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Reliable low-latency gravitational wave parameter estimation is essential to target limited elec-
tromagnetic followup facilities toward astrophysically interesting and electromagnetically relevant
sources of gravitational waves. In this study, we examine the tradeo↵ between speed and accuracy.
Specifically, we estimate the astrophysical relevance of systematic errors in the posterior parameter
distributions derived using a fast-but-approximate waveform model, SpinTaylorF2 (STF2), in pa-
rameter estimation with lalinference mcmc. Though e�cient, the STF2 approximation to compact
binary inspiral employs approximate kinematics (e.g., a single spin) and an approximate waveform
(e.g., frequency domain versus time domain). More broadly, using a large astrophysically-motivated
population of generic compact binary merger signals, we report on the e↵ectualness and limitations
of this single-spin approximation as a method to infer parameters of generic compact binary sources.
For most low-mass compact binary sources, we find that the STF2 approximation estimates compact
binary parameters with biases comparable to systematic uncertainties in the waveform. We illus-
trate by example the e↵ect these systematic errors have on posterior probabilities most relevant to
low-latency electromagnetic followup: whether the secondary has a mass consistent with a neutron
star; whether the masses, spins, and orbit are consistent with that neutron star’s tidal disruption;
and whether the binary’s angular momentum axis is oriented along the line of sight.

I. INTRODUCTION

Ground based gravitational wave detector networks
(notably advanced LIGO [1] and Virgo [2]) are sensitive
to the relatively well understood signal from the lowest-
mass compact binaries M = m1 + m2  16M� [3–14].
Strong signals permit high-precision constraints on bi-
nary parameters, particularly when the binary precesses.
Precession arises only from spin-orbit misalignment; oc-
curs on a distinctive timescale between the inspiral and
orbit; and produces distinctive polarization and phase
modulations [15–17]. As a result, the complicated grav-
itational wave signal from precessing binaries is unusu-
ally rich, allowing high-precision constraints on multiple
parameters, notably the (misaligned) spin [18, 19]. Mea-
surements of the spin orientations alone could provide
insight into processes that a↵ect spin alignment, such as
supernova kicks [20, 21], tides and post-Newtonian reso-
nances [22]. More broadly, gravitational waves constrain
the pre-merger orbital plane and total angular momen-
tum direction, both of which may correlate with the pres-
ence, beaming, and light curve [23–25] of any post-merger
ultrarelativistic blastwave (e.g, short GRB) [26]. More-

⇤
Electronic address: oshaughn@mail.rit.edu

over, spin-orbit coupling strongly influences orbital de-
cay and hence the overall gravitational wave phase: the
accuracy with which most other parameters can be de-
termined is limited by knowledge of BH spins [19, 27–29].
Precession is known to break this degeneracy [18, 19, 30–
33]. In sum, the rich gravitational waves emitted from
a precessing binary allow higher-precision measurements
of individual neutron star masses, black hole masses, and
black hole spins, enabling constraints on their distribu-
tion across multiple events. In conjunction with electro-
magnetic measurements, the complexity of a fully pre-
cessing gravitational wave signal may enable correlated
electromagnetic and gravitational wave measurements to
much more tightly constrain the central engine of short
gamma ray bursts.

Accurately simulating richness and complexity comes
at a price: essentially,1 the additional computational
weight of numerically evolving several ODEs for the spin
and orbit dynamics. This cost places a substantial bur-

1
Recently, Kesden et al provided a new approach to evolving

double-spin compact binaries, potentially enabling more rapid

time- and frequency-domain solutions to the spin precesion and

orbit equations. Though possible to use this approach to gen-

erate waveforms in principle, no implementation is available in

lalsimulation for lalinference at the time of writing.
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den on attempts to reconstruct the sources of an ob-
served wave, since data must be systematically compared
against all possible candidate signals [18, 34–41]. Ow-
ing both to the relatively large number of parameters
needed to specify a precessing binary’s orbit and to the
seemingly-complicated evolution, Bayesian parameter es-
timation methods have only recently [41, 42] become
e�cient enough to draw inferences about gravitational
waves from a statistically significant sample of generic
precessing sources [43]. At the time of writing, successful
calculations of this type require run times on the order
of days with existing computational resources.

Except for a relatively small corner of parameter space,
however, one black hole spin dominates any precession;
the smaller mass usually has a strongly suppressed im-
pact on angular momentum evolution because black hole
spin (S) scales as the black hole mass m squared (S =
m

2�). The dynamics of a single spin are well-understood
[15] and easily approximated in the time and frequency
domain. In particular, the SpinTaylorF2 (STF2) [17] ap-
proximation provides a fast and accurate model for bi-
nary inspiral, valid over a broad range of mass ratios and
spins. At the time of writing, parameter estimation using
STF2 as a template requires roughly an order of magni-
tude less time on comparable resources, often of order a
few tens of minutes.

Low-latency parameter estimation on these timescales
enables transformative followup electromagnetic obser-
vations [44]. The most tantalizing proposed electromag-
netic counterparts to compact binary merger are ex-
pected to be brief, potentially disappearing within days
if not much sooner [45–50]. Given limited resources, re-
liable low-latency parameter estimation of gravitational
wave signals will significantly enhance the science out-
put of multimessenger, time-domain astronomy. Gravi-
tational wave and electromagnetic observatories and ob-
servers have demonstrated a commitment to realizing the
potential of low-latency followup [38, 51–57]. The use
of rapid single-spin templates like STF2 may be a criti-
cal ingredient in enabling these followup observations, if
parameter estimation with this approximation provides
su↵ciently robust predictions.

