we can write Stot = SA + SB .

Now imagine an observer O who is hovering outside
the horizon of a black hole. Observer O has access only
to the region outside the black hole and physics he ob-
serves, classically must not be affected by the dynamics
inside the black hole. That means observer O should be
able to obtain the correct equations of motion by varying
some action SO which is restricted only to the space-time
outside the black hole. Clearly, SO 6= SA because the
boundary terms generated on M from SA are in general
non-vanishing. Therefore, we should add some surface
terms that exactly cancel all these boundary terms. Let
us now rewrite the total action in the following way [15]

Stot = (SA + Ssurf ) + (SB − Ssurf ) , (2)

such that SA + Ssurf and SB − Ssurf are independent
of each other and correct equations of motion can be
obtained by varying them individually. For the observer
O, the action SO = SA + Ssurf for fields φI now have
sources residing on the stretched horizon

SO =

∫
A

dd+1x
√
−gL(φI ,∇µφI)

+
∑
I

∫
M
ddx
√
−h J IMφI (3)

where, h is the determinant of the induced metric on the
stretched horizon M and sources are

J IM =

[
nµ

∂L
∂ (∇µφI)

]
M

(4)

where, nµ is the outward pointing normal vector to the
time-like stretched horizon M with nµn

µ = 1. The ob-
serverO who is hovering outside the horizon, can actually
perform real experiments on the stretched horizonM to
measure the sources J IM. It is important to note that
one should interpret J IM as external sources such that
δJ I

M
δφJ

= 0.



3

A. Electromagnetic fields and stretched horizon

The action for electromagnetic fields in the curved
space-time in (3 + 1)−dimensions is

S =

∫
√
gd4x

[
−1

4
FµνF

µν + jµA
µ

]
, (5)

where, as usual Fµν = ∂µAν −∂νAµ and g = −det (gµν).
jµ is a conserved current, i.e., ∇µjµ = 0. Our convention
of the metric is that the Minkowski metric has signature
(−+ ++). The equation of motion obtained from action
(5) is

∇µFµν = −jν . (6)

Field strength tensor Fµν also obeys ∂[µFνλ] = 0.
We will also assume that the conserved current jµ is

contained inside the membrane M and hence the ob-
server O who has access only to the region outside the
stretched horizon does not see the current jµ. However,
the observer will see a surface current J µM on the mem-
brane. Let us start with the action for the observer O

SO = −1

4

∫
A

√
gd4xFµνF

µν +

∫
M

√
−hd3xJM;µA

µ .

(7)
Note that the action is invariant under the gauge trans-
formation: Aµ → Aµ+∂µα only if JM;µn

µ = 0, where nµ
is the outgoing unit normal vector onM. In order for the
observer O to recover the vacuum Maxwell’s equations,
the boundary terms on M should cancel out and hence
from equation (4) we obtain

J µM = nνF
µν |M . (8)

It is obvious that JM;µn
µ = 0 and hence action (7) is

invariant under gauge transformations.

B. Black hole horizon and electrical conductivity

Again consider a fiducial observer O hovering just out-
side a (3 + 1)−dimensional black hole. For such an ob-
server, the near horizon geometry is a good approxima-
tion and the metric takes the Rindler form

ds2 = −ρ2dω2 + dρ2 + dy2 + dz2 . (9)

This can be regarded as a portion of Minkowski space,
formally known as the Rindler wedge. In particular, un-
der the redefinitions

t = ρ sinhω , x = ρ coshω , (10)

one arrives to the more familiar metric

ds2 = −dt2 + dx2 + dy2 + dz2 . (11)

For the observer O, who follows orbits of the time-like
Killing vector ξ = ∂ω, there is a horizon at the edge of
the Rindler wedge, x = |t|, or equivalently, ρ = 0. We
will replace the mathematical horizon by the stretched
horizon located at ρ = ε, where ε is about one Planck
length.

