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Fabian Kislat∗ and Henric Krawczynski
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While Lorentz invariance, the fundamental symmetry of Einstein’s theory of General Relativity,
has been tested to a great level of detail, Grand Unified Theories that combine gravity with the
other three fundamental forces may result in a violation of Lorentz symmetry at the Planck scale.
These energies are unattainable experimentally. However, minute deviations from Lorentz invariance
may still be present at much lower energies. These deviations can accumulate over large distances,
making astrophysical measurements the most sensitive tests of Lorentz symmetry. One effect of
Lorentz invariance violation is an energy dependent photon dispersion of the vacuum resulting in
differences of the light travel time from distant objects. The Standard-Model Extension (SME) is an
effective theory to describe the low-energy behavior of a more fundamental Grand Unified Theory,
including Lorentz and CPT violating terms. In the SME the Lorentz violating operators can in part
be classified by their mass-dimension d, with the lowest order being d = 5. However, measurements
of photon polarization have constrained operators with d = 5 setting lower limits on the energy at
which they become dominant well beyond the Planck scale. On the other hand, these operators
also violate CPT, and thus d = 6 could be the leading order. In this paper we present constraints
on all 25 real coefficients describing anisotropic non-birefringent Lorentz invariance violation at
mass dimension d = 6 in the SME. We used Fermi-LAT observations of 25 active galactic nuclei
to constrain photon dispersion and combined our results with previously published limits in order
to simultaneously constrain all 25 coefficients. This represents the first set of constraints on these
coefficients of a mass-dimension d = 6, whereas previous measurements were only able to constrain
linear combinations of all 25 coefficients.

PACS numbers: 11.30.Cp, 95.85.Pw, 98.54.Cm
Keywords: Lorentz invariance; Standard-Model Extension; AGN; Gamma-rays; Fermi

I. INTRODUCTION

Lorentz invariance is the fundamental symmetry of
Einstein’s theory of relativity. It has been established
by early experiments such as the Michelson-Morley ex-
periment [1] and has since been verified to great preci-
sion [2]. However, unified theories of General Relativity
and the Standard Model of particle physics suggest that
Lorentz symmetry may be broken at the Planck energy
scale (EP =

√
c5~/G ≈ 1.22× 1019 GeV) [3]. Lorentz in-

variance violation has to be suppressed at lower energies,
but tiny deviations may still exist, motivating sensitive
tests of Lorentz invariance.

In the photon sector violations of Lorentz symmetry
include vacuum dispersion and vacuum birefringence [4].
Even though these effects are suppressed at observable
energies, E � EP , astrophysical observations can still be
sensitive to new physics since tiny deviations accumulate
over large distances [3]. Vacuum dispersion can be tested
using astrophysical time-of-flight measurements: when
observing a time-variable or transient source at large red-
shift, tiny variations in the photon velocity will accumu-
late leading to differences in the arrival time of photons
at different wavelengths. Using Fermi LAT observations
of Gamma-Ray Bursts, linear photon dispersion has been
ruled out beyond the Planck scale [5]. Similarly, vacuum
birefringence can be probed with astrophysical polariza-
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tion measurements. In this case, the effects of tiny de-
viations from an isotropic vacuum will accumulate over
extragalactic distances resulting in a measurable rotation
of the polarization plane of linearly polarized light as a
function of energy. Typically, the strongest constraints
on Lorentz invariance violation result from astrophyical
polarization measurements. This can be understood by
the fact that in a dispersion study over the baseline L the
sensitivity is given by arrival time variations δt ∝ δv L,
whereas in a polarimetric study, the sensitivity is deter-
mined by the phase difference δφ ∝ ω δv L with ω being
the frequency of the light, resulting in an improvement
in sensitivity of 1/ω compared to time-of-flight measure-
ments, see e. g. [6]. Owing the high sensitivity of polar-
ization observations, constraints from time-of-flight mea-
surements are most interesting for testing theories or con-
straining parameters which do not predict any vacuum
birefringence.

