
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Fast spectral source integration in black hole perturbation
calculations

Seth Hopper, Erik Forseth, Thomas Osburn, and Charles R. Evans
Phys. Rev. D 92, 044048 — Published 26 August 2015

DOI: 10.1103/PhysRevD.92.044048

http://dx.doi.org/10.1103/PhysRevD.92.044048


Fast spectral source integration in black hole perturbation calculations

Seth Hopper,1 Erik Forseth,2 Thomas Osburn,2 and Charles R. Evans2

1School of Mathematical Sciences and Complex & Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Ireland

2Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA

This paper presents a new technique for achieving spectral accuracy and fast computational
performance in a class of black hole perturbation and gravitational self-force calculations involving
extreme mass ratios and generic orbits. Called spectral source integration (SSI), this method should
see widespread future use in problems that entail (i) point-particle description of the small compact
object, (ii) frequency domain decomposition, and (iii) use of the background eccentric geodesic
motion. Frequency domain approaches are widely used in both perturbation theory flux-balance
calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz
gauge, using the frequency domain and method of extended homogeneous solutions, have been able
to accurately reach eccentricities as high as e ' 0.7. We show here SSI successfully applied to Lorenz
gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a
factor of three improvement in the overall speed. The primary initial application of SSI–for us its
raison d’être–is in an arbitrary precision Mathematica code that computes perturbations of eccentric
orbits in the Regge-Wheeler gauge to extraordinarily high accuracy (e.g., 200 decimal places). These
high accuracy eccentric orbit calculations would not be possible without the exponential convergence
of SSI. We believe the method will extend to work for inspirals on Kerr, and will be the subject of a
later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate
the mode normalization coefficients in perturbation theory via sums over modest numbers of points
around an orbit. A variant of the idea is used to obtain spectral accuracy in solution of the geodesic
orbital motion.

PACS numbers: 04.25.dg, 04.30.-w, 04.25.Nx, 04.30.Db

I. INTRODUCTION

Merging compact binaries are a promising source of de-
tectable gravitational waves. Accurate theoretical mod-
els serve as templates to assist detection and will aid in
estimating an event’s physical parameters. Three com-
plementary theoretical approaches exist [1] for comput-
ing relativistic binaries: numerical relativity [2, 3], post-
Newtonian (PN) theory [4, 5], and gravitational self-
force (GSF) and black hole perturbation (BHP) calcula-
tions [1, 6–9]. The effective-one-body (EOB) formalism,
drawing calibration of its parameters from the above ap-
proaches, then provides a synthesis [10–15].

The GSF approach assumes the existence of, and ex-
ploits, a small ratio q = µ/M � 1 between the compo-
nent masses. The field and motion of the smaller body
are calculated in a perturbation expansion in powers of
q [16, 17]. Though restricted to small q, the GSF is valid
throughout the strong field regime. GSF/BHP calcu-
lations are most relevant to potential future eLISA ob-
servations of extreme-mass-ratio inspirals (EMRIs) q '
10−7-10−4 [18] but might pertain to Advanced LIGO
observations if there exists a fortuitous population of
intermediate-mass-ratio inspirals (IMRIs) q ' 10−3-10−2

[19, 20]. The dominant approach to the GSF treats
the small body as a point mass [8], then calculates the
metric perturbation and the local self-force using mode-
sum regularization [21]. Calculations are done directly in
the time domain (TD) [22–25] or via decomposition into
Fourier-harmonic modes in the frequency domain (FD)
[26–30]. Alternative means of calculating the self force

include effective source calculations [31–38] and direct
Green function calculations [39–41].

The PN approach has no restriction on q but is most
accurate for wide, low frequency orbits. Just as the GSF,
PN, and NR approaches separately inform EOB, there
has been considerable activity in recent years in making
comparisons between GSF/BHP and PN theory [26, 42–
44], including calculations at very high accuracies [45–
48]. GSF/BHP calculations made on wide orbits with
high accuracy (say 200 or more decimal places) allow
for ready separation and identification of numerous PN
contributions, opening up a new avenue for discovery of
high-order PN terms. (In contrast, long-term GSF evolu-
tions of E/IMRIs, with say 10−6 . q . 10−2, have more
modest accuracy requirements [9, 30], with fractional er-
rors of & 10−8 in the adiabatic part and ' 10−3 in the
post-1-adiabatic part [49].) The high precision calcula-
tions, until recently all done for circular orbits, utilize the
analytic function expansion formalism of Mano, Suzuki,
and Takasugi (MST) [50] and make use of arbitrary pre-
cision coding.

Several of us were intrigued by the idea of extending
MST calculations, and these comparisons to PN theory,
to include eccentric orbits. Results of that now successful
effort will be described elsewhere [51] but it has extended
our knowledge of the radiated energy from (known) 3PN
order to 6PN order (at lowest order in the mass ratio).
That project led to the necessary development of the
technique reported here. Modeling EMRIs with large ec-
centricities is essential, since astrophysical considerations
suggest [18, 20] they have a distribution peaked about
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e ' 0.7 [52] as they enter eLISA’s passband. Advanced
LIGO inspirals are expected to have nearly circular or-
bits, but small eccentricity corrections may be important
[53].

The spectral technique described here benefits FD cal-
culations of the “geodesic self-force” (i.e., first-order per-
turbations derived using geodesics of the background ge-
ometry) in E/IMRIs with eccentric orbits. In eccentric-
orbit FD calculations the Fourier transform spreads the
influence of the point particle source across a range of
radii. Mode by mode, the resulting source functions are
integrated against a Green function over this radial li-
bration region, a procedure that has been followed for
decades [54] for BHP problems. FD calculations of ec-
centric orbit GSF became feasible after Barack, Ori, and
Sago [55] found the method of extended homogeneous
solutions (EHS), thus allowing Fourier synthesis at the
particle location without encountering Gibbs behavior.
Originally demonstrated for scalar models [55] and early-
on extended to master equations in the Regge-Wheeler-
Zerilli (RWZ) formalism [27], EHS has recently been ap-
plied to coupled systems in Lorenz gauge [29, 30].

To those familiar with EHS, the new method can be
outlined briefly here. See Secs. III and IV for details.
Here we couch the discussion in terms of the RWZ case
(Sec. III B), where EHS entails calculating arbitrarily

normalized causal homogeneous solutions (X̂−lmn, X̂+
lmn)

and integrating them in product with stress-tensor pro-
jections over the source region. The result is a set of nor-
malization coefficients C±lmn that encode the orbital mo-
tion’s imprint in the field perturbation. Then extended
homogeneous solutions are assembled in the TD, and sub-
sequently abutted at the instantaneous particle location.

The new technique provides a means of calculating the
C±lmn (or their equivalent in other gauges) with spectral
accuracy. The integral for the normalization coefficients
is typically manipulated [27, 55, 56] into a form like

C±lmn =
1

WlmnTr

∫ Tr

0

Ē±lmn(t) einΩrt dt, (1.1)

where Ē±lmn(t) is a periodic function of the radial mo-
tion derived from spherical harmonic projection of the
point source and integration over the X̂∓lmn(r). Details
are found in Sec. III but for the nonce it is enough to say
that computing (1.1) is difficult to do with ODE or nu-
merical quadrature integrators at high accuracies beyond
double precision and is impossible to do at extraordinar-
ily high accuracies like 100 or more decimal places. The
new method, called spectral source integration (SSI), re-
places the integral with a remarkably simple sum

C±lmn =
1

NWlmn

N−1∑

k=0

Ē±lmn(tk) einΩrtk , (1.2)

which involves merely sampling the source function
Ē±lmn(t) at a modest number N of equally-spaced points
around the closed radial motion. This sum converges
exponentially with increases in N .