In this paper, we systematically assess the accuracy
of parameter estimation with STF2. The STF2 approx-
imation is computationally e�cient because (a) it uses
only a single spin, eliminating three subdominant de-
grees of freedom and enabling fast, analytic solutions to
the precession equations; and particularly (b) because
it constructs a highly e�cient stationary-phase approx-
imation to the single-spin kinematics and gravitational
wave emission. Though these approximations intro-
duce systematic errors by neglecting higher-order post-
Newtonian terms (e.g., associated with two-spin e↵ects),
on theoretical grounds one expects these uncertainties to
be comparable to the neglected post-Newtonian terms.
In other words, on theoretical grounds one anticipates
comparable di↵erences between (i) the predictions con-
structed using the standard adiabatic quasicircular in-

spiral models SpinTaylorT4 (STT4) and SpinTaylorT2

(STT2) where both black holes are allowed to have generic
spins [3, 6, 14]; (ii) between STT2 with two spins and STT2

with only one nonzero spin, restricted to the more mas-
sive onbject; and (iii) between STT2 with two or one spin
and STF2. As part of a larger study of parameter esti-
mation on an astrophysically-selected sample of sources
[43], in this work we systematically evaluate these hy-
potheses and the astrophysical impact that systematic
biases introduce.
This paper is organized as follows. In Section II we in-

troduce our parameter estimation study, describing the
population of events used; the specific models adopted to
infer compact binary parameters; and the specific tech-
niques we used to reconstruct each posterior parameter
distribution. In Section III we introduce and employ
standard statistical tools (i.e., Student’s t disribution) to
identify and quantify systematic di↵erences between the
posterior parameter distributions arrived at by using dif-
ferent waveform models. In Section IV we demonstrate
these systematic errors, though statistically significant,
rarely significantly impact our astrophysical conclusions,
particularly because these errors are comparable to other
systematic uncertainties. In Section V we summarize our
conclusions. An appendix A briefly reviews statistical
tools used in our analysis.

Context and related work

Our study is the first large-scale investigation of
parameter estimation accuracy with approximate pre-
cessing templates, using production-scale code and an
astrophysically-motivated sample. Several groups are
pursuing complementary methods to accelerate parame-
ter estimation for precessing binaries, including both fast
and accurate waveform models [58–61] [62] [63–66], and
alternative architectures for the likelihood function [67].
As an example of a fast but accurate waveform model,

Klein and collaborators have developed methods to con-
struct a highly faithful SPA-like fourier transform of the
line-of-sight waveform h(t, n̂) [58–61]. This accurate but
technically sophisticated approach di↵ers substantially
from the simpler and more approximate STF2, defined
as a term-by-term stationary-phase-approximated fourier

transform of h(t, n̂) =
P

lm

h

lm

(t)Y (�2)
lm

(n̂), using a
corotating-frame expansion of h

lm

(t) to avoid precession-
induced phase catastrophes. By design extremely faith-
ful, the latest Klein et al. approximation [61] has been
shown to enable faster parameter estimation, allowing
the authors to assess hypotheses about precessing dou-

ble-spin binaries [60]. As another example, reduced-
order-modeling and SVD methods in principle o↵er a
robust and rapid procedure to e�ciently approximate
any waveform, reconstructing the signal from a sparse
set of basis signals and (interpolated) functions of pa-
rameters [63–66, 68, 69]. Given the challenge of high-
dimensional interpolation, reduced order models have to
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date been incrementally applied to high-cost and high-
precision but low-dimensional models like nonprecessing
EOBNR [66, 70, 71], an inspiral-merger-ringdown wave-
form; and IMRPhenomP [62], a cousin to STF2 which
includes approximate merger and ringdown (Raymond
et al, private communication). At the time of writing,
STF2 is the fastest available waveform model including
precession.

After the cost of waveform generation, the computa-
tional cost of parameter estimation is dominated by the
cost per likelihood, which historically has been domi-
nated by the cost of operating on and fourier transform-
ing long arrays. Recently, several methods have been
proposed to perform this comparison more e�ciently [63–
65, 67, 68], by interpolating some combination of the the
waveform or likelihood; by adopting a sparse representa-
tion to reduce the computational cost of data handling;
or by organizing the calculation to maximize the reuse of
intermediate results obtained from these long and costly
array operations.

II. PARAMETER ESTIMATION ON AN
ASTROPHYSICAL SAMPLE

Gravitational wave parameter estimation involves sys-
tematic comparison of candidate waveforms to data
[18, 34–41]. We use the lalinference mcmc [41] param-
eter estimation code to infer posterior parameter distri-
butions, a method and tool validated by extensive prior
studies including [18, 29, 40, 43, 51, 72–75]. This code
can construct synthetic data from and perform inference
with any of a wide range of waveform modes present
in the lalsimulation software library. In this study,
we always generated our candidate precessing signals us-
ing the STT2 approximation described in [76, 77]. Us-
ing this fixed data set, we recovered parameters using
STT4, described in [3, 14], with one or two spins; STT2,
with one or two spins; and STF2. In all cases we used
a leading-order (Newtonian) amplitude; 3.5 PN order in
orbital phase; up to 3.5 PN in spin-orbit and 2PN spin-
spin terms; and treated all objects as point particles with
black-hole like couplings in, for example, the quadrupole-
monopole terms. This binary evolution is terminated
prior to merger, either when it reaches the minimum en-
ergy circular orbit; when the orbital frequency ceases to
increase monotonically; or when the post-Newtonian v/c