The Standard-Model Extension (SME, [6, 7]) is an
effective field theory to describe the low-energy phe-
nomenology of a high-energy theory and includes effects
of General Relativity and the Standard Model of particle
physics. Furthermore, it allows one to introduce Lorentz
invariance and CPT symmetry violating terms in the La-
grange density. Interpreting constraints on Lorentz in-
variance violation in terms of limits on the coefficients
of the SME has the advantage over model independent
tests, that results from different kinds of experiments
(e. g. polarization and time-of-flight measurements) can
be compared directly. The disadvantage of this approach
is that some models of quantum gravity, such as theories
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of Doubly-Special Relativity (DSR, [8]), cannot be de-
scribed in the effective field theory framework (however,
see Sec. IV.F.3 of Ref. [6] for a critique of DSR). The
additional Lorentz and/or CPT violating terms in the
action of the SME can be ordered by the mass-dimension
of the corresponding operator. Operators of dimension
d lead to a dispersion proportional to (E/EPlanck)d−4,
meaning that the renormalizable operators of d ≤ 4 are
unsuppressed with respect to conventional physics. Thus,
it is obvious, that only the non-renormalizable Lorentz-
violating terms of d ≥ 5 may contribute.

One of the problems of the Standard Model is that ra-
diative corrections due to particle interactions can create
unsuppressed d ≤ 4 Lorentz violating terms [9]. One of
the attractive features of Supersymmetric (SUSY) theo-
ries is that spontaneous symmetry breaking can suppress
these terms [9, 10].

As mentioned above, the leading order Lorentz-
violating operators of dimension d = 5 lead to a pho-
ton dispersion linear in energy, which has been con-
strained beyond the Planck scale in the isotropic case [5].
Furthermore, in the SME all operators of this mass-
dimension also result in birefringence, and can, there-
fore, be constrained much more strongly by polariza-
tion measurements [11]. The next-to-leading order oper-
ators of d = 6 are generally suppressed compared to the
leading order operators. However, d = 5 operators not
only violate Lorentz invariance but also break CPT sym-
metry. Additionally, the above mentioned suppression
of induced lower-dimension Lorentz-violating operators
through SUSY breaking is not sufficient, and fine-tuning
will be required. On the other hand, the terms of mass-
dimension d = 6 conserve CPT, and induced dimension-4
terms are sufficiently suppressed in SUSY theories [9, 10].
Therefore, it may well be possible that the lowest order
non-vanishing Lorentz invariance violating terms are of
mass-dimension d = 6.

In the d = 6 case, there is a subset of (d−1)2 = 25 non-
birefringent Lorentz-violating operators, which cannot be
constrained through polarization measurements. This
motivates a dedicated search for photon dispersion pro-
portional to E2. In general, Lorentz invariance violation
can lead to an anisotropic photon dispersion. A spher-
ical decomposition results in 25 real coefficients, which
can be constrained by observing photon dispersion from
at least 25 astrophysical sources distributed evenly on the
sky. So far, constraints on quadratic photon dispersion
have been derived from the observation of 4 gamma-ray
bursts (GRBs) by Fermi LAT [12], one GRB observed
by RHESSI [13], and four flares of Active Galactic Nu-
clei (AGN) observed by the TeV gamma-ray telescopes
H.E.S.S. [14, 15], MAGIC [16], and Whipple [17]. Con-
straints on linear dispersion from SWIFT, HETE, and
BATSE observations of GRBs [18] could in principle be
converted to limits on quadratic dispersion. However,
due to the much lower energies probed in these cases,
the resulting constraints are not competitive.

While the work presented here as well as in the

above mentioned references, consider systematic effects
of Lorentz invariance violation, it is expected that the
foamy structure of spacetime in models of Quantum
Gravity may lead to a stochastic variation of the ve-
locity of photons of the same energy [19]. In general,
both ’stochastic’ and ’systematic’ Lorentz invariance vio-
lations may be present. Recently, stochastic variations of
the linear photon dispersion have been constrained at the
Planck scale by Fermi observations of GRB090510 [20].

In this paper, we analyzed Fermi LAT data [21] of
25 AGN, and derived limits on photon dispersion for all
of them. We combine these limits with the previously
published results in order to derive limits on the complete
set of non-birefringent Lorentz-violating coefficients with
mass-dimension 6 in the Standard-Model Extension.

In section II, we summarize the theoretical foundation
of our analysis in the SME. In section III, we give a brief
introduction to the Fermi LAT. In the same section we
also describe the DisCan method, which we used to con-
strain photon dispersion from the individual AGN stud-
ied in this analysis. Our source selection and data set is
described in section IV, and our results and the combina-
tion with previously published results will be presented
in section V. Finally, we summarize our findings in sec-
tion VI.

II. MATHEMATICAL FRAMEWORK

The basic assumption of the Standard Model Exten-
sion is that the theoretical framework of the Standard
Model and General Relativity is the low-energy limit of
a unified quantum gravity theory, which holds at the
Planck energy scale. In an expansion approximating
the full theory, the action of the Standard Model is the
zeroth-order term. The Standard Model Extension con-
siders additional terms in the action, whose magnitude
can be constrained by observational data. These addi-
tional terms are ordered by the mass-dimension d of the
tensor operator, and operators with d > 4 lead to Lorentz
invariance violation. Although the full theory is thought
to be Lorentz invariant and consistent with the cosmo-
logical principle, Lorentz invariance and isotropy of space
breaking terms can arise dynamically.