Since, 4−velocity Uµ of the observer O is singular near
the horizon, the electric and magnetic fields E and B as
measured by O (eνµαβ is the Levi-Civita tensor)

Eµ = FµνUν , Bµ =
1

2
eνµαβFαβUν (12)

can be singular in general. In order to understand the
behavior of E and B on the horizon let us consider a
freely falling observer (FFO) P :

FFO P : x = a, y = z = 0 . (13)

A freely falling observer does not see the coordinate sin-
gularity and hence electric and magnetic fields EP and
BP as measured by P should be non-singular. Relating
E and B with EP and BP , we obtain

Eρ|M,Bρ|M = O(1) ,

Ey|M + Bz|M = O(ε) , (14)

Ez|M −By|M = O(ε) .

It is important to note that the above relations can be
thought of as ingoing boundary conditions for the elec-
tromagnetic radiations and it is a consequence of the fact
that black holes behave as perfect absorbers.

Therefore, from equation (8), we obtain,

J yM = Ey|M , J zM = Ez|M . (15)

The black hole horizon behaves like an Ohmic conductor
with conductivity

σ = 1 . (16)

That is, the surface resistivity of the black hole is r =
1/σ ≈ 377Ω [8, 9].

We will end this section with a brief discussion on
Ohmic dissipation in the stretched horizon because
of the electromagnetic fields on the horizon. For a
Schwarzschild black hole of mass M , the first law of ther-
modynamics states

TdS = dM (17)

where T is the temperature and S is the entropy of the
black hole. Presence of electromagnetic fields on the hori-
zon can increase the mass and hence the entropy of the
black hole [9]

dM

dt
= T

dS

dt
= −

∫
M
~SH .d ~A . (18)
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~SH is the renormalized Poynting flux

~SH = ε2 (E×B)M . (19)

~SH is the amount of red-shifted energy (as measured at
infinity) crossing a unit area per unit time at infinity.
Equation (14), leads to the famous result of Joule heating
law for black hole horizon

dM

dt
= T

dS

dt
=

∫
M
ε2r ~J 2

MdA . (20)

III. ELECTRODYNAMICS θ-TERM AND THE
MEMBRANE PARADIGM

The gauge invariance of electrodynamics allows for a
θ-term in the action

S =

∫
√
gd4x

[
−1

4
FµνF

µν + jµA
µ

]
+
θ

8

∫
d4xεαβµνFαβFµν (21)

where one can write

θ

8
εαβµνFαβFµν =

θ

4

√
gFµν ∗ Fµν . (22)

Our convention of the Levi-Civita tensor density εαβµν is
the following: ε0123 = 1, ε0123 = −g.

The electrodynamics θ-term is a total derivative and
hence it does not affect the classical equations of mo-
tion. Therefore, this term does not contribute even for
perturbative quantum electrodynamics, which strongly
indicates that the effects of the QED θ-term, if any, are
non-perturbative. However, by coupling this theory to
gravity we will show that the electrodynamics θ-term can
affect the electrical properties of the stretched horizon.

Let us again imagine a stretched horizon M that di-
vides the whole space-time in two regions and an observer
O who has access only to the region outside the horizon.
The action for the observer O is

SO =

∫
A

√
gd4x

[
−1

4
FµνF

µν +
θ

4
Fµν ∗ Fµν

]
+

∫
M

√
−hd3xJM;µA

µ . (23)

Therefore from equation (4) the membrane surface cur-
rent is given by,

J µM = (nνF
µν − θ nν ∗ Fµν) |M . (24)

A. Hall conductivity

Following the discussion of section(IIB), equations (14)
and (24), now lead to(

J yM
J zM

)
=

(
σ −θ
θ σ

)(
EyM
EzM

)
. (25)

Therefore, surface Hall conductance of the black hole
horizon is

σzy = −σyz = θ ≈ θ(377Ω)−1 (26)

and in principle one can find out the value of the θ-angle
by measuring the Hall conductivity of the black hole hori-
zon.