is greater than unity. While our simulated binaries start
their evolution when twice their orbital frequency is 20
Hz, as in previous work we specify binary spin parame-
ters at a reference frequency fref = 100Hz [19, 29, 42, 72].
In these analyses, we adopt a fiducial 3-detector network:
advanced LIGO [1] and Virgo [2], assumed to have ana-
lytic design-sensitivity gaussian noise power spectra pro-
vided by lalsimulation; for example, we adopted the
advanced LIGO zero-detuned high-power configuration
[1, 78]. To simplify our analysis, following previous stud-
ies [29, 43, 72] we also adopt a unique preferred noise

realization for all sources: exactly zero. Data was always
sampled at a rate significantly in excess of the Nyquist
frequency, at a sampling rate that depended on the source
mass.
We apply these tools to a fixed set of 998 events,

whose parameters has been selected as part of a large
astrophysical study first reported by Littenberg et al
[43]. The specific list of sources is available on request.
The set’s members were randomly selected, with masses
m1,m2 uniform in a triangle with m1,2 � 1M� and
m1 + m2  30M�; spin magnitudes �1,2 uniformly dis-
tributed between [0, 1]; and spin directions independently
and uniformly distributed on a sphere. The set’s mem-
bers also have random positions in the universe, subject
to the restriction that no source has network amplitude
⇢  5 in two or more detectors. For each member of the
above set, we carried out parameter estimation with two
spins using STT2 and with one spin via STT4. To fur-
ther validate our results, each double-spin STT2 analysis
was performed twice. In a followup investigation, we also
carried out parameter estimation on a random subset of
250 events using the one spin STT2 and STT4 waveform
models. Finally, since each Markov-Chain Monte Carlo
instance returns between 900 and 3000 independent pos-
terior samples, we standardize our statistical treatment
by randomly selecting 900 such samples from each run.
In this work, we will investigate these results by com-

paring the estimated posterior distribution for each of the
systems’ parameters at 100 Hz [42], focusing particularly
on parameters in common to all models: the component
masses m1,2; the magnitude and orientation of the most
significant spin; and the angle ✓

JN

between the total an-
gular momentum and the line of sight. Models with only
one significant spin lack parameters for the subdominant
spin.

A. Selection bias, spin priors, and their
implications for parameter estimation

We select an astrophysically-motivated population of
injections, drawn from an initially uniform distribution
in volume and orientation and further constrained by a
signal amplitude cut. As expected with real searches
for astrophysical sources, this cut strongly favors dis-
tant, nearly-face-on sources (✓

JN

' 0� 0.8). For sources
with small ✓

JN

, the angle between ~

L and the line of
sight is therefore nearly constant as the binary precesses.
As a result, as first described in Littenberg et al. [79],
the detection-weighted astrophysical population therefore
strongly favors sources which are barely if at all modu-
lated by precession of ~L. As previous studies have shown
[43, 80], the spins and masses of sources in these nearly-
umodulated configurations are much more di�cult to
constrain than sources which exhibit strong precession
along the line of sight [18, 72, 80].
By construction, our astrophysical sample also includes

relatively few binaries with two dynamically significant
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spins. Using R ⌘ |S1�S2|/|S1+S2| to measure the rela-
tive magnitude of the spin di↵erence, of the 2000 binaries
in our sample, only 109 have 1 �R < 0.5 and only 387
have 1�R < 0.8. Therefore, by design the dynamics of
each binary in our synthetic population should be well-
described by the dynamics of a single significant spin –
an essential assumption of the STF2 model. Under di↵er-
ent but still plausible astrophysical assumptions, such as
significant black hole birth spin and preferentially com-
parable binary black hole masses, both spins will play
a more significant role in typical binaries’ dynamics and
gravitational wave signal.

Previous studies suggested higher harmonics had lit-
tle impact on parameter estimation [19, 72], once pre-
cession broke degeneracies in the signal. For this rea-
son, both our candidate signals and parameter estima-
tion strategies use the leading-order gravitational wave
amplitude. Due to the astrophysical selection process
favoring small misalignment angles between the line of
sight and ~

J , higher harmonics can play a relatively more
important role in breaking degeneracies. Not least be-
cause STF2 presently lacks higher harmonics, we defer a
detailed investigation of the impact of higher harmonics
to a subsequent study.

III. QUANTIFYING AND UNDERSTANDING
SYSTEMATIC ERRORS

A. Global indicators of systematic error

The simplest way to demonstrate and quantify the ex-
istance of the systematic error is with the best-fit ampli-
tude, measured by the “network amplitude” ⇢ ⌘

p
2 lnL,

where L is the likelihood (see, e.g., [29, 41, 67]). In gaus-
sian noise, this quantity is nearly normally distributed
with unit mean in the presence of a signal, with mean
ampitude proportional to the overlap between the signal
h in the data and the best-fitting member of the signal
manifold. If two models A and B are applied to the same
data, known to contain a signal from B, and h·i denotes
an expectation value, then the ratio h⇢

A

i / h⇢
B

i should be
less than 1, reflecting “mismatch” between A and B asso-
ciated with the inability of the best-fitting members of A
to reproduce the signal in B. For Markov-Chain Monte
Carlo, this expectation can be e�ciently implemented as
a direct sample average: if the MCMC has N sample
points with network amplitudes ⇢

k

, then ⇢̄ ⌘ 1
N

P
k

⇢

k

is
nearly equal to the expectation value.