A general Lagrange density of the photon sector can
be written as [6]:

L =− 1
4FµνF

µν + 1
2ε
κλµνAλ(k̂AF )κFµν

− 1
4Fκλ(k̂F )κλµνFµν ,

(1)

where the differential operators k̂AF are CPT-odd and
only contain coefficients of odd mass-dimension, whereas
the operators k̂F only contain coefficients of even d and
are CPT-even. The equation of motion is derived by
varying the Lagrangian and the dispersion relation fol-
lows from the equation of motion. In the vacuum case it
can be written as:

E(p) '
(
1− ς0 ±

√
(ς1)2 + (ς2)2 + (ς3)2

)
p. (2)
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An expansion in mass-dimension and spherical decom-
position yield for photons of momentum p arriving from
direction (θk, ϕk):

ς0 =
∑
djm

pd−4Yjm(θk, ϕk)c
(d)
(I)jm, (3)

ς± = ς1 ± ς2

=
∑
djm

pd−4
∓2Y jm(θk, ϕk)

(
k

(d)
(E)jm ∓ ik

(d)
(B)jm

)
, (4)

ς3 =
∑
djm

pd−4Yjm(θk, ϕk)k
(d)
(V )jm, (5)

where c(d)
(I)jm represents sets of (d − 1)2 non-birefringent

CPT-even coefficients, i. e. they are non-zero only for
even d. Furthermore, d ≥ 4, j = 0 . . . d− 2, and |m| ≤ j.
While, ς0 only contains non-birefringent CPT-even coef-
ficients, ς3 and the combinations ς± = ς1 ∓ iς2 contain
birefringent CPT-even and birefringent CPT-odd coef-
ficients, respectively. Since Lorentz symmetry is well-
established, any Lorentz violating effect has to be small.
It is therefore expected that coefficients of Lorentz invari-
ance violating operators are suppressed by a large scale,
typically a factor ofMd−4

Planck [6]. The coordinates (θk, ϕk)
are in a Sun-centered celestial equatorial frame, such that
θk = 90◦−δk and ϕk = αk, where αk and δk are the right
ascension and declination of the kth astrophysical source,
respectively.

In the following, we will assume a CPT-even non-
birefringent vacuum model, which has nonzero coeffi-
cients only in even dimensions d, with the leading or-
der being d = 6 (at dimension 4 the photon dispersion
only depends on direction, not energy, and therefore can-
not be measured with astrophysical observations). Using
the approximation E ' p in Eq. (3), the operators of
this mass-dimension lead to a photon dispersion that is
quadratic in energy. Thus, the difference of arrival times
of two photons with energies E1 and E2 emitted simul-
taneously from an astrophysical source at redshift zk is
given by

t2 − t1 ≈
zk∫

0

v1 − v2

Hz
dz

≈ (E2
2 − E2

1)

zk∫
0

(1 + z)2

Hz
dz
∑
jm

Yjm(θk, ϕk)c
(6)
(I)jm, (6)

where

Hz = H0[Ωr(1+z)4+Ωm(1+z)3+Ωk(1+z)2+ΩΛ]
1
2 (7)

is the Hubble expansion rate at redshift z with the
present day Hubble constant H0 ' 70 km s−1 Mpc−1, the
radiation density Ωr ' 0.015, matter density Ωm ' 0.27,
vacuum density ΩΛ ' 0.73, and curvature density Ωk =
1− Ωr − Ωm − ΩΛ [22].

Introducing the dispersion coefficient

ϑk =

zk∫
0

(1 + z)2

Hz
dz
∑
jm

Yjm(θk, ϕk)c
(6)
(I)jm, (8)

equation (6) can be written as

∆tk = ϑk(E2
2 − E2

1)k, (9)

where the index k indicates the kth astrophysical source
being studied. With the redshift and light-travel-time
weighted dispersion coefficient

γk =
ϑk∫ zk

0
(1+z)2

Hz
dz

(10)

one finds a system of equations to calculate the coeffi-
cients c(6)

(I)jm: ∑
j=0...4
m=−j...j

Yjm(θk, ϕk)c
(6)
(I)jm = γk. (11)

At leading order, d = 6, there are 25 complex coefficients
c
(6)
(I)jm. However, since the γk are real, the structure of
the spherical harmonics leads to the reality condition

c
(6)
(I)j−m = (−1)m

(
c
(6)
(I)jm

)∗
, (12)

resulting in a total of 25 real coefficients, with all c(6)
(I)j0

real.
Thus, measurements of γk from at least 25 sources are

required to constrain all coefficients individually. If no
significant deviation of photon travel times is found, pos-
itive and negative limits on γk are determined constrain-
ing a volume in the 25-dimensional parameter space of
the c(6)

(I)jm.

