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Spherically symmetric models of loop quantum gravity have been studied recently by different
methods that aim to deal with structure functions in the usual constraint algebra of gravitational
systems. As noticed by Gambini and Pullin, a linear redefinition of the constraints (with phase-space
dependent coefficients) can be used to eliminate structure functions, even Abelianizing the more-
difficult part of the constraint algebra. The Abelianized constraints can then easily be quantized
or modified by putative quantum effects. As pointed out here, however, the method does not
automatically provide a covariant quantization, defined as an anomaly-free quantum theory with a
classical limit in which the usual (off-shell) gauge structure of hypersurface deformations in space-
time appears. The holonomy-modified vacuum theory based on Abelianization is covariant in this
sense, but matter theories with local degrees of freedom are not. Detailed demonstrations of these
statements show complete agreement with results of canonical effective methods applied earlier to
the same systems (including signature change).

PACS numbers: 11.15.-q, 04.60.-m, 04.60.Pp

I. INTRODUCTION

Several suggestions have been made in models of loop
quantum gravity which may indicate a potential to pro-
vide interesting physical effects. Popular examples are
mechanisms to avoid some of the singularities encoun-
tered in classical general relativity. Following from a cru-
cial step in the procedure of loop quantization, most of
these effects are based on a replacement of polynomial
(extrinsic) curvature expressions in the canonical Hamil-
tonian of the classical theory by bounded (and usually pe-
riodic) functions. As can easily be seen by the example of
isotropic models, in which the classical Hubble-squared
term in the Friedmann equation would be turned into
a bounded function, it is then not surprising that upper
bounds on curvature or energy densities can be obtained.
A more crucial consistency question, also posed in [1], is
whether the resulting modified theories can be covariant,
or whether the upper bounds on curvature amount to a
symmetry-breaking cut-off.

In canonical formulations such as loop quantum grav-
ity, covariance is not manifest but still plays an impor-
tant role. Instead of using coordinate transformations
of space-time tensors, canonical theories refer to gauge
transformations which, in geometrical terms, generate
deformations of spatial hypersurfaces in space-time [2].
The generator of a deformation normal to a hypersur-
face is the above-mentioned gravitational Hamiltonian.
If it is modified by bounded curvature expressions (or
other quantum corrections), it is unclear whether it can
still generate gauge transformations. Mathematically,
the question is whether modified Hamiltonians can retain
closed Poisson brackets or commutators with themselves
and with generators of spatial deformations tangential to

hypersurfaces. Some information about this question has
been gained in recent years using effective [3–8] and op-
erator methods [9–13]. Here we will follow a new but, as
we will see, not independent direction toward the same
question.

Covariance cannot be addressed in minisuperspace
models such as isotropic cosmological ones, because they
do not show how temporal and spatial variations of fields
are related. The simplest inhomogeneous models are ob-
tained by imposing spherical symmetry, to be considered
in this paper. In this setting one has a non-trivial set
of hypersurface-deformation generators and brackets or
commutators between them. As in the full theory, the
bracket of two normal deformations has structure func-
tions instead of structure constants, so that the genera-
tors do not form a Lie algebra. The usual quantization
methods of gauge theories therefore complicate consider-
ably, and existing quantizations of spherically symmetric
models use either reformulations of the generators [14] or
quantize the reduced phase space from which the gauge
flow has been eliminated [15, 16]. An interesting new pro-
posal of reformulating the generators (and at the same
time including some ingredients of a loop quantization) is
the Abelianization of normal deformations found recently
in [17, 18]. Compared with earlier Abelianizations [19],
an important feature mentioned in [18] is that it works
even when a scalar field with local physical degrees of
freedom is included. There is therefore a chance that the
problem of structure functions may be overcome at least
in these models.

A question left open in [17, 18] is whether the resulting
quantizations are covariant. By quantizing a system in
which the brackets of gauge generators have been turned
into a Lie algebra, the constructions of [17, 18] certainly
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provide consistent quantum models. However, it is not
clear whether or in what sense they are models of quan-
tum gravity with a consistent space-time picture. This
is the question we turn to in the present paper, starting
with a discussion of what it means for a canonical theory
to be covariant. We will show that the loop-modified vac-
uum model of [17] is covariant only if the original Hamil-
tonian, prior to Abelianization, is modified in a restricted
way with exactly the same conditions found by effective
methods [5]. There is therefore a remarkable convergence
between results of Abelianization and the effective frame-
work. We will also show that the modified model of [18]
with a scalar field is not covariant, unless a background
treatment is used for the scalar on a vaccum solution so
that matter and gravity have non-matching versions of
covariance. More broadly, we point out that to date no
covariant inhomogeneous model with local physical de-
grees of freedom has been found with holonomy modifica-
tions from loop quantum gravity (while such models exist
for curvature-independent inverse-triad corrections).

II. COVARIANCE IN CANONICAL TERMS

The canonical formulation of general relativity leads
to a phase space given by the spatial metric qab and mo-
menta related to extrinsic curvature Kab. It is subject
to the Hamiltonian constraints H [N ], labelled by spa-
tial lapse functions N , and diffeomorphism constraints
D[Ma], labelled by spatial shift vector fields Ma. These
constraints are first class with closed brackets [20, 21]

{D[Ma
1 ], D[Ma

2 ]} = D[LM1
Ma

2 ] (1)

{H [N ], D[Ma]} = −H [LMN ] (2)

{H [N1], H [N2]} = D[qab(N1∂bN2 −N2∂bN1)] . (3)

They generate gauge transformations representing hyper-
surface deformations [2]. On the space of solutions to the
constraints, the same gauge transformations are equiva-
lent to Lie derivatives along space-time vector fields, and
therefore represent coordinate freedom. Manifest covari-
ance is replaced by gauge covariance under hypersurface
deformations. (For more details on canonical gravity, see
for instance [22].)

A. Conditions

This well-known result leads us to two conditions to
be realized for a modified or quantized canonical theory
to be covariant:

(i) The classical generators H [N ] and D[Ma] must
be replaced by generators which still have closed
brackets, computed either as Poisson brackets in a
modified or effective theory, or as commutators of
operators in a quantization.

(ii) Brackets of the new generators of gauge transfor-
mations must have a classical limit identical with
the classical brackets (1)–(3).

When condition (i) is satisfied, one has a consistent gauge
theory since the gauge generators eliminate the same
number of spurious degrees of freedom as in the classical
case. But only when conditions (i) and (ii) are satisfied
does one have a consistent space-time theory, in which
there is a classical regime with the correct space-time
structure. Accordingly, we call a modified, effective, or
quantum theory covariant if and only if conditions (i)
and (ii) are satisfied. The constructions in [17, 18] have
provided consistent gauge theories obeying (i), but the
question of covariance or condition (ii) has not been ad-
dressed yet.
An important aspect of condition (ii) is that it is an

off-shell statement, for which not only the solution space
of constraints H [N ] = 0 and D[Ma] = 0 is relevant but
also the behavior of fields not satisfying the constraints.
This dependence on off-shell properties is in agreement
with the usual understanding of space-time covariance,
in which one makes use of line elements or metric tensors
not necessarily solving Einstein’s (or modified) field equa-
tions. It is also an important part of our classical picture
of space-time as a stage on which different matter sys-
tems can be set up. Even though space-time and mat-
ter interact with each other, the covariance conditions
commonly posed for matter theories require certain sym-
metries of the action on any background space-time, not
necessarily one solving Einstein’s equation. The usual co-
variance statements about (classical or quantum) matter
systems on a classical space-time are therefore off-shell.
For all we know, there could well be stronger interrela-
tions between space-time and matter if both ingredients
are quantum, so that it would no longer be possible to
separate a covariant matter theory from an anomaly-free
space-time. However, for the combined system to have
the correct classical limit, our condition (ii), which is for-
mulated only in this limit, must still hold.

