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Note on Bunching of Field Lines in Black Hole Magnetospheres

Samuel E. Gralla,∗ Alexandru Lupsasca,† and Maria J. Rodriguez ‡

Center for the Fundamental Laws of Nature, Harvard University, Cambridge 02138, MA USA

Numerical simulations of Blandford-Znajek energy extraction at high spin have revealed that field
lines tend to bunch near the poles of the event horizon. We show that this behavior can be derived
analytically from the assumption of fixed functional dependence of current and field line rotation on
magnetic flux. The argument relies crucially on the existence of the Znajek condition, which offers
non-trivial information about the fields on the horizon without requiring a full force-free solution.
We also provide some new analytic expressions for the parabolic field configuration.

I. INTRODUCTION

A leading candidate mechanism to power relativistic
jets from active galactic nuclei (AGN) is the Blandford-
Znajek (BZ) process [1], in which energy is extracted from
a spinning black hole via its plasma magnetosphere. In
light of the large observed variation in jet properties, it is
of interest to explore the detailed dependence of magne-
tosphere structure on system parameters. One particular
variation was noticed by [2] (TNM), who found that as
the black hole spin is increased, the magnetic flux on the
event horizon tends to concentrate near the pole, a fea-
ture they described as bunching of field lines. In this note
we will show how the bunching can be derived by a simple
analytic argument from an assumption about the scaling
of the current and field line rotation with spin. The ar-
gument makes no reference to a particular choice of field
line geometry, and we thereby show that the bunching is
a general phenomenon, not limited to the particular ge-
ometries considered by TNM. We illustrate the high-spin
bunching for the three cases where approximate analyti-
cal solutions are known, the radial [1, 3], parabolic [1, 4],
and hyperbolic [5, 6] field configurations.

II. GENERAL MAGNETOSPHERE
STRUCTURE

Following BZ and TNM we assume that the plasma
inertia is negligible, so that the magnetosphere is force-
free.1 A stationary, axisymmetric force-free field in a
spinning black hole background is fully characterized by
the flux function ψ(r, θ), the polar current I(ψ), and the
angular velocity of field lines Ω(ψ).2 These functions
encode the energy flux by

dE
dt

= 2

∫ ψ∗

0

dψ I(ψ) Ω(ψ), (1)
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1 Reviews of force-free electrodynamics, including the discussion

of the quantities relevant to this work, may be found in [7, 8].
2 We will use the conventions of TNM.

where we assume a reflection-symmetric magnetosphere
and define ψ on the northern hemisphere, with ψ zero
at the pole and monotonically increasing until it reaches
its largest value ψ∗ on the equator. (The factor of 2 ac-
counts for the southern hemisphere.) Three families of
energy-extracting approximate solutions are known (ra-
dial, parabolic, and hyperbolic) and in all cases the cur-
rent and angular velocity take the form

I(ψ) = ΩH I(ψ), Ω = ΩH O(ψ), (2)

where ΩH is the horizon angular velocity and I and O
do not depend on the spin a. This leads to the basic
prediction of the BZ model that the power scales as the
spin squared,

dE
dt
∝ Ω2

H . (3)

This result was derived analytically for small spin, but
TNM has shown that for generic field configurations, it
continues to hold for all but the highest (a & 0.99M)
spins.3,4 In fact TNM find more: not just the total power
but also the detailed functional forms in Eqs. (2) carry
over from the linearized theory to large spin. In par-
ticular, their Figs. 5 and 6 demonstrate that I(ψ) and
O(ψ) vary by no more than 10% over the entire range
of spins 0 < a/M < 0.9999. We will take this result as
our starting point, and for the remainder of the paper
we will assume that Eqs. (2) hold exactly for any spin,
with I(ψ) and O(ψ) independent of the spin parameter
a. We will also assume that the total magnetic flux ψ∗ is
independent of spin. We now show how the bunching of
field lines can be recovered straightforwardly from these
assumptions.

3 As TNM show, it important to write the linearized result as Ω2
H ,

rather than (say) a2, in order for the scaling to carry over to high
spin.

4 To define the notion of the “same” field configuration at different
spins, TNM use the same initial data at each (r, θ) in Boyer-
Lindquist coordinates.
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A. Bunching of field lines

Even in possession of the detailed functional forms of
I(ψ) and Ω(ψ), determining a complete force-free solu-
tion is a daunting task, requiring the solution of a second-
order, non-linear partial differential equation for ψ. How-
ever, for a Kerr black hole this equation has the remark-
able property that, when evaluated on the horizon, only
derivatives tangential to the horizon appear, and further-
more the equation can be integrated once, so that it be-
comes a first-order ordinary differential equation on the
horizon. The result is the so-called Znajek condition ([9]
and e.g. [8]),

I = −2π(Ω− ΩH)

(
r2
H + a2

)
sin θ

r2
H + a2 cos2 θ

∂θψ, (4)

where ΩH = a/
(
r2
H + a2

)
is the horizon angular velocity,

rH = M +
√
M2 − a2 is the horizon radius, and every-

thing is evaluated on the horizon. We can integrate and
then exponentiate Eq. (4) to find

f(ψ) = A(θ), (5)

where we defined

f(ψ) ≡ exp

[
−2π

∫
dψ

Ω− ΩH
I

]
(6)

and

A(θ) ≡ eaΩH cos θ tan θ
2 . (7)

Eq. (6) defines f(ψ) up to an overall constant to be fixed,
after solving Eq. (5), by demanding that the maximum
value of ψ be ψ∗. Formally, the solution to Eq. (5) is

ψH(θ) = f−1[A(θ)] = f−1
[
eaΩH cos θ tan θ

2

]
, (8)

where the notation ψ ≡ ψH serves as a reminder that this
formula holds on the horizon. Given the assumptions
that I(ψ), O(ψ), and ψ∗ are independent of the spin,
we know that f , and hence f−1, is likewise independent
of the spin. Thus the only dependence of the horizon
flux on the spin is through the factor eaΩH cos θ in the
argument of f−1. This factor is monotonically decreasing
from its maximum eaΩH at the pole to its minimum 1 at
the equator, and will therefore always tend to increase
the proportion of magnetic flux near the pole as the spin
is increased. This is the bunching of field lines.