The FD approach with use of Fourier series (FS) has
been a part of BHP theory for decades. The FS and
normalization coefficients converge exponentially with n,
allowing the FS to be truncated. The new method makes
a crucial use of that standard approximation, recogniz-
ing that truncation of the FS representation (of e.g., a
source term) generates a bandlimited function. That in
turn invokes the machinery of the Nyquist-Shannon sam-
pling theorem. The truncated FS can itself be replaced
by discrete equally-spaced sampling of the TD function.
Then, discrete sampling and periodicity allow a discrete
function of finite length N to serve as an accurate TD
representation. Furthermore, the finite discrete function
is dual to a discrete Fourier transform (DFT) spectrum,
computable with an FFT. The DFT spectrum is an ap-
proximation, between its Nyquist frequencies, of the orig-
inal FS spectrum, but can be made exponentially accu-
rate with increases in N . It is then possible to replace
integrals like (1.1) with finite sums like (1.2) and achieve
spectral convergence there too. In essence, SSI provides
a completion of the FD approach by bringing to bear
concepts in discrete-time signal processing.

This paper shows application of SSI to FD BHP
and geodesic GSF calculations of eccentric Schwarzschild
E/IMRIs in both RWZ and Lorenz gauges. We also
demonstrate in Sec. II that a related approach pro-
vides arbitrarily accurate solutions of the geodesic equa-
tions themselves. SSI may be applicable to Kerr BHP
[6, 57, 58] and GSF calculations, the subject of an upcom-
ing paper. In addition, SSI has the potential to benefit
the Green function approach to GSF calculations [41].

The paper is organized as follows. Sec. II considers
the orbital problem. In Sec. II A we review bound ec-
centric geodesic motion about a Schwarzschild black hole
and set the notation. Sec. II C describes the spectral ap-
proach for integrating the orbit equations with geometric
convergence, and shows numerical results. Appendix A
gives a simple analytic calculation of the exponential fall-
off in Fourier coefficients in part of the orbital problem.
Next the SSI method is described in Sec. III through its
application in the RWZ formalism to provide spectral
solution of master equations. A brief review of how the
RWZ problem is solved in the FD using EHS is given in
Sec. III A. Then Sec. III B lays out the SSI method, the
heart of this paper, and displays a set of numerical re-
sults. We discuss some related findings in the numerical
analysis literature in Sec. III C. Having shown SSI ap-
plied to a single perturbation equation, we present next
in Sec. IV its application in Lorenz gauge, demonstrating
that the method allows systems of equations to be solved
with spectral convergence. Our conclusions are drawn in
Sec. V.

In this paper we set G = c = 1 and use the metric
signature +2.
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II. SPECTRAL INTEGRATION OF BOUND
ORBITAL MOTION

The new method is first applied to solving the equa-
tions of bound geodesic motion. This proves to be a
necessary first step to using SSI to solve the first-order
perturbation equations when working at accuracies well
beyond double precision. At double precision, it leads to
a more efficient computation of the orbit. We consider
geodesic motion about a Schwarzschild black hole in this
paper. Application of SSI to general orbits about a Kerr
black hole will be taken up in a subsequent paper. We
begin with a brief review of the problem and notation.

A. Geodesic motion and the relativistic anomaly

We consider generic bound motion of a small mass µ,
taken to be a point particle, around a Schwarzschild black
hole of mass M in the test body (geodesic) limit µ/M →
0. Schwarzschild coordinates xµ = (t, r, θ, ϕ) are used,
with the line element having the form

ds2 = −fdt2 + f−1dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
, (2.1)

where f(r) = 1− 2M/r.

Let the worldline of the particle be described by the
functions xαp (τ) = [tp(τ), rp(τ), θp(τ), ϕp(τ)] of proper
time τ (or some other convenient curve parameter). Sub-
script p indicates location of the particle. The four-
velocity is uα = dxαp /dτ . Without loss of generality the
motion is confined to the equatorial plane, θp(τ) = π/2.

The orbit is parametrized in terms of the (dimen-
sionless) semi-latus rectum p and the eccentricity e (see
[54, 59]). These constants are related to the usual con-
stant specific energy E = −ut and specific angular mo-
mentum L = uϕ. Additionally, pericentric rmin and
apocentric rmax radii are introduced, which are related
to p and e by the following equations

p =
2rmaxrmin

M(rmax + rmin)
, e =

rmax − rmin

rmax + rmin
, (2.2)

rmax =
pM

1− e , rmin =
pM

1 + e
. (2.3)

Bound eccentric orbits satisfy E < 1 and L > 2
√

3M .
These in turn imply p ≥ 6 + 2e, with the boundary of
stable orbits p = 6 + 2e being the separatrix [54].

As is usual, τ is replaced as the curve parameter by
Darwin’s relativistic anomaly χ, in terms of which the
radial position is given a Keplerian-appearing form [60]

rp (χ) =
pM

1 + e cosχ
. (2.4)

The equations for the remaining functions take the form

dtp
dχ

=
rp (χ)

2

M(p− 2− 2e cosχ)

√
(p− 2)2 − 4e2

p− 6− 2e cosχ
, (2.5)

dτp
dχ

=
Mp3/2

(1 + e cosχ)2

√
p− 3− e2

p− 6− 2e cosχ
, (2.6)

dϕp
dχ

=

√
p

p− 6− 2e cosχ
. (2.7)

The last equation, describing azimuthal motion, has an
analytic solution

ϕp(χ) =

√
4p

p− 6− 2e
F

(
χ

2

∣∣∣∣−
4e

p− 6− 2e

)
, (2.8)

where F (x|m) is the incomplete elliptic integral of the
first kind [61]. The other two equations are typically
solved numerically.

To solve (2.5) and (2.6), each equation can be regarded
as either a numerical quadrature or an initial value prob-
lem (IVP) [62]. Cutler, Kennefick, and Poisson [54] took
the former approach and used Romberg’s method. In
the more complicated Kerr geodesic problem, Drasco and
Hughes [57] initially solved for the motion using a nu-
merical quadrature routine but later switched to use of a
quasi-analytic approach developed by Fujita and Hikida
[63]. (Indeed, this quasi-analytic method involving rapid
evaluation of elliptic integrals stands as a third route to
solution.) In more recent work [27, 29, 30, 59], Eqns. (2.5)
and (2.6) have simply been integrated using Runge-Kutta
routines. At double precision the distinction is trivial and
errors in the orbit are of minimal concern. Recently, how-
ever, several of us have turned attention [51] to making
extraordinarily high precision (e.g., 200 decimal place)
BHP and GSF calculations for eccentric EMRIs using
the MST formalism [50] (henceforth the MST code). It
proved necessary to develop a new means of efficiently
calculating the orbit to arbitrary precision, as well as
doing the same for the perturbation source integration
(Secs. III B and IV B).

The MST code is written in Mathematica to make use
of its arbitrary precision functionality. Initially, we used
its NDSolve function to compute orbits but found such
integrations became prohibitively expensive for errors of
order . 10−40. The alternative approach we found turns
out to be a simple application of the SSI concepts. In
fact, the arguments laid out in the next two subsections
are key to understanding the SSI development. Shortly,
we will discuss solving (2.5) to obtain tp(χ) (integration
of (2.6) follows in like fashion). But first we address some
general considerations.

B. Spectral integration: general considerations

Let dI/dχ = g(χ) with g(χ) (the source) being both a
periodic and a smooth function. We are interested in in-
tegrating g to find I(χ). We can assume g(χ) is complex,
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but in orbital motion applications the functions will be
real. The periodicity of g suggests utilizing a FS expan-
sion and then calculating the integral for I(χ) term by
term. At first glance this approach is not very helpful
since, even if we truncate the FS, the expression for I(χ)
would require computing a large number of definite inte-
grals numerically for the FS coefficients. Fortunately, the
smoothness of g(χ) helps in several ways. In many cases,

the FS amplitudes G̃n will fall in magnitude exponentially
(shown numerically for orbital motion presently; see also
Appendix A). Even in calculations with hundreds of dec-
imal places of accuracy, the FS can then be truncated to
a modest number of terms. At whatever adopted level of
accuracy, replacing g(χ) with a truncated FS introduces
an approximation that is bandlimited.