B. Background treatment

In this context, one should therefore avoid taking the
viewpoint that on-shell properties are sufficient to decide
whether a space-time theory is meaningful. Although
all observables computed with a given solution refer to
the constraint surface modulo gauge transformations, co-
variance in the form usually used is a statement about a
partial solution space. (For additional reasons, see [23].)
Moreover, the full solution space of general relativity or
a modified version is too unwieldy and in many cases of
interest does not allow manageable on-shell statements
in complete terms. Even models such as spherically sym-
metric gravity with a scalar field remain challenging in
this setting. Most evaluations of gravitational theories
(including [18]) make use of some kind of background
approximation, in which one starts with a simple-enough
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vacuum solution and then perturbatively includes addi-
tional inhomogeneity or matter fields on this background.
In practice, the background picture is therefore even
more pronounced than the conceptual discussions of the
preceding paragraph might indicate.
In more technical details, consistency of a matter

model as a space-time theory may be formulated by re-
quiring the fields to satisfy the local conservation equa-

tion ∇µTµν = 0 for their stress-energy tensors. Canon-
ically, as shown in [24], this equation follows from the
analogs of (1)–(3) for a matter Hamiltonian (assuming,
for simplicity, that no curvature couplings are present).
In particular, relating stress-energy components to dif-
ferent kinds of derivatives of the matter contributions
Hmatter and Dmatter

a to the local constraints, one can de-
rive the equation

N
√
det q ∇µT

µ
0 = −N

∂Hmatter

∂t
−Na ∂D

matter
a

∂t
(4)

+L ~NCmatter[N,N
a] +

∂qab
∂t

δHmatter

δqab
+ ∂b

(
N2qabDmatter

a + 2N cqba
δHmatter

δqac

)
.

(The total matter contribution, summing the smeared
contributions to the Hamiltonian and diffeomorphism
constraints, is denoted by Cmatter[N,N

a].) The classical
off-shell brackets (and not just closed constraint brackets
of some form) imply that the two terms ∂Hmatter/∂t =
{Hmatter, H [N,Na]} and ∂a(N2Dmatter

a ) cancel out if (3)
holds, and the rest is zero based on other identities. A
conservation law therefore follows only if the brackets
are not just closed but (in the classical limit) of precisely
the form obtained for the classical hypersurface deforma-
tions. (In [24], a matter Hamiltonian without curvature
coupling has been assumed for simplicity, in which case
the matter Hamiltonian and diffeomorphism generators
alone have brackets of the form (1)–(3). Again, the im-
portance of off-shell properties is underlined because the
matter contributions to the constraints need not vanish
separately. Some quantum effects, like those to be stud-
ied in the rest of this paper, may introduce additional
curvature couplings, but they disappear in the classical
limit in which the off-shell condition (ii) is formulated.)

For these independent reasons, off-shell brackets are
relevant in the definition of covariance and should be
checked before one can claim that a quantized model
is a quantum theory of space-time. Even if one uses a
background treatment for a matter field on a vacuum so-
lution which latter has been shown to be covariant, there
are still conditions to be imposed on the matter model:
the existence of a local conservation law. A background
treatment makes the construction of models less restric-
tive, but still such a procedure is far from being arbitrary.

The difference between a background treatment and
a background-independent model in standard formula-
tions is that only the latter ensure the existence of so-
lutions to the coupled equations of gravity and matter,
such as Gµν = 8πGTµν for general relativity. Compared
to a background treatment, coupling gravity to matter
in a consistent way implies additional restrictions even if
the coupled equations are not actually solved, that is if
no back-reaction is considered. Classically, the equation

is consistent because the contracted Bianchi identity for
Gµν and the local conservation law for Tµν take the same
form.

In models of loop quantum gravity, the contracted
Bianchi identity, in its canonical form as Poisson brack-
ets of gravitational constraints, is generically modified.
Instead of (3), we usually have

{H [N1], H [N2]} = D[βqab(N1∂bN2 −N2∂bN1)] (5)

with a phase-space function β depending on the spa-
tial metric qab or extrinsic curvature. A consistent
background-independent model then requires the local
conservation law, or the Poisson brackets of matter con-
tributions to the constraints, to be modified in a match-
ing way with the same function β. (We emphasize again
that this condition is important even if back-reaction of
matter on space-time is not considered by solving the
coupled equations.) A background treatment, on the
other hand, merely requires that the gravitational brack-
ets and matter brackets have consistent but not neces-
sarily matching forms. These contributions would both
obey (5), but possibly with different functions β for grav-
ity and matter. As background models, such theories
would still be formally consistent, but it would not be
clear whether they could be background formulations of
covariant background-independent models. The quanti-
zation proposed in [18] is an example for a background
treatment which, as demonstrated by the derivations that
follow, is not known how to be embedded in a covariant
background-independent theory of the same symmetry
type (setting aside the vastly more complicated question
of embedding it in some full quantum theory).
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III. ABELIANIZATION OF NORMAL

DEFORMATIONS IN SPHERICALLY

SYMMETRIC MODELS

Compared with [14, 16], the formulation of spherically
symmetric models with real connection variables, given
in [25] is most relevant for the inclusion of loop effects as
they are currently understood. We first recall these vari-
ables for notational purposes, and then discuss features
of constraints and possible modifications.

A. Classical theory

Using a radial variable x, not necessarily identical to
the area radius r, the spatial metric or line element

ds2 =
(Eϕ)2

|Ex|
dx2 + |Ex|(dϑ2 + sin2 ϑdϕ2) (6)

is expressed by two functions Ex(x) and Eϕ(x) which
are the independent components of a densitized triad re-

duced to spherical symmetry [26]. (While Ex is a 1-
dimensional scalar in the reduced model, Eϕ has density
weight one; see [25].) The triad components are canoni-
cally conjugate to components of extrinsic curvature:

{Kx(x), E
x(y)} = Gδ(x, y) (7)

{Kϕ(x), E
ϕ(y)} =

1

2
Gδ(x, y) . (8)

1. Vacuum model

The reduced diffeomorphism constraint has only one
component,

D[M ] =
1

G

∫
dxM(x)

(
−
1

2
(Ex)′Kx +K ′

ϕE
ϕ

)
, (9)

and the reduced Hamiltonian constraint is

H [N ] = −
1

2G

∫
dxN(x)

(
|Ex|−

1

2EϕK2
ϕ + 2|Ex|

1

2KϕKx + |Ex|−
1

2 (1− Γ2
ϕ)E

ϕ + 2Γ′
ϕ|E

x|
1

2

)
(10)

with the spin-connection component Γϕ = −(Ex)′/2Eϕ.
It is a lengthy but straightforward exercise to confirm
that these phase-space functions have the brackets (1)–
(3) with the inverse spatial metric qab replaced by the
one component |Ex|/(Eϕ)2. These brackets control co-
variance in the reduced model, that is covariance under
transformations preserving spherical symmetry.
The reduced model still has structure functions. How-

ever, as noted in [17], the linear combination

C̃ :=
(Ex)′

Eϕ
H− 2

Kϕ

√
|Ex|

Eϕ
D (11)

of the original local constraints H and D allows one to
eliminate Kx from the new constraint C̃ replacing H
(leaving D unchanged). Moreover, in the vacuum case,

C̃ = C′ is a total derivative, so that integration by parts
removes one derivative at the (small) expense of working
with a densitized lapse function N ′ =: L. Since the final
smeared constraint

C[L] =

∫
dxL(x)C(x) (12)

= −
1

G

∫
dxL(x)

(√
|Ex|

(
1 +K2

ϕ − Γ2
ϕ

)
+ const.

)
,

obtained after integrating by parts N C̃ = NC′, depends
neither on Kx nor on spatial derivatives of Kϕ or Eϕ, the

antisymmetric Poisson bracket of the final constraints C
is trivially zero, while

{C[L], D[M ]} = C[(ML)′] (13)

as suitable for a constraint with densitized lapse function
L = N ′.

