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Abstract

We report on the calculation of the threshold soft function for heavy quark pair production in

e+e− annihilation at two-loop order. Our main result is a generalization of the familiar Drell-Yan

threshold soft function to the case of non-zero primary quark mass. We set up a framework based on

the method of differential equations which allows for the straightforward calculation of the bare soft

function to arbitrarily high orders in the dimensional regularization parameter. Remarkably, we

find that we can obtain the bare two-loop Drell-Yan soft function from the heavy quark soft function

to the order in epsilon required for a two-loop calculation by making simple replacements. We

expect that our results will be of use, both as an important input for precision physics calculations at

linear colliders and, more formally, as a first step towards a better understanding of the connection

between vacuum matrix elements of massive soft Wilson lines and vacuum matrix elements of

massless soft Wilson lines.
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I. Introduction

Soft and collinear factorization formulas for infrared-safe observables in Quantum Chro-

modynamics (QCD) often involve soft functions. Up to normalization, a soft function for

a particular QCD observable is nothing but the expression for that observable in the soft

limit. The calculation of the soft function for a given observable is typically much simpler

than the analogous full QCD calculation but can nevertheless provide useful physics insights

which might otherwise be cumbersome to extract analytically [1–3].

Recently, due to an ever-increasing experimental demand for precise theoretical predic-

tions, numerous higher-order soft function calculations have been carried out. Most of these

higher-order computations are at O (α2
s) in perturbative QCD and concern observables with

soft limits which are completely described by massless (light-like) soft Wilson lines. Notable

examples include various soft functions for jet mass observables in e+e− annihilation [4–8],

the soft function for B → Xsγ decay [11, 12], the transverse momentum-dependent soft

function for Drell-Yan production [13], the soft function for electroweak gauge boson pro-

duction at large transverse momentum [14], and the soft function for the invariant mass

distribution of highly boosted tt̄ pairs [15]. Very recently, remarkable progress has been

made towards the calculation of soft corrections at O (α3
s) [16–21]. As a result, threshold

predictions for both Higgs and Drell-Yan production at hadron colliders are now available

at next-to-next-to-next-to-leading order [22, 23].

On the other hand, much less attention has been given to higher-order soft function

calculations which involve squared matrix elements of massive (time-like) Wilson lines. In

fact, only the soft function for secondary production of a massive quark-antiquark pair in

e+e− annihilation [24] and the soft function for threshold production of a massive color

octet at hadron colliders [25] have been calculated to second order in the strong coupling

constant. In particular, only one-loop, next-to-leading order (NLO) QCD corrections are

currently available for the threshold top quark pair production soft function at hadron

colliders [26]. It is natural to ask whether the calculation of the complete two-loop, next-

to-next-to-leading order (NNLO) corrections to the threshold soft function for top quark

pair production at hadron colliders can be carried out because it is an important ingredient

for both next-to-next-to-next-to-leading threshold logarithm resummation and approximate

fully differential NNLO calculations [27, 28]. In this work, we take a first step towards our
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ultimate goal of understanding the parton-initiated processes relevant for hadron collider

physics by calculating the threshold soft function for heavy quark pair production in e+e−

annihilation.

The motivation for this calculation is manifold. First of all, the master integrals that

we encounter during the course of our e+e− calculation will surely also show up when we

calculate the two-loop pp → tt̄ soft function. Furthermore, the calculation performed in this

paper can and will [29] be used to construct a Monte Carlo program for the computation of

fully differential NNLO QCD corrections to the continuum production of heavy quark pairs

at e+e− colliders. So far, no similar program has appeared which furnishes fully differential

NNLO predictions for continuum bb̄ and tt̄ production in e+e− annihilation. Finally, the

structure of the result obtained is interesting in its own right because, to date, no complete

two-loop, massive soft function calculation of comparable complexity has been carried out.

As alluded to above, the most immediate application of our results will be to new studies

of heavy quark pair production in e+e− annihilation at energies far above the kinematic

threshold. A good understanding of such processes, both theoretically and experimentally,

is of considerable interest. For instance, the bottom-quark forward-backward asymmetry at

the Z peak has long been known to provide one of the most precise methods for the extraction

of the electroweak mixing angle, θW [30]. Furthermore, at the proposed International Linear

Collider, where a sustained run at a center-of-mass energy of 1 TeV has been discussed,

precise fully differential continuum top-quark pair production calculations will be essential in

order to obtain reliable theoretical predictions for important high energy collider observables

like the top-quark forward-backward asymmetry.

Due to the presence of the heavy quark mass, higher-order perturbative QCD corrections

to the process

e+e− → γ∗/Z∗ → QQ̄ +X (1)

are difficult to calculate, even at NNLO. This is reflected in the fact that, to date, all physics

predictions at NNLO have been made in some sort of approximation scheme. A number of

studies of the total cross section have been carried out over the years, both at the kinematic

threshold [31–34] and at extremely high energies [35–38]. For more differential observables

such as the forward-backward asymmetry, the situation is similar. The heavy quark forward-

backward asymmetry has been known to NNLO in the massless approximation for some
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time [39–41] and, more recently, the full mass dependence was worked out for the purely

virtual NNLO corrections [42]. At the present time, no fully differential calculation, exact

to second order in QCD perturbation theory, exists in the literature.

The calculation of infrared-safe observables at NNLO is also complicated by the fact that,

for a given observable, there are always three independent components which must be cal-

culated and then consistently combined together; in order to obtain a finite and physically

meaningful result, one requires two-loop, purely virtual corrections, one-loop, real-virtual

corrections with one additional unresolved parton in the final state, and real-real correc-

tions with two additional unresolved partons in the final state. Over the years, a number of

important steps have been taken towards the computation of fully differential NNLO QCD

corrections to e+e− → QQ̄ observables. The two-loop, purely virtual corrections were first

computed in a series of papers [43–45] and later confirmed by another group [46]. When

at least one parton is resolved, the combination of the real-virtual and real-real corrections

are given by the well-known NLO QCD corrections to e+e− → QQ̄ + jet [47–51]. In fact,

the only ingredient missing is a framework for the consistent combination of the various

components mentioned above. Important progress has been made on this front by a number

of authors, extending the antenna subtraction method [52] to deal with massive, colored,

final state particles [53–55]. In the meantime, a promising new method [56] has been devel-

oped which makes use of ideas from Frixione-Kunszt-Signer subtraction [57, 58] and sector

decomposition [59–61].

An alternative and perhaps even more straightforward approach to such calculations is

to simply extend to NNLO the phase space slicing method used in the original NLO QCD

calculation of the e+e− → QQ̄ process [62]. In fact, a variant of this approach based on

dispersion relations has already been successfully applied to compute the full light quark

flavor-dependent contributions at NNLO [63, 64]. To fix some notation and help clarify the

role played by the e+e− → QQ̄ soft function, we now give a brief explanation of the method

in the context of a simple example.1

In the region of phase space where the energy of the QCD radiation off of the heavy quarks

is small, heavy quark effective theory [65–68] implies that QQ̄ differential distributions

1 We refer the reader to reference [29] for an unabridged exposition of the NNLO phase space slicing method.
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factorize. We therefore have, for instance, the factorization formula

dσQQ̄

d cos θ
=

dσQQ̄
0

d cos θ
HQQ̄ (x, µ)

∫ 2Ecut

0

dλSQQ̄ (x, λ, µ) + O
(
Ecut/

√
s
)
, (2)

relevant to the computation of the QQ̄ forward-backward asymmetry (see e.g. [42]). In the

above, dσQQ̄
0 /d cos θ is the leading order cross section for QQ̄ production differential in the

cosine of the polar angle, θ, between the beam line and the final state heavy quark, λ is (for

essentially historical reasons) twice the energy of the soft radiation off of the QQ̄ pair, and µ

is the factorization scale. The kinematical variable x appearing in the factorization formula

is defined in terms of the heavy quark mass, mQ, and the center-of-mass energy, s, as

x =
1−

√
1− 4m2

Q

s

1 +

√
1− 4m2

Q

s

. (3)

The hard function, HQQ̄ (x, µ), encodes the purely virtual corrections and the soft function,

SQQ̄ (x, λ, µ), encodes the soft radiative corrections at threshold. Finally, the factorization

formula depends on an energy scale, Ecut, below which the power corrections in Ecut/
√
s be-

come negligible and, as a result, the full differential distribution is well-approximated by Eq.

(2). Now, continuing with our example, the phase space slicing method would first employ

factorization formula (2) to calculate the differential cross section when the total energy of

the soft radiation is less than or equal to Ecut and then employ a Monte Carlo calculation

of e+e− → QQ̄ + jet to calculate the differential cross section for jet energies greater than

or equal to Ecut. The idea is to obtain a result which is approximately independent of the

cutoff by taking Ecut small enough to sufficiently suppress power corrections to Eq. (2) but

at the same time large enough to avoid numerical instabilities in the Monte-Carlo code for

e+e− → QQ̄ + jet for jet energies of order Ecut. In a closely related context, stability with

respect to variations in the cutoff parameter was demonstrated in reference [69].

This article is organized as follows. In Section II, we write down the operator definition

of the e+e− → QQ̄ soft function and discuss its renormalization group (RG) evolution.

