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Abstract

We consider Λ=0 three dimensional gravity with asymptotically flat boundary conditions. This

system was studied by Ashtekar and Varadarajan within the second order formalism –with metric

variables– who showed that the Regge-Teitelboim formalism yields a consistent Hamiltonian de-

scription where, surprisingly, the energy is bounded from below and from above. The energy of the

spacetime is, however, determined up to an arbitrary constant. The natural choice was to fix that

freedom such that Minkowski spacetime has zero energy. More recently, Marolf and Patiño started

from the Einstein-Hilbert action supplemented with the Gibbons-Hawking term and showed that,

in the 2+1 decomposition of the theory, the energy is shifted from the Ashtekar-Varadarajan anal-

ysis in such a way that Minkowski spacetime possesses a negative energy. In this contribution we

consider the first order formalism, where the fundamental variables are a so(2, 1) connection wa
I
J

and a triad eIa. We consider two actions. A natural extension to 3 dimensions of the consistent

action in 4D Palatini gravity is shown to be finite and differentiable. For this action, the 2+1

decomposition (that we perform using two methods) yields a Hamiltonian boundary term that cor-

responds to energy. It assigns zero energy to Minkowski spacetime. We then put forward a totally

gauge invariant action, and show that it is also well defined and differentiable. Interestingly, it

turns out to be related, on shell, to the 3D Palatini action by an additive constant in such a way

that its associated energy is given by the Marolf-Patiño expression. Thus, we conclude that, from

the perspective of the first order formalism, Minkowski spacetime can consistently have either,

zero, or a negative energy equal to −1/4G, depending on the choice of consistent action employed

as starting point.
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I. INTRODUCTION

Idealized and reduced models have been useful in analyzing and studying, in a simplified

arena, some aspects of (3+1) general relativity. To be more precise, one can consider the

sector of Einstein theory that is invariant under certain symmetries, that sometimes becomes

tractable, in order to gain some insight into the full theory. An outstanding example of such

simplified model is the (2+1)-dimensional case which, apart from being much simpler than

the (3+1) case, it has been ‘solved’ in many different contexts and by different approaches

[1, 2]. It is then natural to explore and compare the resulting formalism with the hope of

learning something new about the full (3+1) case.

The issue that we shall here consider is the definition of gravitational energy. This en-

deavor is certainly not new and a sizeable amount of literature has been devoted to this

topic in both 4D [3] and 3D gravity [4]. In the case of 3D gravity, the present situation is

not devoid of some tension. More precisely, the first systematic study of asymptotically flat

(Λ = 0) boundary conditions was first put forward by Ashtekar and Varadarajan in [5]. They

made precise the notion of asymptotically flat boundary conditions for the canonical theory

and concluded, within the Regge-Teitelboim formalism [6] that the canonical energy is not

only bounded from below, as one could have expected, but it is also bounded from above.

This unexpected feature has some interesting consequences when considering the quantum

theory [7]. The Regge-Teitelboim formalism suffers, nevertheless, from an ambiguity in the

definition of the value of the energy it assigns to, say, its lowest energy configuration. The

ambiguity comes from the fact that one could add an arbitrary constant to the Hamiltonian

and the formalism is still fully consistent. In the case of 3+1 gravity, this special configu-

ration is precisely Minkowski spacetime and it is customary to assign to it a zero value of

energy. This choice is fully justified and is not subject to any controversy. The same is not

true for the 3D case. In [5] the authors chose the same convention and assigned zero energy

to 2+1 Minkowski spacetime.

In [8] Marolf and Patiño followed a different approach. They started from a well defined

second order action for the gravitational field consisting of the standard Einstein-Hilbert

action plus a boundary term given by the Gibbons-Hawking term. After a 2+1 decompo-

sition they obtained the boundary contribution to the Hamiltonian and found that there is

an extra term that “shifts” the value of the energy in such a way that Minkowski spacetime
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is assigned a negative value equal to −1/4G, and the upper bound on energy is zero. Even

when this result might appear to be counter-intuitive from the perspective of 3+1 gravity,

there are several argument to support this behaviour. First, one should note that the grav-

itational constant G in three spacetime dimensions has dimensions of inverse mass, so in

this case one does have a mass scale even for vacuum gravity. Second, the asymptotic condi-

tions at infinity are such that there is a preferred notion of time translation. The symmetry

group is much more restricted, and it is not strange to assign a non-zero ADM momentum

to this preferred frame [9, 10].1 Finally, the asymptotic spatial geometry corresponding to

configurations where the energy approaches its limiting (upper) value correspond to two

dimensional conical defects that “close up”. It is not then unnatural to assign a zero energy

to such spatially closed spacetimes [8].

The use of first order variables for gravity in 3+1 dimensions has proven to be rather

convenient. Apart from the necessity to consider them when coupling Fermions, they allow

for a simple well defined action [11] in the case of asymptotically flat configurations. A

natural question is whether a corresponding action principle can be defined for 2+1 gravity.

Here the main variables would be a co-triad eIa, together with a connection waI
J taking

values in the Lie algebra of SO(2,1).

The purpose of this manuscript is to address several of these issues. First we extend

the results of [11] to three dimensions and derive the asymptotically flat conditions for the

first order variables. Then, we prove that the 3-dimensional Palatini action with boundary

term, which give us the same equations of motion that the 3-dimensional Einstein-Hilbert

action, has a well posed action principle. That is, it is finite and differentiable under the

asymptotically flat boundary conditions. Moreover, we define a new action principle by

introducing an additional boundary term to the action. This new action is explicitly Lorentz

invariant and, as we prove in detail, it is equivalent to the Einstein-Hilbert action with

a Gibbons-Hawking term of [8]. The next step is to consider the covariant Hamiltonian

formulation (CHF) defined by these two action principles and explore some of its relevant

quantities. In particular, we prove that the energy is bounded from below and above, for

asymptotically 3-dimensional flat space-times, in agreement with previous results in the

1 In 3+1 gravity a non-zero value for the ADM four-momentum would select a preferred frame thus violating

asymptotic Lorentz invariance.
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metric variables via Regge-Teitelboim methods [5]. Although the CHF provides an elegant

and short derivation for the energy (and other relevant symmetry generators as discussed in

[12, 13]), the energy is only determined up to a constant, that shifts the region in which the

energy is defined.

Next, we consider the 2+1 decomposition of the two first order actions. We follow two

different strategies. The first one, that we shall call the “Witten” approach (See [2] and

[14] for details), exploits the fact that the bulk action has the structure of a BF theory,

where no underlying spacetime metric is assumed. The second approach, as put forward by

Barbero and Varadarajan [15], uses the fact that there is an underlying metric structure,

and resembles the 3+1 first order case (as described in [14]). In both cases, we show that

the resulting canonical theories are well defined and obtain the Hamiltonian from the cor-

responding boundary terms. We find that the energy associated to the spacetime depends

on the choice of action principle, differing by a constant. For the simplest Palatini action,

the interval in which the energy is defined is positive, and assigns a zero value of energy to

Minkowski spacetime. For the fully gauge invariant action, we shall show that the energy is

always negative and coincides with the values assigned by Marolf and Patiño. Thus, from the

perspective of the first order formalism, Minkowski spacetime can consistently have either,

zero, or a negative energy equal to −1/4G, depending on the choice of consistent action

employed as a starting point.

The structure of the manuscript is as follows. In Sec. II we introduce the notion a

asymptotic flatness for the first order variables. In Sec. III we define the two actions that we

shall consider in the manuscript. We study their finiteness and differentiability. In Sec. IV

we employ the covariant Hamiltonian formalism to find the symplectic structure and the

corresponding conserved quantities. In particular, we find an expression for the energy (up

to a constant). In Sec. V we perform the 2+1 decomposition of the action, following two

different methods and obtain the energy as the contribution to the Hamiltonian coming from

the boundary. We end with a discussion in Sec. VI. We have included two appendices.

Throughout the manuscript we set c = 1, but leave the gravitational constant G explicit.

Note that we are not setting 8πG = 1 as is normally done in the 2+1 literature.
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II. PRELIMINARIES: ASYMPTOTICS IN 3 DIMENSIONS

In this section we shall recall some subtleties that appear in the definition of asymp-

totically flat 3D spacetimes. We shall contrast the case at hand with that of ordinary 4D

spacetimes. Intuitively speaking, in (3 + 1) dimensions we can think of an asymptotically

flat spacetime as an spacetime with certain matter content in a bounded region outside of

which the metric approaches the Minkowski metric. In the standard definition we say that

a smooth space-time metric g on R is weakly asymptotically flat at spatial infinity if there

exist a Minkowski metric η such that, outside a spatially compact world tube, (g−η) admits

an asymptotic expansion to order 1 and limrm→∞(g − η) = 0.2

In a (2+1) spacetime the situation is slightly different. For illustrative purposes, let us

consider a mass distribution, say a point particle at the origin, r = 0. Outside this region,

r > 0, the metric does not approach a flat metric, it is flat. So, how can we define an

asymptotically flat space-time? In order to define an (2+1) asymptotically flat spacetime,

we can first study this particular spacetime corresponding to a point particle of mass M at

the origin,

ds2 = −dt2 + r−8GM(dr2 + r2dθ2) for r > 0 (2.3)

where t, r, θ are the cylindrical coordinates, t ∈ (−∞,+∞), r ∈ [0,∞), and θ ∈ [0, 2π). This

metric is flat everywhere except at the origin. To see that, we can define ρ := rα

α
, θ̄ := αθ

with α := 1− 4GM . So the metric takes the form,

ds2 = −dt2 + dρ2 + ρ2dθ̄2, (2.4)

from which the flatness of the metric is explicit. This is due to the fact that in a three-

dimensional manifold satisfying Einstein’s equations, whenever Tab = 0 the Riemann tensor

2 The explicit form of the expansion depends on the coordinates. For instance, in 3-dimensions and cylin-

drical coordinates, as we shall use through the present work, an asymptotic expansion to order m of a

function f has the form,

f(r, θ) =

m∑

n=0

nf(θ)

rn
+ o(r−m), (2.1)

where r and θ are the coordinates on cylinders with r = const and the remainder o(r−m) has the property

that

lim
r→∞

r o(r−m) = 0. (2.2)
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is zero, i.e. the spacetime is flat on those points3.

In order to further understand the global structure of this spacetime, one can note that

θ̄ ∈ [0, 2πα) with (0 < α ≤ 1). Therefore, there is a deficit angle which, despite the local

flatness for r > 0, makes this spacetime not globally equivalent to Minkowski space (due to

the conic singularity).

We are now in position of specifying the notion of asymptotic flatness for 3D gravity.