From equation (18), it is obvious that the presence of
the θ-term does not contribute to the increase of entropy
of the black hole. However, it can be easily checked that
the stretched horizon now does not follow the standard
Joule heating law (20). Instead it obeys

dM

dt
= T

dS

dt
=

∫
M
ε2
(

σ

θ2 + σ2

)
~J 2
MdA . (27)

IV. HALL SCRAMBLING OF CHARGES ON THE
STRETCHED HORIZON

Scrambling is the process by which a localized pertur-
bation of a system spreads out into the whole system.
In quantum mechanics, information contained inside a
small subsystem of a bigger system, is said to be scram-
bled when the small subsystem becomes entangled with
the rest of the system. And scrambling time ts is defined
as the time it takes for a localized perturbation to become
fully scrambled such that the information it contains can
only be recovered by examining nearly all the degrees
of freedom. In a local quantum field theory, scrambling
time ts is expected to be at least as long as the diffusion
time. Consequently, for a strongly correlated quantum
fluid in d-spatial dimensions and at temperature T , the
scrambling time satisfies

tsT ≥ c~S2/d , (28)

where c is some dimensionless constant and S is the total
entropy. In [10, 11], it has been argued that this is a
universal bound on the scrambling time. Hence, it is
indeed remarkable that information scrambles on black
hole and de Sitter horizons exponentially fast

tsT ≈ ~ lnS (29)

violating the bound (28). This unusual process is fa-
mously known as “fast-scrambling” and it strongly indi-
cates that the microscopic description of scrambling of
information on static horizons must involve non-local de-
grees of freedom [10, 11]. Non-locality is indeed essential
for fast scrambling [20–24] and in fact it is well known
that non-local interactions can increase the level of entan-
glement among different degrees of freedom of a theory
[25–27].

In this section, we will focus on scrambling of point-
charges on the horizon in the presence of the electrody-
namics θ-term. We will argue that the θ-angle affects the
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way charges scramble on the horizon, in particular, it in-
troduces vortices without changing the scrambling rate
– we will call this phenomenon “Hall scrambling”. Let
us note that a microscopic description of fast-scrambling
should be able to explain the origin of Hall-scrambling in
the presence of the θ-angle.

A. Rindler coordinates

Let us again consider an accelerated observer in
Minkowski space. For such an observer, the metric takes
the Rindler form (9). We again replace the mathemat-
ical horizon by the stretched horizon at ρ = ε, where ε
is about one Planck length. We will consider a single
charge which is stationary in the Minkowski frame [12]

Charge Q : x = a, y = z = 0 . (30)

However, in the Rindler frame, the charge is falling into
the horizon. Figure 1 represents schematically this situ-
ation.

-10 -5 0 5 10
-10

-5

0

5

10

x

t

! = 1

! = �1

⇢ = 0

a

1

FIG. 1. Rindler coordinates plotted on a Minkowski diagram.
The dashed lines correspond to the Rindler horizons. The
thin blue line corresponds to the worldline for a free falling
charge.

To compute the surface current, we need to compute
FµνR in the Rindler frame

J µM = (FµρR − θ ∗ F
µρ
R ) |M . (31)

At any given time the Rindler coordinates are related to
the Minkowski coordinates by a boost along the x-axis.

In Minkowski coordinates:

F 01
M =

Q(x− a)

4π [(x− a)2 + y2 + z2]
3/2

= −F 10
M , (32)

F 02
M =

Qy

4π [(x− a)2 + y2 + z2]
3/2

= −F 20
M , (33)

F 03
M =

Qz

4π [(x− a)2 + y2 + z2]
3/2

= −F 30
M (34)

and all the other components are zero. Now one can
compute FµνR by performing the change of coordinates.
That leads to:

J ωM =
Q(ε coshω − a)

4πε [(ε coshω − a)2 + y2 + z2]
3/2

, (35)

J ρM = 0 , (36)

J yM =
Q (y sinhω − θz coshω)

4π [(ε coshω − a)2 + y2 + z2]
3/2

, (37)

J zM =
Q (z sinhω + θy coshω)

4π [(ε coshω − a)2 + y2 + z2]
3/2

. (38)

We are mainly interested in the current density on the
stretched horizon after the point charge Q crosses the
stretched horizon. An observer hovering just outside the
stretched horizon will measure a surface charge density
ρH(y, z) = εJ 0

M on the horizon. Note that the surface
charge density ρH(y, z) does not receive any correction
in the presence of the θ-term.