We then recall that bandlimited signals play a key role
in the Nyquist-Shannon sampling theorem: a function
that contains only frequencies f with |f | ≤ B is com-
pletely determined by its discrete (equally-spaced) sam-
ples (in this case in χ) occurring at the Nyquist rate 2B
(i.e., with spacing ∆χ = 1

2B
−1). If we combine discrete

sampling with the periodicity of radial motion, then only
a finite total number N of samples in χ need be con-
sidered. We replace g(χ) again–this time with its finite
sampling gk = g(χk) = g(k∆χ), where k = 0, . . . , N − 1.
This new representation of the source has its own DFT
spectrum Gn (with n = −N/2, . . . , N/2 − 1), which can
be computed with the FFT algorithm [62]. In contrast to

the FS spectrum G̃n, the DFT spectrum Gn exhibits a pe-
riodicity of its own, Gn+jN = Gn, for arbitrary integer j.
However, aliasing can be avoided if the DFT spectrum is
only used at the N frequencies within its Nyquist bounds.
Then for an accuracy goal that is sufficiently high (i.e.,
high enough N , found iteratively), the DFT spectrum
Gn is virtually indistinguishable from the FS spectrum
G̃n. Using the DFT representation, it is then possible
to compute g(χ) at any location either via Fourier in-
terpolation or using the Whittaker cardinal function [64]
on the circle (i.e., convolution with the Dirichlet kernel).
Furthermore, the source can be integrated or differenti-
ated term by term to accuracies comparable to the initial
goal.

To summarize:

• The (perhaps complex) function g(χ) is periodic
and C∞.

• It can be represented as a FS with spectrum G̃n
with n→ ±∞.

• The FS spectrum can be truncated to some nmin ≤
n ≤ nmax subject to an accuracy goal.

• The approximate but very accurate truncated FS
is a bandlimited function.

• The Nyquist-Shannon sampling theorem implies
the truncated FS representation can itself be re-
placed in the TD with discrete sampling.
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FIG. 1. Equally spaced in χ sampling of p = 50, e = 0.7
orbit. The complete orbit is split into N = 42 samples
(∆χ = 0.1496) and spectral integration requires only N = 22
points between χ = 0 and χ = π (inclusive) to achieve dou-
ble precision accuracy. The values of dtp/dχ need only be
calculated at the indicated points to provide double precision
integration and interpolation anywhere on the orbit.

• Sampling plus periodicity implies a discrete repre-
sentation of finite length N .

• Finite sampling representation in the TD implies
one-to-one correspondence via the DFT with a FD
periodic spectrum Gn.

• The DFT spectrum within the Nyquist range ap-
proximates well the original FS spectrum if N is
sufficiently large, allowing G̃n → Gn.

• The DFT representation in the TD can be inte-
grated and interpolated to spectral accuracy.

C. Spectral solution of the orbital motion

In practice, the orbit equations (2.5) and (2.6) have
source functions that are real and even. Hence we can
represent them with a discrete cosine transform (DCT)
[65]. In turn the integral for tp(χ) (for example) will
be represented by a discrete sine transform (DST), with
an additional term linear in χ. Furthermore, the orbital
source functions are not only periodic but have reflection
symmetries across both periapsis (χ = 0) and apapsis
(χ = π). These symmetries narrow the form that the
DCT can take to be either type I or II [66]. We utilize
the type I (referred to as DCT-I) algorithm with unitary
normalization (making the DCT-I its own inverse).

In the general discussion above, we imagined dividing
the entire orbit into N intervals with ∆χ = 2π/N . For
the DCT-I, this spacing is maintained and (assuming N
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FIG. 2. Number of sample points N between χ = 0 and
χ = π needed to represent dtp/dχ = g(χ) to a prescribed
accuracy. The ratio of magnitudes of the smallest to largest
Fourier coefficients of g(χ) gives an estimate of the relative
accuracy. The linear scaling of N versus digits of accuracy
indicates geometric fall-off in the spectral components of g(χ).
Away from the separatrix this relation is largely independent
of p.

is even) the half orbit from χ = 0 to χ = π is split into
N/2 intervals. The DCT-I utilizes N = N/2 + 1 sample
points by including the end points at both χ = 0 and
χ = π. In terms of the number of samples the domain is
split into N − 1 intervals. The locations of the samples
are

χk ≡
kπ

N − 1
, k ∈ 0, 1, . . . ,N − 1. (2.9)

Then at theN points we denote the samples of the source
function as gk = g(χk). The (real) Fourier coefficients are
given by

Gn =

√
2

N − 1

[
1

2
g0 +

1

2
(−1)ngN−1 (2.10)

+

N−2∑

k=1

gk cos (nχk)

]
.

Like the more general DFT, this expression is exactly
invertible and we can recover the original samples in the
χ-domain

gk =

√
2

N − 1

[
1

2
G0 +

1

2
(−1)kGN−1 (2.11)

+

N−2∑

n=1

Gn cos (nχk)

]
.

We can then use the spectral amplitudes to provide a
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FIG. 3. Number of sample pointsN between χ = 0 and χ = π
needed to represent dtp/dχ = g(χ) as a function of eccentric-
ity e at fixed accuracy of 150 decimal places. Of course as the
eccentricity approaches unity and the radial period becomes
infinite, so too does the number of needed samples. Still, for
any astrophysically relevant orbit, we can sample the orbit to
impressive accuracy with a modest number of points.

Fourier interpolation to arbitrary χ

g(χ) =

√
2

N − 1

[
1

2
G0 +

1

2
GN−1 cos [(N − 1)χ]

+

N−2∑

n=1

Gn cos (nχ)

]
. (2.12)

Integrating Eqn. (2.12) yields the sine expansion for the
time

tp(χ) =

√
2

N − 1

[
1

2
G0 χ+

1

2
GN−1

sin [(N − 1)χ]

(N − 1)

+

N−2∑

n=1

1

n
Gn sin (nχ)

]
. (2.13)

Having found tp(χ) we can obtain the radial period Tr
from the leading Fourier amplitude G0

Tr =

√
2

N − 1
πG0. (2.14)

Then, with Tr in hand, the fundamental frequencies can
be computed

Ωr =
2π

Tr
, Ωϕ =

ϕp(2π)

Tr
. (2.15)

From a practical perspective, the DCT-I can be com-
puted with O(N lnN ) speed using either the Fouri-
erDCT function in Mathematica or the FFTW routine
in C coding. Fig. 1 provides a picture of how efficient
this method is. For this orbit we need only N = 22
samples to achieve double precision accuracy in the or-
bit integration. In fact, all we need know are the source
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functions at the indicated points and we can interpolate
to double precision accuracy anywhere in between. From
a practical standpoint, we guess a value of N and esti-
mate the error by computing the ratio of the smallest to
largest Fourier coefficients |GN−1/G0|. If that ratio fails
to meet our prescribed accuracy goal, we simply increase
N and repeat the procedure. Given that the DCT is so
fast to compute, we are able to solve the orbit equations
to hundreds of digits of accuracy within a few seconds.
Fig. 2 shows how remarkable and modest the scaling is
in the number of required sample points N as a function
of prescribed accuracy. Fig. 3 shows how the number of
needed sample points grows with increasing eccentricity
(given a fixed accuracy goal). Even at very high eccen-
tricities, e ≈ 0.9, the number of samples is quite rea-
sonable. Thus, with this approach the integration of the
orbit becomes a trivial cost, even for astrophysically in-
teresting eccentricities (e ' 0.7) and high accuracy (MST
code) applications.