Instead of requiring that all metrics approach a ‘single’ Minkowski metric at infinity, one

has now a one parameter family of possible, inequivalent, asymptotic configurations labelled,

intuitively, by the “mass M” of the asymptotic spacetime. That is, we are looking for a

metric that at spatial infinity approaches that of a point particle at the origin (2.3). Thus,

we can define a 2+1 space-time to be asymptotically flat if, the line element admits an

expansion of the form4 [8],

ds2 = −
(

1 +O
(
1

r

))

dt2 + r−β

[(

1 +O
(
1

r

))

dr2 + r2
(

1 +O
(
1

r

))

dθ2
]

+O(r−1−β/2)dtdθ, (2.5)

Note that in the asymptotic region (when r → ∞) the previous line element approaches

to the background metric (in Cartesian coordinates),

η̄ab =








−1 0 0

0 r−β 0

0 0 r−β








. (2.6)

Note that we are approaching spatial infinity by some one-parameter family of boundaries

of regions Mρ ⊂ M (cylinders throughout the present work, since they are more suited for

Hamiltonian methods, as we plan to use in the following sections. Furthermore, the use

of hyperboloids in the 3D context is less natural than in the 4D case [11–13, 16], due to

3 We know that the Riemann tensor can be split into its trace and trace-free part, the Ricci tensor and scalar,

and the Weyl tensor respectively. In 3-dimensions the Weyl tensor is identically zero, and by Einstein’s

equations if Tab = 0 implies that the Ricci tensor and scalar are also zero. Therefore the Riemann tensor

is zero, so locally the space-time is flat. Note also that here we are dealing with asymptotically flat space-

time, in contrast to the conformally flat picture where the vanishing of the Cotton tensor is equivalent to

the metric being conformally flat.
4 A word on notation, O(r−m) means that those terms include a term proportional to r−m and terms that

decay faster, in contrast with o(r−m) that only includes terms that decay faster than r−m, for instance,

terms of the form f
r−m+ǫ .
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the lack of asympototic Lorentz invariance, since, unless M = 0, the asymptotically flat

spacetime previously defined is not globally isometric to the three dimensional Minkowski

space). {Mρ|ρ > 0} are an increasing family, i.e. Mρ ⊂ Mρ′ whenever ρ < ρ′ and such

that they cover M (
⋃

ρ Mρ = M). This procedure of taking a finite region Mρ represents

a cut-off for space-time and then we remove it by the limiting process ρ → ∞. We take

ρ = r +O(r0). This is called a ‘cylindrical cut-off’ in [18].

To summarize, an asymptotically flat spacetime approaches that of a point particle (as

opposed to a fixed Minkowski metric in the 4D case). In terms of the matter fields that

might be present in the spacetime, the particular falloff conditions in the geometric degrees

of freedom imply certain decay rates for matter. Since they do not have much of an impact

in the quantities we are considering here (just as in the 3+1 case) we shall not consider any

matter content in particular. For a related treatment of asymptotically flatness from the

conformal perspective (where the particular decay rates on matter are discussed), see [10].

III. THE ACTION AND THE BOUNDARY CONDITIONS OF THE FIRST OR-

DER VARIABLES

We can consider the Palatini action in three dimensions, whose equations of motion are

equivalent to those given by the three dimensional Einstein-Hilbert action. Now the dynam-

ical variables instead of the metric are a triad e and a Lorentz connection ω, both valued on

the Lie algebra of SO(2, 1)5. Furthermore, we add to the Palatini action a boundary term

in order to have a well posed action principle, that is, we want the action to be finite when

evaluated on histories compatible with the boundary conditions, and also differentiable.6

As we have emphasized, we want to begin with a well posed action principle, so it is

natural to start with the three dimensional analogue of the four dimensional well posed

Palatini action [11]. That is, let us define the the Standard Palatini action with boundary

term (SPB) as,

SSPB[e, ω] = −1

κ

∫

M

eI ∧ FI − 1

κ

∫

∂M

eI ∧ ωI , (3.1)

where κ = 8πG. Now, the natural question arises: is the boundary term gauge invariant?

5 The co-tetrad eIa has an internal index I ‘living’ in an internal 3 dimensional vector space. Since the Lie

algebra of SO(2, 1) is three dimensional, we can identify them.
6 For further discussion on what it means for an action to be differentiable see [12, 13].
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(under local Lorentz transformations). We can answer this in two ways. The first is by

noting that we can perform a Lorentz transformation on the internal indices in (3.8), (3.9)

and we still have an asymptotically flat configuration. So, in a sense, the internal directions

are ‘arbitrary’, therefore without loss of generality we can fix on the boundary one of the

internal directions ∂an
I = 0 as in the 4-dimensional case [11, 19], and the boundary term

will be invariant under the residual gauge transformations. One should also expect that,

just as in the 3+1 case one has to fix the asymptotic tetrad in order to have a consistent

formalism [17], in our case this is also needed.

On the other hand we can add the following term to the action,

α

κ

∫

∂M

1

n · nε
IKLeI ∧ nKdnL (3.2)

where nK is a spacetime scalar that is an internal vector. We can define it by nK /
√
n · n :=

RaeaK where Ra is the spacetime unit normal to the boundary7, that can either be na for

the unit normal to the spacelike surfaces or ra for the unit normal to the timeline boundary,

we have introduced a normalization factor 1
n·n

to allow freedom in rescaling nK , so we can

use any multiple of nK and the results will remain the same. Since nK is a spacetime scalar

dnL is a one form as well as eI then the previous boundary term is the integral of a two

form over a two dimensional boundary. With the addition of the term (3.2), when α = 1,

the boundary term in (3.1) becomes8,

−1

κ

∫

∂M

eI ∧ ωI −
1

κ

∫

∂M

1

n · nε
IKLeI ∧ nKdnL = −1

κ

∫

∂M

1

n · nε
IKLeI ∧ nKDnL. (3.4)

So instead of the action (3.1) we can begin with the manifestly Lorentz invariant well posed

7 Note that we have extended the usual definition of nK = naeaK for the Cauchy surfaces in the first order

formalism to nk /
√
n · n := RaeaK that allows, in principle, nK to be rescaled, and now is extended also

to include the timelike boundary.
8

∫

∂M

1

n · nε
IKLeI ∧ nKDnL =

∫

∂M

1

n · nε
IK

LeI ∧ nK

(
dnK + εL MNωMnN

)

=

∫

∂M

1

n · nε
IKLeI ∧ nKdnL +

∫

∂M

1

n · nε
IKLeI ∧ nKεLMNωMnN (3.3)
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action (LIP)9,

SLIP[e, ω] = −1

κ

∫

M

eI ∧ FI − 1

κ

∫

∂M

1

n · nε
IKLeI ∧ nKDnL. (3.5)

Note that the general Palatini action contains both the SPB and LIP cases, when α = 0

and α = 1 respectively, we shall use it to compare both actions,

SGP[e, ω] = −1

κ

∫

M

eI ∧ FI − 1

κ

∫

∂M

eI ∧ ωI −
α

κ

∫

∂M

1

n · nε
IKLeI ∧ nKdnL (3.6)

Moreover, we can show that (3.2) is a constant when evaluated on asymptotically flat bound-

ary conditions (see Appendix A for the details on the derivation), so it does not spoil finite-

ness nor differentiability of the action. Therefore (3.5) is still a well posed action. Further,

the term (3.4) is related the Gibbons- Hawking term needed for the Einstein-Hilbert ac-

tion to be well posed and the action (3.5) is the same as the Einstein-Hilbert action with

Gibbons-Hawking term [8].

As in the four dimensional case this is a first order action, we only have first derivatives

on our configuration variables, that is why we also refer to these variables as first order

variables.

Some comments are in order. We are writing the action in a way that is independent of

the Lie group G on which is defined [14], which does not need the existence of a metric to be

defined. In the case of an arbitrary G, eaI can no longer be thought of as the cotriad. The

action (3.1) is then a functional of a £G−valued connection one-form ωI
a and a £∗

G−valued

covector field eaI . Where £G− stands out for the Lie algebra of G and £⋆
G− its dual. When

we chose G = SO(2, 1) we recover three-dimensional general relativity and we can think of

eaI as a cotriad. This coincidence is exclusive of the three-dimensional case.

A. Fall-off conditions

To check that, in fact, the previous action is well posed we need to specify the boundary

conditions on the first order variables e and ω, in this case asymptotically flat boundary

conditions.

9 Note the global minus sign, this is introduced since the Einstein Hilbert action with Gibbons Hawking

term is equivalent to this action with minus sign (see appendix B for more details), so we can compare

our results here with those obtained in the second order formulation [5, 8].
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From the line element (2.5),

ds2 = −
(

1 +O
(
1

r

))

dt2 + r−β

[(

1 +O
(
1

r

))

dr2 + r2
(

1 +O
(
1

r

))

dθ2
]

+O(r−1−β/2)dtdθ, (3.7)

we can find the fall-off conditions of gab as in [5, 8], with a, b, c = 0, 1, 2 spacetime indices,

and therefore remembering that gab = ηIJe
I
ae

J
b where ηIJ = diag(−1, 1, 1) is the Minkowski

metric, the fall-off conditions of the first order variables.

We can assume that the co-triads and the triads admit an asymptotic expansion of the

form10

eIa = δ0a

(

oēI0 +
1ēI0(θ)

r
+ o(r−1)

)

+ r−β/2

(

oēIā +
1ēIā(θ)

r
+ o(r−1)

)

δāa , (3.8)

and

eaI = δa0

(

oē0I +
1ē0I(θ)

r
+ o(r−1)

)

+ rβ/2
(

oēāI +
1ēāI (θ)

r
+ o(r−1)

)

δaā . (3.9)

We define,

0eIa :=
0ēI0δ

0
a + r−β/2 0ēIāδ

ā
a and 1eIa :=

1ēI0
r

δ0a + r−β/2
1ēIā
r

δāa (3.10)

such that η̄ab = ηIJ
0eIa

0eJb given by (2.6), where ηIJ = diag(−1, 1, 1) is the Minkowski

metric.

As for the triads, we assume that the connection ωI
a admits an expansion of the form,

ωI
a =

oω̄I
a +

1ω̄I
a(θ)

r
+

2ω̄I
a(θ)

r2
+ o(r−2), (3.11)

Even though this expansion seems different from that of the triad, we can check that this

expansion is derived from that of the triad and co-triad by means of the condition, De = 0,

to first order.

Now we have to recall that any connection D can be written asD = ˚̄D+ω , where ˚̄D is any

other connection. When there is a ‘preferred’ connection available, we can write all the other

connections as that one plus a vector potential ω. Since there is no canonical choice of this

10 A tensor field T a...b
c...d will be said to admit an asymptotic expansion to orderm if all its component in the

Cartesian chart xa do so. Note that apart from the r−β factor in the spatial part of (2.5) the components

in cartesian coordinates admit an expansion of order 1 in analogy with the standard definition of an

asymptotically flat spacetime for 4 dimensional spacetimes [11–13, 16], and also we assume that the first

order variables, apart from a factor of r−β/2, do so.
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standard flat connection, ˚̄D, within this particular problem it will be convenient to choose

that ˚̄D[a
0ēIb] = 0. Using local coordinates and a local trivialization of E = UM × SO(2, 1),

where UM is an open set on M, the components of the connection for the condition of the

compatibility of the triad with the connection, De = 0 will look like,

D[ae
I
b] =

˚̄D[ae
I
b] + εIJKω[a|Jeb]K = 0. (3.12)

From (3.12) it is a straightforward calculation to see that the spin connection can be

written in terms of the triad as,

ωM
c = −1

2

(

εL
KMeaKe

bLecI
˚̄D[ae

I
b] − εL

KMeaK
˚̄D[ce

L
a] − εL

KMebL ˚̄D[bec]K

)

. (3.13)

The leading term of the spin connection can be found from the previous equation con-

sidering the leading terms of the triad and cotriad,

LeadingωM
c = −1

2

(

εL
KM 0eaK

0ebL 0ecI
˚̄D[a

0eIb] − εL
KM 0eaK

˚̄D[c
0eLa] − εL

KM 0ebL ˚̄D[b
0ec]K

)

.