III. INSTRUMENT AND METHODS

A. The Fermi LAT

The Large Area Telescope (LAT) is the primary in-
strument on the Fermi Gamma-ray Space Telescope [21],
covering the γ-ray energy band from 20MeV to more
than 300GeV. It is an imaging telescope with a wide field
of view of 2.4 sr that covers the entire sky every two or-
bits, and as such is ideally suited for the study presented
here because it allows us to obtain densely sampled long-
term light curves of AGN. The LAT is a pair-conversion
telescope consisting of a converter-tracker and a calorime-
ter. Gamma-rays convert in the tungsten layers of the
converter-tracker, and the tracks of the e+e− pair are
recorded in silicon strip detectors in order to reconstruct
the direction of the incident gamma-ray. The electromag-
netic shower initiated by the e+e− pair is then absorbed
in the calorimeter to measure the energy deposition and,
thus, reconstruct the energy of the gamma-ray. Above
an energy of 1GeV the angular resolution of the LAT is
better than 1◦.
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B. The DisCan Method

As mentioned in the introduction, equations (6) and
(8), the Lorentz violating operators of mass-dimension
d = 6 lead to a quadratic dependence of the photon travel
time from the source to the observer on the photon en-
ergy. In case of a time-variable source, this will generally
smear out the structure of the light curve. In the disper-
sion cancellation method, this effect is corrected for, by
adjusting the arrival time of each photon proportional to
−ϑE2:

t′0 = tarr − ϑ(E2 − 〈E2〉), (13)

where 〈E2〉 is the average E2 of the observed photons.
One then finds the value of ϑ that leads to the “least
washed-out” light curve. In this way no binning in energy
is necessary.

In the DisCan method [23] a binning of photons in
time is furthermore avoided as follows. Each photon at
arrival time ti is assigned a time bin of width

∆ti =
ti+1 − ti−1

2
. (14)

In order to represent the light curve in this way, the con-
tents of each time bin are set to

wi = 1/∆ti. (15)

This leads to an accurate albeit choppy representation of
the light curve that does not require binning photons in
time. In order to reduce choppiness, we chose to com-
bine each 10 consecutive photons into one wider time bin
with appropriate weight. Furthermore, we required that
the last photon in each bin is separated from the next
by more than 1s, otherwise the bin is extended by one
photon. Thus the final duration of the n-th bin spanning
photons n1 . . . n2 is

∆tn =
tn2+1 − tn2

− tn1
+ tn1−1

2
(16)

with the weight

wn =
n2 − n1

∆tn
. (17)

One then calculates the Shannon information in order
to quantify, how much the light curve is smeared out:

S =
∑
n

wn
W

log
wn
W
, (18)

where

W =
∑
n

wn. (19)

A more narrowly peaked light curve will lead to a larger
Shannon information than a more smeared out one. By
varying ϑ one then finds that value of the parameter, ϑ̂,

which maximizes S. Then, ϑ̂ is considered the best fit
value.

In general, the method above will find a value ϑ̂ 6= 0,
even if there was no Lorentz-invariance violation at all,
due to statistical fluctuations. In order to determine the
significance of this deviation from the null-hypothesis and
to determine upper and lower limits on ϑ, the method de-
scribed above was repeated on randomized light curves.
For each source 106 random light curves were produced
by keeping all photon arrival times and energies, but as-
signing to each arrival time a random photon energy out
of the set of detected energies (using each energy only
once). We then applied the DisCan method to each of
these random light curves. The lower and upper limits
on ϑ were then determined as single-sided 95% confi-
dence limits.

IV. SOURCE SELECTION AND DATA SET

Constraining all 25 non-birefringent LIV parameters of
mass-dimension d = 6 in the SME requires observation
of at least 25 astrophysical sources. To date, limits have
been published from 4 VHE AGN [14–17], 4 GRBs de-
tected with Fermi-LAT [12], and one GRB observed by
RHESSI [13]. In this paper we supplement that data set
with limits on photon dispersion from 25 blazars observed
with the Fermi LAT.