In Section IIIA, we exhibit the one-loop heavy quark soft function to all orders in the

dimensional regularization parameter. The remainder of the third section is devoted to

the technical details of our two-loop calculation, first in Section IIIB for the real-virtual

contributions and then in Section IIIC for the real-real contributions. Due to their length,

we chose to put our results for the real-virtual and real-real contributions to the bare two-

loop soft function in ancillary files included with the arXiv submission of this paper. It is
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also worth pointing out that readers interested only in our final result for the renormalized

two-loop soft function may skip directly from Section II to Section IV without significant

loss of continuity. In Section IV, we begin by presenting the final result of our calculation

in a concise way. In order to check that we have not made any calculational errors, we then

discuss, one-by-one, all available consistency checks on the result. This naturally leads into

a discussion of the light-like limit of the heavy quark soft function and our novel way of

understanding it. With no additional input whatsoever, we found that we could predict

the ǫ expansion of the bare two-loop e+e− → qq̄ or Drell-Yan soft function to O(ǫi) by

expanding our bare two-loop heavy quark soft function to O(ǫi+1) and then making certain

replacements in the resulting expressions. Besides a precise statement of the connection

between these two seemingly rather different bare soft functions, we discuss another, similar

correspondence between bare soft functions defined using a hemisphere jet algorithm and

point out that, in fact, the various relations we have observed cannot follow from known

factorization properties of the massive soft functions we consider. Finally, a brief summary

and outlook is given in Section V.

II. Definition of the soft function and its RG evolution

The soft function can be written as the square of a time-ordered matrix element of two

semi-infinite Wilson line operators,

SQQ̄ (x, λ, µ) =
1

Nc

∑

XS

〈0|T
{
Y †
v Yv̄

}
δ
(
λ− P̂0

)
|XS〉〈XS|T

{
Y †
v̄ Yv

}
|0〉. (4)

The soft function defined in Eq. (4) depends on the kinematical parameter x defined in Eq.

(3), twice the energy of the soft QCD radiation, λ, and the factorization scale, µ. The soft

function also depends implicitly on the renormalized strong coupling constant, αs(µ), and

the number of colors, Nc. The summation is over all possible soft parton final states, |XS〉.
The operator P̂0 acts on the final state |XS〉 according to

P̂0|XS〉 = 2EXS
|XS〉, (5)

where EXS
is the energy of the soft radiation in final state XS. The Wilson line operators,

Y †
v and Yv̄, are respectively defined as out-going, path-ordered (P) and anti-path-ordered
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(
P
)
exponentials [70],

Y †
v (y) = P exp

(
ig

∫ ∞

0

dr v · A(v r + y)

)

Yv̄(y) = P exp

(
−ig

∫ ∞

0

dr v̄ · A(v̄ r + y)

)
. (6)

In the above, Aµ = Aa
µT

a, where the T a are fundamental su(Nc) matrices, v is the veloc-

ity vector of Q, and v̄ is the velocity vector of Q̄. For a generic four-vector, kµ, it is a

straightforward exercise to show that

v · k =
1

1 + x
k+ +

x

1 + x
k− (7)

v̄ · k =
x

1 + x
k+ +

1

1 + x
k− (8)

given the usual definitions k+ = k0 + k3 and k− = k0 − k3. From the above it is clear

that the e+e− → qq̄ and, by virtue of the time-reversal invariance of QCD, Drell-Yan soft

functions [1] can be computed from Eq. (4) in the x → 0 limit.

In the perturbative regime, the soft function can be calculated order-by-order in αs(µ).

Let us begin by discussing the bare soft function. Already at leading order in αs, the soft

function develops ultraviolet (UV) divergences2 and, therefore, non-trivial dependence on µ.

By dimensional analysis, we can write the loop expansion of the bare soft function as3

SQQ̄
bare(x, λ, µ) = δ(λ) +

αsSǫ

4π

µ2ǫ

λ1+2ǫ
S
(1)

QQ̄
(x, ǫ) +

(
αsSǫ

4π

)2
µ4ǫ

λ1+4ǫ
S
(2)

QQ̄
(x, ǫ) +O

(
α3
s

)
, (9)

where the S
(n)

QQ̄
(x, ǫ) are coefficient functions depending on both x and the parameter of

dimensional regularization, ǫ = (4− d)/2. The renormalization of the soft function is most

easily carried out in Laplace space. As usual, the Laplace transform is taken with respect

to λ,

S̃QQ̄
bare(x, L) =

∫ ∞

0

dλ exp

( −λ

eγEκ

)
SQQ̄
bare(x, λ, µ), (10)

where L = ln(κ/µ) and γE = 0.5772 . . . is the Euler constant.

2 The infrared (IR) divergences cancel between the purely virtual contributions to the squared matrix

element and those contributions which have some number of soft partons in the final state. Furthermore,

the purely virtual contributions to the squared matrix element of the Wilson line operators are all scaleless

and thus vanish in dimensional regularization. It therefore follows that this infrared cancellation amounts

to a conversion of IR poles to UV poles.

3 The bare expansion coefficients of the soft function, S
(L)

QQ̄
(x, ǫ), are defined in the obvious way by setting

the parameters λ and µ in Eq. (4) to one. This approach is convenient because, to all orders in the loop

expansion, the dependence on the scales λ and µ is trivially determined by power counting.
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The bare soft function in Laplace space has the simple structure

S̃QQ̄
bare(x, L) = 1 +

αsSǫ

4π
S̃
(1)

QQ̄
(x, L, ǫ) +

(
αsSǫ

4π

)2

S̃
(2)

QQ̄
(x, L, ǫ) +O

(
α3
s

)

= 1 +
αsSǫ

4π
e−2ǫγEΓ(−2ǫ)e−2ǫLS

(1)

QQ̄
(x, ǫ)

+

(
αsSǫ

4π

)2

e−4ǫγEΓ(−4ǫ)e−4ǫLS
(2)

QQ̄
(x, ǫ) +O

(
α3
s

)
(11)

and it requires both charge and operator renormalization. Charge renormalization is carried

out in the MS scheme by replacing the bare strong coupling constant with its renormalized

counterpart,

αsSǫ = αs(µ)

[
1− αs(µ)

4π

β0

ǫ
+O

(
α2
s(µ)

)]
, (12)

where Sǫ = (4πe−γE)
ǫ
, and

β0 =
11

3
CA − 4

3
nfTF (13)

is the leading order QCD beta function with nf light flavors. In this paper, TF = 1/2,

CA = 3, and nf = 5.

An additional operator renormalization is typically necessary whenever one studies com-

posite field operators. In this case, the appearance of additional UV divergences is related

to the fact that the product of Wilson line operators in the definition of the soft function

has a cusp singularity at the coordinate origin. This cusp singularity can be removed by a

simple multiplicative renormalization,

S̃QQ̄(x, L) = ZS(x) S̃
QQ̄
bare(x, L). (14)

After charge renormalization has been carried out, the operator renormalization constant

of the soft function is fixed at each order in the renormalized coupling by insisting that it

absorb any remaining UV divergences. It admits an expansion in αs(µ) of the form

ZS(x) = 1 +
αs(µ)

4π
Z

(1)
S (x) +

(
αs(µ)

4π

)2




(
Z

(1)
S (x)

)2

2
+ Z

(2)
S (x)


 +O(αs(µ)). (15)

Later in this section, we will give expressions for Z
(1)
S (x) and Z

(2)
S (x) in terms of known

universal quantities. At this stage, it is worth emphasizing that, unless otherwise stated, we
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keep the dependence on x exact in all of our calculations. In particular, we make frequent

use of the relations

v2 = v̄2 =
4x

(1 + x)2
v · v̄ =

2(1 + x2)

(1 + x)2
. (16)

The renormalized soft function in Laplace space obeys a well-known evolution equa-

tion [71] of the form

dS̃QQ̄(x, L)

d ln(µ)
= −γs (x) S̃QQ̄(x, L). (17)

In Eq. (17) above, γs(x) is the cusp anomalous dimension for massive quarks. As usual, the

cusp anomalous dimension admits an expansion in the renormalized coupling,

γs(x) =
αs(µ)

4π
γs
0(x) +

(
αs(µ)

4π

)2

γs
1(x) +O

(
αs(µ)

3
)
. (18)

It turns out that both γs
0(x) and γs

1(x) can be written in a natural and compact way using

harmonic polylogarithms [72] of argument x.

Let us state explicitly that our harmonic polylogarithms, G(w1, . . . , wn; x), differ slightly

from those of reference [72]. Following [8], we begin by setting G(; x) = 1 for all x. Harmonic

polylogarithms with n weights are then defined as follows. Consider a set of n integers,

{w1, . . . , wn}, drawn from the set {−1, 0, 1}. If at least one of {w1, . . . , wn} is different

from zero, the weight n harmonic polylogarithm with weight vector {w1, . . . , wn} is defined

recursively as

G(w1, . . . , wn; x) =

∫ x

0

dt

t− w1
G(w2, . . . , wn; t). (19)

If, on the other hand, wi = 0 for all i, then the weight n harmonic polylogarithm with weight

vector {w1, . . . , wn} is given by

G(0, . . . , 0; x) =
1

n!
lnn(x) . (20)

In this work, we found it useful at various stages to perform high precision numerical evalu-

ations of our harmonic polylogarithms using the implementation [9] available in the GiNaC

CAS [10].

We are now in a position to write down both γs
0(x) and γs

1(x) explicitly [43, 71, 73, 74].

In our notation, we have

γs
0(x) = −8CF

[
1 +

1 + x2

1− x2
G(0; x)

]
(21)
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γs
1(x) =

160

9
CFnfTF

[
1 +

1 + x2

1− x2
G(0; x)

]
(22)

+CACF

[
−392

9
+

8π2(1 + 9x2)

3(1− x2)
+ 16

(1 + x2)
2

(1− x2)2

(
2G(0; x)

(
G(0,−1; x) +G(0, 1; x)

)

−4G(0, 0,−1; x)− 4G(0, 0, 1; x)− ζ(3)
)
+ 32

1 + x2

1− x2

(
G(0; x)

(
G(−1; x) +G(1; x)− 67

36

)

−G(0,−1; x)−G(0, 1; x)

)
− 32x2(1 + x2)

3 (1− x2)2
G3(0; x)− 32x2

1− x2
G2(0; x)

+
8π2 (1 + x2) (1 + 9x2)

3 (1− x2)2
G(0; x)

]
.