(3.14)

where ˚̄Db
0ēIa = 0. Note that from (3.8),

˚̄Db
0eIa =

˚̄Db(
0ēI0δ

0
a) +

˚̄Db(r
−β/2 0ēIāδ

ā
a) =

˚̄Db(r
−β/2) 0ēIāδ

ā
a = (∂br

−β/2) 0ēIāδ
ā
a (3.15)

but ∂br
−β/2 = −1

2
βr−1−β/2∂br. Therefore,

˚̄Db
0eIa = (−1

2
βr−1−β/2∂br)

0ēIāδ
ā
a = (−1

2
βr−1∂br)

0eIāδ
ā
a (3.16)

Taking into account the previous equation and the fall-off conditions (3.8) and (3.9), equation

(3.14) becomes (using that ∂0r = 0),

LeadingωM
c =

β

2r
εL

KM 0ēāK
0ēLc̄ δ

c̄
c, (3.17)

then considering the expansion (3.11) we can see that,

1ω̄M
c =

β

2
∂ārεL

KM 0ēāK
0ēLc̄ δ

c̄
c . (3.18)

Which implies that
1ω̄M

c

r
is the leading term of ωM

c and that 0ωM
c = 0 as well as 1ωM

0 = 0.
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B. Well posedness of the action

As we already mentioned, beginning with a well posed action principle under asymptot-

ically flat boundary conditions, we want to find an expression for the energy under various

approaches. We want to analyse whether this results coincide with those in the second order

formalism [5, 8] and also the relation and differences among the different paths we take: the

covariant Hamiltonian formalism (CHF), and the canonical one, where we take two different

2 + 1−decompositions.

But first we have to check that the action principle we are working with is well posed,

i.e. finite and differentiable under asymptotically flat boundary conditions and variations.

With the fall-off conditions of the first order variables found in section IIIA we are ready

to undertake this task.

1. Finiteness

Since the term (3.2) is a finite constant when evaluated on the boundary11, it does not

spoil finiteness. Then, it is only necessary to cheek that the action (3.1) is finite, so the

manifestly gauge invariant action (3.5) is also finite. The action (3.1) can be rewritten as,

S[e, ω] = −1

κ

∫

M

eI ∧ FI − 1

κ

∫

∂M

eI ∧ ωI

= −1

κ

∫

M

(

eI ∧ dωI +
1

2
εI

JKeI ∧ ωJ ∧ ωK

)

− 1

κ

∫

∂M

eI ∧ ωI (3.19)

since FI = dωI +
1
2
εI

JKωJ ∧ ωK and,

d(eI ∧ ωI) = deI ∧ ωI − eI ∧ dωI ⇒ eI ∧ dωI = deI ∧ ωI − d(eI ∧ ωI). (3.20)

Then,

S[e, ω] = −1

κ

∫

M

(

deI ∧ ωI +
1

2
εI

JKeI ∧ ωJ ∧ ωK − d(eI ∧ ωI)

)

− 1

κ

∫

∂M

eI ∧ ωI

= −1

κ

∫

M

(

deI ∧ ωI +
1

2
εI

JKeI ∧ ωJ ∧ ωK

)

. (3.21)

11 See appendix A for details.
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The leading term of the previous equation is,

0S[e, ω] = −1

κ

∫

M

(

d 0eI ∧ 1ωI +
1

2
εI

JK 0eI ∧ 1ωJ ∧ 1ωK

)

, (3.22)

but we already used the compatibility condition with the triad to first order to obtain the

fall-off conditions on ω, (3.12), which can also be written as,

d 0eI − εI JK
1ωK ∧ 0eJ = 0 (3.23)

therefore, we can rewrite (3.22) as,

0S[e, ω] = −1

κ

∫

M

(

d 0eI ∧ 1ωI −
1

2
εI

JK 0eI ∧ 1ωJ ∧ 1ωK

)

= −1

κ

∫

M

(

d 0eI ∧ 1ωI −
1

2
d 0eI ∧ 1ωI

)

= −1

κ

∫

M

1

2
d 0eI ∧ 1ωI . (3.24)

Now, using (3.16) and (3.18) the leading term is12,

1

4κ

∫

M

˚̄Da
0eIb

1ωK
c ε̃abcd3x = 0, (3.25)

since13 1ωK
0 = 0, ˚̄D0

0eIā = 0 and ˚̄Da
0eI0 = 0. On the other hand note that we could have

chosen to write (3.21), using De = 0 to first order as well, as,

0S[e, ω] = − 1

4κ

∫

M

εI JK
0eI ∧ 1ωJ ∧ 1ωK = − 1

4κ

∫

M

εI JK
0eIa

1ωJ
b

1ωK
c ε̃abcd3x. (3.26)

In the previous equation, using (3.10) and (3.18), the only nonvanishing term is

0S[e, ω] = − 1

4κ

∫

M

εI JK
0ēI0

1ω̄J
b̄

r

1ω̄K
c̄

r
ε0b̄c̄ rdrdθdt =

∫

M

O(r−1)dr . (3.27)

Our region of integration M is bounded by ∂M = M1 ∪M2 ∪ I with its corresponding

orientation. In order to check finiteness it is enough to check that the integral over a spatial

12 Where dxa ∧ dxb ∧ dxc = ε̃abcd3x, with ε̃abc the Levi-Civita tensor density of weight +1, that is related

with the Levi-Civita tensor, εabc, by ε̃abc = (s)
√

|g|εabc with g the determinant of the spacetime metric

and s the signature of the metric.
13 1ωK

0 = 0 is zero from the fall off conditions on ω, ˚̄Da
0eI0 = 0 because 0eI0 = 0ēI0 and D0

0eIā = 0 because

we ask the condition of the compatibility of the triad with the connection to be satisfied to first order to

find the fall-off conditions on ω,

D0
0eIb = ˚̄D0

0eIb + εIJK 1ω0J
0ebK = 0.

since 1ωK
0 = 0 then ˚̄D0

0eIb = 0.
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hypersurface is finite. This is true since we are integrating over a finite time interval where

the Cauchy surfaces M1 and M2 are asymptotically time-translated with respect to each

other. Such spacetimes M are referred to as cylindrical slabs [11] or as cylindrical temporal

cut-off [18].

Note that on a Cauchy slice the only dependency on r of the previous equation is due to

1ωK
c = O(r−1), so the integral over r goes as

∫
O(r−1)dr that may logarithmically diverge

in the limit r → ∞, but we already proved in (3.25) that this term is zero. Then, the next

to leading terms decay faster in r so, in the limit r → ∞, they go to zero. Therefore, the

integral is finite even off shell.

2. Differentiability

In order for an action to be differentiable the variation of the action needs to take the

form,

δS[e, ω] =

∫

M

[Ee ∧ δe + Eω ∧ δω] +

∫

∂M

θ̃(eI , ωI , δeI , δωI), (3.28)

and in order for Ee and Eω to be the Euler-Lagrange equations of motion, the boundary

term needs to be zero when evaluated on histories compatible with the boundary conditions.

Since the term (3.2) is constant when evaluated on those histories, its variation is zero so it

does not spoil differentiability. Therefore we only need to check whether the action (3.1) is

differentiable.

The variation of the 3-dimensional Palatini action with boundary term (3.1) is,

δS[e, ω] = −1

κ

∫

M

[
δeI ∧ FI + eI ∧ δFI

]
− 1

κ

∫

∂M

[
δeI ∧ ωI + eI ∧ δωI

]
, (3.29)

but

δFI = dδωI +
1

2
εI

JKδωJ ∧ ωK +
1

2
εI

JKωJ ∧ δωK = dδωI + εI
JKδωJ ∧ ωK (3.30)

then, the variation becomes,

δS[e, ω] = −1

κ

∫

M

δeI ∧ FI −
1

κ

∫

M

(
deJ + εJIKeI ∧ ωK

)
∧ δωJ −

1

κ

∫

∂M

δeI ∧ ωI . (3.31)

If the boundary term is zero under the boundary conditions, the action is said to be differ-

entiable and the equations of motion are,

FI = 0 and DeJ = deJ + εJIKeI ∧ ωK = 0. (3.32)
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That are equivalent to those given by the three-dimensional Einstein-Hilbert action. The

boundary term is,

−1

κ

∫

∂M

δeI ∧ ωI = −1

κ

(

−
∫

M1

+

∫

M2

+

∫

I

)

δeI ∧ ωI (3.33)

where we are considering that our integration region M is bounded by ∂M = M1 ∪M2 ∪ I
with its corresponding orientation. We are taking, as usual, δeI = δωI = 0 on the space-like

surfaces M1 and M2. We are left only with the integral on the time-like boundary I. Recall
that we are approaching spatial infinity by a family of cylinders, Cr with r = const, in the

limit when r → ∞. To check differentiability we have to prove that

lim
r→∞

∫

Cr

δeI ∧ ωI = 0, (3.34)

when evaluated on histories compatible with the asymptotically flat boundary conditions.

Note that we are allowing all the possible variations compatible with the boundary condi-

tions and not only those of compact support. It is enough to check the behaviour of the

leading term (the next to leading terms decay ‘faster’ as r goes to infinity). Considering the

asymptotic conditions on eIa and ωI
a, (3.8) and (3.11), and the fact that

1ω̄I
a

r
is the leading

term of ωI
a (thus 0ωI

a = 0) with 1ωI
0 = 0; and using (3.10), equation (3.34) can be written

as14,

lim
r→∞

∫

Cr

δeI ∧ ωI = lim
r→∞

∫

Cr

δ
(
0eIa +

1eIa + o(r−2)
)
( 1ω̄J

b̄

r
δb̄b +

2ω̄J
b

r2
+ o(r−2)

)

ηJIε
abrdθdt

= lim
r→∞

∫

Cr

[

δ0eIa

1ω̄J
b̄

r
δb̄b + δ0eIa

2ω̄J
b

r2
+ δ1eIa

1ω̄J
b̄

r
δb̄b + o(r−2)

]

ηJIε
abrdθdt

= lim
r→∞

∫

Cr

[

δ0eIa

1ω̄J
b̄

r
δb̄b +O(r−2)

]

ηJIε
abrdθdt. (3.35)

but15

δ 0eIa =

(

−r−β/2

2
log(r)δβ

)

0ēIāδ
ā
a . (3.38)

14 Where εab is the two-dimensional Levi-Civita tensor related to the tensor density of weight +1 by εab =
(s)√
|γ|

ε̃ab, where γab is the induced metric on the timelike boundary, γ its determinant and s the signature

of γab.
15 From (3.10) and since 0ēIa is a fixed flat frame at the asymptotic region, δ 0ēIa = 0, then,

δ 0eIa = δ
(

0ēI0δ
0
a + r−β/2 0ēIāδ

ā
a

)

= δ(r−β/2) 0ēIāδ
ā
a . (3.36)
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Using (3.38), equation (3.35) becomes,

lim
r→∞

∫

Cr

δeI ∧ ωI = lim
r→∞

∫

Cr

[(

−r−β/2

2
log(r)δβ

)

0ēIāδ
ā
a

1ω̄J
b̄

r
δb̄b +O(r−2)

]

ηJIε
abrdθdt

= lim
r→∞

∫

Cr

[

−r−β/2

2
log(r)δβ 0ēIā

1ω̄J
b̄ δ

ā
aδ

b̄
b +O(r−1)

]

ηJIε
abdθdt. (3.39)

We can see in two ways that this term vanish. The first is to note that εab is the induced

Levi-Civita tensor on the timelike boundary (hypercylinders) so the indices, a, b = 0, 1, have

one temporal and one spatial component, but in the previous equation due to δāaδ
b̄
bε

ab = 0,

the leading term vanishes identically. Also in the previous equation, we can note that the

only dependence on r is through r−β/2 log(r), and since we are not integrating over r and

demanding that β > 0,

lim
r→∞

r−β/2 log(r) = 0. (3.40)

So in the limit equation (3.39) vanishes,

lim
r→∞

∫

Cr

δeI ∧ ωI = lim
r→∞

∫

Cr

[

−r−β/2

2
log(r)δβ 0ēIā

1ω̄b̄Jδ
ā
aδ

b̄
b +O(r−1)

]

εabdθdt = 0. (3.41)

Therefore the action is also differentiable under asymptotically flat boundary conditions, for

arbitrary compatible variations.