Figure 1 shows the results of this analysis, expressed
as a cumulative distribution of r ⌘ ⇢̄

A

/⇢̄

B

, where B is
double-spin STT2 and A is STF2. This figure indicates
significant di↵erences between STF2 and both single- and
double-spin STF2. In other words, for a significant frac-
tion of sources, even the best fitting members of STF2 do
not completely reproduce our zero-noise data. Our re-
sults agree with the original investigations of STF2 [16].

Though these mismatches allow systematic bias, not all

systematic bias is astrophysically significant. For exam-
ple, Cho and collaborators demonstrated that in many
cases higher harmonics introduce a significant system-
atic bias in BH-NS parameter estimation, almost exclu-
sively isolated to astrophysically irrelevant parameters
[19, 29, 72].

B. Parameter biases

As anticipated from the discussion above, the posterior
distributions derived from STF2 di↵er slightly from the
predictions produced using other approximations. Fig-
ure 2 shows a randomly-selected example. In this figure
and in general, the posterior distributions are qualita-
tively similar, except for small systematic o↵sets typi-
cally comparable to but smaller than the widths of each
posterior distribution.
To quantify the di↵erence bewteen the two distribu-

tions’ means, we use a tool from classical frequentist
statistics: Student’s t. As reviewed in the Appendix, for
each simulation k and each parameter x, we evaluate the
sample mean x̄

k

= N

�1
P

N

↵=1 x↵,k

and sample standard
deviation s

x,k

, defined as s

2
x,k

= (N � 1)�1
P

↵

(x
↵,k

�
x̄

k

)2, where N is the number of samples in each sim-
ulation and ↵ = 1 . . . N indexes the posterior samples.
(We require an equal number of samples from each pos-
terior to simplify our interpretation; for a more general
approach, see the Appendix). For each pair of simula-
tions of the same data k with di↵erent approximations A
and B, we then evaluate

T
x,k

(A,B) ⌘ x̄

k,A

� x̄

k,Bq
(s2

x,k,A

+ s

2
x,k,B

)/N
(1)

Qualitatively speaking, the value of T
x,k

(A,B) measures
the di↵erence in means between the two distributions,
scaled to the standard deviation divided by

p
1000 ' 30;

values less than or comparable to 30 are therefore small
compared to typical statistical errors. The distribution
of T

x

(A,B) should be nearly t-distributed with 2(N � 1)
degrees of freedom. The empirical cumulative distribu-
tion of T

x

(A,B) can be evaluated by sorting the array of
998 T

x,k

(A,B) values and compared, both to the theo-
retical t distribution and to the results when the models
A and B changes.
Figure 3 shows the distribution of TM

c

for model A be-
ing STF2,STT2 double spin, STT2 single spin with model
B being fixed to STT2 double spin. First and foremost,
this model shows that when A = B =STT2, the distri-
bution of TM

c

closely follows the expected t distribu-
tion. Second, the close agreement between a single and
double-spin STT2 model strongly suggests that a single-
spin model accurately reproduces most sources. Third
and critically, this figure suggests that STF2 di↵ers sub-
stantially from both double- and even single-spin STT2.
These di↵erences are smaller but still significant for low-
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FIG. 1: SNR ratio distribution: Left panel : Ratio r = (⇢̄
B

)/(⇢̄
A

) of the largest SNR recovered for STF2 to the SNR recovered
for STT2, described in Sec. III A. This distribution is significantly di↵erent from unity, with a magnitude consistent with the
mismatch found in previous studies [17]. Right panel : Cumulative distribution of T

⇢̄

[Eq. (1)] divided by the square root of
N ; in these units, the horizontal axis measures the di↵erence in mean in units of the standard deviation. The dashed curve is
the theoretical cumulative t distribution. This plot demonstrate that there is a statistically significant di↵erence between the
average recovered SNR (⇢) by the two di↵erent models STF2 and STT2.
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FIG. 2: Example of posterior distributions: Using one
random example, this figure shows the one-dimensional dis-
tribution of chirp mass inferred from the STF2 (red) and STT2

(blue) distributions. This figure shows that though the two
methods give very similar results, the two distributions are
slightly o↵set. Our study demonstrates these small o↵sets
occur ubiquitously, at a statistically significant level.

mass and high-mass ratio signals, where STF2 by design
should be most accurate.