We selected the 24 sources from the 4-year Fermi point
source catalog (3FGL, [24]) with the highest variability
index [25], that also fulfilled the following conditions:

• the red shift is known and >0.1;

• no constraints on Lorentz invariance violation have
been published based on TeV gamma-ray observa-
tions of this source;

• the source is significantly detected above 10GeV by
Fermi LAT, with sqrt_ts_10_100_gev > 10 ac-
cording to the catalog [25], which is the square root
of the logarithm of the likelihood ratio of observ-
ing the signal in the 10 to 100GeV band with and
without the point source;

• and there are no other similarly bright γ-ray
sources within a 2◦ radius.

While the variability index characterizes the variability
of a source on month time scales, it does not give any
indication about its shorter-term variability, which is of
importance to this study. However, in case of blazars,
it is a good indication of the frequency and intensity of
observed flares, making it a suitable criterion to select
sources for this analysis. In addition to the sources ob-
tained in this way, we also analyzed the flat spectrum ra-
dio quasar S3 0218+35, resulting in a total of 25 blazars,
which are listed in Table I. Of these, 19 are flat spectrum
radio quasars (FSRQs), and 6 are BL Lac type objects.
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FIG. 1. Sky map with all sources used in this analysis in
equatorial coordinates. The Fermi AGN (blue circles) and
PKS 0527–441 were analyzed in this work.

Figure 1 shows a sky map of all sources used in this anal-
ysis, including those with previously published limits.

For the analysis of the selected AGNs we used all
data from the Fermi Pass 7 P7REP_SOURCE_V15 data set
taken between August 5th, 2008, and October 15th, 2014.
For each source we selected time intervals such that a
search radius of 15◦ would pass a zenith angle cut of
zmax = 100. Furthermore, we restricted the energy range
to 500MeV–300GeV and applied the cut (DATA_QUAL>0)
&& (LAT_CONFIG==1). Below 500MeV the direction res-
olution degrades rapidly and the background contribu-
tion rises quickly. We then applied the DisCan method
as described in section III B to all remaining events within
a search radius of 1◦ around the source. The results of
which will be discussed in the next section.

V. LIMITS ON LIV PARAMETERS

A. Previously published constraints

Previously published results on quadratic photon dis-
persion are listed in Table II, and the magnitudes of all
values including ours are shown in Fig. 2. The best lim-
its are obtained from AGNs observed with VHE gamma-
ray instruments. The extremely high photon energies
more than compensate for the fact that the observed ob-
jects have a relatively low redshift, in particular given
that the expected photon dispersion is proportional to
the square of the photon energy. Note, however, that
MAGIC originally reported a marginal detection [16] of
ϑ̂ = (3.71± 2.57)× 10−6 s/GeV2. Due to the low signifi-
cance of the result, we decided to convert it into a 95%
upper limit and then conservatively used the negative
value as a lower limit, i. e. −8.85× 10−6 s/GeV2 ≤ ϑ ≤
8.85× 10−6 s/GeV2. The resulting limits on γ are given
in the table. In case of Fermi GRB observations the ex-
tremely short temporal structure and high redshifts lead
to limits on the order of 10−19 GeV−2 or better. The
RHESSI GRB limit suffers from the lower attainable en-
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FIG. 3. Light curve of PKS 0537–441 above 1GeV as observed
with the Fermi LAT. The raw event counts were not exposure
corrected reflecting the way individual photons are used in the
DisCan method.

ergies.

B. Constraints from AGN observed with Fermi

In this work, we obtained limits on quadratic pho-
ton dispersion from an analysis of Fermi AGNs. As
seen in Table III, most of the limits we obtained are
between 10−14 and 10−18 GeV−2, mostly depending on
the brightness of the source and the duration of the ob-
served bursts. A bright short flare will be sensitive to
time structures that can be orders of magnitude smaller
than what can be tested with a fainter and longer flare.
This is the main advantage of GRB observations over
AGNs. No significant photon dispersion was found in any
of the AGN studied here. The value of ϑ̂ = 36 686 s/GeV2

found in case of the FSRQ PKS 0537–441 is significantly
beyond the 95% upper limit obtained from randomized
light curves. Using these randomized light curves, we
determined that the chance probability of observing this
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TABLE I. List of sources studied in this analysis. All source coordinates were obtained from the SIMBAD database [26].
Individual references are given for the red shifts.