IV. COVARIANT ANALYSIS

In this section we shall follow the approach of the covariant Hamiltonian formalism

(CHF), as summarized in[12, 13]. In particular, we shall identify several components of

the CHF, such as the symplectic potential, (pre-)symplectic structure and Hamiltonian gen-

erators, starting from the actions defined in Sec. III. This section has two parts. In the first

one we identify these quantities and prove their finiteness. In the second one we focus our

attention on Hamiltonian flows and their generators.

In the timelike boundary δr = 0 so

δ
(

r−β/2
)

= −β

2
r−β/2−1δr − r−β/2

2
log(r)δβ

= −r−β/2

2
log(r)δβ (3.37)
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A. Symplectic geometry

From the variation of the action (3.31), we can identify the symplectic potential,

Θ̃(eI , ωI , δeI , δωI) :=

∫

∂M

θ̃(eI , ωI , δeI , δωI) = −1

κ

∫

∂M

δeI ∧ ωI , (4.1)

and its associated symplectic current,

J(δ1, δ2) := 2δ[1θ̃(δ2]) = −1

κ

(
δ2e

I ∧ δ1ωI − δ1e
I ∧ δ2ωI

)
. (4.2)

Since J is closed over any region M,

0 =

∫

M

dJ(δ1, δ2) =

∮

∂M

J(δ1, δ2) =

[

−
∫

M1

+

∫

M2

+

∫

I

]

J(δ1, δ2) (4.3)

here we are considering the region M is bounded by ∂M = M1 ∪M2 ∪ I, M1 and M2 are

space-like slices and I an outer boundary, in particular we shall consider configurations that

are asymptotically flat. We are assuming no internal boundary.

In order to have a conserved symplectic current and therefore a conserved pre-symplectic

form, independent of the Cauchy surface, we have to check that
∫

I
J = 0, that is, that there

is no current ‘leakage’ at infinity.

Taking into account the asymptotically flat boundary conditions previously derived, we

can see that the leading terms of
∫

I
J are,

∫

I

0J(δ1, δ2) = −1

κ
lim
r→∞

∫

Cr

(
δ2

0eI ∧ δ1
1ωI − δ1

0eI ∧ δ2
1ωI

)
. (4.4)

Following the same arguments as in (3.41), that is using 1ω̄I
0 = 0 and δ 0eI0 = 0, and

noticing that the previous equation becomes,
∫

I

0J(δ1, δ2) = −1

κ
lim
r→∞

∫

Cr

(
δ2

0eI0δ1
1ωāI − δ2

0eIāδ1
1ω0I − δ1

0eI0δ2
1ωāI + δ1

0eIāδ2
1ω0I

)
ε̃0ād2x,

(4.5)

we can see that
∫

I

0J(δ1, δ2) = 0. (4.6)

But, on the other hand note that
∫

I

0J(δ1, δ2) = −1

κ
lim
r→∞

∫

Cr

(

δ2
0eIaδ1

1ω̄bI

r
− δ1

0eIa ∧ δ2
1ω̄bI

r

)

εabrdθdt (4.7)

is independent of r. Therefore the next to leading terms goes as,
∫

I

J(δ1, δ2) = −1

κ
lim
r→∞

∫

Cr

O(r−1)εabdθdt = 0. (4.8)
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Therefore, the symplectic current is conserved.

Now we can define a conserved pre-symplectic form over an arbitrary space-like surface

M ,

Ω̃(δ1, δ2) :=

∫

M

J(δ1, δ2) = −1

κ

∫

M

δ2e
I ∧ δ1ωI − δ1e

I ∧ δ2ωI (4.9)

Once we have Ω̃(δ1, δ2), we can analyse the symmetries of the theory and their associated

conserved charges. In particular we are interested in the conserved charge associated with

the asymptotic time translations, i.e. the ADM energy.

Since one of our goals is to compare the resulting expression for the energy through the

covariant and canonical formalism, we need to be sure that the conventions in both schemes

are in agreement. We discuss this point in the next part.

1. Link between covariant and canonical approaches

The symplectic structure is essential in order to have a Hamiltonian description. In a

coordinate basis associated with the configuration variables, the fields φA, the symplectic

form can also be defined by

Ω̄ := dΠA ∧ dφA, (4.10)

where ΠA is the momenta canonically conjugated to φA. This Ω̄ is consistent with all our

derivations in the covariant phase space. But, up to now, we have not specified ‘what our

variables are’, namely φA and ΠA.

It is well known that in the first order formulation of general relativity one of our con-

figuration variables is the canonically conjugated variable to the other. For instance, in the

connection-dynamics approach, ω is chosen to be the configuration variable and, as it turns

out, e happens to be its canonical momenta. The role of the variables is inverted if we choose

the geometrodynamics picture.

To compare with the results obtained by the canonical formalism, first we have to decide

if we want to work in the connection or geometrodynamics approach. In this contribution

we choose the former one, that is φA = ωI and ΠA = eI . From (4.9) we have then,

Ω̃(δ1, δ2) = − 1

2κ

∫

M

δ2 eI
︸︷︷︸

ΠA

∧δ1 ωI
︸︷︷︸

φA

−δ1e
I ∧ δ2ωI = −Ω̄ (4.11)

We conclude then that in order to compare our expressions for the energy, we have to set

Ω̄ = −Ω̃. From now on, this is the choice we shall make.
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B. The Hamiltonian and the energy

Consider infinitesimal diffeomorphisms generated by a vector field ξ, these diffeomor-

phisms induce an infinitesimal change in the fields given by δξ := (£ξe,£ξω).

We say that ξ is a Hamiltonian vector field iff Ω̄(δ, δξ) is closed, ddΩ = 0, and the Hamil-

tonian Hξ is defined by,

Ω̄(δ, δξ) = δHξ = ddH. (4.12)

Where dd is the exterior derivative on the covariant phase space16, which is different from

the exterior derivative on spacetime d.

So Hξ is a conserved quantity along the flow generated by ξ. We consider the case when

ξ generates asymptotic time translations of the space-time, which induces time evolution on

the covariant phase space generated by the vector field δξ := (£ξe,£ξω). In this case, Hξ is

the energy.

1. The energy

From eq. (4.9) and (4.12),

Ω̄(δ, δξ) = −Ω̃(δ, δξ) =
1

κ

∫

M

δξe
I ∧ δωI − δeI ∧ δξωI (4.13)

=
1

κ

∫

M

£ξe
I ∧ δωI − δeI ∧ £ξωI (4.14)

by using £ξφ
A = ξ · dφA + d(ξ · φA)

Ω̄(δ, δξ) =
1

κ

∫

M

[
(ξ · deI) ∧ δωI + d(ξ · eI) ∧ δωI − δeI ∧ (ξ · dωI)− δeI ∧ d(ξ · ωI)

]
.

(4.15)

Now we have to use that at infinity ξ should approach a time-translation Killing vector field

of the asymptotic flat spacetime. In particular this means that in the asymptotic region ξa

is orthogonal to the spacelike surface. Therefore ξ · eI = eI0, ξ · ωI = ω0I but for the leading

term we have seen 1ω̄0I = 0, also ˚̄Da
0eIb only has spatial components so ξ · d 0eI = 0. With

16 see [12, 13] for further details and definitions.
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this at hand we can see that17,

Ω̄(δ, δξ) =
1

κ

∫

M

d(ξ · eI) ∧ δωI (4.16)

=
1

κ

∫

M

d
[
(ξ · eI)δωI

]
− (ξ · eI)dδωI (4.17)

Note that the second term of the previous equation in components becomes,

−
∫

M

0ēI0
˚̄D[b̄|δω|c̄]Iε

b̄c̄rdrdθ (4.18)

but

˚̄D[b̄|δω
M
|c̄] = δβ

[
r−2∂[b̄|r∂ār + r−1∂[b̄|∂ār

]
εLK

M 0ēKd̄
0ēL|c̄]η

ād̄, (4.19)

so

0ēI0
˚̄D[b̄|δω|c̄]Iε

b̄c̄ = δβ
[
r−2∂[b̄|r∂ār + r−1∂[b̄|∂ār

]
εLKI

0ēKd̄
0ēL|c̄]

0ēI0
︸ ︷︷ ︸

ēε̃|c̄]d̄0

ηād̄ εb̄c̄
︸︷︷︸

ε̃0b̄c̄

r

, (4.20)

here ē =
√−η = 1 where ηab is the Minkowski metric associated with the fixed frame ēaI

at the asymptotic region, also ε̃|c̄]d̄0ε̃
0b̄c̄ = −2δb̄

|d̄]
. Thus by antisymmetry in the space-time

indices this term vanishes.

From (4.16) and the previous argument the presymplectic form is,

Ω̄(δ, δξ) =
1

κ

∫

M

d
[
(ξ · eI)δωI

]
=

1

κ

∫

∂M

(ξ · eI)δωI

= lim
r→∞

[
1

κ

∫

∂M

0eI0δ
1ωc̄I

r
ε0c̄rdθ +

∫

∂M

O(r−1)dθ

]

, (4.21)

with

δ

(
1ωM

c̄

r

)

=
1

2r
δβ∂ārεLK

M 0ēKd̄
0ēLc̄ η

ād̄. (4.22)

Then, by (4.12), the variation of the Hamiltonian, and therefore of its corresponding

associated conserved quantity, the energy, is

δHξ = Ω̄(δ, δξ) =
1

2κ
lim
r→∞

∫

∂M

0ēI0

(

δβr−1∂ārεLKI
0ēKd̄

0ēLc̄ η
ād̄
)

ε0c̄rdθ

=
1

2κ
lim
r→∞

∫

∂M

1

r
δβ

(
εLKI

0ēI0
0ēKd̄

0ēLc̄
)

︸ ︷︷ ︸

ēε̃c̄d̄0

ηād̄∂ārε
0c̄rdθ (4.23)

17 This is the only non-vanishing term to first order.
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here we are using the identity εLKI
0ēI0

0ēK
d̄

0ēLc̄ = ēε̃0c̄d̄ where 0ē =
√−η = 1 with η the de-

terminant of ηab, the Minkowski metric associated with the fixed frame ēaI at the asymptotic

region. Taking into account the fall-off conditions on eIa, its determinant, e, will decay as

e = 0ē+O(r−1), then ēε̃c̄d̄0 = [eεc̄d̄0 − εc̄d̄0O(r−1)]. Also ∂ār =: rā can be seen as the normal

to the cylinders r = const and ε̃abcr
c = ε̃ab. With all this we can see that the previous

equation (4.23) is,

δHξ =
1

2κ
lim
r→∞

∫

∂M

[
1

r
δβεc̄d̄0r

d̄ε0c̄rdθ +O(r−1)

]

=
1

2κ

∫

∂M

δβ ε0c̄ε
0c̄

︸ ︷︷ ︸

1

dθ =
1

2κ
δβ

∫

∂M

dθ

(4.24)

Also note that ∂M = Ct, M a space like slice at “time” t, and Ct a circle with radius r at

time t. We can write the expression for the energy,

δHξ =
δβ

2κ

∫

Ct

dθ (4.25)

taking κ = 8πG,

δHξ =
δβ

2(8πG)
2π =

δβ

8G
. (4.26)

Since the previous expression only gives the variation, the energy will always be determined

up to a constant,

E =
β

16G
+ const′, . (4.27)

Let us summarize the situation. By employing the covariant Hamiltonian formalism, we have

reached an expression for the gradient of the Hamiltonian function on the covariant phase

space, responsible for the Hamiltonian flow that generates asymptotic unit time translations.