Though small but statistically significant di↵erences
exist between STF2 and time-domain approximations,
these di↵erences are much smaller than the corresponding
e↵ect from systematic uncertainty in the (orbital phase
of the) post-Newtonian approximation to precessing bi-
naries. To illustrate the impact of systematic error in
the post-Newtonian approximation, we perform the most
conservative change possible: we adopt identical physics
and identical termination conditions, but construct our

FIG. 3: Scaled di↵erence in mean chirp mass: For the
same data, we performed parameter estimation twice, report-
ing the cumulative distribution t-test scores in Eq. (1) divided
by

p
N . In these units, the horizontal axis measures the di↵er-

ence in mean in units of the standard deviation. The dashed
curve shows the expected result, a t distribution; the purple
and blue curve shows the results when both models were STT2
with the same or unequal numbers of nonzero spins; the or-
ange curve shows the results when comparing (double spin)
STT2 to STF2; and the red curve shows a comparison between
single-spin STT4 and double-spin STT2.

gravitational wave spin and orbit evolution using the
STT4 scheme rather than the STT2 scheme. By design,
these two methods must agree up to unknown higher-
order post-Newtonian (spin) terms in Taylor series for
the factors of the (orbit-averaged) dv/dt or dt/dv. Figure
4 shows our results, expressed using the same strategy as
described above to characterize di↵erences between pos-
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terior means. For this and all other parameters, the mean
of the posterior derived from STT4 is often farther from
the mean of STT2 than is the mean derived from STF2.
Figure 4 provides a corresponding comparison using the
intrinsic parameters ⌘,�1. As with the chirp mass, these
distributions usually show significant systematic di↵er-
ences between STT2 and STF2. Also like the chirp mass,
these systematic di↵erenes are comparable to the sys-
tematic uncertainty seen between STT2 and STT4. This
analysis suggests that the systematic errors introduced
by restricting to STF2 are relatively small, compared to
the large systematic error currently inherent in a post-
newtonian approximation to typical merging binaries.

Despite often statistically significant di↵erences be-
tween approaches, parameter estimation employing these
distinct approximations does produce consistent answers
to questions less sensitive to the precise orbital phase, in-
cluding extrinsic parameters. For example, Figure 4 also
shows the models agree on ✓

JN

, the relative orientation
between ~

J and the line of sight. The close agreement
between these results can be understood on two grounds.
First, as has been described in the literature [17, 19, 81],
the angle between ~

J and the line of sight is closely re-
lated to the magnitude of precession-induced amplitude
and phase modulations induced by the precession of ~

L

around ~

J . These modulations enter into the waveform as
a rotation, multiplicatively, and hence approximately de-
couple from the orbital phase due to seperation of scales.
Second and more broadly, precession is a robust e↵ect
at leading order, treated identically in both schemes. As
discussed later, the ability to make robust statements
about binary geometry just prior to merger may be crit-
ical in identifying or ruling out candiate short GRBs for
extensive EM followup, since the directions of strongest
emission should correlate with ~

J .

C. Extent of the confidence intervals

As illustrated by example in Figure 2, di↵erent wave-
form approximations generate posteriors that di↵er in
mean but agree in shape, particularly width. To demon-
strate this agreement quantitatively, we use another tool
from classical frequentist statistics: the F statistic. As
reviewed in the Appendix, the F statistic is a ratio of the
sample standard deviations from two independent exper-
iments, to assess whether the two distributions have the
same width. For each pair of simulations of the same
data but di↵erent waveform models A and B, and each
parameter x, we evaluate

F
x,k

(A,B) =
s

2
x,k,A

s

2
x,k,B

(2)

If both posterior distributions of x are gaussian with the
same mean, then F

x

(A,B) should be F

n1,n2 distributed
with n1 = n2 = (N � 1) degrees of freedom in the nu-
merator and denominator.

FIG. 4: Results for additional parameters and PN
approximants: Like Figure 3, a cumulative plot of T

x

for
x = �1, ⌘, ✓JN

. The orange curve corresponds to comparisons
between STT4 (single spin) and STT2 (double spin). These
orange curve demonstrates that parameter estimation with
post-Newtonian approximation schemes that adopt otherwise
identical physics yield considerably di↵erent posterior distri-
butions for intrinsic parameters. All approximations agree
on geometric parameters like ✓

JN

.

Figure 5 shows the empirical distribution of FM
c

(A,B)
for B = STT2 and A being STF2,STT2 double spin, STT2
single spin with model B being fixed to STT2 double
spin. These results suggest that adopting a di↵erent ap-
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FIG. 5: Simulation widths: This plot shows that di↵erent
approximations will predict posterior distributions of often
significantly di↵erent widths. The width of the distribution
is strongly impacted by nongaussian tails and is a less-robust
measure of distribution similarity. These results suggest that
the posteriors produced by F2 are more similar to the “true”
distributions than the results from T4. [To emphasize the
di↵erences in distribution widths, we intentionally selected
the parameter with the most gaussian distribution: the chirp
mass. This test is less well suited to posterior distributions
with significant nongaussian tails and cuto↵s, notably ⌘ and
�1,2.]

proximation often yields a posterior distribution with a
slightly di↵erent width. These di↵erences can be ascribed
in part to the di↵erent best-fitting point: the Fisher ma-
trix and posterior distribution varies significantly across
the parameter space. These di↵erences can also be as-
cribed to the strong nongaussianity inherent in these dis-
tributions: the second moment used in the F distribution
is sensitive to rare outliers. For these reasons, a detailed
study of the change in extent and shape of the poste-
rior distribution is substantially beyond the scope of this
work. For the purposes of this study, we highlight the
value of STF2 posterior distributions by two facts. First,
that the posterior distribution obtained with either a sin-
gle spin or STF2 typically di↵ers in width by a few tens of
percent from the full posterior distribution, comparable
to the typical statistical error associated with the signal
amplitude and only slightly greater than the sampling
error (

p
1000) associated with our finite MCMC sample.