Source Class RA Declination Red shift Refs.
J2000 [◦] J2000 [◦] z

3C 66A BL Lac 35.665 +43.036 0.444 [27]
3C 273 FSRQ 187.278 +2.052 0.158 [28]
3C 279 FSRQ 194.047 −5.789 0.536 [29]
3C 454.3 FSRQ 343.491 +16.142 0.859 [29]
4C +14.23 FSRQ 111.320 +14.420 1.814 [30]
4C +28.07 FSRQ 39.468 +28.802 1.207 [29]
B2 1520+31 FSRQ 230.542 +31.737 1.487 [31]
B3 1343+451 FSRQ 206.388 +44.883 2.534 [32]
GB 1310+487 FSRQ 198.181 +48.475 0.501 [30]
PKS 0235+164 BL Lac 39.662 +16.616 0.94 [33]
PKS 0426–380 BL Lac 67.168 −37.939 1.030 [27]
PKS 0454–234 FSRQ 74.263 −23.414 1.003 [29]
PKS 0537–441 BL Lac 84.710 −44.086 0.896 [27]
PKS 0716+714 BL Lac 110.473 +71.343 0.300 [27]
PKS 1222+216 FSRQ 186.227 +21.380 0.435 [29]
PKS 1424–41 FSRQ 216.985 −42.105 1.522 [34]
PKS 1502+106 FSRQ 226.104 +10.494 1.838 [35]
PKS 1510–089 FSRQ 228.211 −9.100 0.361 [27]
PKS 1633+382 FSRQ 248.815 +38.135 1.814 [36]
PKS 1830–211 FSRQ 278.416 −21.061 2.507 [37]
PKS 2233–148 BL Lac 339.142 −14.556 0.609 [38]
PKS 2326–502 FSRQ 352.337 −49.928 0.518 [39]
PMN J2345–1555 FSRQ 356.302 −15.919 0.621 [30]
S3 0218+35 FSRQ 35.273 +35.937 0.685 [40]
S4 1849+67 FSRQ 282.317 +67.095 0.657 [41]

TABLE II. Published limits on the redshift and light-travel-time weighted dispersion coefficient γk. Note that in case of the
MAGIC result (indicated by a ∗) a marginal detection was quoted. We converted this result into 95% limits as discussed in
Section V.

Source Instrument RA Declination Red shift γmin γmax Refs.
J2000 [◦] J2000 [◦] z [GeV−2] [GeV−2]

GRB 080916C Fermi LAT 119.847 −56.638 4.35 −8.7 × 10−20 2.0 × 10−19 [12]
GRB 090510 Fermi LAT 333.553 −26.597 0.903 −3.1 × 10−21 1.6 × 10−21 [12]
GRB 090902B Fermi LAT 264.939 +27.324 1.822 −3.4 × 10−20 5.2 × 10−20 [12]
GRB 090926A Fermi LAT 353.401 −66.323 2.107 −1.1 × 10−19 5.2 × 10−20 [12]
GRB 021206 RHESSI 240.195 −9.710 0.3 −1.0 × 10−16 1.0 × 10−16 [2, 13]
PKS 2155-304 H.E.S.S. 329.717 −30.226 0.116 −7.4 × 10−22 7.4 × 10−22 [14]
PG 1553+113 H.E.S.S. 238.929 +11.190 0.49 −5.37× 10−21 3.46× 10−21 [15]
Mrk 501 MAGIC 253.468 +39.760 0.034 −5.8 × 10−22 5.8 × 10−22 [16]∗

Mrk 421 Whipple 166.114 +38.209 0.031 −1.4 × 10−21 1.4 × 10−21 [17]
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value of ϑ̂ or larger, is less than 0.5%. While this by
itself would be a significant deviation from the null hy-
pothesis, considering that we analyzed 25 sources, the
post-trial probability of this event is 19.2%. At the same
time, this value of ϑ̂ is also significantly larger than any
other previously published limit, as well as all constraints
found in this analysis, which strongly suggests that this
finding is due to a source-intrinsic effect. Therefore, we
removed PKS 0537–441 from our data set, and completed
the analysis with the remaining sources. A more detailed
discussion of this source follows in Section VD.

C. Constraining SME parameters

The redshift and light-travel-time weighted dispersion
coefficients γ are related to the Lorentz violating coeffi-
cients c(6)

(I)jm through Eq. (11). This system of equations
can be written in matrix form,

H • v = γ, (20)

where v is a vector of the 25 independent real numbers
entering the complex coefficients c(6)

(I)jm, γ is a vector
of the N values of γk for N sources studied, and H is
the 25×N matrix relating the two sets, whose rows are
obtained directly from Eq. (11). For a set of uncorrelated
measurements of γk from N ≥ 25 sources, the best fit set
of parameters v can be obtained through,

v = (HTH)−1HTγ = H+γ, (21)

where H+ is the Moore-Penrose pseudoinverse of H (see
e. g. Ref. [42], and note that H+ = H−1 for square ma-
trices).