Our Equation (13) corrects a small mistake in Equa-
tion (15b) of [27] which has important conceptual ram-
ifications. In (12), an undetermined constant appears
because C[L] is derived only for L = N ′ and bound-
ary terms are ignored in [17]. (The constant can be re-
lated to the classical ADM mass if asymptotic flatness
is assumed.) The presence of a constant, which does
not contribute to the left-hand side of (13), is consistent
with (13) because the smearing function (ML)′ on the
right-hand side is again a total derivative. This smear-
ing function (rather than ML′) not only follows from a
direct calculation of the bracket, it is also the correct Lie
derivative LMd/dxL =ML′+M ′L of a scalar L of density
weight one. (Recall that L is defined as N ′, the derivative
producing a density weight in the 1-dimensional radial
manifold.)
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2. Scalar field

With all these features, the original Abelianization of
the vacuum constraint might look special and coinciden-
tal. However, as noted rather in passing in [18], the same

basic idea can be used to Abelianize the bracket of two
normal deformations for models with a scalar field, ex-
cept that the constraint is no longer a total derivative
and one does not integrate by parts: The analog of the
previous smeared C̃ is now

C[N ] =
1

G

∫
dxN(x)

(
−
1

2

(Ex)′√
|Ex|

(1 +K2
ϕ)− 2

√
|Ex|KϕK

′
ϕ (14)

+
(Ex)′

8
√
|Ex|(Eϕ)2

(
4Ex(Ex)′′ + ((Ex)′)2

)
−

1

2

((Ex)′)2
√
|Ex|(Eϕ)′

(Eϕ)3

+2πG
(Ex)′√

|Ex|(Eϕ)2

(
P 2
φ + (Ex)2(φ′)2

)
− 8πG

√
|Ex|

Kϕ

Eϕ
Pφφ

′

)
.

The Abelianization property is not trivial at all, but by
an explicit calculation one can confirm that it is still true.
As we shall see, it generalizes to other matter fields as
well.
There is therefore a chance that Abelianizations of nor-

mal deformations can give rise to generic results at least
in midi-superspace models. (Indeed, normal deforma-
tions in polarized Gowdy models can be Abelianized in
a very similar way [28, 29].) Since the method relies on
eliminating one component of extrinsic curvature from
the Hamiltonian constraint, it is not clear how useful it
could be in the full theory where no component is dis-
tinguished. It is also important that H , like D, is linear
in the extrinsic-curvature component to be eliminated,
which again is not true for any component in the full
theory.

B. Modifications

Loop quantization of spherically symmetric models
[25, 30] proceeds by turning Ex and Eϕ into deriva-
tive operators on spin-network states, while Kx and Kϕ

are not directly represented. Instead, these degrees of
freedom are realized via holonomy operators quantizing
h[x1,x2] := exp(i

∫ x2

x1

Kx(x)dx) and h{x} := exp(iKϕ(x)).

(We label “extended holonomies” of Kx by intervals
[x1, x2] and “point holonomies” of Kϕ by points {x}.)
The first expression is a gauge-invariant version of the
U(1)-holonomy of the x-component of a connection, while
the second expression models the same exponential be-
havior for the angular component.
In order to proceed to a quantization of the constraints,

one has to make sure that all ingredients can be expressed
by holonomies instead of curvature (or connection) com-
ponents. Since the classical constraints are at most
quadratic in the latter, they require modifications (of-
ten viewed as regularizations) before they can be turned

into operators. (One can avoid modifications of the dif-
feomorphism constraint by representing the finite flow it
generates instead of the infinitesimal generator [31]. We
comment on this step and possible problems in App. A.)
As mentioned in the introduction, unbounded functions
of the classical curvature components are then replaced
by bounded functions such as h{x} for K2

ϕ. Applied to
the Hamiltonian constraint, this process amounts to a
modification which may break covariance.
In [17, 18], consistent gauge theories have been found

even with a modification of the Kϕ-dependence, making
use of Abelianization results. However, the covariance
question remains to be addressed. We now answer this
question (with two different outcomes) in the two cases
of the vacuum model and the scalar model. After this,
we extend Abelianization results to general spherically
symmetric matter systems, with the same outcome as
for a scalar field.

1. Vacuum model

It is clear that a modified constraint C[L] obtained af-
ter replacing K2

ϕ in (12) by δ−2 sin2(δKϕ) (or any other
function of Kϕ) preserves the Abelian nature of the vac-
uum constraint. Condition (i) for a consistent gauge
theory is therefore respected by the modification. The
question whether condition (ii) for a space-time model is
respected is less trivial to answer. Without the mod-
ification, we know that the Abelian constraint comes
from a system which obeys the classical hypersurface-
deformation brackets. However, this observation does
not guarantee that there is a formulation of the modified
constrained system which (i) is closed for all values of δ
and (ii) has brackets in agreement with classical gener-
ators of hypersurface deformations in the classical limit
δ → 0.
Let us begin by modifying the first two terms of
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the usual classical Hamiltonian constraint with arbi-
trary functions of the extrinsic-curvature componentKϕ.
This procedure is equivalent to including only point-wise

holonomy corrections for the angular component of the
connection coefficient:

H [N ] = −
1

2G

∫
dxN(x)

(
|Ex|−

1

2Eϕf1 (Kϕ) + 2|Ex|
1

2 f2 (Kϕ)Kx (15)

+ |Ex|−
1

2 (1− Γ2
ϕ)E

ϕ + 2Γ′
ϕ|E

x|
1

2

)
.

We first define a new linear combination of the modified Hamiltonian constraint and the usual diffeomorphism con-
straint, just as in the classical case, to eliminate Kx from the new constraint while leaving the diffeomorphism
constraint unchanged

C̃ :=
(Ex)′

Eϕ
H− 2

f2 (Kϕ)
√
|Ex|

Eϕ
D. (16)

The new constraint has the form

C̃[N ] = −
1

G

∫
dxN(x)C̃(x) (17)

= −
1

G

∫
dxN(x)

{
d

dx

[√
|Ex|

(
1− Γ2

ϕ

)]
+

1

2
|Ex|−1/2(Ex)′f1 + 2|Ex|1/2f2K

′
ϕ

}
.

It is straightforward to see that the condition for C̃ to be
a total derivative is

2f2 =
df1
dKϕ

. (18)

If this equation is true, we obtain a Lie algebra for
the system of constraints as in the classical case. A
more-general analysis of consistent modifications of the
Abelianized constraints is given in Sec. III B 4.

Alternatively, we could have started from the classical
version of the new constraint C[N ] in (12), after Abelian-
ization, introduced the modification function f1 as in [17],
and then asked whether the modified constraint can be
redefined as part of a constrained system with hyper-
surface deformations as the classical limit. To do so,
we should find out how we can go from the (modified)
Abelianized system of constraints to a new system of
constraints H and D which, in the classical limit, are
the generators of hypersurface deformations. After mod-
ifying the Abelianized constraint, we go back to a system
of Hamiltonian and diffeomorphism constraints by a lin-
ear combination of D with the new constraint, which can
only be the inverse of (16), with f2 obeying (18) for the
correct hypersurface-deformation brackets to be realized
in the classical limit (after integrating by parts the mod-
ified (12)). The new system has the classical diffeomor-
phism constraint and a modified Hamiltonian constraint
with the first two terms proportional to functions of Kϕ

which automatically obey the relation (18) as a conse-
quence of integrating by parts.

2. Equivalence with effective methods and deformed

constraint brackets

This outcome, including the precise form of the rela-
tion (18), is just what happens when one tries to close the
algebra of constraints without Abelianization, starting
with holonomy modifications directly in the Hamiltonian
constraint [5, 8]. Thus, the Abelianized system of con-
straints in [17, 18] is equivalent to the system of modified
constraints with deformed structure functions from effec-
tive models, provided one makes sure that the modified
system is still covariant. In particular, the hypersurface-
deformation brackets are closed but deformed for δ 6= 0.
Although Abelianization of normal deformations al-

lows one to remove structure functions from the brackets
of constraints, for covariant versions the same modifica-
tions of brackets of hypersurface deformations are ob-
tained as found in direct treatments of structure func-
tions [5, 8]: For holonomy-modified spherically symmet-
ric models, we have brackets (5) with

β =
∂f2
∂Kϕ

=
1

2

∂2f1
∂K2

ϕ

(19)

using (18). This function is negative near a local max-
imum of f1, indicating signature change [32, 33]. This
important consequence and related implications of holon-
omy modifications cannot be avoided by reformulating
the constraint algebra because covariance conditions still
require one to check the brackets of hypersurface defor-
mations even if their generators are not used directly as
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constraints. Realizing these relationships, there is com-
plete agreement between the modified models based on
Abelianizations, presented in [17, 18], and the earlier con-
structions of anomaly-free effective models in [5, 8].