The point charge crosses the horizon at the Rindler
time ω = ω1, where

coshω1 =
a

ε
. (39)

In the limit ω → ω1 (but ω < ω1), we obtain

ρH(y, z) = −Q
2
δ (y) δ (z) . (40)

In the limit ω → ω1 (but ω > ω1)

ρH =
Q

2
δ (y) δ (z) . (41)

Note that there is a discontinuity at ω = ω1. The total
charge on the horizon is given by (ω > ω1):

QH =

∫
dydzρH(y, z) =

Q

2
. (42)

An observer O hovering near the the horizon will mea-
sure the current J µM and electric field E (12):

Ey = (coshω)F 02
M |M, Ez = (coshω)F 03

M |M . (43)

Finally equations (37,38) can be rewritten in the follow-
ing way: (

J yM
J zM

)
=

(
tanhω −θ
θ tanhω

)(
Ey

Ez

)
. (44)
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Therefore, in this case, conductivity of the stretched
horizon, as measured by the observer O is time-
dependent

σ = tanhω ≈ 1− 2e−2ω . (45)

Late time behavior: scrambling

In the limit ω >> ω1 we obtain:

ρH(y, z) =
εQe−2ω

π [ε2 + r2
⊥]

3/2
, (46)

J yM =
(y − θz)Qe−2ω

π [ε2 + r2
⊥]

3/2
, (47)

J zM =
(z + θy)Qe−2ω

π [ε2 + r2
⊥]

3/2
, (48)

where r2
⊥ = 4e−2ω(y2 + z2). And in this limit the

conductivities of the stretched horizon are constants:
σyy = σzz ≈ 1, σzy = −σyz = θ and the horizon be-
haves like an ideal Hall conductor.

Before proceeding further, a few comments are in or-
der. From equation (46), it is clear that the presence
of the θ-term does not change the scrambling time. On
the other hand, equations (47) and (48) indicate that
the θ-angle affects the way the charge scramble on the
horizon. Let us first represent {y, z}-plane in the polar
coordinates: {b, φ}, where y = b cosφ and z = b sinφ,
as usual. When θ = 0, φ-component of the horizon cur-
rent J φM = 0. Whereas, for θ 6= 0, J φM = θJ bM and
~∇× ~JM 6= 0 which clearly indicate the presence of vor-
tices; this is a direct consequence of the non-zero Hall
conductivity.

B. Schwarzschild black hole

The metric of a Schwarzschild black hole in Kruskal-
Szekeres coordinates is

ds2 =
32G3m3

r
e−

r
2Gm

(
−dV 2 + dU2

)
+r2

(
dθ̄2 + sin2 θ̄dφ2

)
, (49)

where r is the radial Schwarzschild coordinate

V 2 − U2 =
(

1− r

2Gm

)
e

r
2Gm (50)

and we are using the symbol θ̄ for angular coordinate to
differentiate it from the θ-angle of the action (21). The
event horizon is located at V = ±U and the curvature
singularity is at V 2 − U2 = 1. In Schwarzschild coordi-
nates, the metric is

ds2 = −
(

1− r

2Gm

)
dt2 +

dr2(
1− r

2Gm

)
+ r2

(
dθ̄2 + sin2 θ̄dφ2

)
. (51)

I

II

III

IV

U

V

FIG. 2. Maximal analytic extension of Schwarzschild so-
lution in Kruskal-Szekeres coordinates. Region I is the
Schwarzschild patch and the dashed lines correspond to the
horizons. The world line of a free falling charge from V = 0
is shown in brown.

For r > 2Gm, coordinates {U, V } and {r, T} are related
in the following way

V =
( r

2Gm
− 1
)1/2

e
r

4Gm sinh

(
t

4Gm

)
, (52)

U =
( r

2Gm
− 1
)1/2

e
r

4Gm cosh

(
t

4Gm

)
. (53)

Following the standard procerdure, we will replace the
mathematical horizon by the stretched horizon at r =
2Gm+ δ, where δ << 2Gm.