Second, posterior distributions derived when using STT4

as a template are significantly broader than posterior dis-
tributions derived by any other means. In short, while
the posterior distribution with STF2 is wider, we again as-
sert that di↵erences associated with using STF2 are larger
than other systematic errors in our problem.

D. Unique evidence for two spins?

Lacking all degrees of freedom, a single-spin model
like STF2 cannot reproduce precession-induced modula-
tions induced by the subdominant spin. Our sample of
events strongly favors face-on sources (| cos ✓

JN

| ' 1),
with minimal modulation from the secular precession of
~

L around ~

J . That said, our sample includes a signifi-
cant fraction of comparable-mass BH-BH binaries with
large and misaligned spins. The relative precession of
the three angular momenta introduces additional modu-
lations to ~

L [15, 82] and hence to h(t), potentially com-
municating more observationally-accessible information
about the spins, including the subdominant spin.
The close agreement between single- and double-spin

STT2 discussed above [Figure 1] strongly suggests that
the subdominant spin rarely communicates observation-
ally accessible information. To quantitatively and di-
rectly assess whether the subdominant spin’s relative ori-
entation can be measured, we examine the distribution
of �12, the angle between ~

S1 and ~

S2 in the plane perpen-
dicular to ~

L [42]. As expected, in most cases the pos-
terior distribution of �12 is nearly uniform; however, a
significant fraction of events (' 10%) have a nonuniform
posterior distribution. These concentrated posterior dis-
tributions are associated with larger-than-average signal
amplitude. To measure this e↵ect quantitatively without
adopting a preferred range of the periodic variable �12,
we calculate the following quantity:

z ⌘
X

↵

e

i�12,↵ (3a)

�

2
�12

⌘
p

�2 ln |z| (3b)

In the limit that �12 is narrowly distributed near some
preferred value, �12 is the standard deviation of the pos-
terior. Figure 6 shows the distribution of �

�12 . Based
on human followup, the handful of cases with �

�12 . 1.8
have posteriors that slightly or significantly favor some
range of relative angles: the impact of the subdominant
spin is measurable.
Not all large signal amplitudes are associated with bi-

naries with two dynamically significant spins, nor with
lines of sight that facilitate the measurement of both
spins. Nonetheless, as one would expect, binaries with
narrow posterior distributions of �12 are associated with
unusually large signal amplitudes.

IV. ASTROPHYSICAL IMPLICATIONS OF
SYSTEMATIC ERRORS IN LOW-LATENCY

FOLLOWUP WITH STF2

Having demonstrated the rapid but approximate pa-
rameter estimation enabled by STF2 introduces small
but measurable systematic errors, we assess the prac-
tical astrophysical impact these errors introduce. Low-
latency parameter estimation for precessing binaries fa-
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FIG. 6: Distribution of �12: Report on parmeter measurement accuracy of �12 using two-spin STT2. [The parameter �12 does
not exist in an single-spin model, including STF2.] Left panel : Cumulative distribution of �

�12 [Eq. (3)]. For most cases, �12

is approximately uniformly distributed. Right panel : Scatter plot of �
�12 versus ⇢. Sources with high amplitude provide more

information about all parameters, including �12. In some exceptional cases – with high amplitude, large spin, and fortuitious
orientation – �12 can thereby be tightly constrained.

cilitates electromagnetic followup by answering three
critical questions about BH-NS binaries. First, is the
smaller object a neutron star [43, 83–85]? Second, is the
total angular momentum pointing towards the observer?
Third and finally, are the BH and NS masses and spins
consistent with tidal disruption prior to merger? We have
used our large sample to evaluate the impact of system-
atic error on these three critical questions for low-latency
parameter estimation.

A. Neutron star present

For the purposes of discussion, we will call a smaller
object a “neutron star candidate” if its mass is less than
3 solar masses. Using the estimated posteriors derived
from both models A and B (STT2 and STF2, respec-
tively) and this condition, we evaluate posterior probabil-
ities P

A

(NS) and P

B

(NS) that this condition is satisfied,
for all simulations. As seen in Figure 7, the two prob-
abilities largely agree, particularly when the NS mass is
below 2M�. Given these results and systematic uncer-
tainties in post-Newtonian waveforms with spin, electro-
magnetic followup will likely occur for all sources with
P (NS) > 0.1. In this scenario, our calculations suggest

that roughly 65-70% of all followed-up sources will actu-
ally be BH-NS binaries; the same result holds for either
model.
In the transitional regime m2 2 [2M�, 3M�], the

probabilities calculated using STF2 (red) systematically
overpredict or underpredict P (NS), with a probabil-
ity P (NS) often nearly equal to 1 below 2.5M� while
P (NS) is often near 0 below 2.5M�. This property re-
flects the random but significant bias in the posterior
distribution p(m2) predicted using STF2 compared to
STT2: for each simulation, p(m2)STF2 and p(m2)STT2

have similar shape, but are o↵set. Depending on the o↵-
set, P (NS) =

R 3
p(m2)STF2dm2 will be di↵erent, driven

to be closer to 1 when the distribution should be centered
well below 3M� and driven to be closer to zero when the
distribution should be centered near 3M�.