3. Scalar field

It is easy to see that the Hamiltonian constraint of a
spherically symmetric gravity theory coupled to matter
cannot be modified according to holonomy corrections as
incorporated previously. If we look back at the classical
form of the Hamiltonian (14), we realise that Abelization
works due to some subtle cancellations. The bracket be-
tween the second term from the gravitational part in (14)
(proportional to K ′

ϕ) and the first term from the scalar
part (proportional to Pφ) is cancelled by the bracket be-
tween the first term and the third term (proportional to
Pφφ

′), both from the scalar part. Similarly, the bracket
between the same (second) term from the gravitational
part and the second term from the scalar part (propor-
tional to φ′) is cancelled by the term arising from the
bracket between the second and third term of the scalar
part. However, the most interesting cancellation happens
between the brackets of the first and second terms of the
scalar part and the bracket of the fourth term of the grav-
itational part (proportional to (Eϕ)′) and the third term
of the scalar part.
If we now replace the extrinsic-curvature components

by some arbitrary functions of this variable, the resulting
bracket of constraints can never be made to close into a
combination of constraints, let alone made zero for an
Abelian bracket. If we replace K2

ϕ in the gravitational
part by some function f(Kϕ), then the Kϕ in the third
term of the scalar part has to be replaced by df/dKϕ,
such that the first two pairs of cancellations are still valid
just as in the classical case. However, with this modifi-
cation, the bracket between the first and second terms
of the scalar part (which do not contain Kϕ to be mod-
ified) is not cancelled by the bracket coming from the
term proportional to (Eϕ)′ from the gravitational part
and the third term from the scalar part, the latter now
having been modified. (Section III B 4 contains a more-
explicit demonstration.)

Although the result is negative in the sense that a sim-
ple Abelianization does not lead to a covariant modi-
fied theory, there is again agreement with effective meth-
ods. Attempts to include scalar fields in spherically sym-
metric models within an effective approach, along the
lines of [5, 8] for vacuum models, have failed to provide
closed brackets of constraints including holonomy mod-
ifications. The reason for this lack of closure is the ap-
pearance of precisely the same terms that do not cancel
out in an attempted Abelianization. At present, it is
not known whether holonomy-modified spherically sym-
metric models with a scalar field can be anomaly-free, or
whether their normal deformations can be Abelianized.
We will demonstrate the equivalence of these negative
results based on effective methods and partial Abelian-
izations after introducing more-general matter systems.

4. General matter model

We now consider generic (spherically symmetric) mat-
ter systems with non-derivative couplings to gravity. We
assume a consistent or first-class gravity-matter system
of this kind, which has been obtained by inserting mod-
ification functions in a classical matter system without
curvature coupling and higher spatial derivatives. The
classical matter Hamiltonian therefore obeys the bracket
(3) on its own, without including gravitational terms. We
assume same property to be true for a modified Hamilto-
nian obtained in this way even if modification functions
are allowed to depend on curvature components (but not
on spatial derivatives). In fact, it turns out to be difficult
to find consistent modified theories violating this assump-
tion because cross-terms of the gravitational and matter
parts of constraints in the {H,H}-bracket would lead to
higher spatial derivatives in the bracket which, if non-
zero, could not be absorbed in a constraint to produce a
first-class system One can also confirm this property ex-
plicitly for the matter Hamiltonians given below, where
correction functions are allowed to depend on Kϕ.
The form of modifications assumed here therefore im-

plies that the matter parts of the diffeomorphism and
Hamiltonian constraints, Hmatter[N ] =

∫
dxNHmatter

and Dmatter[M ] =
∫
dxMDmatter, satisfy

{Dmatter[M ], Dmatter[N ]} = Dmatter[MN ′ −NM ′] (20)

{Hmatter[M ], DT[N ]} = −Hmatter[NM
′] (21)

{Hmatter[M ], Hmatter[N ]} = Dmatter

[
β̄|Ex|(Eϕ)−2(MN ′ −NM ′)

]
(22)

whereDT[N ] := D[N ]+Dmatter[N ] is the total diffeomor-
phism constraint, including the gravitational part. Clas-
sically one would have β̄ = 1 (and Hmatter would only
depend on the triad fields), but here we are allowing for

a correction function β̄(Kϕ, E
x) to take into account pos-

sible deformations of the matter part as in (5). There-
fore, to compute brackets we assume that Hmatter may
also depend on Kϕ (but not on Kx, nor on derivatives
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of Kϕ or the triad). The brackets of total Hamiltonian
constraints, combining gravity and matter contributions,
then do not decouple from each other, and cross-terms
will have to be considered below. (Cross-terms must van-
ish in this case according to the argument given at the
beginning of this subsection, but will do so only with
additional restrictions on the modification functions.)
Examples of such deformed matter systems include the

scalar field, dust and null dust: In the first case, we have
a canonical pair

{φ(x), Pφ(y)} =
1

4π
δ(x, y), (23)

and corresponding constraints

Dmatter[N ] = 4π

∫
dxNPφ φ

′ , (24)

and

Hmatter[M ] = 4π

∫
dxM

(
ν

P 2
φ

2|Ex|1/2Eϕ
+ σ

|Ex|3/2φ′ 2

2Eϕ
+ |Ex|1/2EϕU(φ)

2

)
, (25)

with correction functions ν(Kϕ, E
x) and σ(Kϕ, E

x) such
that β̄ = νσ. For dust fields [34], we have two canonical
pairs with

{τ(x), Pτ (y)} = {Φ(x), PΦ(y)} =
1

4π
δ(x, y) , (26)

and a contribution

Dmatter[N ] = 4π

∫
dxN (Pτ τ

′ + PΦΦ
′) (27)

to the diffeomorphism constraint, while the matter part
of the Hamiltonian constraint is

Hmatter[M ] = 4π

∫
dxM

√
P 2
τ + β̄

|Ex|

(Eϕ)2
(Pτ τ ′ + PΦΦ′)2 .

(28)
For null dust fields [35], only the the second canonical
pair in (26) survives and

Hmatter[M ] = 4π

∫
dxM

√
|β̄|

√
|Ex|

Eϕ
|PΦΦ

′| . (29)

Starting from the classical linear combination of con-
straints

C̃T =
(Ex)′

Eϕ
(H +Hmatter)− 2

Kϕ

√
|Ex|

Eϕ
(D +Dmatter) ,

one may replaceK2
ϕ, KϕK

′
ϕ andKϕ multiplying the mat-

ter part of the diffeomorphism constraint by three differ-
ent functions f1, F2 and Fmatter. We therefore define

C̃matter :=
(Ex)′

Eϕ
Hmatter−2

Fmatter(Kϕ, E
x)
√

|Ex|

Eϕ
Dmatter

(30)
and

C̃T := C̃ + C̃matter . (31)
In the first term of gravitational contributions to the con-
straint, we now consider a more-general modified expres-
sion:

C̃[M ] = −
1

2G

∫
dxM

(
|Ex|−1/2(Ex)′(1 + f1(Kϕ, E

x)) + 2|Ex|1/2F2(Kϕ,K
′
ϕ, E

x)

−
(Ex)′

4(Eϕ)2

(
4|Ex|1/2(Ex)′′ + |Ex|−1/2((Ex)′)2

)
+

|Ex|1/2((Ex)′)2(Eϕ)′

(Eϕ)3

)
(32)

where K2
ϕ has been replaced by a function f1 of Kϕ (and possibly Ex), and KϕK

′
ϕ by a function F2 of these same

variables. We will also assume the orientation Ex > 0.
Using the equivalent expression

C̃[M ] = −
1

2G

∫
dxM

{
d

dx

[
2 |Ex|1/2

(
1− Γ2

ϕ

)]
+ 2(|Ex|1/2)′f1 + 2|Ex|1/2F2

}
, (33)
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it is straight-forward to see that requiring the term inside the parenthesis to be a total derivative restricts f1 and F2

to be independent of Ex, and F2 to be linear in K ′
ϕ:

F2(Kϕ,K
′
ϕ) = 2f2(Kϕ)K

′
ϕ with 2f2 =

df1
dKϕ

. (34)

(Substituting the first condition back in (33) we recover (17) and the second condition is again the same as the one
obtained from effective models for the closure of the modified Hamiltonian and diffeomorphism constraints.)
Using (20), (21) and (22), we compute the bracket

{C̃T[M ], C̃T[N ]} = {C̃[M ], C̃[N ]} +

∫
dx(MN ′ −NM ′)

×

{
|Ex|

(Eϕ)2

[
((Ex)′)2

(Eϕ)2

(
β̄ −

∂Fmatter

∂Kϕ

)
+ 2Fmatter

(
2Fmatter −

∂F2

∂K ′
ϕ

)]
Dmatter

−
|Ex|1/2(Ex)′

(Eϕ)2

(
2Fmatter −

∂F2

∂K ′
ϕ

)(
Hmatter − Eϕ ∂Hmatter

∂Eϕ

)

+
|Ex|1/2((Ex)′)3

2(Eϕ)4
∂Hmatter

∂Kϕ

}
. (35)

(For details, see App. B.) We first note that the bracket

{C̃[M ], C̃[N ]} = −
1

2G

∫
dx (MN ′ −NM ′)

|Ex| ((Ex)′)2

(Eϕ)3

[
∂F2

∂Kϕ
−

∂2F2

∂Kϕ∂K ′
ϕ

K ′
ϕ

+

(
1

2|Ex|

(
∂f1
∂Kϕ

−
∂F2

∂K ′
ϕ

)
−

∂2F2

∂Ex∂K ′
ϕ

)
(Ex)′ −

∂2F2

(∂K ′
ϕ)

2
K ′′

ϕ

]
(36)

by itself may form a closed system only if it vanishes
identically: since (36) does not depend onKx and (Ex)′′,

{C̃[M ], C̃[N ]} = FC̃ C̃+FDD implies FC̃ = FD = 0. This
is the Abelianization condition in the vacuum case.
The vanishing of the K ′′

ϕ term again implies that F2

must depend linearly on K ′
ϕ. Using this condition, all

terms proportional to K ′
ϕ cancel out. The vanishing of

the first term and the (Ex)′-term imply that F2 has the
form F2 = 2f2(Kϕ, E

x)K ′
ϕ + f3(E

x), for a general func-
tion f3 of the triad component Ex, as well as

∂f1
∂Kϕ

− 2f2 = 4|Ex|
∂f2
∂Ex

. (37)

This requirement matches (34) in the case of correction
functions independent of Ex.
With these conditions, we can now look at the addi-

tional contributions to (35) in the presence of matter.
Using the expression obtained for F2 and requiring the
total bracket (35) to be zero, we must have

Fmatter = f2 , β̄ =
∂f2
∂Kϕ

and
∂Hmatter

∂Kϕ
= 0 .

(38)
The last condition in (38) tells us that no deformation
of the matter part depending on Kϕ is consistent with
Abelianization (or a closed system). Furthermore, in the
case of deformations of the matter Hamiltonian indepen-
dent of curvature, β̄(Ex) can only be a function of the

triad. Thus also in this case, the second condition in (38)
implies that the only possible dependence on Kϕ of the
whole system is the classical one. If a deformation con-
sistent with Abelianization exists, it must contain other
derivatives of the fields. Remarkably, however, in the
classical case with β̄ = 1 Abelianization of the constraint
C̃T[M ] follows for general matter systems satisfying (20)–
(22), not just for a scalar field.

5. Maxwell field

To arrive at the negative conclusions above, it was
crucial that the matter contribution to the diffeomor-
phism constraint is assumed to be non-zero. It is well-
known, however, that substiting a spherically symmetric
ansatz in the canonical action for a Maxwell field leads
to a consistent reduced system with a vanishing contri-
bution to the diffeomorphism (or vector) constraint [36].
This property leaves the possibility open for a consistent
Abelianization of the Einstein-Maxwell system (which,
however, does not have local degrees of freedom in spher-
ical symmetry).
Indeed, in this case the canical pairs are

{Ax(x), P (y)} =
1

4π
δ(x, y) , (39)

with Ax(x) the sole spatial radial component of the vec-
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tor potential and Ex := P sinϑ the only non-zero radial
component of the (densitized) electric field. The contri-
bution to the Hamiltonian constraint is

Hmatter[M ] = 4π

∫
dxM

EϕP 2

2 |Ex|3/2
, (40)

and there is the additional (Maxwell) Gauss constraint:

GMaxwell[Λ] = 4π

∫
dxΛP ′ . (41)

There is no contribution to the vector constraint obtained
from the {H,H}-bracket, so the system does not satisfy
(20)–(22) but instead

DT[N ] = D[N ] (42)

{Hmatter[M ], DT[N ]} = −Hmatter[NM
′] (43)

−GMaxwell

[
MNEϕ|Ex|−3/2P

]

{Hmatter[M ], Hmatter[N ]} = 0 . (44)

As before, one may also consider a deformed system
(which satisfies the same bracket relations) with

Hmatter[M ] = 4π

∫
dxM

ν EϕP 2

2 |Ex|3/2
, (45)

and correction function ν(Kϕ, E
x). The combined con-

straint C̃T[M ] results from taking Dmatter = 0 in expres-

sion (30), so that now {C̃matter[M ], C̃matter[N ]} = 0 and
only the last term in (35) survives:

{C̃T[M ], C̃T[N ]} = {C̃[M ], C̃[N ]} +

∫
dx(MN ′ −NM ′)

|Ex|1/2((Ex)′)3

2(Eϕ)4
∂Hmatter

∂Kϕ
. (46)

Thus, a consistent Abelian deformation is always possi-
ble, but again only as long as the correction function ν is
independent of curvature. The gravitational contribution
to the Hamiltonian constraint, however, can be modified
in a curvature-dependent way. Nevertheless, this model
is not a counter-example to our statements that no co-
variant holonomy-modified models with local degrees of
freedom are known, because there are no local degrees of
freedom in the spherically symmetric Einstein–Maxwell
system. As we shall recall in the next section, these
properties are again fully compatible with results [37]
using effective methods and the requirement of anomaly-
freedom.

We can interpret this system as further circumstan-
tial evidence that local degrees of freedom seem to be
responsible for making it more difficult (if not impossi-
ble) to find covariant models with holonomy modifica-
tions. The spherically symmetric Einstein–Maxwell sys-
tem can obey the required consistency conditions, but
only because the Gauss constraint allows one to elim-
inate the new kinematical degree of freedom, given by
the Maxwell fields, from the diffeomorphism constraint.
The same constraint, P ′ = 0 in its local version, removes
the new kinematical degree of freedom from the reduced
phase space. In contrast to the scalar or dust examples,
the non-gravitational local kinematical degree of freedom
therefore does not lead to local physical degrees of free-
dom, which then do not seem to present an obstacle to a
consistent holonomy-modified model.

Looking back at these calculations, the modified
Einstein–Maxwell system can be consistent despite the
fact that there is no contribution to the diffeomorphism
constraint because in this case the matter contribution

∫
dx δNAxP

′ to the infinitesimal generator of radial
diffeomorphisms is a multiple of the Gauss constraint.
Again, this is a special property of reduced models and
unlikely to extend to general configurations. One may
consistently define the Einstein–Maxwell constrained sys-
tem as in [37], with non-zero contribution

Dmatter[N ] = −4π

∫
dxNAxP

′ . (47)

However, this alternative set of constraints satisfies (20)–
(22) with β̄ = 0 and hence does not lead to an Abelian
deformation. (In fact, even classically, the corresponding
system of constraints CT[M ] and DT[N ] is not closed un-
less the Gauss constraint is included.) Even though the
two initial systems of constraints with different contribu-
tions to DT[N ] are equivalent, the two systems derived
from them by substituting the Hamiltonian constraint
with CT[M ] are not.
The generator of spatial diffeomorphisms, (47), has

also been used in [38] in the context of Abelianization.
While Abelianization of normal hypersurface deforma-
tions could be achieved in this case, it was possible only
by fixing the U(1)-gauge of the Maxwell contribution.
Our construction leads to a more general result, showing
Abelianization even if no partial gauge fixing is used.