III. SPECTRAL SOURCE INTEGRATION IN
THE RWZ FORMALISM

One of the principal goals of this paper is to describe
our new means of applying spectral techniques (i.e., SSI)
to integrate the source problem in black hole perturba-
tion theory to high accuracy. In this section we show the
simplest application of SSI, namely solution of master
equations in the Regge-Wheeler-Zerilli (RWZ) formalism
for generic orbits. Before detailing the SSI technique in
Sec. III B, we first briefly review the now standard way
[27] of solving master equations using FD decomposi-
tion and the method of extended homogeneous solutions
(EHS) [55], and in the process set the notation.

A. The RWZ formalism and EHS method

We begin with a RWZ master equation in the TD

(
− ∂2

∂t2
+

∂2

∂r2
∗
− Vl(r)

)
Ψlm(t, r) = Slm(t, r), (3.1)

where r∗ = r + 2M ln(r/2M − 1) is the usual tortoise
coordinate. Here Vl(r) is either the Zerilli potential (l +
m even) or the Regge-Wheeler potential (l + m odd).
The source contains terms proportional to the Dirac delta
function and its first derivative

Slm(t, r) = Glm(t) δ[r − rp(t)]
+ Flm(t) δ′[r − rp(t)].

(3.2)

The time dependent functions Glm(t) and Flm(t) arise
from tensor spherical harmonic decomposition [27] of the
stress-energy tensor of the point mass and enforcement of
the delta function constraints r → rp(t) and ϕ → ϕp(t).
Like the potential, their form depends upon parity. For
l + m even we use the Zerilli-Moncrief source, and for

l+m odd we use the Cunningham-Price-Moncrief source
(see [27] for details).

As explained in Sec. II, the eccentric motion of the
source is characterized by two fundamental frequencies,
Ωϕ and Ωr. As such, we can represent the master func-
tion and the source as Fourier series

Ψlm(t, r) =

∞∑

n=−∞
Xlmn(r) e−iωt, (3.3)

Slm(t, r) =

∞∑

n=−∞
Zlmn(r) e−iωt, (3.4)

with the mode frequencies being functions of both fun-
damentals

ω = ωmn ≡ mΩϕ + nΩr, m, n ∈ Z. (3.5)

The series coefficients are formally found by integrating
the TD master functions over one radial period

Xlmn(r) ≡ 1

Tr

∫ Tr

0

dt Ψlm(t, r) eiωt, (3.6)

Zlmn(r) ≡ 1

Tr

∫ Tr

0

dt Slm(t, r) eiωt. (3.7)

The master equation then takes on the following FD form

(
d2

dr2
∗

+ ω2 − Vl(r)
)
Xlmn(r) = Zlmn(r). (3.8)

(Throughout Sec. III we do not suppress any of the mode
labels, though for all intents and purposes l and m can
be regarded as fixed and arbitrary.)

An essential element in solving (3.1) is to obtain inde-
pendent homogeneous solutions to (3.8), either through
numerical integration (after setting causal boundary con-
ditions at r∗ →∞ and r∗ → −∞) or through use of an-
alytic function (MST) expansions [67]. We denote these

unnormalized solutions as X̂±lmn(r), where

X̂+
lmn(r∗ → +∞) ∼ eiωr∗ , (3.9)

X̂−lmn(r∗ → −∞) ∼ e−iωr∗ . (3.10)

A Green function is formed from these two linearly inde-
pendent solutions and integrated over the source function
Zlmn(r) to obtain the particular solution of (3.8)

Xlmn(r) = c+lmn(r) X̂+
lmn(r) + c−lmn(r) X̂−lmn(r), (3.11)

where the normalization functions in the source region
are given by the integrals

c+lmn(r) =
1

Wlmn

∫ r

rmin

dr′

f(r′)
X̂−lmn(r′)Zlmn(r′),

c−lmn(r) =
1

Wlmn

∫ rmax

r

dr′

f(r′)
X̂+
lmn(r′)Zlmn(r′).

(3.12)
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Here Wlmn is the Wronskian

Wlmn = f(r)

(
X̂−lmn

dX̂+
lmn

dr
− X̂+

lmn

dX̂−lmn
dr

)
. (3.13)

While the expression in Eqn. (3.11) is indeed a solution
to Eqn. (3.8), it is not ideal. The singular nature of the
TD source (3.2) results in Gibbs behavior in the Fourier
synthesis (3.3) of Ψlm at and near the particle location,
leading to slow algebraic convergence. Exponential con-
vergence can be restored by using the method of EHS,
originally developed by Barack, Ori and Sago [55].

The first step in EHS is to extend the limits of integra-
tion in (3.12) to include the full source region and obtain
the normalization coefficients

C±lmn =
1

Wlmn

∫ rmax

rmin

dr
X̂∓lmn(r)Zlmn(r)

f(r)
. (3.14)

These complex constants are in turn used to normalize
the individual mode functions

X±lmn(r) = C±lmnX̂
±
lmn(r), (3.15)

producing the FD EHS of Eqn. (3.8). Collectively, these
normalized modes encode all the information about the
source motion and are used to then define the TD EHS

Ψ±lm(t, r) ≡
∑

n

X±lmn(r) e−iωt. (3.16)

As the FD EHS are each C∞, these Fourier sums con-
verge exponentially for all r > 2M . The sums are for-
mally infinite in number, but in practice they are trun-
cated once a specified accuracy is reached. The desired
particular TD solution to Eqn. (3.1) is then obtained by
joining the outer and inner TD EHS:

Ψlm(t, r) = Ψ+
lmθ [r − rp(t)] + Ψ−lmθ [rp(t)− r] . (3.17)

This weak solution can be computed everywhere, includ-
ing the particle location, and it allows the metric and
local gravitational self-force to be accurately determined
[27].

There remains the practical issue of computing the
C±lmn. For the RWZ problem, the source Zlmn(r) in
Eqn. (3.14) is poorly behaved at the turning points be-
cause of the presence of the δ′ term in (3.2) [27]. It was
shown in that paper that the problem could be circum-
vented by reversing the order of integration (see related
examples in [55, 56]). To see this, substitute the Fourier
transform integral for Zlmn(r) into (3.14)

C±lmn =
1

WlmnTr

∫ rmax

rmin

dr
X̂∓lmn(r)

f(r)
(3.18)

×
∫ Tr

0

dt Slm(t, r)eiωt.

Then substitute for the TD source Slm(t, r) its singular
form (3.2), exchange the order of integration, and inte-
grate in r over the delta function terms. What remains
of the calculation of C±lmn is an integral over time

C±lmn =
1

WlmnTr

∫ Tr

0

[
1

fp
X̂∓lmnGlm (3.19)

+

(
2M

r2
pf

2
p

X̂∓lmn −
1

fp

dX̂∓lmn
dr

)
Flm

]
eiωt dt.

The integrand is composed of obvious functions of time,
such as Glm(t) and Flm(t). However, all of the other
terms inside the square braces are now also functions
of time, since the delta function maps r → rp(t) [e.g.,

fp ≡ f(rp(t)), X̂
∓
lmn(r)→ X̂∓lmn(rp(t))].

In summary, the RWZ BHP problem is solved by com-
puting, for a sufficient range of l, m, and n, the inner
and outer mode functions X̂±lmn(r) (by ODE integration
or analytic function expansion) and computing the inte-
grals (3.19) for the normalization coefficients C±lmn (using
either IVP ODE integration [27] or a numerical quadra-
ture routine [56]).