As is usually the case with the Hamiltonian formalism, this function is determined up to

a constant. Here we are faced with several choices. We could, for instance, follow [5] and

declare that Minkowski spacetime should have a vanishing energy. Since β ∈ [0, 2), we should

then choose this constant to be zero for the energy of Minkowski space-time to vanish,

E ∈
[

0,
1

4G

]

. (4.28)

Although the CHF is elegant, it only provide us with the variation of the energy, so we

have an indeterminacy in the election of the constant that may shift the region in which the

energy is bounded. Of course, we are in principle allowed to make any other choice for the

up to now arbitrary constant, unless we take some input that helps us select it. That is why

we shall analyse this action through the canonical 2+1 formalism, where the Hamiltonian
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is completely determined by the Legendre transform. This is the subject of the following

section.

V. CANONICAL ANALYSIS

In the case of theories that can be formulated without the need of a metric, we have

two choices for a 2 + 1 decomposition. The first one, that we shall refer to as the Witten

approach18, it does not need the existence of a metric. We only ask the spacetime M to

be topologically Σ×R and that there exists a function t (with nowhere vanishing gradient

(dt)a) such that each t= const surface Mt is diffeomorphic to Σ. Also, one assumes the

existence a flow defined by a vector field ta satisfying ta(dt)a = 1, which allow us to define

“evolution”, although t does not necessarily have the interpretation of time19.

The second approach, that we shall refer to as the Ashtekar-Barbero-Varadarajan ap-

proach20 follows closely the 3 + 1 decomposition of the first order variables. In it, besides

the elements of the Witten approach, we are also assuming the existence of a metric gab and

therefore a unit normal na to the Cauchy surfaces. This introduces additional information to

that in Witten’s decomposition. In particular, we can decompose any tensor into its normal

and tangential part, and in particular ta can be decomposed as ta = Nna + Na, where N

and Na are the lapse and shift functions. Now we have additional information, namely the

freedom of choosing any foliation and any vector field ta, that is coded in the lapse and shift

functions.

A comment on notation is in order. In what follows we use ε̃abc as the Levi-Civita tensor

density of weight +1 instead of η̃abc, more commonly used in the 3− dimensional case, this

to avoid confusion with the flat metric η̄ab (2.6), or with the Minkowki metric (either with

internal or spacetime indices). When we write ε̃abc in the action we assume it is accompanied

with its respective d3x, but we do not write it in order to simplify notation. Only when

18 Following the nomenclature of [15] referring to Witten’s paper [2]. For more details on the analysis in the

case where there is no boundary see [14].
19 Since the 2 + 1 Palatini action based on an arbitrary Lie group G (3.1) is a theory independent of a

spacetime metric, we can still define evolution from one t = const surface to the next using the Lie

derivative along ta.
20 In [15] the authors discuss the differences in the canonical analysis, particularly in the constraints, following

Witten’s vs Ashtekar’s approaches. That is why we call it Ashtekar-Barbero-Varadarajan approach.
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dealing with the Levi-Civita tensor, εabc, related with the tensor density by ε̃abc = (s)
√

|g|εabc

(with g the determinant of the spacetime metric and s the signature of the metric), we write

the volume element explicitly. The same convention will be used for the ε̃ab and ε̃a. Finally,

we shall refer to a Cauchy slice as M following the notation in [12, 13].

A. Witten’s approach

In order to make the canonical analysis (a la Witten) of the 3-dimensional Palatini action,

we write the action (3.5) it in components,

SPB[e, ω] = − 1

2κ

∫

M

ε̃abceaIF
I
bc −

1

κ

∫

∂M

eaIω
I
b ε̃

ab − α

κ

∫

∂M

1

n · nε
IKLeaInK

˚̄DbnLε̃
ab(5.1)

= − 1

2κ

∫

M

ε̃abceaIF
I
bc −

1

κ

∫

∂M

eaIω
I
b ε̃

ab +
α

κ

∫

∂M

1√
n · nε

ILeaI
˚̄DbnLε̃

ab (5.2)

For this decomposition we shall follow the analysis in [14], taking enough care of the bound-

ary term, the one coming from the Palatini action and the boundary terms in (5.1). Using

that ε̃abc = 3t[aε̃bc]dt and ε̃ab = 2t[aε̃b]dt

SPB[e, ω] = − 1

2κ

∫

dt

∫

M

(taε̃bc + tbε̃ca + tcε̃ab)eaIF
I
bc −

1

κ

∫

dt

∫

Ct

(taε̃b − tbε̃a)eaIω
I
b

+
α

κ

∫

dt

∫

Ct

(taε̃b − tbε̃a)
1√
n · nε

ILeaI
˚̄DbnL (5.3)

= −1

κ

∫

dt

∫

M





1

2
(taeaI)
︸ ︷︷ ︸

(t·e)I

F I
bcε̃

bc + tbε̃caeaIF
I
bc






−1

κ

∫

dt

∫

Ct




(t

aeaI)
︸ ︷︷ ︸

(t·e)I

ωI
b ε̃

b − (tbωI
b )

︸ ︷︷ ︸

(t·ω)I

eaI ε̃
a




 (5.4)

+
α

κ

∫

dt

∫

Ct

1√
n · nε

IL
[

(taeaI)
˚̄DbnLε̃

b − (tb ˚̄DbnL)eaI ε̃
a
]

(5.5)

Taking into account the following standard relations,

F I
bc = 2∂[bω

I
c] + [ωb, ωc]

I = ∂bωc − ∂cωb + [ωb, ωc]
I (5.6)

Dbω
I
c = ∂bω

I
c + [ωb, ωc]

I (5.7)

tbF I
bc = £~tω

I
c −Dc(t · ω)I (5.8)
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the second term of the bulk part can be written as,

ε̃caeaIt
bF I

bc = (£~tω
I
c )ε̃

caeaI −Dc(ω · t)I ε̃caeaI (5.9)

= (£~tω
I
c )ε̃

caeaI −Dc[(ω · t)I ε̃caeIaI ] + (ω · t)IDc(ε̃
caeaI). (5.10)

Then the action takes the form,

SPB[e, ω] = −1

κ

∫

dt

∫

M





1

2
(taeaI)
︸ ︷︷ ︸

(t·e)I

F I
bcε̃

bc + (£~tω
I
c )ε̃

caeaI −Dc[(ω · t)I ε̃caeaI ] + (ω · t)IDc(ε̃
caeaI)






−1

κ

∫

dt

∫

Ct




(t

aeaI)
︸ ︷︷ ︸

(t·e)I

ωI
b ε̃

b − (tbωI
b )

︸ ︷︷ ︸

(t·ω)I

eaI ε̃
a




 (5.11)

+
α

κ

∫

dt

∫

Ct

1√
n · nε

IL
[

(taeaI)
˚̄DbnLε̃

b − (tb ˚̄DbnL)eaI ε̃
a
]

(5.12)

= −1

κ

∫

dt

∫

M





1

2
(taeaI)
︸ ︷︷ ︸

(t·e)I

F I
bcε̃

bc + (£~tω
I
c )ε̃

caeaI + (ω · t)IDc(ε̃
caeaI)






+
1

κ

∫

dt

∫

M

Dc[(ω · t)I ε̃caeaI ]−
1

κ

∫

dt

∫

Ct




(t

aeaI)
︸ ︷︷ ︸

(t·e)I

ωI
b ε̃

b − (tbωI
b )

︸ ︷︷ ︸

(t·ω)I

eaI ε̃
a




 (5.13)

+
α

κ

∫

dt

∫

Ct

1√
n · nε

IL
[

(taeaI)
˚̄DbnLε̃

b − (tb ˚̄DbnL)eaI ε̃
a
]

. (5.14)

Strictly speaking we begin with an action valid for any Lie group (e is not related to the

metric unless we identify the group with SO(2, 1) so this action can be defined without the

need of a metric), since in Witten’s decomposition we are not assuming the existence of a

metric.

In order to proceed with the Legendre transformation we need to calculate the momenta,

Πc
I =

δL
δ(£~tω

I
c )

=
1

κ
ε̃caeaI , (5.15)
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then the canonical Hamiltonian is21,

H [e, ω] =

∫

M

[
(£~tω

I
c )Π

c
I − L

]

= +
1

κ

∫

M





1

2
(taeaI)
︸ ︷︷ ︸

(t·e)I

F I
bcε̃

bc + (ω · t)IDc(ε̃
caeaI)






−1

κ

∫

M

Dc[(ω · t)I ε̃caeaI ] +
1

κ

∫

Ct




(t

aeaI)
︸ ︷︷ ︸

(t·e)I

ωI
b ε̃

b − (tbωI
b )

︸ ︷︷ ︸

(t·ω)I

eaI ε̃
a






−α

κ

∫

Ct

1√
n · nε

IL
[

(taeaI)
˚̄DbnLε̃

b − (tb ˚̄DbnL)eaI ε̃
a
]

. (5.16)

We can see that the following constraints

F I
bcε̃

bc ≈ 0 and Dc(ε̃
caeaI) ≈ 0, (5.17)

are first class, and also they are the pull-back to M with ε̃ab of the equations of motion

(3.32).

On the constraint surface,

H [e, ω] = −1

κ

∫

M

Dc[(ω · t)I ε̃caeaI ] +
1

κ

∫

Ct




(t

aeaI)
︸ ︷︷ ︸

(t·e)I

ωI
b ε̃

b − (tbωI
b )

︸ ︷︷ ︸

(t·ω)I

eaI ε̃
a






−α

κ

∫

Ct

εIL
[

(taeaI)
˚̄Db

nL√
n · nε̃

b −
(

tb ˚̄Db
nL√
n · n

)

eaI ε̃
a

]

. (5.18)

that is, the boundary terms are the only non-vanishing terms.

Now if we take into account the asymptotically flat boundary conditions, the leading

term of (ω · t)I is zero and also tb ˚̄Db(r
c 0ecL) = 0. In the timelike boundary as well as

in the boundary of M (circles for each time t, Ct) the normal to the surface is ra, then

nL/
√
n · n = rcecL. So the only non-vanishing leading term comes from,

H [e, ω] =
1

κ

∫

Ct

(t · e)IωI
b ε̃

b − α

κ

∫

Ct

εIL(taeaI)
˚̄Db(r

cecL)
︸ ︷︷ ︸

rc ˚̄DbecL+ecL
˚̄Dbrc

ε̃b. (5.19)

As in the covariant case, if we want this Hamiltonian to generate asymptotic time trans-

lations and therefore its conserved quantity to be the energy, ta has to approach a unit

21 Note that the bulk part of this Hamiltonian coincides with that given in [14].

26



time-translation Killing vector field of the asymptotic flat spacetime, which also translates

into t being orthogonal to M . Using this and the fall-off conditions (3.8) and (3.18), the

Hamiltonian is given by22,

H [e, ω] = lim
r→∞








∫

Ct

1

κ
0e0I

1ωI
b̄

r
ε̃b̄

︸ ︷︷ ︸

H1

−α

κ

∫

Ct

εIL 0e0I

(
0ecL

˚̄Dbr
c
)

ε̃b

︸ ︷︷ ︸

H2

+O(r−β/2)








(5.21)

For the first term of the right hand side of previous equation, since the volume element

associated to Ct goes as rdθ, the leading term of the previous equation does not depend on

r, and the next to leading terms go as O(r−1) so in the limit they vanish leaving us with

just the leading term,

H1 =
1

κ
lim
r→∞

∫

Ct

0e0I

1ω̄I
b̄

r
ε̃b̄ =

1

2κ
lim
r→∞

∫

Ct

0e0I
1

r
β∂ārεL

KI 0ēāK
0ēLb̄ ε̃

0b̄ (5.22)

Note that, apart from δβ ↔ β, this expression is the same as (4.23). Using the same steps

we can see that (taking κ = 8πG),

H1 =
β

2κ

∫

Ct

dθ =
β

2(8πG)
2π =

β

8G
. (5.23)