We will consider a large black hole and restrict the
charges to be near the horizon, i.e. |r/2Gm − 1| << 1,
in a small angular region arbitrarily centered at θ̄ =
0. In that case, we can replace the angular part of
both Kruskal-Szekeres and Schwarzschild coordinates by
Cartesian coordinates

r2
(
dθ̄2 + sin2 θ̄dφ2

)
≈ dy2 + dz2 , (54)

where,

y = 2mGθ̄ cosφ , z = 2mGθ̄ sinφ . (55)

We will now define two sets of coordinates to describe
the near horizon region of the Schwarzschild black hole:

ρ = 4Gm

√
1− 2Gm

r
, ω =

t

4Gm
. (56)

X = 4GmeU, T = 4GmeV . (57)
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(a)

(b)

(c)

FIG. 3. A schematic diagram of Hall scrambling on a black
hole horizon. Lines represent surface electric current on the
black hole horizon after a positive charge is dropped at point
P , as observed by an outside observer for (a) θ = 0, (b) θ > 0,
(c) θ < 0.

Where e is the Euler’s number. Therefore, in terms of
{T,X, y, z}, the Kruskal-Szekeres metric becomes (near
the horizon)

ds2 ≈ −dT 2 + dX2 + dy2 + dz2 . (58)

Similarly, the Schwarzschild metric leads to

ds2 ≈ −ρ2dω2 + dρ2 + dy2 + dz2 . (59)

Therefore, we can use the results of the Rindler case to
analyze smearing of charges on the Schwarzschild hori-
zon. Again we have a charge Q and initial conditions are

given at V = 0 (see figure 2):

Q : U = U0, θ̄ = 0 . (60)

In the near horizon approximation, we can map this prob-
lem to the problem of scrambling in Rindler spacetime
with

a = 4GmeU0, ε = 2
√

2Gmδ . (61)

Therefore, the Schwarzschild observer O can see the
charge Q for t < t1. At Schwarzschild time t = t1, the
Schwarzschild observer will see that the charge density
on the stretched horizon is localized at a point , where

cosh

(
t1

4Gm

)
=
eU0

√
2Gm√
δ

. (62)

Finally using (46-48), in the late time limit t >> t1, (in
the small angle approximation) we obtain:

ρH(θ̄, φ, t) =
2
√

2GmδQe−t/2Gm

π [8Gmδ + r2
⊥]

3/2
, (63)

J θ̄M(θ̄, φ, t) =
2mGθ̄Qe−t/2Gm

π [8Gmδ + r2
⊥]

3/2
, (64)

J φM(θ̄, φ, t) = θJ θ̄M(θ̄, φ, t) , (65)

where r⊥ = 4mGθ̄e−t/4mG. So, an observer hover-
ing outside the horizon will see Hall scrambling on the
Schwarzschild horizon as expected (see figure 3). Note
that the Hall scrambling depends only on the Rindler-
like character of the horizon but not on the details of
the Schwarzschild metric. We can define the scrambling
time ts in the following way: it is the time at which the
charge density ρH(θ̄, φ, ts) ≈ Q/4πr2

H , where rH = 2Gm
is the radius of the horizon. Applying that for θ̄ = 0, we
obtain,

ts ≈ 2Gm ln

(
2Gm

δ

)
≈ 4Gm ln

(
m

2πMP

)
, (66)

where we have used ε ∼ Planck length. So the Hall scram-
bling does not affect the scrambling rate.