We used Eq. (21) to obtain the 95% confidence level
limits on the LIV coefficients c(6)

(I)jm from the limits on γk,
by generating 107 random vectors γ. For each source,
the probability distribution of γk was approximated by
an asymmetrical normal distribution with mean 0 and
standard deviations chosen to match the one-sided 95%
limits in Tables II and III. For each of these random γ
we then solved Eq. (21) and in that way found the dis-
tribution for each coefficient in v. From those resulting
distributions we then determined the single sided 95%
upper and lower bounds. The resulting limits on all 25
non-birefringent Lorentz violating parameters of mass-
dimension d = 6 of the SME are listed in Table IV.

Previous measurements only considered the isotropic
case since not enough sources were available. The pre-
viously published results made use of Fermi-LAT GRB
observations and TeV gamma-ray observations of AGN.
The resulting isotropic limits are up to 6 orders of
magnitude better than the anisotropic limits presented
here [2, 5, 12, 14–17]. The reason for this big difference is
that the results of Eq. (21) are dominated by the worst of
the best 25 constraints. As a consequence, the results of
this analysis cannot be improved significantly by simply

TABLE IV. Limits in units of GeV−2 on all independent LIV
parameters c(6)(I)jm obtained in this analysis. The dependent

parameters c(6)(I)j−m can be calculated according to Eq. (12).

−2.705× 10−14 < c
(6)

(I)00 < 3.925× 10−14

−3.753× 10−14 < c
(6)

(I)10 < 2.889× 10−14

−2.816× 10−14 < Re
(
c
(6)

(I)11

)
< 3.574× 10−14

−3.299× 10−15 < Im
(
c
(6)

(I)11

)
< 5.984× 10−15

−4.232× 10−14 < c
(6)

(I)20 < 3.032× 10−14

−1.590× 10−14 < Re
(
c
(6)

(I)21

)
< 1.043× 10−14

−4.412× 10−14 < Im
(
c
(6)

(I)21

)
< 3.288× 10−14

−2.353× 10−14 < Re
(
c
(6)

(I)22

)
< 3.113× 10−14

−5.144× 10−14 < Im
(
c
(6)

(I)22

)
< 6.634× 10−14

−4.823× 10−14 < c
(6)

(I)30 < 6.435× 10−14

−2.439× 10−14 < Re
(
c
(6)

(I)31

)
< 1.798× 10−14

−2.822× 10−14 < Im
(
c
(6)

(I)31

)
< 2.078× 10−14

−3.125× 10−14 < Re
(
c
(6)

(I)32

)
< 3.855× 10−14

−2.171× 10−14 < Im
(
c
(6)

(I)32

)
< 1.624× 10−14

−3.693× 10−14 < Re
(
c
(6)

(I)33

)
< 2.943× 10−14

−4.216× 10−14 < Im
(
c
(6)

(I)33

)
< 5.656× 10−14

−2.313× 10−14 < c
(6)

(I)40 < 2.739× 10−14

−9.021× 10−15 < Re
(
c
(6)

(I)41

)
< 1.131× 10−14

−2.953× 10−14 < Im
(
c
(6)

(I)41

)
< 3.904× 10−14

−4.650× 10−15 < Re
(
c
(6)

(I)42

)
< 6.846× 10−15

−2.489× 10−14 < Im
(
c
(6)

(I)42

)
< 1.961× 10−14

−7.276× 10−15 < Re
(
c
(6)

(I)43

)
< 1.014× 10−14

−1.246× 10−14 < Im
(
c
(6)

(I)43

)
< 1.343× 10−14

−3.919× 10−14 < Re
(
c
(6)

(I)44

)
< 2.923× 10−14

−1.801× 10−14 < Im
(
c
(6)

(I)44

)
< 1.427× 10−14

adding more constraints to the data set. Major improve-
ments will only be possible when a large number of addi-
tional highly constraining observations is made (such as
TeV observations of further AGN and GeV observations
of gamma-ray bursts).

However, our limits are the first constraints on any
complete sector of the SME, and the first direct con-
straints on any of the parameters c(6)

(I)jm other than c(6)
(I)00,

which describes the isotropic case [2]. No Lorentz invari-
ance violation has been observed in the photon dispersion
in energy or direction.