Eqs. (21) and (22) were derived by first extracting the cusp anomalous dimensions in the

space-like region from reference [43] and then analytically continuing the obtained expres-

sions to the time-like region.

Evolution equation (17) determines the form of the renormalization constants Z
(1)
S (x)

and Z
(2)
S (x) in terms of universal quantities defined above:

Z
(1)
S (x) =

γs
0(x)

2ǫ
(23)

Z
(2)
S (x) = −β0γ

s
0(x)

4ǫ2
+

γs
1(x)

4ǫ
. (24)

Eqs. (23) and (24) are derived by plugging Eq. (11) into Eq. (17) and taking care to keep

the ǫ dependence exact at all stages. It is also possible to solve Eq. (17) in the ǫ → 0 limit

up to µ-independent constants and terms of higher order in αs(µ),

S̃QQ̄(x, L) = 1 +
αs(µ)

4π

(
Lγs

0(x) + c1(x)
)
+

(
αs(µ)

4π

)2 [
L2

(
1

2

(
γs
0(x)

)2
− β0γ

s
0(x)

)

+L
(
c1(x)

(
γs
0(x)− 2β0

)
+ γs

1(x)
)
+ c2(x)

]
+O

(
αs(µ)

3
)
. (25)

The functions c1(x) and c2(x) must be determined by explicit perturbative calculations. The

one-loop function, c1(x), is known [75],

c1(x) = CF

[
1 + x2

1− x2

(
−2G2(0; x) + 8G(1; x)G(0; x)− 8G(0, 1; x)− 4π2

3

)

−4
1 + x

1− x
G(0; x)

]
, (26)

but the two-loop function, c2(x), is one of our main new results and will be presented in

Section IV. Actually verifying that the renormalized soft function has the form given in Eq.

(25) turns out to be a very useful check on the explicit two-loop calculation carried out in

the next section.
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III. The calculation of the soft function at one and two loops

The calculation of the QQ̄ soft function at two-loop order is non-trivial and deserves

an in-depth discussion. As mentioned above, the leading order soft function was computed

through the finite terms in reference [75]. However, for our purposes, this is not enough;

finite contributions from the charge and operator renormalization constants arise at the

two-loop level which require the one-loop result to be known to higher orders in ǫ. Since

it is relatively straightforward to compute, we give the one-loop result to all orders in ǫ in

Section IIIA. The genuine two-loop contributions are significantly more complicated and

will be discussed at greater length. As explained in Section II, all purely virtual corrections

to the soft function vanish identically in dimensional regularization as a result of UV-IR

cancellation. The contributions to the soft function which must be considered at two-loop

order can be classified as either real-virtual or real-real, depending on whether one or two

soft partons appear in the final state. Representative next-to-leading order diagrams are

depicted in Figure 1.

For convenience, we split the two-loop coefficient of the bare soft function, S
(2)

QQ̄
(x, ǫ), into

its real-virtual and real-real parts,

S
(2)

QQ̄
(x, ǫ) = S

RV (2)

QQ̄
(x, ǫ) + S

RR (2)

QQ̄
(x, ǫ). (27)

The coefficients S
RV (2)

QQ̄
(x, ǫ) and S

RR (2)

QQ̄
(x, ǫ) will be treated in Sections III B and IIIC

respectively.

A. The one-loop soft function

In this subsection, we solve the one-loop soft function once and for all. Due to the

extreme simplicity of the integrand, there is no need to perform an integration by parts

reduction [76, 77]; a direct integration is straightforward to carry out and that is how we

shall proceed. Evaluating the four cut eikonal diagrams that contribute, we find

S
(1)

QQ̄
(x, ǫ) = 32π3(4π)−ǫeγEǫCF

∫
ddk

(2π)d
δ
(
k2
)
δ (1− (v + v̄) · k)×

×
(

2v · v̄
v · k v̄ · k − v2

(v · k)2
− v̄2

(v̄ · k)2
)

= − 4eγEǫCF

Γ(1− 2ǫ)

(
2Γ(1− ǫ)− (1 + x)

((
1− x

1 + x

)2

− 2ǫ+ 1

)
×

11



(a) (b)

(c) (d)

FIG. 1: Panels (a) and (b) show cut eikonal Feynman diagrams which contribute to

S
RR (2)

QQ̄
(x, ǫ) and panels (c) and (d) show diagrams which contribute to S

RV (2)

QQ̄
(x, ǫ).

×
(
Γ(−ǫ) 2F1(1, 1− ǫ; 1 + ǫ; x) + (1− x)2ǫ−1x−ǫΓ(1− 2ǫ)Γ(ǫ)

))
. (28)

B. The real-virtual contributions to the two-loop soft function

We generate the two-loop integrand via cut eikonal diagrams and process its Lorentz and

gauge structure in a semi-automated way. For this purpose, we employ the programs QGRAF

[78], FeynCalc [79], and ColorMath [80], and find six independent, non-zero contributions

to S
RV (2)

QQ̄
(x, ǫ). Ultimately, we arrive at an expression of the schematic form

S
RV (2)

QQ̄
(x, ǫ) =

∫
[dk dq]IRV

QQ̄(q, k, x, ǫ), (29)

where we have introduced the short-hand notation
∫
[dk dq] =

∫
ddk Θ

(
k0
)
δ
(
k2
)
δ (1− (v + v̄) · k)

∫
ddq . (30)

To simplify the calculation, we perform an integration by parts reduction using the devel-

opment version of Reduze 2 [10, 81–83] which, among other new features, allows for the
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application of Laporta’s algorithm [84] to phase space integrals. The idea behind this was

worked out some time ago and is commonly referred to as the reverse unitarity method [85–

87]. The key insight is that, for the purpose of integral reduction, one can simply replace

delta function constraints with propagator denominators by virtue of the relation

δ
(
k2
)
= − 1

2πi

(
1

k2 + i0
− 1

k2 − i0

)
. (31)

After carrying out the integral reduction, we find

S
RV (2)

QQ̄
(x, ǫ) = 2CACFRe

{
− 4

3x(1 + x)4ǫ2(1 + 2ǫ)2

(
−6
(
x3 + x2 + 1 + x

)2
+ 12(1 + x)2×

×
(
45x4 + 28x3 + 30x2 + 28x+ 45

)
ǫ4 − 2

(
243x6 + 718x5 + 985x4 + 1052x3 + 985x2

+718x+ 243) ǫ3 +
(
39x6 + 214x5 + 477x4 + 620x3 + 477x2 + 214x+ 39

)
ǫ2 +

(
39x6

+94x5 + 89x4 + 92x3 + 89x2 + 94x+ 39
)
ǫ
)
IRV1 (x, ǫ) +

32(3− 4ǫ)

3(1 + x)4ǫ2(1 + 2ǫ)2
×

×
(
12(1 + x)2

(
5x2 + 2x+ 5

)
ǫ3 + (1 + x)2

(
1 + x2

)
− 2

(
7x4 + 28x3 + 38x2 + 28x+ 7

)
ǫ2

−
(
5x4 + 12x3 + 10x2 + 12x+ 5

)
ǫ
)
IRV2 (x, ǫ)− 8x (1 + x2) (1− 2ǫ)

(1 + x)4ǫ(1 + 2ǫ)
IRV3 (x, ǫ)

− 4

x(1 + x)2ǫ(1 + 2ǫ)

(
−
(
1 + x2

)2
+ (2x(x(x(3x− 10)− 30)− 10) + 6)ǫ2

+(x(x(x(x + 8) + 26) + 8) + 1)ǫ
)
IRV4 (x, ǫ)

−
8(1− 2ǫ)

(
(1 + x2)

2
+ 2(x(x((x− 6)x− 10)− 6) + 1)ǫ

)

x(1 + x)2ǫ(1 + 2ǫ)
IRV5 (x, ǫ)

−8 (1 + x4 + x2(8ǫ+ 2))

(1 + x)4(1 + 2ǫ)
IRV6 (x, ǫ)− 4 (1 + x2 + 2((x− 4)x+ 1)ǫ)

(1 + x)2(1 + 2ǫ)
IRV7 (x, ǫ)

}
, (32)

where {IRV1 (x, ǫ), . . . , IRV7 (x, ǫ)} are seven master integrals which must be calculated. Ex-

plicitly, we have

IRV1 (x, ǫ) = −ie2γEǫπ2ǫ−3

∫
[dk dq]

1

(q · v̄ + i0) ((k − q)2 + i0)
(33)

IRV2 (x, ǫ) = −ie2γEǫπ2ǫ−3

∫
[dk dq]

q2

(q · v̄ + i0) ((k − q)2 + i0)

IRV3 (x, ǫ) = −ie2γEǫπ2ǫ−3

∫
[dk dq]

1

k · v (q · v̄ + i0) ((k − q)2 + i0)

IRV4 (x, ǫ) = −ie2γEǫπ2ǫ−3

∫
[dk dq]

1

(q2 + i0) (q · v̄ + i0) ((k − q) · v + i0)

IRV5 (x, ǫ) = −ie2γEǫπ2ǫ−3

∫
[dk dq]

k · v
(q2 + i0) (q · v̄ + i0) ((k − q) · v + i0)

13



IRV6 (x, ǫ) = −ie2γEǫπ2ǫ−3

∫
[dk dq]

1

k · v (q · v̄ + i0) ((k − q) · v + i0) ((k − q)2 + i0)

IRV7 (x, ǫ) = −ie2γEǫπ2ǫ−3

∫
[dk dq]

1

(q2 + i0) (q · v̄ + i0) ((k − q) · v + i0) ((k − q)2 + i0)
.