B. SSI for the normalization coefficients

SSI is a new modification in the way the normaliza-
tion coefficients C±lmn are calculated. The key first step
in developing SSI was actually the reversal in the order
of integration described immediately above. The second
essential step involves recognizing the periodic nature of
the integrand in (3.19). The functions Flm(t) and Glm(t),
which contribute to the source Slm, have complex time
dependence because of the biperiodic motion and (typi-
cally) incommensurate frequencies Ωr and Ωϕ. The mo-
tion in ϕ can be split into

ϕp(t) = Ωϕt+ ∆ϕ(t), (3.20)

where the mean azimuthal advance is modulated by
∆ϕ(t), which is periodic in the radial motion. This ϕp(t)
enters source terms only through the spherical harmonic
factor e−imϕp(t), which factors into: e−imΩϕt e−im∆ϕ(t).
It is the mean azimuthal phase advance, at angular rate
Ωϕ, that makes source terms biperiodic. We can, how-
ever, define functions Ḡlm and F̄lm via

Ḡlm(t) ≡ Glm(t) eimΩϕt,

F̄lm(t) ≡ Flm(t) eimΩϕt,
(3.21)

that are strictly Tr-periodic. Returning to Eqn. (3.19),
we see that the factor, e−imΩϕt, responsible for biperiod-
icity, cancels with a corresponding factor from the Fourier
transform kernel. We can replace the integral with

C±lmn =
1

WlmnTr

∫ Tr

0

Ē±lmn(t) einΩrt dt. (3.22)
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FIG. 4. Aliasing effect from oversampling SSI in the FD.
Shown here are energy flux data from an orbit with p = 1020

and e = 0.01 for modes with l = 2, m = 2. The energy flux
from successive n modes falls off exponentially when com-
puted away from the peak harmonic. Note that one harmonic
(n = −m = −2) is nearly static, which decreases its flux by
more than 100 orders of magnitude. As higher positive and
negative n are computed, the fluxes reach Nyquist-like notches
and oversampling in n beyond those points leads to increases
in flux similar to aliasing. The locations of the minima scale
with but are not equal to ±N/2.

where Ē±lmn(t) are strictly Tr-periodic functions

Ē±lmn(t) ≡ 1

fp
X̂∓lmnḠlm (3.23)

+

(
2M

r2
pf

2
p

X̂∓lmn −
1

fp

dX̂∓lmn
dr

)
F̄lm.

The third, and most important, step toward SSI harks
back to our earlier discussion in Sec. II C of spectrally in-
tegrating the orbit equations. There we showed that due
to the C∞ smoothness of (for example) dtp/dχ = g(χ)
we could replace g(χ) with an equally-spaced sampling
gk = g(k∆χ) of modest total number of samples N and
achieve high-accuracy interpolation and integration. For
source integration, the equivalent step (to be justified
momentarily) is to replace (3.22) with

C±lmn =
1

NWlmn

N−1∑

k=0

Ē±lmn(tk) einΩrtk , (3.24)

where the time samples are tk = kTr/N , with k =
0, . . . , N − 1. This remarkably simple sum is the heart
of SSI. By replacing the integral in (3.22) with the sum
in (3.24), we avoid ODE integration and the calculation
of the normalization coefficients is vastly sped up, open-
ing the door to much higher accuracy applications [51].

What makes SSI work? Before we examine how well
SSI performs, we first justify (3.24) as an appropriate re-
placement for (3.22). The argument starts by noting the

−250

−200

−150

−100

-45 -30 -15 0 15 30 45 60

lo
g
1
0

∣ ∣ ∣〈Ė
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FIG. 5. SSI at high accuracy. Absolute differences (errors)
are shown in self-convergence tests. The same data found
in Fig. 4 are used to compute differences (per harmonic) in
the fluxes between the three lower resolutions and the highest
(N = 100) resolution. For each of the three lower resolutions
(N = 40, 60, 80) the errors are well bounded by the accuracy
criteria set by errors at the Nyquist notches.

expected smoothness of the functions Ē±lmn(t) that enter
(3.22). The contributing elements F̄lm(t) and Ḡlm(t) are
smooth C∞ functions of the orbital motion. Similarly,
the modes X̂∓lmn(r) are smooth functions of r, and hence
become smooth functions of time under the replacement
r → rp(t). Thus, for every lmn, the integrand in (3.22)
is smooth and periodic. These properties suggest, just as
they did in Sec. II B, use of FS expansion. Indeed, the
integral in Eqn. (3.22) looks like, under a cursory glance,
the calculation of a set of FS coefficients. However, it is
clear that C±lmn is not a spectrum of coefficients (in n)
derived from a single function of time, but is instead cal-
culated from a whole set (in n) of TD functions Ē±lmn(t).

Nevertheless, the Fourier series can be put to inves-
tigative use and we introduce one for each Ē±lmn(t):

Ē±lmn(t) =

∞∑

n′=−∞
Ẽ±lmnn′ e−in

′Ωrt, (3.25)

with the coefficients given by

Ẽ±lmnn′ =
1

Tr

∫ Tr

0

dt Ē±lmn(t) ein
′Ωrt. (3.26)

If (3.25) is substituted in (3.22), and sum and integral
are exchanged, we find that the normalization coefficients

C±lmn =
1

Wlmn
Ẽ±lmnn , (3.27)

are proportional to the diagonal elements (n = n′) of the

superset (over n and n′) of FS coefficients Ẽ±lmnn′ . The
result is understandable: the integral in (3.22) simply
picks out the nth harmonic in the nth function Ē±lmn(t).
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To complete the argument, we may assume (and nu-
merically verify) that the smoothness of a source function
Ē±lmn(t) implies a rapidly falling (likely geometric) spec-

trum for Ẽ±lmnn′ as n′ → ±∞. As we argued in Sec. II B,
for any given accuracy goal, this implies the spectrum
can be truncated at some sufficiently negative and posi-
tive values of n′. Truncation, in turn, means that we have
replaced the original source function with a bandlimited
approximation. Bandlimiting then argues for replacing
the source function (yet again), this time with a set of
discrete, equally-spaced samples Ē±lmn(tk). Because the
source function is periodic, the discrete sampling is finite
in number (say N). We can then use the DFT to relate
the discrete sampling representation of the source to a
discrete, finite spectrum (and vice versa)

Ē±lmn(tk) =

N−1∑

n′=0

E±lmnn′ e−in
′Ωrtk , (3.28)

E±lmnn′ =
1

N

N−1∑

k=0

Ē±lmn(tk) ein
′Ωrtk . (3.29)

The DFT spectrum E±lmnn′ is distinct from the FS spec-

trum Ẽ±lmnn′ , and the former will display periodicity in

the FD, E±lmn,n′+jN = E±lmnn′ . However, for sufficiently
large N and between the negative and positive Nyquist
frequencies, the two spectra can be made nearly indistin-
guishable. If we then set n′ = n, replace Ẽ±lmnn in (3.27)

with the DFT spectral component E±lmnn, and substitute
into the same equation the DFT relation (3.29), we have
derived our SSI formula Eqn. (3.24).

We can provide a summary of this discussion, and the
derivation, through a sequence of replacements:

C±lmn =
1

WlmnTr

∫ Tr

0

dt Ē±lmn(t) einΩrt (3.30)

=
1

WlmnTr

∫ Tr

0

dt einΩrt
∞∑

n′=−∞
Ẽ±lmnn′ e−in

′Ωrt

' 1

WlmnTr

∫ Tr

0

dt einΩrt

n′max∑

n′=n′min

Ẽ±lmnn′ e−in
′Ωrt

' 1

WlmnTr

∫ Tr

0

dt einΩrt

n′max∑

n′=n′min

E±lmnn′ e−in
′Ωrt

=
1

WlmnTr

∫ Tr

0

dt einΩrt

n′max∑

n′=n′min

e−in
′Ωrt

× 1

N

N−1∑

k=0

Ē±lmn(tk) ein
′Ωrtk

=
1

NWlmn

n′max∑

n′=n′min

N−1∑

k=0

Ē±lmn(tk) ein
′Ωrtk δnn′

=
1

NWlmn

N−1∑

k=0

Ē±lmn(tk) einΩrtk .