B. Total angular momentum direction

Both based on electromagnetic (jet break) and event
rate arguments, short gamma ray bursts are assumed to
be tightly beamed into a solid angle ✓ . 20� [86]. For
a precessing binary, we will conservatively assume the
radiated energy is beamed along the total angular mo-



9

2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

m2 !M!"

P!
N
S"

FIG. 7: Identifying a candiate NS companion: Plot of
the posterior probability that the secondary is a neutron star
versus the smaller object’s mass, as estimated using STT2
(P

A

; blue) and STF2(P
B

; red).

mentum direction – for example, because it is powered
by accretion of matter onto the final black hole, whose
total angular momentum direction is nearly identical to
the nearly-conserved total angular momentum direction
of the binary from which it formed. Low-latency param-
eter estimation of gravitational waves can estimate the
degree of misalignment ✓

JN

between the line of sight and
the total angular momentum direction of the progenitor
binary.

For the purposes of discussion, we will call a binary
“aligned with the line of sight” if ✓

JN

< 20� or ✓

JN

>

180� � 20�. This choice is highly arbitrary: neither the-
ory nor observations motivate any hard cuto↵, though
all disfavor extreme misalignment. Using the estimated
posteriors derived from both models, we define a proba-
bility P

A

(beamed) and P

B

(beamed) for each event that
the binary is pointed towards us. Figure 8 shows the
distribution of these probabilities for all events and for
binaries containing a neutron star. Particularly given as-
trophysical systematic uncertainty in the choice of cuto↵
angle, these distributions strongly suggest the beaming
probabilities derived from our two A and B models are
nearly equivalent. The handful of cases with neutron
star companions with inconsistent beaming probabilities
(Pbeam(F2) ' 0 but Pbeam(T2) > 0.1 or vice-versa) were
associated with either highly asymmetric (m1 & 20M�)
or nearly edge-on binaries.

C. Tidal disrupt prior to merger

To provide an unambiguous albeit approximate quan-
tity to identify candidate tidal disruption events in binary
mergers, we employ the following procecure to identify
posterior samples consistent with tidal disruption of a
neutron star. First, the smaller mass must lie within the
range of masses allowed by our fiducial NS equation of

FIG. 8: Aligned with the line of sight: Distribution
P

A

(beam) (red) and P

B

(beam) for the probability of align-
ment between the line of sight and the total angular momen-
tum direction, shown both for all elements of the astrophysical
sample (yellow) and for the sources with neutron star com-
pansions (purple).

state, here between 0.5M� and 2.5M�. Second, the dis-
ruption process must leave behind a remnant disk with
nonzero mass, as estimated using Foucart’s expression
[87] (his Eqs. (6,12-13)):

M

disk

M

NS

= 0.288(3m
bh

/m

ns

)1/3[1� 2C]

� 0.148(m
bh

/m

ns

)CR
isco

(a)/m
bh

(4)

where q = m

bh

/m

NS

is the binary mass ratio; a =
S

bh

/m

2
bh

is a dimensionless measure of the black hole
spin; and where C(m

ns

) = m

ns

/R

ns

is a mass- and
equation-of-state dependent measure of the neutron star
compactness. In Foucart’s expression, shown above,
R

isco

(a) is the radius of the innermost stable equito-
rial circular orbit of a test particle about a Kerr black
hole [88]. When the black hole spin is not aligned
with the orbit, we use the black hole spin magnitude
a in this expression.2 Using the fraction of all samples
which satisfy this condition, we arrive at an (equation-
of-state-dependent) probability that the candidate event
produces a tidal disruption. Our Bayesian approach
generalizes previously-reported Fisher-matrix-based [89]
or search-template-based [90] estimates, incorporating

2
We adopted an orientation-independent expression for tidal dis-

ruption probability for simplicity and to maximize the number

of binaries in our sample which satisfy this condition. While

physically more appropriate choice for the black hole spin would

a =

ˆL · S
bh

/m2
bh

in this expression, extremely few
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FIG. 9: Tidal disruption probability: Plot of the poste-
rior tidal disruption probability evaluated via Eq. (4) using
parameters drawn from SpinTaylorF2 [P

F2] and using pa-
rameters drawn from SpinTaylorT2 [P

T2].

state-of-the-art posterior estimates of each compact bi-
nary’s parameters. Using STF2, these estimates can be
evaluated in one to a few hours using current sampling
algorithms in lalinference mcmc, with further perfor-
mance improvements expected before the first few detec-
tions.

Figure 9 shows a scatterplot of the tidal disruption
probabilities evaluated using the posterior parameter dis-
tribution derived using STF2 and STT2. As expected from
Figure 7, the two approaches do not report precisely the
same posterior probabilities for each event. Given sys-
tematic uncertainty in the nuclear equation of state and
in post-Newtonian models for precessing binaries, how-
ever, the two models report adequately similar probabil-
ities for targeted electromagnetic followup.

V. CONCLUSIONS

Motivated by the need for low-latency parameter es-
timation, in this work we estimate the systematic error
introduced into posterior parameter distributions and as-
trophysical predictions by employing a rapid but approxi-
mate STF2 waveform model in favor of time-domain mod-
els like STT2 which include more physics. Though sta-
tistically significant di↵erences exist, we demonstrate by
repeated examples that these di↵erences are small com-
pared to the systematic post-Newtonian modeling uncer-
tainty inherent in our present, still-approximate under-
standing of compact binary inspiral. Because the STF2

model includes only one dynamically significant spin, our
results also consistent with suggestions that only prop-
erties associated with a single e↵ective spin will be ob-
servationally accessible with the first few gravitational

wave detections. Finally, we show that while di↵erent ap-
proximants disagree on intrinsic parameters, the approx-
imants lagely agree on extrinsic, geometric parameters
like ✓

JN

. The stability of extrinsic parameter estimates
will be important for targeting limited electromagnetic
followup resources.