It is worth pointing out that, in all cases, it is possible to integrate the master integrals

directly to sufficiently high order in ǫ by expanding in plus distributions under the integral

sign. The disadvantage of this approach is that one would need to revisit the calculation at

some point in the future in order to compute, say, the three-loop soft function. Ideally, one

would like to know the exact functional dependence on both x and ǫ. We were not able to find

closed, all-orders-in-ǫ expressions in all cases so, instead, we employed a modern variant of the

method of differential equations [88–94]. Specifically, we decouple our system of differential

equations to all orders in ǫ by constructing a normal form basis for the system [95, 96].

In a nutshell, the idea is to work in a new basis built out of master integrals which take

the form of so-called pure functions. To fix the integration constants, we specify simple

regularity conditions in the physical region. For integrals unconstrained by these conditions,

we provide closed form expressions which are exact in both x and ǫ. This setup allows for a

straightforward and transparent calculation of the master integrals to any desired order in

the epsilon expansion. To the best of our knowledge, our calculation is the first application

of the normal form basis method to the calculation of eikonal phase space integrals (see

the recent reference [97] for an application to standard phase space integrals). Here, we

are interested in the real parts of the master integrals, which we calculate directly in the

physical region of phase space, 0 < x < 1. To illustrate the power of our method and to

check an unexpected analytical property of our result (see Section IV below), we actually

calculate our master integrals to one order higher in ǫ than is strictly necessary for a two-loop

calculation of the soft function. As a result, we shall actually obtain and present results for

S
RV (2)

QQ̄
(x, ǫ) up to and including terms of O (ǫ2).

Let us begin by briefly reviewing the proposal of reference [96] in the context of the present

calculation. One begins with a first-order system of differential equations for IRV(x, ǫ) =

{IRV1 (x, ǫ), . . . , IRV7 (x, ǫ)} derived using Reduze 2 or some other reduction program,

d

dx
IRV(x, ǫ) =

˜
ARV(x, ǫ)IRV(x, ǫ). (34)

The idea is to then attempt to find a new basis,

IRV(x, ǫ) =
˜
BRV(x, ǫ)FRV(x, ǫ), (35)

14



where FRV
i (x, ǫ) =

∑∞

n=0 c
(n)
i (x)ǫn for some coefficient functions, c

(n)
i (x), of uniform tran-

scendentality weight n. Once this has been achieved, the linear map
˜
BRV(x, ǫ) transforms

Eq. (34) into a system of differential equations of the form

d

dx
FRV(x, ǫ) = ǫ

˜
HRV(x)FRV(x, ǫ), (36)

which implies complete decoupling after expansion in ǫ. FRV(x, ǫ) is what we refer to in this

work as a normal form basis. Elements of a normal form basis, in this case the FRV
i (x, ǫ)

introduced above, are usually referred to as pure functions in the literature; due to the fact

that the terms in their ǫ expansions are of uniform transcendentality weight, starting at

weight zero at O (ǫ0), they can be thought of formally as weight zero objects if one assigns a

transcendentality weight of −1 to ǫ. Once appropriate input integrals have been evaluated,

Eq. (36) is significantly easier to solve than Eq. (34) because the coefficient functions c
(n)
i (x)

are completely determined by the coefficient functions c
(n−1)
i (x) up to constants.

Unfortunately, there is no fully-general, systematic approach to the construction of a

normal form basis, Eq. (36). However, hints for finding normal form integrals have been

given [96, 98, 99] and, more recently, a recipe to pass from the form Eq. (34) to the form Eq.

(36) which works in many cases of practical interest was described in [100]. While these ideas

would be useful in the present context, the bulk of this work was carried out before reference

[100] appeared, and we use a somewhat more ad hoc method to find the matrix
˜
BRV(x, ǫ)

here. It turns out that the integrals IRV6 (x, ǫ) and IRV7 (x, ǫ) are, up to normalization, already

pure functions. In several cases, normal form basis elements could be constructed by squaring

a propagator and then adjusting the overall normalization. The rest of the integrals in our

normal form basis are more non-trivial and required us to consider linear combinations of

several integrals with propagators raised to higher powers. Here, we resorted to an explicit

calculation of all of the integrals up to transcendentality weight three. We then made ansätze

for the undetermined coefficients in the basis change. The undetermined coefficients in our

ansätze happened to be tightly constrained by the contributions of low transcendentality

weight that we computed explicitly and this allowed us to determine a complete basis of

pure functions in an experimental fashion.

We now present the results that we obtained by going through the steps described above.

By making the change of variables

IRV1 (x, ǫ) =
(1 + x) (x2(3ǫ− 1)− 2xǫ+ 3ǫ− 1)

4(1− x)x(1− 2ǫ)2ǫ(4ǫ− 1)
FRV
1 (x, ǫ)− (1 + x)2(3ǫ− 1)

16x(1− 2ǫ)2ǫ(4ǫ− 1)
FRV
2 (x, ǫ)
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IRV2 (x, ǫ) = − (1 + x)

32x2(1− x)ǫ(4ǫ− 3)(4ǫ− 1)(1− 2ǫ)2

(
6x4 + (x(x(3x(9x− 4)− 14)− 12)

+27)ǫ2 + (x((8− 27x)x+ 6) + 8)xǫ− 27ǫ+ 6
)
FRV
1 (x, ǫ)

+
(1 + x)2(3ǫ− 2) (x2(9ǫ− 3) + 2xǫ+ 9ǫ− 3)

128x2ǫ(4ǫ− 3)(4ǫ− 1)(1− 2ǫ)2
FRV
2 (x, ǫ)

IRV3 (x, ǫ) = − (1 + x)3

2(1− x)xǫ (1− 2ǫ) (1− 4ǫ)
FRV
1 (x, ǫ) +

(1 + x)2

8xǫ (1− 2ǫ) (1− 4ǫ)
FRV
2 (x, ǫ)

+
(1 + x)3

4(1− x)xǫ2(2ǫ− 1)
FRV
3 (x, ǫ)

IRV4 (x, ǫ) = − (1 + x)2

2(1− x)2ǫ2(1− 4ǫ)
FRV
4 (x, ǫ) +

(1 + x)

4(1− x)ǫ2(1− 4ǫ)
FRV
5 (x, ǫ)

IRV5 (x, ǫ) =
(x2(3ǫ− 1)− 2xǫ+ 3ǫ− 1)

4(1− x)2ǫ2 (1− 2ǫ) (1− 4ǫ)
FRV
4 (x, ǫ)− (1 + x)(3ǫ− 1)

8(1− x)ǫ2 (1− 2ǫ) (1− 4ǫ)
FRV
5 (x, ǫ)

IRV6 (x, ǫ) =
(1 + x)2

(1− x)2ǫ3
FRV
6 (x, ǫ)

IRV7 (x, ǫ) =
(1 + x)

(1− x)ǫ3
FRV
7 (x, ǫ), (37)

where the FRV
i (x, ǫ) satisfy simple differential equations of the form

d

dx
FRV
1 (x, ǫ) = ǫ

(
−
(
1

x
+

2

1− x

)
FRV
1 (x, ǫ)− 1

4x
FRV
2 (x, ǫ)

)

d

dx
FRV
2 (x, ǫ) = −8ǫ

x
FRV
1 (x, ǫ)

d

dx
FRV
3 (x, ǫ) = ǫ

(
2

(
1

x
− 2

1 + x

)
FRV
1 (x, ǫ)− 1

2x
FRV
2 (x, ǫ)

−2

(
1

1 + x
+

1

1− x

)
FRV
3 (x, ǫ)

)

d

dx
FRV
4 (x, ǫ) = ǫ

(
2

x
FRV
1 (x, ǫ)−

(
3

x
− 2

1 + x
+

4

1− x

)
FRV
4 (x, ǫ)− 1

2x
FRV
5 (x, ǫ)

)

d

dx
FRV
5 (x, ǫ) = ǫ

(
1

x
FRV
2 (x, ǫ)− 4

x
FRV
4 (x, ǫ)− 2

(
1

x
− 1

1 + x
+

1

1− x

)
FRV
5 (x, ǫ)

)

d

dx
FRV
6 (x, ǫ) = ǫ

(
1

2x
FRV
3 (x, ǫ) +

(
1

2x
− 1

1 + x

)
FRV
4 (x, ǫ)− 1

4x
FRV
5 (x, ǫ)

−2

(
1

x
+

2

1− x

)
FRV
6 (x, ǫ)

)

d

dx
FRV
7 (x, ǫ) = ǫ

(
1

2x
FRV
2 (x, ǫ) +

4

x
FRV
4 (x, ǫ)− 2

(
1

1 + x
+

1

1− x

)
FRV
7 (x, ǫ)

)
, (38)

we arrive at

S
RV (2)

QQ̄
(x, ǫ) = 2CACFRe

{
4 (2 (1 + x2) ǫ+ x2 − 8(1 + x)2ǫ2 + 1)

(1− x2) ǫ3(2ǫ+ 1)2
FRV
1 (x, ǫ)
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− 4(3ǫ+ 1)

ǫ2(2ǫ+ 1)2
FRV
2 (x, ǫ) +

2 (1 + x2)

(1− x2) ǫ3(2ǫ+ 1)
FRV
3 (x, ǫ)− 4

(1− x2)2 ǫ3(2ǫ+ 1)

((
1 + x2

)2

+4(x(x((x− 2)x− 4)− 2) + 1)ǫ
)
FRV
4 (x, ǫ) +

4 (1 + x2)

(1− x2) ǫ2(2ǫ+ 1)
FRV
5 (x, ǫ)

−8 (x4 + x2(8ǫ+ 2) + 1)

(1− x2)2 ǫ3(2ǫ+ 1)
FRV
6 (x, ǫ)− 4 (x2 + 2((x− 4)x+ 1)ǫ+ 1)

(1− x2) ǫ3(2ǫ+ 1)
FRV
7 (x, ǫ)

}
. (39)

The above expression for S
RV (2)

QQ̄
(x, ǫ) is cleaner and more transparent than that given pre-

viously in Eq. (32). Not only is Eq. (39) somewhat more compact, but we can clearly see

from it that the reduced integrand obtained by Reduze 2 out of the box obscures the fact

that there are no power-law divergences in our result at x = 0.