The two approximate (but typically spectrally accurate)
steps are indicated.
What is involved in practical use of SSI? Another way

of asking this question is: if we make N discrete sam-
ples of each source function and sum them in (3.24), for
which and how many n’s should we compute C±lmn? We
do not presently have an exact answer, but we have an
effective, practical procedure. To see the issue, consider
Fig. 4. There we show gravitational wave energy fluxes
per harmonic n at r = ∞ for the l = 2, m = 2 mode
(essentially proportional to |C+

22n|2). We might expect,
for a given N , to begin near n = 0 and see a spectrum
that descends on either side until hitting a Nyquist point
(at about n = ±N/2). That is roughly, but not exactly,
what is observed. The problem is that C±lmn is not, as
a function of n, a DFT spectrum. If we consider (3.27),
clearly the Wronskian Wlmn should not be expected to
display a periodicity in n. Even the DFT spectra, while
having the periodicity in n′, E±lmn,n′+jN = E±lmnn′ , will

not have a periodicity in the diagonal elements E±lmnn as

a function of n. Nevertheless, if we sample C±lmn in n
for |n| & N/2 we observe a succession of Nyquist-like
notches and peaks, similar to aliasing in the DFT but
without exact periodicity. From a practical standpoint,
we compute and use the spectrum in n down to the first
Nyquist-like notch on each side and calculate no further.
The code marches forward on each side, finds the minima,
and discards contributions beyond those points.

Fig. 4 shows this aliasing phenomenon. There we de-
liberately compute and display energy fluxes for a few
harmonics beyond the first Nyquist notch on each side
of the central maximum. We show the same fluxes com-
puted with four different spectral resolutions. The ex-
ponential fall in the spectrum is evident. These calcula-
tions were made possible not only by use of SSI but also
Mathematica’s arbitrary precision arithmetic. As N be-
comes larger, we approach the FS, or continuum, limit.
It is clear from the vantage point of high resolution that
the best thing to do at lower resolution is halt the mode
calculations at the Nyquist notches. This assumption is
borne out by considering Fig. 5. This figure displays the
differences in fluxes between those computed at resolu-
tions of N = 40, 60, 80 and those found with N = 100.
The error in the discrete representation is well bounded
in the region between the first Nyquist points by the max-
imum error at one of the notches.

Operating at high accuracy (e.g., 200 decimal places),
the MST code makes a prediction of how large N needs
to be in order that the Nyquist notches lie (just) below
the specified error level. We have observed that adequate
sampling for SSI is always sufficient for comparably ac-
curate orbit integration. The prediction for N is tested
and if mode fluxes do not reach the error level at the
Nyquist notches, then a new value of N is chosen and
the calculation is repeated. In the MST code, the now
vastly reduced number of function evaluations can still
be expensive if N is set too generously. It is important
to note that the key formula for SSI, Eqn. (3.24) (or more
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properly (3.31)–see below), is an O(N2) procedure, and
so it is essential to find a near minimum value of N for
a given accuracy goal.

How well does SSI work? We have demonstrated nu-
merically in Figs. 4 and 5 the presence of exponential
convergence. It is not that the gravitational wave fluxes
fall geometrically (a known result), but that the gap be-
tween resolutions (i.e., error in substituting the DFT for
the Fourier series) falls exponentially with increases in N .
We can, however, go a step further and make the rate of
exponential convergence even faster by introducing one
final modification.

SSI is exponentially convergent because the periodic
functions, Ē±lmn(t), being sampled are C∞. However,
there is no requirement that the periodic motion be de-
scribed by t. Any C∞ reparametrization t→ λ(t) should
be expected to also give rapidly convergent sums. This is
true, for example, in switching from t to the relativistic
anomaly χ [27, 29, 30, 70]. We have found empirically,
though, that use of χ as the curve parameter substan-
tially improves the rate of exponential convergence.

To effect this change we rewrite Eqn. (3.22) with χ as
the independent variable. Then the periodic motion is
divided into equally spaced steps ∆χ = 2π/N , the inte-
grand is discretely sampled, and the integral is replaced
with the sum

C±lmn =
Ωr

NWlmn

∑

k

dtp
dχ

Ē±lmn[t(χk)] einΩrt(χk). (3.31)

As Fig. 6 demonstrates, substantially fewer χ-samples
are required than t-samples for SSI to reach a prescribed
error level. This is especially true of high eccentricity
orbits. As a practical matter, it is also easier to find ϕp
and rp evenly sampled in χ than in t. Finally, we com-
ment that it was merely a hunch (though one informed

by experience with the problem) that χ might provide
a better measure and more rapid convergence. It is an
open question whether there is another parametrization
of the orbit that yields even faster convergence.

The numerical SSI results shown so far have involved
the high accuracy MST code. But SSI also aids in dou-
ble precision C coded calculations. Its benefit is shown
clearly in Fig. 7, where we mark the accuracy reached in
computing a normalization coefficient (C+

220) as a func-
tion of the number of source term evaluations, which
serves as a proxy for computational load. We compare
SSI to an IVP ODE integration using an 8th order Runge-
Kutta routine. SSI has exponentially converging accu-
racy with increases in function calls (i.e., increases in N).
In contrast, the Runge-Kutta routine, with its algebraic
convergence, struggles to reach high accuracies.
Do we really need SSI? The answer depends upon the

application. At double precision the answer is clearly no,
but SSI is likely much more efficient (and hence faster).
The real critical requirement for SSI comes in high accu-
racy eccentric orbit calculations. Consider Fig. 7 again
and the scaling of ODE integration. At an accuracy goal
of 200 digits, even an efficient algorithm like 8th order
Runge-Kutta would take of order 1022 steps to integrate
through an eccentric orbit source region! Without SSI or
a comparable spectral method, these calculations simply
cannot be done.

C. SSI and the midpoint and trapezoidal rules

We developed SSI with the convergence of Fourier se-
ries and concepts in signal processing (e.g., sampling the-
orem, use of the DFT/FFT, etc) firmly in mind. The ap-
plication of SSI to orbit integration does in fact simply
use the DCT, a special case of the DFT. In source inte-
gration, even though the key formula, (3.31) or (3.24), is
not a DFT, we used the DFT to provide an understand-
ing of the rapid convergence of the sum. The essential
point was to see that rapid convergence in the FD with
a modest number N of spectral elements could translate
into representing the behavior in the TD with equally
modest sampling. If the representation has sufficient ac-
curacy, then interpolation and integration can be made
accurately as well.

Yet, if we step back and examine the sums [(3.31) or
(3.24)] that we use in SSI, a curious fact jumps out:
they appear to be nothing more than simple Riemann
sums. Given the sampling, their form appears to be a
use of the left rectangle rule. However, with the inher-
ent periodicity in χ, the left rectangle rule is equivalent
to the trapezoidal rule and, with a half interval shift in
the equal-sized χ bins, it is also just the midpoint rule.
But these are just the lowest-order approximations for
an integral, with error bounds, O(1/N2), that are alge-
braic in the number of divisions of the interval! How can
their use be giving a vastly faster rate of convergence?
The answer lies in the periodicity and smoothness of the
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summands. After developing the method we came upon
a paper [71] that discusses this surprising behavior in
other contexts and nicely provides a set of example cal-
culations. A more recent and exhaustive discussion is
found in [72]. In black hole perturbation work, Fujita,
Hikida, and Tagoshi [58] made use of the trapezoidal
rule for source integration, but did not explicitly note
or demonstrate the exponential convergence or push the
results beyond double precision. The remarkably rapid
convergence of the trapezoidal rule in special cases is ap-
parently well known in certain numerical analysis circles,
though it also appears to be something that is constantly
being rediscovered ever since Poisson’s original finding in
1827 [73].