D. PKS 0537–441

We used the constraints on the coefficients c(6)
(I)jm in or-

der to test to what degree the finding of a non-zero delay
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Results at and below the dotted line at ζ(d)a = 1 constrain
effects at the Planck energy scale.

of high energy photons from PKS 0537–441 is consistent
with quadratic photon dispersion in the SME given the
observations of the other sources in this analysis. In the
same way as described above, we generated 107 random
vectors γ and then computed the coefficients c(6)

(I)jm ac-
cording to Eq. (21). For each of these sets of parameters
we then calculated the expected value of ϑ for PKS 0537–
441 according to Equations (10) and (11). In this way we
found that based on the constraints on the Lorentz invari-
ance breaking parameters in the SME obtained from the
other sources one expects a value of ϑ̂ < 15 775 s/GeV2

for PKS 0537–441 at the 95% confidence level. Further-
more, the probability of finding ϑ̂ ≥ 36 686 s/GeV2 is
only 7.1 × 10−5. This underlines our earlier conclusion
that the result found here has to be caused by a source-
intrinsic effect, and not by photon dispersion caused by
Lorentz invariance breaking.

The light curve of PKS 0537–441 (Fig. 3) shows an
extended period of high activity between MJD 55253 and
55708 (February 2nd, 2010, and May 27th, 2011), which
can be subdivided into at least two major flares. The
first one lasting through MJD 55392 (July 15th, 2010)
and the second one starting at MJD 55505 (November
5th, 2010). We analyzed those two flares independently
and found no photon arrival time variation during the
first, larger flare. During the second flare, an arrival time
variation comparable to the value found for the entire
light curve could be observed. Assuming that the Lorentz
invariance violating coefficients are constant in time, this
is a contradiction that suggests that there was a source-
intrinsic spectral evolution during the second flare.

VI. SUMMARY

In the Standard-Model Extension, Lorentz invariance
violation is described by non-renormalizable terms of
mass-dimension d ≥ 5. Dimension 5 operators have al-
ready been constrained very strongly through polariza-
tion measurements. In addition, these operators not only
violate Lorentz symmetry but also CPT making it plau-
sible that CPT-even operators of higher mass-dimension
d = 6 constitute the leading order. There is a subset
of 25 non-birenfringent operators of d = 6 leading to an
anisotropic photon dispersion that is quadratic in energy.
These terms are characterized by a set of 25 real coeffi-
cients, which can be constrained through astrophysical
dispersion measurements from 25 or more directions in
the sky. We conducted a search for Lorentz violating
photon dispersion from 25 Active Galactic Nuclei using
data from the Fermi Large Area Telescope (LAT). Us-
ing the DisCan method we did not find any significant
energy dependence of the speed of light with one excep-
tion. In the case of PKS 0537–441, which exhibited a
strong energy dependence of the photon arrival times, we
demonstrated that this is most likely a source-intrinsic ef-
fect observed during one of its flares and absent at other
times. Therefore, we set upper and lower limits on the co-
efficients describing the quadratic photon dispersion for
all sources. We combined our 24 limits with 9 previously
published constraints in order to set limits on all 25 co-
efficients of the non-birefringent Lorentz-violating oper-
ators of mass-dimension d = 6 in the Standard-Model
Extension. While previous measurements were able to
constrain linear combinations of all operators, our limits
represent the first set of constraints on a complete subset
of individual coefficients in the photon sector with d = 6.
The photon sector of the SME has always been the best-
constrained part of the theory. However, the detection
of high-energy neutrinos by IceCube promises to provide
constraints on the neutrino sector in the near future [43].

The next step will be to repeat the analysis presented
here using polarization data in order to constrain the
birefringent coefficients in a similar way. Polarimetric
observations rule out a modification of the photon dis-
persion relation of order unity at the Planck-scale from
operators with d = 5 by more than six orders of mag-
nitude. In contrast, neither time-of-flight measurements
nor polarimetric observations do so for the case of d = 6.
It is instructive to evaluate how much better future time-
lag and polarization measurements will do in this regard.
For this purpose we assume that observations of GRBs at
z = 1 can constrain the time-of-flight difference of pho-
tons of energies E1 = ε and E2 = 0.1ε with an accuracy of
1ms, and succeed to detect a polarized signal from these
GRBs. Figure 4 shows the resulting constraints. Inter-
estingly, the time-of-flight measurements will not have
the sensitivity required to constrain new physics at the
Planck scale for the case of d = 6. Polarization obser-
vation do better, but require the detection of polarized
signals at >20MeV energies. Such detections might be
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possible with a next-generation Compton or pair produc-
tion telescope (e. g. [44]).
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