Most integration constants can be fixed by so-called regularity conditions. The key idea

is relatively simple, although determining the complete set of useful constraints for a given

problem requires careful analysis. As is clear from the form of Eqs. (38), the only potential

singularities of the differential equations lie at the points x = −1, x = 0, and x = 1. Many

of these singularities, however, are actually absent in particular master integrals, as one can

see, for example, by examining their cut structure. When a master integral is known to

be regular or vanishing in a particular limit, one can employ this information to determine

integration constants such that the expressions obtained respect these constraints. It should

be stressed that, at the technical level, this is not always an easy program to carry out,

especially in more complicated situations with more scales where one obtains a first-order

system of partial differential equations. It turns out that three of our seven master integrals,

IRV1 (x, ǫ), IRV3 (x, ǫ), and IRV7 (x, ǫ), are completely constrained by a regularity condition at

x = 1 (the threshold limit). Further constraints could be obtained by considering the

master integrals at the point x = −1. Here, we chose to work exclusively in the physical

region 0 < x < 1 and do not consider regularity constraints at x = −1 in order to avoid

performing explicit analytical continuations to the unphysical region, x < 0. Instead, we fix

the remaining integration constants by direct calculation.

By direct integration, we obtained closed form expressions, exact in both x and ǫ, for the
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following integrals,4

IRV2 (x, ǫ) = −1

2
e2iπǫe2γEǫ(1 + x)x−2+ǫΓ(2− ǫ)Γ(2ǫ− 2)×

×
(
x4−3ǫΓ(3ǫ− 4) 2F1(5− 4ǫ, 1− ǫ; 5− 3ǫ; x)

Γ(2ǫ− 3)

+
Γ(4− 3ǫ) 2F1(1− ǫ, 2ǫ− 3; 3ǫ− 3; x)

Γ(5− 4ǫ)

)

IRV4 (x, ǫ) = −e2iπǫe2γEǫΓ(2ǫ)

2Γ(1 + ǫ)

(
(1 + x)2xǫΓ(1− ǫ)Γ(ǫ) 2F1

(
1, 1− ǫ; 1 + ǫ; x2

)

−2(1− x)2ǫ−1x−ǫ(1 + x)1+2ǫΓ(−2ǫ)Γ2(1 + ǫ)
)
×

×
(
x1−3ǫΓ(3ǫ− 1) 2F1(2− 4ǫ, 1− ǫ; 2− 3ǫ; x)

Γ(2ǫ)

+
Γ(1− 3ǫ) 2F1(1− ǫ, 2ǫ; 3ǫ; x)

Γ(2− 4ǫ)

)
+ 2eiπǫe2γEǫ cos(πǫ)x−ǫ(1 + x)2ǫ+1 ×

×Γ(−2ǫ)Γ(ǫ)Γ(2ǫ)
(
− (1− ǫ) 2F1(1− 2ǫ,−ǫ; 1− ǫ; x) + (1− 2ǫ)×

× 2F1(2− 2ǫ,−ǫ; 1− ǫ; x)
)(x1−3ǫΓ(3ǫ− 1) 2F1(2− 4ǫ, 1− ǫ; 2− 3ǫ; x)

Γ(2ǫ)

+
Γ(1− 3ǫ) 2F1(1− ǫ, 2ǫ; 3ǫ; x)

Γ(2− 4ǫ)

)

IRV5 (x, ǫ) = − e2iπǫe2γEǫΓ(2ǫ)

2Γ(3− 4ǫ)Γ(1 + ǫ)Γ(2ǫ− 1)

(
(1 + x)xǫΓ(1− ǫ)Γ(ǫ) 2F1

(
1, 1− ǫ; 1 + ǫ; x2

)

−2(1− x)2ǫ−1x−ǫ(1 + x)2ǫΓ(−2ǫ)Γ2(1 + ǫ)
)
×

×
(
x2−3ǫΓ(3− 4ǫ)Γ(3ǫ− 2) 2F1(3− 4ǫ, 1− ǫ; 3− 3ǫ; x)

+Γ(2− 3ǫ)Γ(2ǫ− 1) 2F1(1− ǫ, 2ǫ− 1; 3ǫ− 1; x)
)

+
2eiπǫe2γEǫ cos(πǫ)x−ǫ(1 + x)2ǫΓ(−2ǫ)Γ(ǫ)Γ(2ǫ)

Γ(3− 4ǫ)Γ(2ǫ− 1)
×

×
(
− (1− ǫ) 2F1(1− 2ǫ,−ǫ; 1− ǫ; x) + (1− 2ǫ) 2F1(2− 2ǫ,−ǫ; 1 − ǫ; x)

)
×

×
(
x2−3ǫΓ(3− 4ǫ)Γ(3ǫ− 2) 2F1(3− 4ǫ, 1− ǫ; 3− 3ǫ; x)

+Γ(2− 3ǫ)Γ(2ǫ− 1) 2F1(1− ǫ, 2ǫ− 1; 3ǫ− 1; x)
)

IRV6 (x, ǫ) =
e2iπǫe2γEǫΓ(1− ǫ)Γ(2ǫ)

2Γ(2− 2ǫ)Γ(1 + ǫ)
F1

(
1− ǫ; 2ǫ, 1; 2− 2ǫ; 1− x,

x− 1

x

)
×

×
(
2x−1−ǫ(1− x)−1+2ǫ(1 + x)2+2ǫΓ(−2ǫ)Γ2(1 + ǫ)

4 The special function F1(a; b1, b2; c;x, y) appearing in Eqs. (41) is called Appell’s F1 function and has the

standard definition

F1(a; b1, b2; c;x, y) =
Γ(c)

Γ(a)Γ(b1)Γ(b2)

∞∑

n=0

∞∑

m=0

Γ(a+ n+m)Γ(b1 + n)Γ(b2 +m)

Γ(c+ n+m)

xn

n!

ym

m!
. (40)
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−x−1+ǫ(1 + x)3Γ(1− ǫ)Γ(ǫ)2F1

(
1, 1− ǫ; 1 + ǫ; x2

) )
+ 2eiπǫe2γEǫ cos(πǫ)×

×Γ(1 − ǫ)Γ(−2ǫ)Γ(ǫ)Γ(2ǫ)

Γ(2− 2ǫ)
x−1−ǫ(1 + x)2+2ǫ ×

×F1

(
1− ǫ; 2ǫ, 1; 2− 2ǫ; 1− x,

x− 1

x

)(
(1− 2ǫ)2F1 (2− 2ǫ,−ǫ; 1 − ǫ; x)

−(1 − ǫ)2F1 (1− 2ǫ,−ǫ; 1− ǫ; x)
)
. (41)

These explicit solutions can be used to fix all remaining integration constants.5 While for

that purpose it would actually be sufficient to have a result in some asymptotic limit, the

full x dependence given above allows for a check of the differential equations themselves. In

order to extract the required integration constants, we expanded the Gauss hypergeometric

functions using the Mathematica program HypExp [102, 103] and the Appell F1 functions

using Picard’s integral,

F1(a; b1, b2; c; x, y) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

dt ta−1(1− t)c−a−1(1− xt)−b1(1− yt)−b2. (42)

With the presented ingredients it is straightforward to integrate the system of differential

equations for the real-virtual contributions to arbitrarily high orders in the dimensional reg-

ularization parameter. We refrain from explicitly writing our result for S
RV (2)

QQ̄
(x, ǫ) to O (ǫ2)

accuracy because of its length, but we have included it with our submission to arXiv.org as

an ancillary file.

C. The real-real contributions to the two-loop soft function

The real-real corrections are actually easier to calculate than the real-virtual corrections

because all x-dependent master integrals which contribute are completely determined by

the differential equations they satisfy, regularity conditions at threshold (x = 1), and a

single, trivial input integral. As before, we use a variety of scripts to evaluate the thirteen

independent, non-zero contributions6 to the square of the tree-level, two-emission amplitude

and arrive at an expression of the form

S
RR (2)

QQ̄
(x, ǫ) =

∫
[dk1 dk2]IRR

QQ̄(k1, k2, x, ǫ), (43)

5 Correctly computing the phases that appear in Eqs. (41) is, in our opinion, one of the more challenging

aspects of the calculation. We refer the interested reader to reference [101] where many details are given

for a very similar soft, real-virtual, two-loop calculation in the presence of heavy quarks.
6 We use Feynman gauge everywhere in the calculation. A different number of independent cut eikonal

diagrams would result, for example, in lightcone gauge.
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where we have introduced the short-hand notation
∫

[dk1 dk2] =

∫
ddk1d

dk2 Θ
(
k0
1

)
Θ
(
k0
2

)
δ
(
k2
1

)
δ
(
k2
2

)
δ (1− (v + v̄) · (k1 + k2)) (44)

to save space. Once again, we perform an integration by parts reduction and find

S
RR (2)

QQ̄
(x, ǫ) = C2

F

[
− 256(1− 2ǫ)(1− 4ǫ)(3− 4ǫ)

ǫ
IRR
1 (x, ǫ) +

512(1− 2ǫ)(1− 4ǫ)

(1 + x)2ǫ
×

×
(
1 + x2 − (1 + x)2ǫ

)
IRR
2 (x, ǫ)− 128(1− 4ǫ) (1 + x2 − (1 + x)2ǫ)

2

(1 + x)4ǫ
IRR
4 (x, ǫ)

]

+CFnfTF

[
−128(1− x)2(1− ǫ)(1− 2ǫ)(3− 4ǫ)

x(3 − 2ǫ)ǫ
IRR
1 (x, ǫ) +

128(1− ǫ)(1− 2ǫ)

x(1 + x)2(3− 2ǫ)ǫ
×

×(1− x)2
(
1 + x2 − 2(1 + x)2ǫ

)
IRR
3 (x, ǫ)