It is important to note that there is a crucial differ-
ence between the discussions of Rindler spacetime and
the Schwarzschild black hole. In a Schwarzschild black
hole, all freely falling objects will hit the singularity at
r = 0 in finite Kruskal-Szekeres time. One can argue [19]
that when a single charge hits the singularity, the spheri-
cal symmetry will be restored and the total charge will be
uniformly distributed over the stretched horizon. In the
scrambling time, ts an order one perturbation will decay
to size ∼ MP /m, and all trace of it will be lost [10, 12].
Hence, this should be the time scale for any classical fields
on the horizon to become spherically symmetric.
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C. Cosmological horizon: Hall scrambling and
de-scrambling

We can easily extend the discussion of this section for
cosmological horizons. Before, we use the results of the
Rindler calculations, we should modify equation (4) for
cosmological horizons. We can simply follow the discus-
sions of section (II) and conclude that

J IM = −
[
nµ

∂L
∂ (∇µφI)

]
M

(67)

where, nµ is the outward pointing normal vector to the
stretched horizon M. Without the θ-angle, equation (8)
now becomes

J µM = −nνFµν |M . (68)

We will mainly focus on de Sitter space. It was pointed
out in [11] that charges also fast scramble across the de
Sitter horizon. It is not very surprising since the near
horizon region of de Sitter space is Rindler-like. However,
it strongly suggests that the holographic description of a
causal patch of de Sitter space must involves non-local
degrees of freedom [11]. A comoving observer O in de
Sitter space only sees a static patch of de Sitter space
with metric,

ds2 = −(1−H2r2)dt2 +
dr2

1−H2r2

+ r2
(
dθ̄2 + sin2 θ̄dφ2

)
, (69)

where, cosmological constant is given by Λ = 3H2. Rest
is straightforward: we will replace the mathematical hori-
zon by the stretched horizon at rH = 1− δ. Let us now
imagine a charge Q that the observer O can see for t < t1
and from (68) it is obvious that the total induced charge
on the horizon QH = −Q. At time t = t1, the charge Q
hits the stretched horizon at a point θ̄ = 0. For t > t1,
unlike the Schwarzschild case, the Gauss’s law tells us:
total charge on the de Sitter horizon QH = 0. However,
we will not be able to see that from the Rindler approx-
imation which is valid only for small angle limit. Note
that, following [28] it is possible to perform an exact cal-
culation in de Sitter space but we will not attempt it in
this paper.

In the near horizon limit, at small angle approximation
the metric (69) becomes Rindler-like with

ρ = cos−1(Hr) , ω = Ht (70)

y = H−1θ̄ cosφ , z = H−1θ̄ sinφ

and ε =
√
δ/H. Hence, we will see Hall scrambling on

de Sitter horizon with the electrodynamics θ-term. In

particular, in the late time limit t >> t1, we obtain:

ρH(θ̄, φ, t) = −
√
δQe−2Ht

πH [δ/H2 + r2
⊥]

3/2
, (71)

J θ̄M(θ̄, φ, t) = − θ̄Qe−2Ht

πH [δ/H2 + r2
⊥]

3/2
, (72)

J φM(θ̄, φ, t) = θJ θ̄M(θ̄, φ, t) , (73)

where Hr⊥ = 2θ̄e−Ht. The corresponding scrambling
time is given by,

ts ≈
1

H
ln

(
2MP

H

)
. (74)

The fact that the de Sitter horizon is a fast scrambler
indicates that a dual description, if exists, must be non-
local in nature [11] and it should also be able to provide
a microscopic description of the Hall scrambling.

Discussion of this section can easily be generalized for
arbitrary cosmological horizons and one can show that in
the presence of the electrodynamics θ-angle point charges
will Hall scramble on the apparent horizon of a co-moving
observer if the expansion of the universe is accelerating.
On the other hand, when the expansion of the universe
is decelerating, the observer sees the charges “Hall de-
scramble” as they re-enter the horizon. However, there
is a crucial difference: for arbitrary non-de Sitter cos-
mological expansion both scrambling and de-scrambling
occur at a power law rate [28]. This perhaps indicates
that it may be possible to describe the process of Hall
(de)-scrambling on arbitrary non-de Sitter cosmological
horizons in terms of locally interacting degrees of freedom
[10, 11].