C. Impossible modifications

We will now verify explicitly that the impossibility
of obtaining a (partially) Abelian algebra from defor-

mations of the classical C̃T constraint is consistent with
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negative results for an anomaly-free deformed constraint
algebra.
Again, consider a classical spherically symmetric mat-

ter system with non-derivative couplings, and such
that correction functions in the Hamiltonian HT[M ] =
H [M ] + Hmatter[M ] do not contain derivatives of the
gravitational fields K and E. It is easy to see that if
the deformed vacuum algebra satisfies

{H [M ], H [N ]} = D[β|Ex|(Eϕ)−2(MN ′ −NM ′)] (48)

with a correction function β depending on the connec-

tion or extrinsic curvature, and the matter contribution
to the diffeomorphism constraint is non-trivial, then the
matter Hamiltonian must be deformed with correction
functions also depending on extrinsic curvature. (This is
at least true if we assume no second or higher derivatives
of the matter fields.) Indeed, if we assume Hmatter to be
independent of Kx and Kϕ it follows that

S := {H [M ], Hmatter[N ]} − (M ↔ N) = 0 ,

and therefore the ‘crossed’ or ‘mixed’ brackets vanish and
we have

{HT[M ], HT[N ]} = {H [M ], H [N ]}+ {Hmatter[M ], Hmatter[N ]} .

For a first-class algebra we must have

{Hmatter[M ], Hmatter[N ]} = Dmatter[β|E
x|(Eϕ)−2(MN ′ −NM ′)] .

There cannot be additional multiples of the (total)
Hamiltonian constraint since the latter contains second
derivatives of Ex. However, the right-hand side of the
above expression for the bracket depends on curvature,
so the left hand side, that is Hmatter[M ], must depend on
curvature after all.
Motivated by the previous observations and by consis-

tent deformations with inverse-triad corrections obtained

in [5–7], we will consider matter systems which addition-
ally satisfy (20), (21) and (22) with a correction func-
tion β̄(Kx,Kϕ, E

x) depending on both extrinsic curva-
ture components and Ex. (The scalar and dust fields
above with deformation functions also depending on Kx

satisfy these conditions.) For these systems or any other
model with matter Hamiltonians depending on connec-
tion or extrinsic-curvature components, we have

S =

∫
dx (MN ′ −NM ′)

[(
|Ex|−

1

2 (Ex)′

2Eϕ
−

|Ex|
1

2 (Eϕ)′

(Eϕ)2

)
∂Hmatter

∂Kx
+

|Ex|
1

2 (Ex)′

2(Eϕ)2
∂Hmatter

∂Kϕ

]

+

∫
dx (MN ′′ −NM ′′)

|Ex|
1

2

Eϕ

∂Hmatter

∂Kx
. (49)

As shown in [8], variations byMN ′−NM ′ andMN ′′−NM ′′ are independent, so that ∂Hmatter/∂Kx = 0. Therefore,
restricting now to Kx-independent corrections,

{HT[M ], HT[N ]} =

∫
dx (MN ′ −NM ′)

(
|Ex|

(Eϕ)2
(
βD + β̄Dmatter

)

+
|Ex|

1

2 (Ex)′

2(Eϕ)2
∂Hmatter

∂Kϕ

)
. (50)

It is now easy to see that the last term cannot be a
linear combination containing the total Hamiltonian be-
cause the latter contains second-order derivatives of Ex

in its gravitational part while the former does not. Since
Hmatter must be independent of Kx, this last term can-
not contain a multiple of the gravitational part of the
diffeomorphism constraint D either. Hence the only pos-

sibilities left for a closed algebra are that the last term
vanishes or that it is a multiple of Dmatter. Since we are
assuming Dmatter 6= 0, this last possibility is, however,
inconsistent since it would require β to depend on (Ex)′.
It then follows again that deformations of the matter
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Hamiltonian must be independent of Kϕ:

∂Hmatter

∂Kϕ
= 0 and β = β̄ .

If Hmatter is independent of both curvature components,
then β̄ is necessarily independent of curvature too and the
last condition above precludes any vacuum deformation
such as (19) depending on curvature. We have come full
circle, in this case the only consistent deformations of
the combined gravity-matter system independent of Kx

must also be independent of Kϕ. Only triad-dependent
deformations of the type found in [5–7] are allowed.
For Maxwell fields, there is no contribution from

the {Hmatter[M ], Hmatter[N ]}-bracket, and therefore
β̄Dmatter = 0 in (50). Deformations of the gravitational
and matter parts of the Hamiltonian effectively ‘decou-
ple’ and we see that consistent or anomaly-free deforma-
tions are possible with Kϕ-dependent deformations (19)
of the gravitational part and an undeformed or deformed
but curvature-independent matter Hamiltonian.

IV. CONCLUSIONS

Abelianization of normal hypersurface deformations
can eliminate structure functions from constraint brack-
ets and thereby open up access to standard quantization
methods applied to gravitational models. However, by
itself, this result leaves the question of covariance un-
addressed, which is important for gravitational theories.
As shown here, covariance of modified theories is indeed
non-trivial in this setting, and it is not always realized: A
standard holonomy modification of the Abelianized con-
straint does not lead to hypersurface-deformation gener-
ators with the correct classical limit if a scalar field or
other matter with local physical degrees of freedom are
coupled to gravity.
In our general discussion of covariance in canoni-

cal systems, we have highlighted the important distinc-
tion between background treatments and background-
independent theories. Even if back-reaction is not consid-
ered, there is a difference between these two cases as re-
gards covariance in non-classical systems. Hypersurface-
deformation generators may then be deformed in differ-
ent ways as one departs from the classical limit, but a
consistent gravity-matter system requires the same de-
formation of both ingredients. A background treatment
in which covariance is required separately for gravity and
matter, on the other hand, may formally give rise to
more options. As an example, the holonomy-modified
scalar model of [18] does not correspond to a covariant
gravity-matter system, as shown here, but the actual con-
structions of [18] make use of a gravitational background
and may be formally consistent. (We note that two dif-
ferent kinds of modifications appear in [18], holonomy
modifications and a discretization of the scalar Hamilto-
nian. While the latter is in the foreground in [18], we

have tested only the former in the present paper. Co-
variance conditions on discretized scalar Hamiltonians
remain to be explored, but possible discrete versions of
hypersurface-deformation brackets are known [39].)
An interesting result is also the fact that there seems

to be complete agreement on this question, addressed
with different methods: Abelianization and anomaly
freedom implemented with effective techniques as intro-
duced in [3] in the context of cosmological perturbations.
This convergence of results obtained by different meth-
ods gives further support to the phenomenon of signa-
ture change discovered by an analysis of canonical effec-
tive models [32]. At first sight, it might seem that the
constructions of [17, 18] do not lead to modified space-
time structures in spherically symmetric models, unlike
what effective calculations have shown in the same mod-
els [5, 8]. However, if one actually poses the question of
covariance and space-time structure in the constructions
of [17, 18], one finds, as shown here, that covariance re-
quires the Hamiltonian constraints to be modified with
the same restriction (18) as found in [5, 8] for anomaly-
free effective models. If K2

ϕ is replaced by some func-
tion f(Kϕ), in effective and Abelianized models the same
modified brackets

{H [N1], H [N2]} = −D[β(Kϕ)(|E
x|/(Eϕ)2)(N1N

′
2−N2N

′
1)]

(51)
are realized for generators of hypersurface deformations,
with a non-trivial function

β(Kϕ) =
1

2

∂2f

∂K2
ϕ

. (52)