]

+CACF

[
16(3− 4ǫ)

(1 + x)2xǫ2(1 + 2ǫ)2(1− 2ǫ)(3− 2ǫ)

(
256(1 + x)2

(
1 + x2

)
ǫ7

−32(1 + x)2(x(23x− 18) + 23)ǫ6 + 32(x(x(x(17x− 16)− 68)− 16) + 17)ǫ5

+32(x(x(x(4x+ 55) + 107) + 55) + 4)ǫ4 − 16(x(x(x(13x+ 72) + 121) + 72) + 13)ǫ3

+2(x(x(x(x+ 36) + 34) + 36) + 1)ǫ2 + 2(1 + x)2(x(7x+ 46) + 7)ǫ

+3(1 + x)2((x− 8)x+ 1)
)
IRR
1 (x, ǫ)− 32(1− 2ǫ)

(1 + x)2ǫ2(1 + 2ǫ)2

(
6
(
1 + x2

)
ǫ− x2

+64(1 + x)2ǫ5 − 16(x− 3)(3x− 1)ǫ4 − 8(x(11x− 4) + 11)ǫ3 + 8(2 + x)(1 + 2x)ǫ2

−1
)
IRR
2 (x, ǫ)− 16

(1 + x)4xǫ2(3− 2ǫ)(1 + 2ǫ)

(
− 16

(
1− x2

)2
(x(27x+ 38) + 27)ǫ5

+8
(
1− x2

)2 (
1 + x2

)
ǫ+ 3

(
1− x2

)2 (
1 + x2

)
+ 128(1− x)2(1 + x)4ǫ6

+8(x(x(x(x(x(61x+ 36)− 57)− 72)− 57) + 36) + 61)ǫ4

−4(x(x(x(x(x(45x − 38)− 21) + 76)− 21)− 38) + 45)ǫ3

−2(x(x(x(x(x(7x + 44)− 43)− 88)− 43) + 44) + 7)ǫ2
)
IRR
3 (x, ǫ) +

8(1− 4ǫ)

(1 + x)4ǫ(1 + 2ǫ)2
×

×
(
− 8

(
1− x2

)2
ǫ3 + 5

(
1 + x2

)2
+ 16(1 + x)4ǫ4 − 8(x(x(x(x + 10)− 4) + 10) + 1)ǫ2

+2(1− x)2(x(7x− 2) + 7)ǫ
)
IRR
4 (x, ǫ)− 32x (1 + x2) (12(ǫ− 1)ǫ+ 1)

(1 + x)4ǫ(1 + 2ǫ)
IRR
5 (x, ǫ)

+
256x2(3− 2ǫ)

(1 + x)4(1 + 2ǫ)
IRR
6 (x, ǫ)− 16 (1 + x2 + 2((x− 4)x+ 1)ǫ)

(1 + x)2(1 + 2ǫ)
IRR
7 (x, ǫ)

]
, (45)

where {IRR
1 (x, ǫ), . . . , IRR

7 (x, ǫ)} are seven master integrals which must be calculated. Ex-

plicitly, we have

IRR
1 (x, ǫ) = e2γEǫπ2ǫ−2

∫
[dk1 dk2]
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IRR
2 (x, ǫ) = e2γEǫπ2ǫ−2

∫
[dk1 dk2]

1

k1 · v̄
IRR
3 (x, ǫ) = e2γEǫπ2ǫ−2

∫
[dk1 dk2]

1

(k1 + k2) · v

IRR
4 (x, ǫ) = e2γEǫπ2ǫ−2

∫
[dk1 dk2]

1

k1 · v̄ k2 · v
IRR
5 (x, ǫ) = e2γEǫπ2ǫ−2

∫
[dk1 dk2]

1

k1 · v̄ (k1 + k2) · v

IRR
6 (x, ǫ) = e2γEǫπ2ǫ−2

∫
[dk1 dk2]

k1 · v
k1 · v̄ (k1 + k2) · v

IRR
7 (x, ǫ) = e2γEǫπ2ǫ−2

∫
[dk1 dk2]

1

k1 · v̄ k2 · v (k1 − k2)2
. (46)

We now go through the procedure that we used to calculate the real-virtual contributions

in Section IIIB. By making the change of variables

IRR
1 (x, ǫ) =

1

(1− 2ǫ)(1− 4ǫ)(3− 4ǫ)
FRR
1 (x, ǫ)

IRR
2 (x, ǫ) =

(1 + x)

(1− x)(1 − 2ǫ)(1− 4ǫ)ǫ
FRR
2 (x, ǫ)

IRR
3 (x, ǫ) =

(1 + x)2

(1− x)2(1− 2ǫ)2(1− 4ǫ)
FRR
1 (x, ǫ)− x(1 + x)

(1− x)3(1− 2ǫ)2ǫ
FRR
3 (x, ǫ)

IRR
4 (x, ǫ) =

(1 + x)2

(1− x)2(1− 4ǫ)ǫ2
FRR
4 (x, ǫ)

IRR
5 (x, ǫ) = − (1 + x)3

2(1− x)x(1− 4ǫ)ǫ2
FRR
3 (x, ǫ)− (1 + x)3

4(1− x)x(1 − 4ǫ)ǫ2
FRR
5 (x, ǫ)

− (1 + x2) (1 + x)2

16(1− x)2x(1− 4ǫ)ǫ2
FRR
6 (x, ǫ)

IRR
6 (x, ǫ) =

(x2 − x+ 1) (1 + x)2

(1− x)2x(1− 2ǫ)2(1− 4ǫ)
FRR
1 (x, ǫ) +

(1 + x)3

(1− x)x(1− 2ǫ)(1− 4ǫ)ǫ
FRR
2 (x, ǫ)

+
(1 + x2) (1 + x) ((1 + x4) (1− (5− 6ǫ)ǫ)− x2(2− 4(2− ǫ)ǫ))

4(1− x)3x2(1− 2ǫ)2(1− 4ǫ)ǫ2
FRR
3 (x, ǫ)

+
(1 + x2) (1 + x)3(1− 3ǫ)

8(1− x)x2(1− 2ǫ)(1− 4ǫ)ǫ2
FRR
5 (x, ǫ) +

(1 + x)2

32(1− x)2x2(1− 2ǫ)(1− 4ǫ)ǫ2
×

×
( (

1 + x4
)
(1− 3ǫ) + 2x2ǫ

)
FRR
6 (x, ǫ)

IRR
7 (x, ǫ) =

(1 + x)

(1− x)ǫ3
FRR
7 (x, ǫ) , (47)

where the FRR
i (x, ǫ) satisfy simple differential equations of the form

d

dx
FRR
1 (x, ǫ) = 0

d

dx
FRR
2 (x, ǫ) = ǫ

(
−1

x
FRR
1 (x, ǫ)−

(
1

x
+

2

1− x

)
FRR
2 (x, ǫ)

)
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d

dx
FRR
3 (x, ǫ) = ǫ

(
−2

x
FRR
1 (x, ǫ)− 2

(
1

x
+

2

1− x

)
FRR
3 (x, ǫ)

)

d

dx
FRR
4 (x, ǫ) = ǫ

(
−4

x
FRR
2 (x, ǫ)− 2

(
1

x
+

2

1− x

)
FRR
4 (x, ǫ)

)

d

dx
FRR
5 (x, ǫ) = ǫ

(
4

x
FRR
1 (x, ǫ) + 4

(
1

x
− 2

1 + x

)
FRR
2 (x, ǫ)

+ 8

(
1

x
+

1

1− x
− 1

1 + x

)
FRR
3 (x, ǫ)− 2

(
1

1− x
+

1

1 + x

)
FRR
5 (x, ǫ)

+
1

x
FRR
6 (x, ǫ)

)

d

dx
FRR
6 (x, ǫ) = ǫ

(
−16

x
FRR
2 (x, ǫ) +

8

x
FRR
5 (x, ǫ)− 2

(
1

x
+

2

1− x

)
FRR
6 (x, ǫ)

)

d

dx
FRR
7 (x, ǫ) = ǫ

(
4

x
FRR
1 (x, ǫ)− 2

x
FRR
4 (x, ǫ)− 2

(
1

1− x
+

1

1 + x

)
FRR
7 (x, ǫ)

)
, (48)

we arrive at

S
RR (2)

QQ̄
(x, ǫ) = C2

F

[
− 256

ǫ
FRR
1 (x, ǫ) +

512 (1 + x2 − (1 + x)2ǫ)

(1− x2) ǫ2
FRR
2 (x, ǫ)

−128 (1 + x2 − (1 + x)2ǫ)
2

(1− x2)2 ǫ3
FRR
4 (x, ǫ)

]

+CFnfTF

[
256(1− ǫ)

ǫ(1 − 2ǫ)(3− 2ǫ)
FRR
1 (x, ǫ)− 128(1− ǫ) (1 + x2 − 2(1 + x)2ǫ)

(1− x2) ǫ2(1− 2ǫ)(3− 2ǫ)
FRR
3 (x, ǫ)

]

+CACF

[
−64(ǫ(13− ǫ(9 − 4(5− 4ǫ)(1− ǫ)ǫ)) + 6)

ǫ2(1 + 2ǫ)2(1− 2ǫ)(3− 2ǫ)
FRR
1 (x, ǫ)

+
32

(1− x2) (1− 2ǫ)ǫ3(1 + 2ǫ)2

(
− 4

(
1 + x2

)
ǫ+ x2 − 32(1 + x)2ǫ5 + 32(1− x)2ǫ4

+8(x(5x+ 2) + 5)ǫ3 − 4(x(5x+ 4) + 5)ǫ2 + 1
)
FRR
2 (x, ǫ)