Since we have shifted the viewpoint momentarily to
thinking about Riemann sums and quadrature formu-
lae, what about higher-order methods like Simpson’s
rule? Since Simpson’s rule generally has a stronger error
bound (implying presumably faster convergence) than
the trapezoidal rule, might its use in SSI allow us to con-
verge even faster? Alas, the answer is no, as a quick test
demonstrated. A discussion and example can be found
in [71].

IV. SPECTRAL SOURCE INTEGRATION IN
LORENZ GAUGE

After developing SSI for use in the RWZ formalism,
we turned our attention to Lorenz gauge and were able
to successfully apply the method to coupled systems of
equations. Lorenz gauge breaks down into several sys-
tems of different orders that depend on (1) parity, (2)
mode order (either low l = 0, 1 or high l ≥ 2), and (3) the
special static (ω = 0) case. See [29] and [30] for details.

Here we simply demonstrate the principles of incorporat-
ing SSI by focusing only on the odd-parity equations.

A. Odd-parity Lorenz gauge and EHS

In Lorenz gauge, odd-parity perturbations can be de-
scribed by the two amplitudes, hlmt and hlmr , with the
third, hlm2 , obtainable from the gauge condition. The
reduced-order coupled system in the TD is

2hlmt −
2Mf

r2
∂rh

lm
t +

2Mf

r2
∂th

lm
r (4.1)

− 2f2 + (l + 2)(l − 1)f

r2
hlmt = f2P tlm,

2hlmr +
2(r −M)f

r2
∂rh

lm
r −

2(r − 3M)

r2f
∂th

lm
t (4.2)

− 2f2 + (l + 2)(l − 1)f

r2
hlmr = −P rlm.

It is convenient in what follows to write the fields and
their sources in a vector notation

Blm(t, r) =

[
hlmt

fhlmr

]
, V lm(t, r) =

[
f2P tlm

−fP rlm

]
. (4.3)

The Lorenz gauge source terms are proportional to the
delta function δ[r − rp(t)] (in contrast to RWZ gauge
where the source also has a δ′ term), allowing the source
vector to be expressed in terms of a time-dependent vec-
tor amplitude vvvlm(t),

V lm(t, r) ≡ vvvlm(t)δ[r − rp(t)]. (4.4)
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The field Blm and source V lm can be expressed as
Fourier series, analogous to Eqns. (3.3) and (3.4),

Blm(t, r) =

∞∑

n=−∞
B̃lmn(r) e−iωt, (4.5)

V lm(t, r) =

∞∑

n=−∞
Ṽ lmn(r) e−iωt. (4.6)

The FS coefficients are formally found via the integrals

B̃lmn(r) ≡ 1

Tr

∫ Tr

0

dt Blm(t, r) eiωt, (4.7)

Ṽ lmn(r) ≡ 1

Tr

∫ Tr

0

dt V lm(t, r) eiωt. (4.8)

With these definitions, we henceforth in this section sup-
press the TD mode labels lm and the FD labels lmn
whenever no confusion might arise. However, for clarity
we attach a tilde to denote FD quantities.

In the FD, the field equations (4.1) and (4.2) take the
following form

∂2
r∗B̃ + C ∂r∗B̃ + D B̃ = Ṽ . (4.9)

The matrices C and D that couple the equations are
given by

C =
2

r2

[
−M 0

0 r − 3M

]
,

D =

(
ω2 − 2f2 + (l + 2)(l − 1)f

r2

)
I

+
2iω

r2

[
0 −M

r − 3M 0

]
,

(4.10)

where I is the 2× 2 identity matrix.
The EHS method carries over to Lorenz gauge [29, 30].

Four fundamental independent homogeneous solutions to

Eqn. (4.9) are denoted by B̃
±
i , with i = 0, 1. The ± su-

perscript delineates causal asymptotic behavior, with +
indicating an outgoing wave at r∗ =∞ and − indicating
a downgoing wave at r∗ = −∞. A Green function con-
structed from these arbitrarily normalized modes yields
the solution to the inhomogeneous system

B̃ = B̃
+

0 c
+
0 + B̃

+

1 c
+
1 + B̃

−
0 c
−
0 + B̃

−
1 c
−
1 , (4.11)

once the c±i (r) are determined by integrating the first-
order linear system

M(r)




∂r∗c
−
0

∂r∗c
−
1

∂r∗c
+
0

∂r∗c
+
1




=

[
0

Ṽ(r)

]
. (4.12)

Here M is the (lmn dependent) 4× 4 Wronskian matrix

M(r) ≡
[

B̃
−
0 B̃

−
1 B̃

+

0 B̃
+

1

∂r∗B̃
−
0 ∂r∗B̃

−
1 ∂r∗B̃

+

0 ∂r∗B̃
+

1

]
, (4.13)

and 0 is the rank = 2 column vector.
Solving for the functions c±i (r) can be avoided through

use of the method of EHS. Instead, as in Sec. III, we
solve for normalization coefficients, construct FD EHS
and then TD EHS, and thus circumvent producing Gibbs
behavior in the source region and at the particle location.
For the system at hand, we define the normalization con-
stants C±i as

C+
i ≡ c+i (rmax), C−i ≡ c−i (rmin), (4.14)

and obtain them via the integrals




−C−0
−C−1
C+

0

C+
1




=

∫ rmax

rmin

1

f(r)
M(r)−1

[
0

Ṽ(r)

]
dr. (4.15)

In the expression above, M(r)−1 is the inverse of the
Wronskian matrix M(r). We next insert the integral ex-

pression for Ṽ(r), reverse the order of integration, and
find the normalization coefficients with an integral over
time,




−C−0
−C−1
C+

0

C+
1




=
1

Tr

∫ Tr

0

1

fp
M−1

p

[
0

vvv(t)

]
eiωtdt. (4.16)

In this last equation the script p indicates time depen-
dence via the mapping r → rp(t). With the coefficients
available, the FD and TD EHS (respectively) are con-
structed

B̃
±

(r) ≡ C±0 B̃
±
0 (r) + C±1 B̃

±
1 (r), (4.17)

B±(t, r) ≡
∞∑

n=−∞
B̃
±

(r) e−iωt. (4.18)

The solution to the system in the TD, Eqns. (4.1) and
(4.2), is then

B(t, r) = B+θ [r − rp(t)] + B−θ [rp(t)− r] . (4.19)

The key to EHS in Lorenz gauge is solving systems
like (4.16) for the normalization coefficients. In previous
work [29, 30] these equations were treated as IVPs and
solved with ODE integration. That numerical approach
can be replaced with SSI to achieve spectral convergence,
as we outline next.
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B. Spectral source integration for odd-parity
normalization constants

The Lorenz gauge employment of SSI is virtually iden-
tical to RWZ gauge. As in Eqn. (3.21), we can extract
from the biperiodic source term vvv(t) the piece that is
periodic in Tr by defining v̄vv(t) ≡ vvv(t)eimΩϕt. Once sub-
stituted in Eqn. (4.16) we find




−C−0
−C−1
C+

0

C+
1




=
1

Tr

∫ Tr

0

Ē(t) einΩrt dt, (4.20)

where we define the vector

Ē(t) ≡ 1

fp
M−1

p

[
0

v̄vv(t)

]
. (4.21)

Both Ē(t) and einΩrt are periodic in Tr. The vector Ē(t),
which depends on the FD labels lmn, is the equivalent
of Ē±lmn(t) in Eqn. (3.23).

The logical steps in implementing SSI carry over from
Sec. III B:

• The vector Ē(t) (carrying labels lmn) consists of
periodic, C∞ functions.