(Signature change is indicated by β changing sign, which
always happens if f(Kϕ) has a local maximum. For

the popular modification f(Kϕ) = δ−2 sin2(δKϕ), for in-
stance, β(Kϕ) = cos(2δKϕ).) The agreement of results is
promising, but at the same time one then has to take seri-
ously the resulting modified space-time structures at high
curvature, which can lead to problems of indeterminism
and Cauchy horizons for black holes [40] or global issues
for cosmological perturbation equations [33].
In this light, the language used in [17, 18], speaking

about quantum systems on quantum space-time does not
seem justified because covariance conditions, which are
usually understood as being crucial for space-time the-
ories, have not been checked. (This language goes back
to cosmological constructions in [41, 42], where it seems
equally unjustified because the background minisuper-
space models used in these examples do not even allow
one to test covariance and the consistency of quantum
space-time structures. Instead, metric structures are
merely postulated.) In the scalar model, no consistent
space-time structure of the holonomy-modified theory is
known, so that it seems unclear how to use formal solu-
tions of these systems for an analysis of Hawking radia-
tion, the stated aim of [18].
At present, it is not known whether covariance can

always be realized in the presence of holonomy modifica-
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tions from loop quantum gravity, even if one restricts one-
self to the rather tractable spherically symmetric mod-
els. Especially the presence of local physical degrees of
freedom seems to pose a challenge, as indicated by the
general matter models considered here (as well as the
spherically symmetric Einstein–Maxwell system as dis-
cussed in Sec. III B 5) and the polarized Gowdy models
of [28]. This result of our paper might pose a challenge to
loop quantum gravity. We certainly did not discuss full
quantizations of the models considered, but if the theory
is to have the correct semiclassical limit, brackets of the
form analyzed here will be encountered in some way.
The partial nature of our no-go results [53] can be used

to suggest how covariant holonomy-modified models with
local degrees of freedom could possibly be realized. One
way to avoid the negative conclusions would be to in-
clude higher spatial derivatives of the matter field. Such
terms are expected in continuum effective models of loop
quantum gravity because matter fields and their stan-
dard derivative terms in the Hamiltonian have to be dis-
cretized for an operator acting on spin-network states
[43]. For anomalies to cancel out, holonomy modifica-
tions in the gravitational contribution to the constraint
would have to be carefully adjusted to matter discretiza-
tions. So far, these two quantization steps have been
considered as independent, but off-shell anomaly-freedom
may force one to combine them. If a consistent ver-
sion then becomes possible, it would have several unex-
pected features, in addition to making consistent models
rather tightly constrained. First, for the covariance con-
ditions of the gravitational background and the matter
system to match, the matter discretization would have
to depend on extrinsic curvature because the modified
structure function (52) of a covariant holonomy-modified
background has such a dependence. Secondly, holonomy

modifications in one direction (here, an angular direction
in spherically symmetric models which gives rise to point
holonomies of Kϕ) would have to be closely related to
the matter discretization in another direction (here, the
radial one so as to have higher spatial derivatives). It
is not clear whether covariant models can be found by
implementing these features, evading our no-go results.
(For radial holonomy modifications in vacuum spherically
symmetric models, higher spatial derivatives do not seem
to help much [8].) Nevertheless, there is a chance that it
would be fruitful to match covariance conditions of grav-
itational terms with holonomy modifications, as studied
in [5, 8] and in the present paper, with methods to ob-
tain consistent discretizations as studied for instance in
[39, 44, 45].
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Appendix A: Diffeomorphism constraint

The diffeomorphism constraint in loop quantum grav-
ity is usually not constructed by writing the classical ex-
pression in terms of holonomies and inserting basic op-
erators, but rather by lifting the spatial flow generated
by the constraint to the state space [31]. (See [46] for an
alternative.)

In spherically symmetric models [25], one can represent
states by referring to an orthonormal basis

ψ{(x1,k1,µ1),...,(xn,kn,µn)}[Kx,Kϕ] =

n∏

j=1

exp

(
ikj

xj+1

∫
xj

Kxdx

)
exp (iµjKϕ(xj)) (A1)

with integer kj , real numbers µj , and xj in the radial
manifold. (For simplicity, we assume the radial manifold
to be compact. In the notation used to write states, we
set kn+1 = 0.) Spatial diffeomorphisms Φ can easily be
represented unitarily by

Φ̂ψ{(x1,k1,µ1),...,(xn,kn,µn)} := ψ{(Φ(x1),k1,µ1),...,(Φ(xn),kn,µn)} .
(A2)

This action can be used to factor out spatial diffeomor-
phisms by group averaging, but it does not define a diffeo-
morphism constraint: States with different {x1, . . . , xn}
are orthogonal to each other, so that one cannot take a
t-derivative of the quantized flow of a 1-parameter family
Φt = exp(tv) with a spatial vector field v as an infinites-

imal generator.

1. Effective constraints

In a continuum effective theory, on the other hand,
there should be a well-defined version of the diffeomor-
phism constraint, possibly with quantum corrections.
For instance, in the canonical framework of [47–49], the
effective constraint would be computed as the expecta-
tion value of Φ̂ in a suitable class of semiclassical states
obtained by superpositions of the basis states. For a lo-
cal effective theory (and therefore the classical limit) to
exist, these superposed states must be such that expec-
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tation values 〈Êx〉 and so on are differentiable functions
of x in some coarse-graining approximation. A derivative
expansion of these or more-complicated expectation val-
ues (such as the Hamiltonian constraint) then gives rise
to a theory with gauge transformations of infinitesimal
diffeomorphisms acting on effective fields.
In order to compute an effective constraint, one need

not construct explicit semiclassical states, which would
be challenging in models of loop quantum gravity. In-
stead, one parameterizes states by expectation values
and moments of basic operators, so that a semiclassical

regime can be specified more easily by a certain hierar-
chy of the moments by powers of ~. By the same con-
dition, the derivative expansion can be combined with
a semiclassical expansion, in which the classical diffeo-
morphism constraint is extended by moment terms. Not
only expectation values of the basic operators but also
their fluctuations and higher moments are then subject
to gauge transformations.
In addition to expectation values of basic operators

quantizing Ex, Kx, E
ϕ and Kϕ in the case of spherically

symmetric models, the moments are defined as

∆ [(Eϕ)n1 (Ex)n2 (Kϕ)
n3 (Kx)

n4 ] :=
〈(

∆̂Eϕ
)n1

(
∆̂Ex

)n2
(
∆̂Kϕ

)n3
(
∆̂Kx

)n4
〉
symm

(A3)

in totally symmetric ordering, where ∆̂ζ := ζ̂ − 〈ζ̂〉 if ζ
represents a generic phase space variable. In a loop quan-
tization, one would use holonomy operators instead of
quantized components of extrinsic curvature. These vari-
ables form a phase space, with a Poisson bracket based
on an extension of

{〈Â〉, 〈B̂〉} =
〈[Â, B̂]〉

i~
(A4)

to moments by the Leibnitz rule.

For expectation values of basic operators, (A4) reduces
to the classical bracket. The bracket (A4) applied to mo-
ments is not the only extension of the classical bracket
one could think of, but it is distinguished by the fact that
a closed commutator algebra of some set of operators,
such as some first-class constraint operators ĈI , implies a

closed algebra of effective constraints, defined as 〈p̂olĈI〉

with polynomials p̂ol in basic operators, under Poisson
brackets. One can therefore analyze the possibility of
first-class quantizations by computing Poisson brackets
of effective constraints, which in most cases is much more
feasible than analyzing the possibility of closed commu-
tators. The effective constraints can be computed in
terms of the moments by Taylor expanding the expec-

tation value in 〈∆̂ζ〉 [47–49].

In models with local kinematical degrees of freedom,
we proceed formally in order to illustrate the main fea-
tures. (But see [50] for a demonstration that canoni-
cal effective methods can also be applied to quantum
field theories.) For the diffeomorphism constraint of the
spherically symmetric vacuum model, given in (9), we
have an infinite family of effective constraints D[N ]pol :=〈
p̂ol D̂[N ]

〉
where p̂ol now stands for arbitrary polyno-

mials in the ∆̂ζ of spherically symmetric variables. We
assume that we have selected a consistent factor-ordering
choice for the operator D̂[N ], which in this case is known

to exist [13]. For semi-classical states, we have

∆ [(Eϕ)n1 (Ex)n2 (Kϕ)
n3 (Kx)

n4 ] ≡ O
(
~(n1+n2+n3+n4)

)
.