− 32

(1− x2) (1− 2ǫ)(3− 2ǫ)ǫ3(1 + 2ǫ)

(
− 9

(
1 + x2

)
ǫ− 3

(
1 + x2

)
+ 32(1 + x)2ǫ5

−4(x(23x+ 30) + 23)ǫ4 + 4(x(19x+ 3) + 19)ǫ3 − (5− (44− 5x)x)ǫ2
)
FRR
3 (x, ǫ)

+
8

(1− x2)2 ǫ3(1 + 2ǫ)2

(
− 8

(
1− x2

)2
ǫ3 + 5

(
1 + x2

)2
+ 16(1 + x)4ǫ4

−8(x(10− x(4 − x(x+ 10))) + 1)ǫ2 + 2(1− x)2(7− (2− 7x)x)ǫ
)
FRR
4 (x, ǫ)

+
8 (1 + x2)

(1− x2) (1− 2ǫ)ǫ3
FRR
5 (x, ǫ) +

2

(1− x2)2 ǫ3 (1− 4ǫ2)

(
(1 + x4)(1 + 2ǫ)

+2x2(1− 2(5− 4ǫ)ǫ)
)
FRR
6 (x, ǫ)− 16 (1 + x2 + 2(1− (4− x)x)ǫ)

(1− x2) ǫ3(1 + 2ǫ)
FRR
7 (x, ǫ)

]
. (49)

Once again, unlike Eq. (45), the above expression makes it clear that there are no power-law

singularities in our result for the real-real contributions at x = 0.
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The results given above and the input integral

IRR
1 (x, ǫ) =

e2γEǫΓ2(1− ǫ)

4Γ(4− 4ǫ)
(50)

are the only ingredients that one needs in order to straightforwardly integrate the sys-

tem of differential equations for the real-real contributions to arbitrarily high orders in the

dimensional regularization parameter. This is the case because, as mentioned above, reg-

ularity conditions at x = 1 allow for the determination of the integration constants for

IRR
2 (x, ǫ)− IRR

7 (x, ǫ). We refrain from explicitly writing our result for S
RR (2)

QQ̄
(x, ǫ) to O (ǫ2)

accuracy because of its length, but we have included it with our submission to arXiv.org as

an ancillary file.

IV. Results, cross-checks, and new relations

In this section, we present our main result and discuss a number of consistency checks that

we carried out. In fact, while considering the high-energy limit of our result, we discovered

what is, to the best of our knowledge, a new class of relations between bare soft functions

in perturbative QCD. As explained in Section II, the renormalized two-loop soft function

is known up to a µ-independent constant, c2(x). Needless to say, our explicit result for

S̃QQ̄(x, L) up to and including terms of O (α2
s) has exactly the form predicted by Eq. (25),

and we find

c2(x) = C2
F

[
2
(1 + x2)

2

(1− x2)2

(
G4(0; x)− 8G(1; x)G3(0; x) + 8

(
2G2(1; x) +G(0, 1; x)

+
π2

6

)
G2(0; x)− 32

(
G(0, 1; x) +

π2

6

)
G(1; x)G(0; x) + 16G2(0, 1; x) +

16π2

3
G(0, 1; x)

+
4π4

9

)
+ 8

(1 + x2)

(1− x)2

(
G2(0; x)− 4G(1; x)G(0; x) + 4G(0, 1; x) +

2π2

3

)
G(0; x)

+8
(1 + x)2

(1− x)2
G2(0; x)

]

+CFnfTF

[
− 224

27
+

16(1− 3x+ x2)

9(1− x2)

((
G(0; x)− 4G(1; x)

)
G(0; x) + 4G(0, 1; x) +

2π2

3

)

+
8(1 + x2)

3(1− x2)

(
− 1

3
G3(0; x) + 2G(1; x)G2(0; x)− 4

(
G2(1; x) +

π2

6

)
G(0; x) +

4π2

3
G(1; x)

+8G(1; x)G(0, 1; x)− 4G(0, 0, 1; x)− 8G(0, 1, 1; x) + 4ζ(3)

)
+

16(1 + 30x+ x2)

27(1− x2)
G(0; x)

]
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+CACF

[
−2(11x4 − 84x3 + 24x2 + 12x− 11)

9 (1− x2)2
G3(0; x) +

4(55x2 − 294x+ 55)

27(1− x2)
G(0; x)

+
4(17x3 − 32x2 + 68x− 17)

9(1− x2)(1− x)
G2(0; x) +

8π2(5x4 + 27x3 + 6x2 + 3x+ 7)

9 (1− x2)2
G(0; x)

−4ζ(3)
(1 + x2) (9 + x2)

(1− x2)2
G(0; x) +

4π2(11x2 + 66x− 25)

27(1− x2)
+

π4 (1 + x2) (77 + 221x2)

90 (1− x2)2

+
16(26x2 − 33x+ 26)

9(1− x2)

(
G(0; x)G(1; x)−G(0, 1; x)

)
+

8π2 (1 + x2) (3 + 7x2)

3 (1− x2)2

(
G(0, 1; x)

−G(0; x)G(1; x)
)
+ 8

3x3 − 7x2 − 5x+ 1

(1− x2)(1− x)

(
G(−1; x)G2(0; x)− 2G(0,−1; x)G(0; x)

+2G(0, 0,−1; x)
)
+ 16

x3 − x2 + 3x+ 1

(1− x2)(1 + x)

(
2G(0, 0,−1; x)−G(0; x)G(0,−1; x)

)

+
8(13x4 − 72x2 + 11)

3 (1− x2)2

(
2G(0, 0, 1; x)−G(0; x)G(0, 1; x)

)
− 8

(1 + x2) (3x2 − 1)

(1− x2)2
×

×
(
6G(0, 0, 0,−1; x) +G(0,−1; x)G2(0; x)− 4G(0, 0,−1; x)G(0; x)

)

+
1 + x2

1− x2

(
8

3
G(−1; x)G3(0; x) +

(
4

3
G(1; x)− 8G(0,−1; x)

)
G2(0; x) +

(
24G2(−1; x)

−16G(1; x)G(−1; x)− 16π2

3
G(−1; x)− 16G(−1; x) +

16

3
G2(1; x)− 8

3
G(0, 1; x)

)
G(0; x)

−4π2

3
G(−1; x)− 100π2

9
G(1; x)− 48G(−1; x)G(0,−1; x) + 16G(1; x)G(0,−1; x)

+
16π2

3
G(0,−1; x) + 16G(0,−1; x) + 16G(−1; x)G(0, 1; x)− 32

3
G(1; x)G(0, 1; x)

+48G(0,−1,−1; x)− 16G(0,−1, 1; x) +
8

3
G(0, 0, 1; x)− 16G(0, 1,−1; x) +

32

3
G(0, 1, 1; x)

+32G(0, 0, 0,−1; x)

)
+

(1 + x2) (1 + 3x2)

(1− x2)2

(
8

3
G(1; x)G3(0; x) + 16G(0, 0, 1; x)G(0; x)

+

(
2π2

3
− 8G(0, 1; x)

)
G2(0; x)− 16G(0, 0, 0, 1; x)

)
+

x2 (1 + x2)

(1− x2)2

(
− 4

3
G4(0; x)

+96G(0, 0, 1; x)G(0; x)− 288G(0, 0, 0, 1; x)

)
+

(1 + x2)
2

(1− x2)2

(
16G(0, 1; x)G2(0; x)

+
(
16G(0, 1,−1; x)− 64G(0, 0, 1; x)− 32G(1; x)G(0, 1; x) + 48G(0,−1,−1; x)

−32G(1; x)G(0,−1; x) + 16G(0,−1, 1; x) + 16G(0, 1, 1; x)
)
G(0; x)− 24G2(0,−1; x)

+8G2(0, 1; x)− 4π2

3
G(0,−1; x)− 4π2

3
G(0, 1; x) + 16G(0,−1; x)G(0, 1; x)

+64G(1; x)G(0, 0,−1; x) + 64G(1; x)G(0, 0, 1; x)− 64G(0, 0,−1, 1; x) + 96G(0, 0, 0, 1; x)

−64G(0, 0, 1,−1; x) + 16G(1; x)ζ(3)− 64G(0, 0, 1, 1; x)− 32G(0, 1, 0,−1; x)

)
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+
4ζ(3)(13x4 − 12x2 − 49)

3 (1− x2)2
+

592

27

]
. (51)

Note that, as predicted by the non-Abelian exponentiation theorem [104, 105], the C2
F

component of our result is precisely equal to one half the square of c1(x) modulo C2
F :

c2(x)
∣∣∣
C2

F

=
c21(x)

2C2
F

. (52)

It is worth mentioning that, in an effort to further check Eq. (51), we did a completely inde-

pendent numerical calculation of the real-virtual contributions in the spirit of reference [101]

and an independent construction of the unreduced integrand for the real-real contributions

by taking the appropriate limit of the full theory squared matrix element (see reference [54]).

We also found it helpful to consider the threshold (x = 1) and high-energy (x = 0)

limits of our results. In the threshold limit, the soft function must vanish by virtue of the

fact that there is no phase space for soft gluon emission when the QQ̄ pair is produced at

rest. That this is indeed the case constitutes a non-trivial cross-check on our result because

several of the real-virtual master integrals have Coulomb-like singularities at x = 1. In the

high-energy limit, the behavior of the soft function is significantly more complicated. This is

primarily because, in the x → 0 limit, logarithmic singularities in x develop which correspond

to light-like collinear singularities cut off by the mass of the heavy quark. Fortunately, a

slightly more general study of this limit was carried out recently in reference [106]. It is

clear from the arguments given there that the x → 0 limit of our result can be obtained

from a factorization formula which involves the well-known e+e− → qq̄ soft function [1], the

heavy quark fragmentation function [107], and a universal factor relating the hard function

for e+e− → qq̄ to the hard function for e+e− → QQ̄ in the high-energy limit [108, 109].