III. SPECIFIC MAGNETIC GEOMETRIES

We now consider force-free solutions with radial,
parabolic, and hyperbolic geometries. In each case we
use the current and angular velocity functions appro-
priate to a normalization of ψ(π/2) = ψ∗ = 1. Fac-
tors of ψ∗ may be reinstated by scaling ψ → ψ/ψ∗,
I → I/ψ∗ and Ω → Ω. E.g., equation (9) becomes
I(ψ) = 2πΩ(ψ)ψ(2− ψ/ψ∗).

A. Radial

In their original paper BZ found an approximate solu-
tion with radial field lines in a “split monopole” configu-
ration. For ψ∗ = 1 the current and angular velocity are
given by

I(ψ) = 2πΩ(ψ)ψ(2− ψ), (9)

Ω(ψ) = 1
2ΩH , (10)

which satisfy our assumptions with I = πψ(2 − ψ) and
O = 1/2. These are depicted in Fig. 1(a), which can
be matched directly to Fig. 4 of TNM. The integral in
Eq. (6) becomes

f(ψ) = C

√
ψ

2− ψ
, (11)

for some constant C. We can then solve Eq. (5) on the
horizon to learn that ψ = 2A2/

(
C2 +A2

)
. Requiring

ψ(π/2) = ψ∗ = 1 then fixes C2 = 1, and hence

ψH(θ) =
2A2(θ)

1 +A2(θ)
. (12)

To compare directly to TNM we plot the radial mag-
netic field Br = ∂θψ/

√
−g at the event horizon r = rH

(Fig. 1(a)) where
√
−g =

(
r2 + a2 cos2 θ

)
sin θ. Com-

paring with their Fig. 7, we see excellent agreement for
all curves a ≤ 0.9, with TNM seeing more bunching for
larger spins. This discrepancy can be explained by the
fact that our assumption of spin-independent I(ψ) and
O(ψ) disagrees more with TNM at higher spins.

B. Parabolic

BZ also found an approximate solution with parabolic
field lines, whose current and angular velocity are

I(ψ) = 4πΩ(ψ)ψ, (13)

Ω(ψ) = ΩH
(1− ψ)(u+ 1)[u− (1− ψ) ln 2]

u2 + (1− ψ)u− (1− ψ)2(u+ 1) ln 2
, (14)

where u = F [(1 − ψ) ln 4] and y = F (x) is the prod-
uct logarithm, which is defined by the principal solu-
tion of x = yey.5 Thus this configuration also has spin-
independent I(ψ) and O(ψ).

Following the same steps as before, we find that

f(ψ) = C

√
u

(1− ψ) ln 2
− 1, (15)

5 The angular velocity Ω is normally given in terms of coordinates
rather than as a function of ψ. As far as we know, Eq. (14) is a
new expression.
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and for the horizon flux function that

ψH(θ) =
A2(θ) ln 2 + ln[1 +A2(θ)]

[1 +A2(θ)] ln 2
. (16)

(Demanding ψH(π/2) = ψ∗ = 1 has fixed the constant
to be C2 = 1.) The radial magnetic field is plotted in
Fig. 1(b), and shows even more pronounced bunching
than in the monopolar case.

C. Hyperbolic

A third,“hyperbolic”solution was found in [5, 6], where
the field is generated by a thin disk terminating at an in-
ner radius b. The current and angular velocity functions
satisfy our assumptions. For simplicity we will work in
the limit b�M , where they become6

I(ψ) = 4πΩ(ψ)ψ, (17)

Ω(ψ) = ΩH

√
1− ψ

1 +
√

1− ψ
. (18)

These expressions are a good approximation even when b
corresponds to the innermost stable circular orbit. Per-
forming the bunching calculation, we find

f(ψ) = C

√
1−
√

1− ψ
1 +
√

1− ψ
, (19)

and

ψH(θ) =
4A2(θ)

[1 +A2(θ)]
2 , (20)

where ψH(π/2) = ψ∗ = 1 has fixed C2 = 1. The radial
component of the magnetic field at the horizon is plotted
in Fig. 1(c), which again shows the bunching.

IV. SUMMARY

We have shown that the high-spin bunching of field
lines observed by TNM generalizes to arbitrary magnetic
geometry under the assumption that the functional
forms of the current I(ψ) and field line angular velocity
Ω(ψ) both scale linearly with ΩH . Key to enabling
this analytic argument was the existence of the Znajek
condition at the horizon. This technique allows us
to bypass the issue of having to solve the complete
non-linear force-free problem to derive properties of
the fields at the horizon. We gave a general argument
and then illustrated the bunching with three specific
magnetic geometries, which are plotted in Fig. 1.
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FIG. 1. Bunching of field lines for radial, parabolic, and hyperbolic geometries. Diagrams of the field line geometry appear
in the upper right. On the left, the dimensionless current I (black line) and angular velocity O (gray line) as a function of
magnetic flux ψ/ψ∗ on the horizon ψ < ψ∗, which we assume to hold at all spin. On the right, the radial magnetic field
Br = ∂θψ/

√
−g as a function of angle θ < π/2 on the horizon for different values of the spin a = 0.1, 0.5, 0.9, 0.99, 0.999, 0.9999

(upwards on the left).
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