22 The term (that comes from eq. (5.19)),

Leading lim
r→∞

−α

κ

∫

Ct

εIL(taeaI)r
c ˚̄DbecLε̃

b = lim
r→∞

[

−α

κ

∫

Ct

εIL 0e0Ir
c(− β

2r
r−β/2∂br

0ēc̄Lδ
c̄
c)ε̃

0b +O(r−1)

]

= lim
r→∞




αβ

2κ

∫

Ct

εIL 0e0I
0ēc̄L

︸ ︷︷ ︸

ēε̃0c̄

1

r
r−β/2rc̄∂brε̃

0b +O(r−1)





= lim
r→∞





αβ

2κ

∫

Ct

1

r
r−β/2rc̄∂br ε̃0c̄ε̃

0b

︸ ︷︷ ︸

δb
c̄

rdθ +O(r−1)






= lim
r→∞

[
αβ

2κ

∫

Ct

r−β/2(+1)dθ +O(r−1)

]

= lim
r→∞

[
αβ

2κ
r−β/22π +O(r−1)

]

= lim
r→∞

[

O(r−β/2) +O(r−1)
]

= 0 iff β > 0

(5.20)
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For the second term of the right hand side,

H2 = lim
r→∞

[

−α

κ

∫

Ct

εIL 0e0I

(
0ecL

˚̄Dbr
c
)

ε̃0b
]

= −α

κ
lim
r→∞

∫

Ct

εIL 0e0I
0ecL

︸ ︷︷ ︸

ēε̃0c

˚̄Dbr
c

︸︷︷︸

∂brc

ε̃0b

= −α

κ
lim
r→∞

∫

Ct

ε̃0bε̃0c
︸ ︷︷ ︸

δbc

(∂br
c)rdθ

= −α

κ
lim
r→∞

∫

Ct

(∂cr
c)

︸ ︷︷ ︸

1/r

rdθ = − α

2κ

∫

Ct

2dθ (5.24)

Using (5.22) and (5.24), we can see that the Hamiltonian (5.21) is given by,

H = H1 +H2 =
β

2κ

∫

Ct

dθ − α

2κ

∫

Ct

2dθ = − 1

2κ

∫

Ct

(2α− β)dθ. (5.25)

Let us summarize the situation. We have performed the 2+1 decomposition, a la Witten,

of the two actions we considered in Sec. III. After performing the Legendre transform, the

Hamiltonian is given by the boundary term of Eq. (5.25). Recall that we have introduced

a ‘switch’ α, that selects between the totally Lorentz invariant action (α = 1) and the

generalized Palatini action (α = 0). The first obvious observation is that the Hamiltonian

(and energy), depends on α and therefore, on the action we started with. Let us now analyse

both cases.

Let us first consider the case when α = 1, and note that we recover the results of [8],

H = − 1

2κ

∫

Ct

(2− β)dθ. (5.26)

Following [5, 8], the parameter β lies in the interval β ∈ [0, 2). From here we can conclude

that the energy

E =
1

8G
(β − 2) , (5.27)

is bounded from below and above, and lies within the interval, E ∈
[
− 1

4G
, 0
]
. That is, all

gravitational configurations have a negative energy, and in particular, Minkowski spacetime

has an energy equal to EMink = −1/(4G).

The other case, namely when α = 0, yields an energy Eα=0 = β/(8G), that is always

positive, with a zero value for the lower bound corresponding to Minkowski spacetime. In

this sense one can observe that the energy found in the canonical description realizes the

choice made by the authors of [5]. This is the main result of this article. Let us now end

this section with a few remarks.
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1. Note that in both our analysis and in the one given in [8], the starting point is a

well posed action; the Palatini action with boundary term and the Einstein-Hilbert

action with Gibbons-Hawking term respectively. Also, note that the addition of the

boundary term (3.2) is essential, within the first order action, to be equivalent to the

Einstein-Hilbert action with Gibbons-Hawking term. It is then not surprising that the

LIP action leads to the same expression for the energy as in [8].

2. Even though both actions, SPB and LIP, lead to the same classical equations of motion,

the Einstein equations of motion, they do not completely agree at the Hamiltonian

level, since they differ by a constant.

3. It is important emphasize the difference between our result, where the Hamiltonian and

therefore the energy is completely determined by the Legendre transform, in contrast

with the covariant formalism where one only gets the variation of the Hamiltonian

function, so the energy is only determined up to an additive constant (4.27).

In the next part we shall perform a different 2+1 splitting, that follows the standard

decomposition and resembles the 3+1 case.

B. Barbero-Varadarajan’s approach

As was the case in Witten’s decomposition, we shall begin with the well posed manifestly

Lorentz invariant Palatini action,

SLIP[e, ω] = − 1

2κ

∫

M

ε̃abceaIF
I
bc −

1

κ

∫

∂M

eaIω
I
b ε̃

ab − α

κ

∫

∂M

1

n · nε
IKLeaInK

˚̄DbnLε̃
ab (5.28)

Using ε̃abcεIJKe
K
c = 2ee

[a
I e

b]
J , which implies e εLKMeaLe

b
K = ε̃abceMc . The well posed Palatini

action can be written,

SLIP[e, ω] = − 1

2κ

∫

M

eεLKIebLe
c
KFbcI −

1

κ

∫

∂M

eaIω
I
b ε̃

ab − α

κ

∫

∂M

1

n · nε
IKLeaInK

˚̄DbnLε̃
ab

(5.29)

As we already mentioned, to make a standard 2+ 1 decomposition, we assume the existence

of a metric and thus we can introduce a projector qba = δba + nan
b which projects down

all the fields in their spacelike and normal components respectively. In particular we can

decompose ta = naN +Na.
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To begin with, we have to use qba to project all the dynamical variables appearing in the

action. First we shall decompose the integrand of the bulk term of the previous equation,

eεLKIebLe
c
KFbcI = eεLKIeaLe

d
Kδ

b
aδ

c
dFbcI = eεLKIeaLe

d
K(q

b
a − nan

b)(qcd − ndn
c)FbcI (5.30)

with qab the induced metric and na the normal to the 2−dimensional Cauchy slices. Now

using na = (ta −Na)/N , also E I
a = qbae

I
b and F I

ab = qcaq
d
bF

I
cd are the projections of e and F to

the Cauchy slice, and nK := naeaK , then the integrand of the bulk term becomes,

eεLKIebLe
c
KFbcI = eεLKI

[

E b
LE c

KFbcI −
2

N
E b
LnKt

cFbcI +
2

N
E b
LnKN

cFbcI

]

. (5.31)

which implies that the decomposed bulk term is,

− 1

2κ

∫

M

eεLKIebLe
c
KFbcI = − 1

2κ

∫

M

eεLKI

[

E b
LE c

KFbcI −
2

N
E b
LnKt

cFbcI +
2

N
E b
LnKN

cFbcI

]

.

(5.32)

Now we shall decompose the boundary term,

−1

κ

∫

∂M

eaIω
I
b ε̃

ab − α

κ

∫

∂M

1

n · nε
IKLeaInK

˚̄DbnLε̃
ab. (5.33)

We begin with the integrand of the standard boundary term, eaIω
I
b ε̃

ab,

eaIω
I
b ε̃

ab = δcaδ
d
b ε̃

abecIω
I
d = (qca − nan

c)(qdb − nbn
d)ecIω

I
dε̃

ab (5.34)

but ε̃ab = 2Nn[aε̃b]dt, then

eaIω
I
b ε̃

ab = N
[
qcaq

d
b ecIω

I
d(n

aε̃b − nbε̃a)− qcanbn
decIω

I
d(n

aε̃b − nbε̃a)

−qdbnan
cecIω

I
d(n

aε̃b − nbε̃a) + nan
cnbn

decIω
I
d(n

aε̃b − nbε̃a)
]
dt. (5.35)

Note that most of the terms vanishes due to qcan
a = 0 or by antisymmetry of the indices,

the non vanishing terms are,

eaIω
I
b ε̃

ab = −N
[
qcanbn

dnbε̃a − qdbnan
cnaε̃b

]
ecIω

I
ddt. (5.36)

Since na is the normal to the spacelike surfaces M (and the splitting in the boundary is

compatible with the spacetime one), nan
a = −1. Also we use na = (ta −Na)/N , E I

a = qbae
I
b

and WI
a = qbaω

I
b , the integrand of the boundary term becomes,

eaIω
I
b ε̃

ab = −N

[

EaI
1

N
(td −Nd)(nbn

b)ωI
dε̃

a − 1

N
(tc −N c)ωI

decI(nan
a)ε̃b

]

dt

= −(nbn
b)
[
tdωI

dEaI ε̃a −NdωI
dEaI ε̃a + tcecIWI

d ε̃
d −N cecIWI

d ε̃
d
]
dt (5.37)
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which implies that the decomposed standard boundary term is,

−1

κ

∫

∂M

eaIω
I
b ε̃

ab = −1

κ

∫

∂M

[
tdωI

dEaI ε̃a −NdωI
dEaI ε̃a + tcecIWI

d ε̃
d −N cecIWI

d ε̃
d
]
dt (5.38)

Now we decompose the integrand of the additional boundary term (3.2),

1
n·n

εIKLeaInK
˚̄DbnLε̃

ab,

1

n · nε
IKLeaInK

˚̄DbnLε̃
ab =

1

n · nε
IKLecIδ

c
anKδ

d
b
˚̄DdnLε̃

ab

=
1

n · nε
IKLecInK

˚̄DdnL(q
c
a − nan

c)(qdb − nbn
d)ε̃ab

= − 1√
n · nε

IL
[(

EaItd ˚̄DdnL − EaINd ˚̄DdnL

)

ε̃a

+
(

tcecI
˚̄DbnL −N cEcI ˚̄DbnL

)

ε̃b
]

dt (5.39)

for the previous equation we used nc = 1
N
(tc − N c), na is normal to a spacelike surface so

nan
a = −1, ˚̄Dd is spatial so qdb

˚̄Dd = ˚̄Dd, and E I
a = qbae

I
b . Thus the decomposed boundary

term ((3.2)) is,

−α

κ

∫

∂M

1

n · nε
IKLeaInK

˚̄DbnLε̃
ab =

α

κ

∫

∂M

1√
n · nε

IL
[(

EaItd ˚̄DdnL − EaINd ˚̄DdnL

)

ε̃a

+
(

tcecI
˚̄DbnL −N cEcI ˚̄DbnL

)

ε̃b
]

dt (5.40)

Using (5.32), (5.38), (5.40) and e =
√−g = N

√

|q| = NE with q the determinant of the

induced metric qab on M and E the determinant of Ea
I , we can rewrite the action (5.1) as,

SPB[e, ω] = − 1

2κ

∫

dt

∫

M

NEεLKI

[

E b
LE c

KFbcI −
2

N
E b
LnKt

cFbcI +
2

N
E b
LnKN

cFbcI

]

−1

κ

∫

dt

∫

∂M

[
tdωI

dEaIεa −NdωI
dEaIεa + tcecIWI

dε
d −N cecIWI

dε
d
]

+
α

κ

∫

dt

∫

∂M

1

n · nε
IL

[(

EaItd ˚̄DdnL − EaINd ˚̄DdnL

)

ε̃a

+
(

tcecI
˚̄DbnL −N cEcI ˚̄DbnL

)

ε̃b
]

(5.41)

As in the Witten decomposition, we use (5.8) to rewrite the second term of the bulk part of

the action,

NEεLKI(
2

N
E b
LnKt

cF I
cb) = EεLKI2E b

LnK£~tω
I
b − EεLKI2E b

LnKDb(t · ω)I

= 2EεLKI
[
E b
LnK£~tω

I
b +Db

(
E b
LnK

)
(t · ω)I

]

−Db

[
EεLKI2E b

LnK(t · ω)I
]