With assistance, we were able to successfully compare the high-energy limit of our result to

small-x predictions made privately by the authors of reference [106].7

While studying the high-energy limit of our result, we found a completely different way

to understand the x → 0 limit. We observed that we could, in a rather counter-intuitive

way, replace a subset of the ln(x) terms regulating the would-be collinear divergences in

the bare e+e− → QQ̄ soft function by factors proportional to 1/ǫ and thereby recover the

expression for the bare e+e− → qq̄ soft function. Quantitatively, we found that, for all color

structures not fixed by the non-Abelian exponentiation theorem, we could obtain the bare

7 We thank Ben Pecjak for his kind help in this regard.
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e+e− → qq̄ soft function at L loop order8, S
(L)
qq̄ (ǫ), by making the replacements lnn(x) → 0

for all n > 1 and ln(x) → 1
Lǫ

in S
(L)

QQ̄
(x → 0, ǫ) at each order in the ǫ expansion; the O (ǫi)

term in the ǫ expansion of S
(L)
qq̄ (ǫ) is thus obtained by expanding S

(L)

QQ̄
(x → 0, ǫ) to O (ǫi+1)

before making the above-prescribed replacements.

To be concrete, let us illustrate the proposed correspondence for the one-loop CF and the

two-loop CFnFTF and CACF color structures. In the ancillary files containing our results for

the real-virtual and real-real contributions to S
(2)

QQ̄
(x, ǫ), all expressions are given in terms

of harmonic polylogarithms of argument x which have been appropriately shuffled to make

manifest the logarithmic singularities which develop in the small-x limit. It is therefore

completely straightforward9 to write

S
(1)

QQ̄
(x → 0, ǫ)

∣∣∣
CF

= −8− 8 ln(x) +

[
8π2

3
+ 8 ln(x) + 4 ln2(x)

]
ǫ (53)

+

[
−2π2

3
+ 16ζ(3)− 2π2

3
ln(x)− 4 ln2(x)− 4

3
ln3(x)

]
ǫ2 +O

(
ǫ3
)

S
(2)

QQ̄
(x → 0, ǫ)

∣∣∣
CF nfTF

=

[
32

3
+

32

3
ln(x)

]
1

ǫ
+

160

9
− 64π2

9
− 32

9
ln(x)− 32

3
ln2(x) (54)

+

[
896

27
− 272π2

27
− 256ζ(3)

3
+

(
−64

27
+

16π2

9

)
ln(x) +

32

9
ln2(x) +

64

9
ln3(x)

]
ǫ

+

[
5248

81
− 1552π2

81
− 192ζ(3)− 32π4

135
+

(
−128

81
− 16π2

27
− 448ζ(3)

9

)
ln(x)

+

(
64

27
− 16π2

9

)
ln2(x)− 64

27
ln3(x)− 32

9
ln4(x)

]
ǫ2 +O

(
ǫ3
)

S
(2)

QQ̄
(x → 0, ǫ)

∣∣∣
CACF

=

[
−88

3
− 88

3
ln(x)

]
1

ǫ
− 392

9
+

200π2

9
− 16ζ(3) +

(
−8

9
+

8π2

3

)
ln(x)

+
88

3
ln2(x) +

[
−2368

27
+

796π2

27
+

1136ζ(3)

3
− 154π4

45
+

(
−880

27
− 92π2

9
+ 144ζ(3)

)
ln(x)

+

(
8

9
− 8π2

3

)
ln2(x)− 176

9
ln3(x)

]
ǫ+

[
−14240

81
+

7604π2

81
+

1936ζ(3)

3
(55)

+
892π4

135
− 80π2ζ(3)− 640ζ(5) +

(
−5216

81
+

284π2

27
− 1360ζ(3)

9
+

268π4

45

)
ln(x)

+

(
880

27
+

92π2

9
− 144ζ(3)

)
ln2(x) +

(
−16

27
+

16π2

9

)
ln3(x) +

88

9
ln4(x)

]
ǫ2 +O

(
ǫ3
)
.

Using the prescription given above, it follows that

S
(1)
qq̄ (ǫ)

∣∣∣
CF

= −8

ǫ
+ 2π2ǫ+O

(
ǫ2
)

(56)

8 The expansion coefficients of the bare e+e− → qq̄ soft function at L loop order are defined analogously

to the expansion coefficients of the bare e+e− → QQ̄ soft function, S
(L)

QQ̄
(x, ǫ), introduced in Eq. (11).

9 The reader should be able to expand Eq. (28) in ǫ without difficulty using the program HypExp [102].
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S
(2)
qq̄ (ǫ)

∣∣∣
CF nfTF

=
16

3ǫ2
+

80

9ǫ
+

448

27
− 56π2

9
+

[
2624

81
− 280π2

27
− 992ζ(3)

9

]
ǫ+O

(
ǫ2
)
(57)

S
(2)
qq̄ (ǫ)

∣∣∣
CACF

= − 44

3ǫ2
+

[
−268

9
+

4π2

3

]
1

ǫ
− 1616

27
+

154π2

9
+ 56ζ(3) (58)

+

[
−9712

81
+

938π2

27
+

2728ζ(3)

9
− 4π4

9

]
ǫ+O

(
ǫ2
)
.

Indeed, Eqs. (56), (57), and (58) are completely consistent with the well-known results for

S
(1)
qq̄ (ǫ) and S

(2)
qq̄ (ǫ) [1]. To the best of our knowledge, relations between soft functions with

massive and massless Wilson lines such as the one described above have not been discussed

elsewhere in the QCD literature. Although it may not be the most efficient way to proceed

in practice, our results suggest that, to all orders in perturbation theory, one can compute

a soft function with two massless soft Wilson lines directly from an analogous soft function

with two massive soft Wilson lines. It would be very interesting to investigate this further,

both at higher loops and for processes with more than two soft Wilson lines.

Although we do not yet understand the origin of the novel relations that we have (presum-

ably) discovered, we have observed that a similar relation (with, however, ln(1/x) instead of

ln(x) replaced by 1/ǫ at one loop) holds between the high-energy limit of the bare one-loop

massive hemisphere soft function,10

S
QQ̄ (1)
hemi (kL, kR, x, µ) =

4eγEǫµ2ǫ

ǫΓ(1− ǫ)

(
k−1−2ǫ
L δ (kR) + k−1−2ǫ

R δ (kL)
)
× (59)

×




2ǫx
(

2F1(1, ǫ− 1; ǫ;−x)− 2F1 (1, ǫ− 1; ǫ;−1/x)
)

(1− ǫ) (1− x2)

+ (1− ǫ)
(

2F1 (1, ǫ; ǫ+ 1;−1/x) + 2F1(1, ǫ; ǫ+ 1;−x)
)
+ ǫ


 ,

and the bare one-loop massless hemisphere soft function [110]. Furthermore, for the cor-

respondence between S
(2)

QQ̄
(x → 0, ǫ) and S

(2)
qq̄ (ǫ), we have checked that it holds for the

real-virtual and real-real contributions separately, thus implying that it cannot be explained

by the known factorization properties of the e+e− → QQ̄ soft function in the high-energy

limit alone. Altogether, the evidence strongly suggests that what we have observed is not

accidental but, rather, hints at structure in the soft limit of QCD which remains to be

properly understood.

10 Although the massive hemisphere soft function was defined in reference [110], our explicit one-loop result

for the bare function has not, to the best of our knowledge, appeared elsewhere in print.
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V. Outlook and conclusions

In this paper, we calculated the two-loop threshold soft function in perturbative QCD for

heavy quark pair production at e+e− colliders. Our results will form an indispensable part

of any Monte Carlo program based on the phase space slicing method which aims to provide

fully differential NNLO QCD predictions for e+e− → QQ̄ observables above the kinematic

threshold. We refer the reader to a companion paper, reference [29], for an explicit example

of such a Monte Carlo program. In addition, the master integrals that we computed in this

paper will form a subset of the master integrals required for a complete two-loop calculation

of the soft function for threshold top quark pair production at hadron colliders. It would

certainly be worthwhile and interesting to undertake this calculation and we hope to return

to it in the near future.

While performing cross-checks on our main result, we discovered interesting relations

between the epsilon expansions of bare soft functions built out of time-like Wilson lines

and the epsilon expansions of bare soft functions built out of light-like Wilson lines. More

specifically, we found that the (n+1)-th term in the epsilon expansion of the bare two-loop

soft function considered in this work could be used, after first taking the light-like limit of

the results, to straightforwardly write down the non-trivial part11 of the n-th term in the ǫ

expansion of the bare two-loop Drell-Yan soft function. Due to the fact that the bare Drell-

Yan soft function has poles in ǫ which the bare heavy quark soft function does not12, it is

rather surprising that such a simple correspondence exists between them. Näıvely, one might

try to explain away the observed correspondence by relating it to the known factorization

properties of the heavy quark soft function discussed in reference [106]. However, such an

approach is bound to fail because our relations can actually be used to relate the real-virtual

and the real-real contributions to the two-loop soft functions in question separately. In fact,

we even observed a similar but quantitatively different phenomenon for a more exclusive

type of soft function where the phase space available to the soft radiation is partitioned into

two hemispheres by dropping a plane perpendicular to the thrust axis at the collision point.

In our opinion, the available evidence suggests that we have uncovered a new property of

soft functions in perturbative QCD which demands an explanation. To this end, it would be

interesting to see what happens at higher orders in perturbation theory and to investigate

11 By non-trivial, we mean not constrained by the non-Abelian exponentiation theorem [104, 105].
12 The collinear divergences which are present in the Drell-Yan case are cut off by the heavy quark mass.

28



whether back-to-back primary kinematics is a necessary prerequisite for there to be simple

relations between pairs of soft functions in the first place.
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