• Each can be represented as a Fourier series with
spectrum Ẽn′ with n′ → ±∞.

• The Fourier series spectrum can be truncated to
some n′min ≤ n′ ≤ n′max subject to an accuracy
goal.

• The approximate but very accurate truncated
Fourier series is a bandlimited function.

• The Nyquist-Shannon sampling theorem implies
the truncated Fourier series representation can it-
self be replaced in the TD with discrete sampling.

• Sampling plus periodicity implies a discrete repre-
sentation of finite length N .

• Finite sampling representation in the TD implies
one-to-one correspondence via the DFT with a FD
periodic spectrum En′ .

• The DFT spectrum within the first Nyquist minima
approximates well the original Fourier series spec-
trum if N is sufficiently large, allowing Ẽn′ → En′ .

Based upon this chain of reasoning, the integral (4.20)
can be replaced with an exponentially convergent sum




−C−0
−C−1
C+

0

C+
1




=
1

N

N−1∑

k=0

Ē(tk) einΩrtk , (4.22)

where again tk = kTr/N . This is SSI for the systems of
equations found in Lorenz gauge.

Even parity involves a larger linear system. The matrix
inversion in evaluating Ē(tk) at the sample points is the
most expensive task in double precision application. We
use LU decomposition and take advantage of the symme-
try M(tk) = M(Tr − tk), so that LU decompositions of
M are only necessary at N/2 + 1 points.

As in Sec. III B, we also attain a higher rate of expo-
nential convergence by switching from t parametrization
to χ. The adjustment to Eqn. (4.22) is straightforward




−C−0
−C−1
C+

0

C+
1




=
Ωr
N

N−1∑

k=0

dtp
dχ

Ē[t(χk)] einΩrt(χk), (4.23)

where as before χk = 2πk/N .
We have implemented SSI in just this way as a modi-

fication of the Lorenz gauge code described in Ref. [30].
SSI is particularly beneficial in Lorenz gauge, where a
matrix must be inverted at each step (i.e., each function
evaluation) in an integration. It is also beneficial that
we know precisely where the sample locations are in the
source region before computing the inner and outer ho-
mogeneous solutions. The previous method found the
normalization coefficients by integrating a large simulta-
neous system of ODEs through the source region (for the
even-parity field this tallied to integrating 144 variables
simultaneously). With prior knowledge of the sample lo-
cations, integration of the homogeneous solutions is de-
coupled from the SSI for the normalization coefficients.

As we described in Sec. III B, the number of sample
points N is determined, iteratively if necessary, based on
an error criterion. In all cases we have experience with,
both RWZ and Lorenz gauge, it is the source integration
(with SSI), not the spectral integration of the orbit, that
sets the condition on N . In Lorenz gauge, the require-
ment on N to meet a double precision error criterion in
SSI is about a factor of 8 larger than required for a com-
parably precise orbit integration. (With the MST code
at a high accuracy of 200 digits, SSI requires an N that is
about a factor of 2 larger than that required for compa-
rably accurate orbit determination.) Because SSI shrinks
so markedly the computational work in finding the nor-
malization coefficients, our Lorenz gauge GSF code is
sped up–overall–by a factor of about 3 for eccentricities
of order e ' 0.7.

Would it be possible to obtain arbitrary precision re-
sults with a Lorenz gauge code? Such a code would be
quite useful if for no other reason than to compare with
RWZ results. At present (as far as we are aware) there
is no MST-like method formulated for Lorenz gauge. In
our previous work [30], we did address the costs/benefits
of using quad precision to compute certain low frequency
modes. While that helped span parameter space more
thoroughly, quad precision arithmetic, coupled with an
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algebraically convergent numerical integrator is an ex-
tremely costly way to improve accuracy. SSI helps expe-
dite these calculations, but computation of Lorenz gauge
homogeneous solutions is still done using a Runge-Kutta
integrator. Practically, even when using arbitrary pre-
cision routines available in Mathematica (like NDSolve),
going beyond an accuracy of ∼ 10−30 is not presently
feasible.

V. CONCLUSIONS

We have described in this paper a new method for
achieving spectral accuracy and computational efficiency
in calculating a broad class of black hole perturbation and
gravitational self-force problems that entail generic or-
bital motion. This class should include most problems in-
volving a point-particle description of the small compact
object and use of the background geodesics in a frequency
domain calculation (i.e., geodesic self-force calculations).
We have shown it applied both to the RWZ formalism (for
individual master equations) and to Lorenz gauge (with
coupled systems of equations) for eccentric binaries with
a Schwarzschild primary. The method should extend to
extreme-mass-ratio inspirals on Kerr as well, which will
be addressed in subsequent work. Called spectral source
integration (SSI), this method provides an exponentially-
convergent calculation of the mode normalization coeffi-
cients by replacing the more typically used ODE integra-
tions in the source region. A simple modification of the
underlying idea is also used to integrate the equations of
orbital motion, to provide a consistent level of accuracy
in determining source functions in the libration region.

Use of SSI in double precision calculations will improve
code speed and help ensure optimal accuracy. In con-
trast, SSI is the sine qua non for calculating eccentric
binaries using (MST) analytic function expansions at ex-
traordinarily high accuracies (e.g., 200 decimal places).
No algebraically convergent ODE solver will be able to
calculate eccentric-orbit perturbations at hundreds of
decimal places of accuracy. Any alternative to SSI will
almost certainly be a similar technique using some other
spectral basis. A subsequent paper will describe use of
SSI in an MST code to uncover new terms in the post-
Newtonian expansion for eccentric binaries well beyond
known 3PN order [51].
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Appendix A: Exact Fourier spectrum for dtp/dχ as
p→∞

Several figures in this paper have shown numerical ev-
idence of exponential fall-off in the FD spectra of source
functions in the perturbation and orbit equations. Here
we demonstrate an exact calculation of the Fourier spec-
trum in one simplified case. Consider the source function
g(χ) in Eqn. (2.5) and make a post-Newtonian expansion

dtp
dχ
≡ g(χ) =

Mp3/2

(1 + e cosχ)2
+O

(
p1/2

)
. (A1)

We then focus on the leading Newtonian term and seek
to find its Fourier spectrum. Our derivation is similar to
one found in [71]. Adopting the notation gN (χ) for the
term in question, we first introduce complex exponentials

gN (χ) =
Mp3/2

[
1 + 1

2e (eiχ + e−iχ)
]2 . (A2)

The denominator in this expression can be factored

gN (χ) =
4Mp3/2σ2

e2(1 + σeiχ)2 (1 + σe−iχ)
2 , (A3)

by introducing

σ =
1

e

(
1−

√
1− e2

)
, (A4)

which is one of the roots of the quadratic equation
σ2 − (2/e)σ + 1 = 0. We then make a partial fractions
decomposition of Eqn. (A3)

gN (χ) =
Mp3/2

e2(σ2 − 1)3

[
4
(
1 + σ2

)
σ2 +

4σ2
(
σ2 − 1

)

(1 + σeiχ)2

− 8σ4

1 + σeiχ
+

4σ2
(
σ2 − 1

)

(1 + σe−iχ)
2 −

8σ4

1 + σe−iχ

]
. (A5)

Since it can be shown that |σ| < 1 for bound motion, each
of the terms in Eqn. (A5) can be expanded in binomial
or geometric series. The result is a Fourier series in χ.
Because of the symmetry of gN (χ), the expansion reduces
to a cosine series

gN (χ) =
1

2
G0 +

∞∑

n=1

Gn cos (nχ) , (A6)
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and we find that the spectrum has the form

Gn =
8Mp3/2(−1)n+1

e2(1− σ2)3

[
(n− 1)σn+4 − (n+ 1)σn+2

]
.

(A7)

The exponential convergence of the series is evident.
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