(5.42)
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Then the action can be written,

SPB[e, ω] = − 1

2κ

∫

dt

∫

M

[
NEεLKIE b

LE c
KFbcI + 2EεLKI

(
E b
LnK£~tω

I
b +Db

(
E b
LnK

)
(t · ω)I

+E b
LnKN

cFbcI

)]
+

1

2κ

∫

dt

∫

M

Db

[
EεLKI2E b

LnK(t · ω)I
]

−1

κ

∫

dt

∫

∂M

[
tdωI

dEaIεa −NdωI
dEaIεa + tcecIWI

dε
d −N cecIWI

dε
d
]

+
α

κ

∫

dt

∫

∂M

1

n · nε
IL

[(

EaItd ˚̄DdnL − EaINd ˚̄DdnL

)

ε̃a

+
(

tcecI
˚̄DbnL −N cEcI ˚̄DbnL

)

ε̃b
]

(5.43)

To find the Hamiltonian we need to calculate the momenta to perform the Legendre trans-

formation,

Πb
I =

δL
δ(£~tω

I
b )

=
1

κ
EεLKIE b

LnK (5.44)

Then,

H [e, ω] =

∫

M

[
(£~tω

I
c )Π

c
I −L

]

= +
1

2κ

∫

M

[
NEεLKIE b

LE c
KFbcI + 2EεLKI

[
Db

(
E b
LnK

)
(t · ω)I + E b

LnKN
cFbcI

]]

− 1

2κ

∫

M

Db

[
EεLKI2E b

LnK(t · ω)I
]

+
1

κ

∫

∂M

[
tdωI

dEaIεa −NdωI
dEaIεa + tcecIWI

dε
d −N cecIWI

dε
d
]

−α

κ

∫

∂M

1

n · nε
IL

[(

EaItd ˚̄DdnL − EaINd ˚̄DdnL

)

ε̃a

+
(

tcecI
˚̄DbnL −N cEcI ˚̄DbnL

)

ε̃b
]

(5.45)

Note that within this decomposition we have ‘more structure’, now we have three constraints

εLKIE b
LE c

KFbcI ≈ 0, εLKIDb

(
E b
LnK

)
≈ 0 and E b

LnKFbcI ≈ 0, (5.46)

instead of the two found by the Witten approach (5.17).

On the constraint surface we are left only with the boundary term,

H = − 1

2κ

∫

M

Db

[
EεLKI2E b

LnK(t · ω)I
]

+
1

κ

∫

∂M

[
tdωI

dEaIεa −NdωI
dEaIεa + tcecIWI

dε
d −N cecIWI

dε
d
]

−α

κ

∫

∂M

1

n · nε
IL

[(

EaItd ˚̄DdnL − EaINd ˚̄DdnL

)

ε̃a

+
(

tcecI
˚̄DbnL −N cEcI ˚̄DbnL

)

ε̃b
]

(5.47)
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Let us now consider the asymptotically flat boundary conditions. The leading term of

(t · ω)I = 0 and also since ˚̄Dd is spatial td ˚̄DdnL = 0 . So we are left with

H = lim
r→∞

{

−1

κ

∫

∂M

[

N d̄ 1WI
d̄
0EāIεā − tc 0ecI

1WI
d̄ε

d̄ +N c̄ 0Ec̄I 1WI
d̄ε

d̄
]

− α

κ

∫

∂M

1

n · nε
IL

[

− 0EaINd ˚̄DdnLε̃
a +

(

tc 0ecI
˚̄DbnL −N c 0EcI ˚̄DbnL

)

ε̃b
]

+O(r−1)
}

(5.48)

In addition to the fall-off conditions on e and ω, now we have to take into account the be-

haviour of the lapse N and shift Na functions on the asymptotic region for time-translations

(following [5, 8]),

N = 1 +O(r−1) (5.49)

Na = O(r−1−β), (5.50)

Note that in the asymptotic region the projections E I
a = qbae

I
b and WI

a = qbaω
I
b coincide with

eIā and ωI
ā. With conditions (5.49),(5.50) and considering the order of leading terms of e and

ω: 1ωI
d̄
= O(r−1) = 1WI

d̄
, 0ec̄I = O(r−β/2) = 0EāI , and that εd̄ = O(r). Note that to first

order the first and third terms in (5.48) decay as,

lim
r→∞

1

2κ

∫

∂M

N d̄ 1ωI
d̄
0EāIεā = lim

r→∞

1

2κ

∫

∂M

O(r−1−β)O(r−1)O(r−β/2)O(r) (5.51)

= lim
r→∞

1

2κ

∫

∂M

O(r−1−3β/2) = 0 (5.52)

and

lim
r→∞

1

2κ

∫

∂M

N c̄ 0Ec̄I 1WI
d̄ε

d̄ = lim
r→∞

1

2κ

∫

∂M

O(r−1−β)O(r−β/2)O(r−1)O(r) (5.53)

= lim
r→∞

1

2κ

∫

∂M

O(r−1−3β/2) = 0, (5.54)

respectively. And the fourth and sixth terms decay as,

lim
r→∞

α

κ

∫

∂M

1

n · nε
IL

[
0EaINd ˚̄DdnLε̃

a
]

= lim
r→∞

1

2κ

∫

∂M

O(r−β/2)O(r−1−β)O(r−1−β/2)O(r)

= lim
r→∞

1

2κ

∫

∂M

O(r−1−2β) = 0 (5.55)

and

lim
r→∞

α

κ

∫

∂M

1

n · nε
IL

[

N c 0EcI ˚̄DbnLε̃
b
]

= lim
r→∞

1

2κ

∫

∂M

O(r−1−β)O(r−β/2)O(r−1−β/2)O(r)

= lim
r→∞

1

2κ

∫

∂M

O(r−1−2β) = 0. (5.56)
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Therefore, H can be written as,

H = lim
r→∞

{

−1

κ

∫

∂M

[

−tc 0ecI
1WI

d̄ε
d̄
]

− α

κ

∫

∂M

1

n · nε
IL

[

tc 0ecI
˚̄DbnLε̃

b
]

+O(r−1)

}

As in the previous sections, if we want this Hamiltonian to generate asymptotic time

translations and therefore its conserved quantity to be the energy, ta has to approach a

time-translation Killing vector field of the asymptotic flat spacetime, which also translates

in t being orthogonal to M (corresponding to N → 1, Na → 0). In that case the previous

expression coincides with (5.19) from

Therefore, H can be written as,

H = lim
r→∞

{

−1

κ

∫

∂M

[

−tc 0ecI
1WI

d̄ε
d̄
]

− α

κ

∫

∂M

1

n · nε
IL

[

tc 0ecI
˚̄DbnLε̃

b
]

+O(r−1)

}

= lim
r→∞

{
1

κ

∫

∂M

0e0I

1ω̄I
d̄

r
εd̄ − α

κ

∫

Ct

1√
n · nε

IL 0e0I

(
0ecL

˚̄Dbr
c
)

ε̃b
}

. (5.57)

Which is exactly the same term as (5.21), the one found by the Witten’s decomposition.

Therefore the Hamiltonian is the same as (5.25) of the previous part,

H = − 1

2κ

∫

Ct

(2α− β)dθ =
1

8G
(β − 2) , (5.58)

which is the same result we obtained for the Witten decomposition. Note that at the end

of the day, the result for the energy is the same in both decompositions as expected, this is

due to the fact that at the asymptotic region the direction of ta coincides with na, and also

the lapse y shift functions decay in such a way. This may not be true for other conserved

quantities such as the angular momentum, but we shall leave the discussion to forthcoming

works.

VI. DISCUSSION

In this work we have addressed the issue of defining well posed variational principles for

first order asymptotically flat 2+1 gravity, and their corresponding Hamiltonian descriptions,

in both the covariant and canonical formalisms. Of particular relevance was the issue of

recovering the Hamiltonian and therefore the energy as a boundary term after performing

the Legendre transform, without the need to postulate extra boundary terms to render the

formalism consistent (as is the case in the Regge-Teitelboim formalism [5, 6]). As we have
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shown, this question can be answered in the affirmative not for one, but for two different

actions, each of which yields a different value for the energy of the spacetime. In turn,

this clarifies a tension that existed in the literature regarding, say, the energy of Minkowski

spacetime. One should also note that this program has only been recently completed in first

order 3+1 gravity as well [17].

Let us now summarize our results. First, we proposed a three dimensional manifestly

Lorentz invariant Palatini action SLIP that is well posed under asymptotically flat boundary

conditions. As we have noted, the analogue of the well posed Palatini action in 4D [11],

that we called SSPB, is not manifestly Lorentz invariant, although it has a well posed action

principle under the asymptotically flat boundary conditions. This is so given that one has

to make a partial gauge fixing in the boundary to make it invariant under the residual

gauge transformations. As we showed in detail, by introducing an additional appropriate

boundary term 3.2, we can indeed define an action that is manifestly Lorentz invariant and

moreover, this action coincide with the three dimensional Einstein-Hilbert action with a

Gibbons-Hawking term. We derived the asymptotically flat boundary conditions for the

first order variables, and with these conditions we showed that the proposed action SLIP

has a well posed variational principle, i.e., it is finite and differentiable. Then, using the

covariant and canonical approaches we obtained an expression for the energy. In the first

case, the covariant formalism can at best yield an expression for the variation of the energy.

Thus, our results are analogous to those in [5] where the Regge-Teitelboim method was used

for the second order metric variables. In the second case, using a canonical formalism, we

could directly compare our results with those in [8], where the starting point is the Einstein-

Hilbert action with Gibbons-Hawking term, that is well posed under asymptotically flat

boundary conditions.

To summarize, we have two results: When we start with the action SSPB, the correspond-

ing boundary contribution yields a positive energy in the interval [0, 1/4G]. Thus, Minkowski

spacetime is assigned zero energy. When we consider the manifestly gauge invariant action

SLIP obtained by the addition of the term 3.2, we recover the results of [8]. Namely, in this

case the gravitational energy is always negative and contained within the interval [−1/4G, 0].

Thus, Minkowski spacetime has a negative energy equal to −1/4G.

Let us now end with some remarks regarding these results.
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1. As is also standard practice in asymptotically flat 3+1 gravity, we have focused our at-

tention on the gravitational action, without considering any particular matter content.

This does not mean that our considerations are restricted to the vacuum case. The

assumption that we have made, as is done in the 3+1 case, is that the decay rates of

matter fields are stronger in such a way that there is no contribution to the boundary

terms of the action coming from the matter fields. Thus, the Hamiltonian does not

depend explicitly on the matter fields.23 Thus, the expressions for energy we have

found are valid for generic matter content (satisfying reasonable energy conditions).

2. Let us compare our results here regarding the different actions with the situation in 3+1

gravity. In 3+1, the standard second order action for asymptotically flat spacetimes

is given by the Einstein-Hilbert bulk term of the form
∫

M
R plus a boundary term of

the form
∫

∂M
(K −K0), where one subtracts a non-dynamical (infinite) term to make

the action finite (See, however [18] for a discussion of the viability of this action). In

the first order formalism, the Palatini action plus a simple boundary term [11], the

analogue to our SSPB action, is already finite and has been shown to be related, under

certain conditions to the finite second order action [11]. In 2+1 gravity, the action of

the form
∫

M
R +

∫

∂M
K is already finite and does not need to be ‘renormalized’, as

shown in [8]. Here we have shown that the totally gauge invariant action SLIP is equal

to the Marolf-Patiño action
∫

M
R +

∫

∂M
K. Moreover, just as in the 3+1 case, the

action SSPB that we considered here is a ‘shifted’ version of the Marolf-Patio action.

The difference with the 3+1 case is that, in 2+1 dimensions, this non-dynamical ‘shift’

is finite rendering both actions well defined, while in the 3+1 case only one of them is

viable.