This hierarchy allows us to consider a closed system of
finitely many local effective constraints to any fixed order
in ~, after expanding each of these constraints (starting
with the diffeomorphism constraint for pol = 1) in terms

of basic expectation values 〈ζ̂〉 and the moments.
As follows from general considerations of effective con-

strained systems [48, 49, 51], no new observables arise
in this way, but quantum corrections to the classical re-
duced phase space appear. For every new quantum vari-
able given by a moment, there is a higher-order effective

constraint with p̂ol 6= 1 which fixes the moment or re-
moves it by the gauge flow. So far, this property has been
demonstrated for finite-dimensional models, but such a
result is sufficient for the usual counting of local degrees
of freedom in which one subtracts the number of con-
straints plus gauge flows from the number of kinematical
degrees of freedom.

2. Local observables?

The statement in our last paragraph is in conflict with
an observation made in [17, 18], pointing out a large
class of new local observables in loop-quantized spheri-
cally symmetric models. However, on closer inspection,
these observables have the following, problematic origin:
In loop quantizations such as the one sketched above,
one constructs a state space using auxiliary ingredients
in addition to the classical phase-space variables (or cor-
responding quantum numbers): While kj and µj in (A1)
give eigenvalues of the quantized Ex and Eϕ, respec-
tively, the vertex positions xj have no classical corre-
spondence. By group averaging (A2), the diffeomorphism
constraint is then solved by factoring out the vertex po-
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sitions, that is the non-classical ingredients. In the clas-
sical theory, however, the diffeomorphism constraint and
its flow provide non-trivial relationships between Ex, Eϕ

and their momenta, which do not follow from the group-
averaging construction. By ignoring these relationships,
the loop-quantized theory has additional local observ-
ables, but their meaning is obscure because their origin
is the auxiliary vertex positions introduced for kinemat-
ical states. Indeed, [17, 18] explicitly state that their
local observables parameterize the sequence of successive
kj , which depends on how the spurious vertex positions
are injected in states. As our discussion of effective con-
straints shows, these observables, while they may look
like local degrees of freedom, cannot be part of a local
effective theory. And even though coordinate-dependent
vertex positions are averaged over, they leave a trace in
the resulting theory by the missing relationships between
kinematical phase-space variables.

In loop-quantized spherically symmetric models, the
implementation of the diffeomorphism constraint directly
follows the full theory [31]. Although the diffeomorphism
constraint is usually considered well-understood in loop
quantum gravity, several problems of the theory related
to its solutions remain and indicate difficulties both with
coordinate independence (vertex positions affecting ob-
servables even after spatial diffeomorphisms have been
factored out) and the classical limit (observables without
a place in local effective theories).

Appendix B: Constraint bracket for matter models

We can compute the bracket (35) by splitting the grav-
ity and matter parts and by exploiting the anti-symmetry
property:

{C̃T[M ], C̃T[N ]} = {C̃[M ] + C̃matter[M ], C̃[N ] + C̃matter[N ]}

= {C̃[M ], C̃[N ]}+ {C̃matter[M ], C̃matter[N ]}

+{C̃[M ], C̃matter[N ]} − {C̃[N ], C̃matter[M ]} . (B1)

The gravity part

{C̃[M ], C̃[N ]} = 2G

∫
dx

1

2

δC̃[M ]

δKϕ

δC̃[N ]

δEϕ
− (M ↔ N)

is simple and results in expression (36). The ‘mixed’ brackets are also straight-forward:

{C̃[M ]D , C̃matter[N ]} − {C̃[N ], C̃matter[M ]}

= 2G

∫
dx

1

2

(
δC̃[M ]

δKϕ

δC̃matter[N ]

δEϕ
−
δC̃[M ]

δEϕ

δC̃matter[N ]

δKϕ

)
− (M ↔ N)

=

∫
dx (MN ′ −NM ′)|Ex|1/2

(
((Ex)′)2

2(Eϕ)3
∂C̃matter

∂Kϕ
−

∂F2

∂K ′
ϕ

∂C̃matter

∂Eϕ

)

=

∫
dx (MN ′ −NM ′)

|Ex|1/2(Ex)′

Eϕ

(
((Ex)′)2

2(Eϕ)3
∂Hmatter

∂Kϕ
−

∂F2

∂K ′
ϕ

∂Hmatter

∂Eϕ

)

−
|Ex|

(Eϕ)2

(
((Ex)′)2

(Eϕ)2
∂Fmatter

∂Kϕ
+ 2Fmatter

∂F2

∂K ′
ϕ

)
Dmatter +

|Ex|1/2(Ex)′

(Eϕ)2
∂F2

∂K ′
ϕ

Hmatter . (B2)

For the matter part we use

{C̃matter[M ], C̃matter[N ]} = {Hmatter[M̃ ]−Dmatter[M̂ ], Hmatter[Ñ ]−Dmatter[N̂ ]}

= {Hmatter[M̃ ], Hmatter[Ñ ]}+ {Dmatter[M̂ ], Dmatter[N̂ ]}

−
(
{Hmatter[M̃ ], Dmatter[N̂ ]} − {Hmatter[Ñ ], Dmatter[M̂ ]}

)
, (B3)

with

M̃ :=
(Ex)′

Eϕ
M , M̂ :=

2Fmatter

√
|Ex|

Eϕ
M (B4)
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and similarly for Ñ and N̂ . Since Hmatter does not depend on Kx and because of anti-symmetry of the bracket we
may use (22) directly:

{Hmatter[M̃ ], Hmatter[Ñ ]} = {Hmatter[M̃ ], Hmatter[Ñ ]}
∣∣∣
M̃,N̂

= Dmatter[β̄|E
x|(Eϕ)−2(M̃Ñ ′ − ÑM̃ ′)]

= Dmatter[β̄|E
x|((Ex)′)2(Eϕ)−4(MN ′ −NM ′)] , (B5)

where the notation |M̃,N̂ indicates that in the bracket M̃ and N̂ are taken as constant on phase space. Similarly, since

Dmatter does not depend on gravitational variables, we can use (20):

{Dmatter[M̂ ], Dmatter[N̂ ]} = Dmatter[M̂N̂ ′ − N̂N̂ ′]

= Dmatter[4F
2
matter|E

x|(Eϕ)−2(MN ′ −NM ′)]. (B6)

Computing the last line in (B3) is more subtle. First we write

{Hmatter[M̃ ], Dmatter[N̂ ]} = {Hmatter[M̃ ], DT[N̂ ]} − {Hmatter[M̃ ], D[N̂ ]} . (B7)

One now may check that

{Hmatter[M̃ ], DT[N̂ ]} − (M ↔ N) = {Hmatter[M̃ ], DT[N̂ ]}
∣∣∣
M̃,N̂

− (M ↔ N) . (B8)

There are two additional terms (proportional to MN ′ − NM ′) arising from the phase-space dependence of
the smearing fields which could add to the bracket: one coming from the integration by parts of (Ex)′ in

(δM̃/δEx)HmatterδDT[N̂ ]/δKx − (M ↔ N) and the other from the integration by parts of K ′
ϕ in the gravitational

part of the diffeomorphism constraint in (δHmatter[M̃ ]/δEϕ)(δDT[N̂ ]/δKϕ) − (M ↔ N). However, these two terms
exactly cancel, and hence we may use (21):

{Hmatter[M̃ ], DT[N̂ ]} − (M ↔ N) = −Hmatter[M̃
′N̂ ] − (M ↔ N)

= Hmatter[2Fm|Ex|1/2(Ex)′(Eϕ)−2(MN ′ −NM ′)] . (B9)

Finally, it is straight forward to check that

{Hmatter[M̃ ], D[N̂ ]} − (M ↔ N) =

∫
dx (MN ′ −NM ′)

2Fmatter|E
x|1/2(Ex)′

Eϕ

∂Hmatter

∂Eϕ
. (B10)

Putting everything back in (B3),

{C̃matter[M ], C̃matter[N ]} =

∫
dx (MN ′ −NM ′)

[
|Ex|

(Eϕ)2

(
((Ex)′)2

(Eϕ)2
β̄ + 4F 2

matter

)
Dmatter

−
2Fmatter|E

x|1/2(Ex)′

(Eϕ)2

(
Hmatter − Eϕ ∂Hmatter

∂Eϕ

)]
. (B11)
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