V. AdS/CFT

The gauge-gravity duality or the AdS/CFT correspon-
dence [7, 29–31] has been successful at providing us with
theoretical control over a large class of gauge theories. It
is a remarkable achievement to compute observables of
strongly coupled large-N gauge theories in d-dimensions
by performing some classical gravity computations in
(d + 1)-dimensions. At finite temperature, gravity du-
als of these field theories have black holes with horizons
and at very long length scales the most dominant con-
tributions come from the near horizon region [32]. So, it
is somewhat expected that there is some connection be-
tween the low energy hydrodynamic description of these
strongly coupled theories and the membrane paradigm
fluid on the horizon [16, 17]. This connection was made
precise in [18], where the authors have shown that the
low frequency limit of linear response of the fluid of the
boundary theory is given by the that of the membrane
paradigm fluid on the black hole horizon.
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In particular, let us consider U(1) gauge field in AdS-
Schwarzschild in (3 + 1)−dimensions with the action

S =

∫
d4x

[
−
√
g

4g2
3+1

FµνF
µν +

θ

8
εαβµνFαβFµν

]
. (75)

The U(1) gauge field in the bulk is dual to a conserved
current ji in the boundary theory and DC conductivities
are given by

σij = − lim
ω,k→0

GijR(k)

iω
, (76)

where, GijR(k) is the retarded Green function of boundary
current ji. As shown in [18], the DC conductivity σij of
the strongly coupled (2 + 1)−dimensional dual theory
is given by that of the membrane paradigm fluid on the
horizon of the Schwarzschild black hole in AdS. Since the
near horizon region of AdS-Schwarzschild is Rindler-like,
we have

σ11 = σ22 =
1

g2
3+1

, σ21 = −σ12 = θ . (77)

Let us end by briefly discussing scrambling in the con-
text of the AdS/CFT correspondence. Consider the pro-
totype case of N = 4 super-Yang-Mills with gauge group
SU(N) on a unit 3-sphere at finite temperature. The
AdS/CFT correspondence relates this theory to type IIB
string theory on asymptotically AdS5×S5 spacetime. In
the limit N � 1, λ = g2

YMN � 1, the theory can be well
approximated by the classical supergravity with a large
AdS black hole. Since the boundary field theory is local,
it is obvious that the boundary theory is not a fast scram-
bler. However, as argued in [10], on length scales smaller
than the AdS radius RAdS , AdS space is a fast scram-
bler. Any localized perturbation on length scales smaller
than RAdS in the gravity side is equivalent to a local-
ized perturbation of a very small subset of N2 degrees of
freedom of the dual CFT. So, any perturbation of a very
small subset of N2 degrees of freedom at some point first
will fast scramble among N2 degrees of freedom at that
point. Then it will scramble (not so fast) over the entire
sphere and hence the total scrambling time is [10]

ts ≈ c0 +
c

T
logN , (78)

where, c0 is some O(1) number and c is some dimension-
less numerical constant. As we have discussed before,
when the dual gravity theory is in (3 + 1)-dimensions,
we can have a non-zero θ-angle. It will be interesting to
understand Hall scrambling in the context of the gauge-
gravity duality.

VI. CONCLUSIONS

We have shown that in principle one can find out the
value of the electrodynamics θ-angle by dropping charged

particles into a black hole and observing how the per-
turbation scrambles on the horizon. This strongly sug-
gests that any sensible quantum theory of the black hole
needs to be able to provide a microscopic description of
Hall-scrambling in the presence of the θ-angle. It will be
extremely interesting to see if this effect has any astro-
physical consequence.

Experiments set a rather strong limit on QCD θ-angle
|θQCD| << 10−9, however, at low energies, the theta
angles for QED and QCD appear as independent pa-
rameters and hence there is no reason to expect QED-
θ ∼ θQCD. In grand unified theories such as for example
SU(5), the θ-angles for QED and QCD are related by the
renormalization group. However, even in the context of
grand unification, in the presence of a mechanism involv-
ing axions to solve the strong CP-problem, it remains
a challenge to relate the θ-angles for QED and QCD at
energy scales far below the GUT scale.

Our conclusions depend only on the Rindler-like char-
acter of the horizon and hence they are valid for any
horizon which is locally Rindler-like. However, it is in-
deed puzzling that an in-falling observer will not see any
effect of electrodynamics θ-angle whatsoever.
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