Our compelling results are in no way in conflict with
prior and concurrent studies which demonstrated that, in
specific moderate-amplitude cases, both black hole spins
can be independently constrained in mangitude and di-
rection. For the detection-weighted astrophysical sample
adopted in these studies, most sources have only one sig-
nificant spin (e.g., due the mass and spin prior) and have
total angular momenta nearly along the line of sight. As
described elsewhere [79], these circumstances minimize
the ability of precession-induced-modulations to break
degeneracies and enable both spins to be measured. Fur-
ther investigations would be needed to determine if a dif-
ferent prior, favoring comparable-mass high-spin black
hole binaries, will enable high-precision measurement of
both black hole parameters.

Our analysis employed inspiral-only waveforms which
lack the coalescence and ringdown signals present in real
binary black hole merger signals. Their unphysical ter-
mination conditions are known to introduce convention-
dependent artifacts into parameter estimation, with in-
creasing impact as the total binary mass increases [91,
92]. A detailed discussion of waveform termination con-
ditions is beyond the scope of this paper. That said,
we anticipate that waveform termination conditions do
not dominate the di↵erences we observe. We found sim-
ilar cumulative distributions when examining only low-
mass sources, for which the impact of termination con-
ditions is reduced. Particularly for the low-mass sources
most likely to produce electromagnetic counterparts, we
are optimistic that parameter estimation conducted using
more complete models will produce similar results as our
study. We understand that a similar study has begun
using the IMRPhenomP model [93–95]. Like STF2, this
frequency-domain model accounts for a single (e↵ective)
spin, both during inspiral and merger.

Though not emphasized here, our investigations sug-
gest that STF2 can perform somewhat more reliably in
some regions of the parameter space. Conversely biases
between STF2 and STT2 are particularly large for some
corners of parameter space; for example, detailed fol-
lowup of Figure 7 suggests that STF2 may “miss” NS
companions with mass 2.5M� < m2 < 3M� when the
binary is spin-dominated (at 2f

orb

= 100Hz) and either
edge-on or a high-amplitude source. Our sample size
precludes robust investigation of how parameter biases
change as a function of all source parameters (masses,
spins, orientations, . . .). That said, we encourage further
study of biases between posterior distributions and even
maximum-likelihood estimates recovered using di↵erent
waveform models, as a critical ingredient to identify and
diagnose the impact of systematic errors on gravitational
wave astronomy.
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Appendix A: Review of statistics

The Student-t distribution arises from the distribution
of the ratio of t = x/

p
z/n where x is normally dis-

tributed with zero mean and unit variance and where z

is an independent �2-distributed variable with n degrees
of freedom. After some algebra, the probability distribu-
tion function (PDF) of t is

p(t) =
�(n+1

2 )
p
⇡n�(n/2)

1

(1 + t

2

n

)(n+1)/2
(A1)

The Student-t distribution is widely used in statistics to
compare whether two populations have the same mean,
given a priori equal variance. In the simplest case where
two sets of measurements x1 . . . xN

x

and y1 . . . yN
y

have
the same sample size, and s

x

, x̄ are defined as

x̄ ⌘ 1

N

x

X

k

x

k

(A2)

s

2
x

⌘ 1

N

x

X

k

(x
k

� x̄)2 (A3)

and similarly for s

y

, ȳ, then the following quantity is t

distributed with N1 +N2 � 2 degrees of freedom:

T =
x̄� ȳr

((N
x

� 1)s2
x

+ (N
y

� 1)s2
y

)N
�1
x

+N

�1
y

N

x

+N

y

�2

(A4)

Note that a specific value of T corresponds to a di↵erence
in means between x, y by of order �/

p
N . In our case,

with N ' 1000

The F

n1,n2 distribution arises from the distribution of

the ratio F = y1/n1

y2/n2
of two independent �

2-distributed
random variables y1, y2 with n1 and n2 degrees of free-
dom, respectively. The probability distribution of F is

p(F ) =
�(n1+n2

2 )(n1/n2)n1/2
F

n1
2 �1

�(n1/2)�(n2/2)[1 + (n1F/n2)](n1+n2)/2
(A5)

The F distribution is most widely used in frequentist
hypothesis testing (e.g., comparing the residuals after a
fit to an independent estimate of the sample variance).
For the purposes of this study, however, we point out
that the unbiased estimate of the standard deviation [s2

x

;
Eq. (A3)] is proportional to a �

2-distributed random
variable. As a result, the suitably-weighted ratio

F = s

2
x

/s

2
y

(A6)
can be used in a standard two-sample F test with n �
1, n � 1 degrees of freedom to assess whether the distri-
butions of x and y have the same variance. In practice,
because the second moment and therefore the F -test is
very sensitive to non-normality, we construct an empiri-

cal distribution of F , based on two samples known to be
drawn from the same distribution: independent repeti-
tions of the STT2 analysis.
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