3. In 3+1 gravity, several arguments strongly suggest that the ADM four momentum

of Minkowski spacetime should vanish. On the one hand, there is no combination of

the fundamental constants of the theory (for simple matter content) that has dimen-

sions of mass, so it would be unnatural to have a non-zero value for energy of the

vacuum configuration. Even more, symmetry considerations suggest that a Poincare

23 Recall that the situation is similar in 3+1 gravity. Even when the expression for energy depends explicitly

only on geometrical fields, these depend through Einstein’s equations on the matter content. Even more,

the vacuum 2+1 case would be trivial.
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invariant configuration (in terms of asymptotic symmetries) should have zero ADM

four-momentum. Otherwise, a non-zero ADM four-vector would select a preferred

(asymptotic) frame, violating Poincare invariance. In three dimensions, none of this

features exist. To begin with, the gravitational constant G has dimensions of inverse

mass. Second, since the asymptotic metric is not that of Minkowski spacetime but that

of a cone (flat with a deficit angle), translations are not a symmetry of the asymptotic

spacetime [9, 10]. Thus, a preferred frame is not in principle excluded. Given all this,

it is not surprising nor completely unexpected that Minkowski spacetime might have

a non-zero value for energy.

4. As we have mentioned, the asymptotic symmetry group of AF 2+1 gravity is qualita-

tively different from the 3+1 case. Two distinct lines of research have been pursued

to study the structure of this group. In [10], conformal techniques were employed to

describe such symmetries. In [21] a different strategy, motivated by work on AdS was

put forward. It would be interesting to take our Hamiltonian description as a staring

point, and systematically study the structure of the asymptotic symmetries. This will

be left for a future publication.

5. As was early noted [2], at the level of actions for a compact spatial slice, the Einstein-

Palatini action is equivalent to a Chern-Simons theory for the group ISO(2, 1). They

differ, precisely, by a boundary term. The natural question is whether one can define

a consistent action by adding appropriate boundary terms to the bulk Chern-Simons

form. Furthermore, one would like to study the same issues we have considered here,

and obtain the energy as defined by that action. This shall be reported elsewhere [22].

6. In recent years asymptotically AdS spacetimes have gained attention, in part because

of the AdS/CFT correspondence, which has been useful to relate seemingly discon-

nected areas of physics. For instance, the quark-gluon plasma, some problems in

condensed matter and turbulence have been addressed using the tools developed in

the gravitational context [23, 24]. One may consider possible extensions of our work

to the case of asymptotically AdS spacetimes. In [20] the authors studied the well

posedness of the Palatini action with boundary term under AdS conditions. However,

in their analysis they only consider the action, SSPB, that is not manifestly Lorentz
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invariant and also they fix some internal directions on the connection. A natural ex-

tension of our paper is to analyze the manifestly Lorentz invariant action, SLIP and the

AdS asymptotic conditions with and without fixing any internal direction, and check

whether it is well posed or not. Another interesting question that arises is whether we

can make a similar analysis for the asymptotic symmetries of an AdS spacetime with

a deficit angle, like those one found in [26, 27] where Anti-De Sitter point particles,

which possesses a deficit angle, are studied. Finally, one would like to investigate any

possible relation between asymptotically flat and asymptotically AdS spacetimes, like

the ones found in [21, 25], but for spacetimes with deficit angle. This discussion are

left for forthcoming works.

Appendix A: On the new boundary term

As we commented on previous sections, particularly in section III, the addition of the

term (3.2),
∫

∂M

1

n · nε
IKLeI ∧ nKdnL (A1)

has many advantages. It is necessary for the action to be manifestly Lorentz invariant and

it has a constant value when evaluated on histories compatible with the asymptotically flat

boundary conditions, so it does not spoil finiteness nor differentiability. The resulting well

posed manifestly Lorentz invariant action is equivalent to the Einstein Hilbert action so

we can fully recover previous results obtained by means of the metric formulation. In the

appendices we shall prove this assertions.

As we already mentioned in section III, nK is a spacetime scalar that is an internal

vector. We can define it by nK /
√
n · n := RaeaK where Ra is the spacetime unit normal to

the boundary24, that can either be na for the unit normal to the spacelike surfaces or ra for

the unit normal to the timeline boundary, we have introduced a normalization factor 1
n·n

to

allow freedom in rescaling nK , so we can use any multiple of nK and the results will remain

24 Note that we have extended the usual definition of nK = naeaK for the Cauchy surfaces in the first order

formalism to nk /
√
n · n := RaeaK that allows, in principle, nK to be rescaled, and now is extended also

to include the timelike boundary.
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the same. Since nK is a spacetime scalar dnL is a one form as well as eI then the previous

boundary term is the integral of a two form over a two dimensional boundary.

For the more general case, when the boundary might become null one needs to use

densitized internal normals as discussed in [19], such that the expressions do not diverge. In

the case treated here it is enough and more intuitive to use just the nK .

1. New boundary term evaluated on Asymptotically flat boundary conditions

In this subsection we shall prove that the term (3.2) is constant when evaluated on the

boundary conditions. On the boundary, the term (3.2) can be written as,

∫

∂M

1

n · nε
IKLeI ∧ nKdnL =

∫

∂M

1

n · nε
IKLeaInK

˚̄DbnLε̃
ab (A2)

=

[

−
∫

M1

+

∫

M2

+

∫

I

]
1

n · nε
IKLeaInK

˚̄DbnLε̃
ab (A3)

Where we are considering the region M bounded by ∂M = M1 ∪ M2 ∪ I, M1 and M2

are space-like slices and I an outer boundary. Recall that we choose the torsion free flat

connection ˚̄Db, such that D = ˚̄D + ω and ˚̄Db
0ēIa = 0 and also that nk /

√
n · n := RaeaK

where Ra is the spacetime unit normal to the boundary, that can either be na for the unit

normal to the spacelike surfaces or ra for the unit normal to the timelike boundary. For the

timelike part,

∫

I

1

n · nε
IKLnKeI ∧ dnL =

∫

I

(εIKL nK√
n · n)

︸ ︷︷ ︸

−εIL

eaI
˚̄Db

(
nL√
n · n

)

︸ ︷︷ ︸

raeaK

ε̃ab (A4)

= −
∫

I

εILeaI

(

rc ˚̄DbecL + ecL
˚̄Dbr

c
)

ε̃ab (A5)

= −
∫

I

εILeaIr
c ˚̄DbecL

︸ ︷︷ ︸

B1

−
∫

I

εILeaIecL
˚̄Dbr

cε̃ab

︸ ︷︷ ︸

B2

. (A6)

From the previous equation we have two terms, B1 and B2. We shall analyze first B1,
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when evaluated on the boundary the term becomes,

B1 = lim
r→∞

[

−α

κ

∫

I

εIL 0eaIr
c(− β

2r
r−β/2∂br

0ēc̄Lδ
c̄
c)ε̃

ab +O(r−1)

]

(A7)

= lim
r→∞




αβ

2κ

∫

I

εIL 0ēaI
0ēc̄L

︸ ︷︷ ︸

ēε̃ac̄

1

r
r−β/2rc̄∂brε̃

ab +O(r−1)





= lim
r→∞





αβ

2κ

∫

I

1

r
r−β/2rc̄∂br ε̃ac̄ε̃

ab

︸ ︷︷ ︸

δbc̄

rdθdt +O(r−1)






= lim
r→∞

[
αβ

2κ

∫

I

r−β/2(+1)dθdt+O(r−1)

]

= lim
r→∞

[
αβ

2κ
r−β/22π +O(r−1)

]

= lim
r→∞

[
O(r−β/2) +O(r−1)

]
= 0 iff β > 0

(A8)

and B2 becomes,

B2 = lim
r→∞

[

−α

κ

∫

I

εIL 0e0I

(
0ecL

˚̄Dbr
c
)

ε̃b
]

(A9)

= −α

κ
lim
r→∞

∫

I

εIL 0e0I
0ecL

︸ ︷︷ ︸

ēε̃0c

˚̄Dbr
c

︸︷︷︸

∂brc

ε̃0b

= −α

κ
lim
r→∞

∫

I

ε̃0bε̃0c
︸ ︷︷ ︸

δbc

(∂br
c)rdθdt

= −α

κ
lim
r→∞

∫

I

(∂cr
c)

︸ ︷︷ ︸

1/r

rdθdt = − α

2κ

∫

I

2dθdt (A10)

Therefore the value of the boundary term (3.2) when evaluated in the timelike boundary

and on the boundary conditions becomes,

∫

I

1

n · nε
IKLnKeI ∧ dnL = B1 +B2 (A11)

= lim
r→∞

[
O(r−β/2) +O(r−1)

]
− α

2κ

∫

I

2dθ (A12)

= − α

2κ

∫

I

2dθdt. (A13)

Since we are integrating over a finite time interval with M1 and M2 asymptotically time-

translated with respect to each other, the previous integral take a finite constant value.
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Analogously, we can follow the same steps but for Ra = na and check that the boundary

term corresponding to the spacelike surfaces is also constant. Thus, the whole boundary

term is constant when evaluated on the boundary conditions.

Appendix B: On the equivalence between second order and first order actions

It has been shown for the three dimensional Einstein-Hilbert action that the Gibbons-

Hawking term is the only term needed to make the variational principle well posed [8].

Taking κ = 8πG, the Einstein-Hilbert action with Gibbons-Hawking term is,

SEH-GH[g] =
1

2κ

∫

M

√−gR + 2

∫

∂M

√
−hK (B1)

with R the Ricci scalar, g the determinant of the spacetime metric gab, h the determinant

of the induced metric on the boundary ∂M and K the extrinsic curvature of the boundary.

We shall prove, on the other hand, that the Lorentz invariant well posed Palatini action

with boundary term,

SLIP[e, ω] = −1

κ

∫

M

eI ∧ FI − 1

κ

∫

∂M

1

n · nε
IKLeI ∧ nKDnL. (B2)

is in fact equivalent to the Einstein-Hilbert action with Gibbons-Hawking term.

We study first the Einstein-Hilbert term, 1
2κ

∫

M

√−gR, considering that gab = ηIJeaIe
b
J ,

41



√−g = e, 2ee
[a|
I e

|c]
J = η̃acfεIJKe

K
f , F

IJ
ab = ecIedJRacbd and F JK

ab = FL
abε

KJ
L. The bulk term,

1

2κ

∫

M

√−gR =
1

2κ

∫

M

√−g
︸ ︷︷ ︸

e

gab
︸︷︷︸

ηIJ ea
I
eb
J

Rab
︸︷︷︸

Racbdgcd

=
1

2κ

∫

M

ee
[a|
I ebIRacbde

|c]
J edJ

=
1

2κ

∫

M

1

2
2ee

[a|
I e

|c]
J

︸ ︷︷ ︸

η̃acf εIJKeK
f

ebIedJRacbd

=
1

2κ

∫

M

1

2
ε̃acfεIJKe

K
f ebIedJRacbd
︸ ︷︷ ︸

F IJ
ac

=
1

2κ

∫

M

1

2
ε̃acfεIJKe

I
f F JK

ac
︸︷︷︸

FL
acε

KJ
L

=
1

2κ

∫

M

1

2
ε̃acf εIJKε

KJ
L

︸ ︷︷ ︸

−2δL
I

eIfF
L
ac

= − 1

2κ

∫

M

ε̃acfeIfFacI (B3)

= −1

κ

∫

M

eI ∧ FI (B4)

Note the change in sign when we write down the Palatini action defined over an arbitrary

Lie group (see e.g. [14]).

Now we shall see the relation between the Lorentz invariant boundary term (3.4) intro-

duced in section III and the Gibbons Hawking term. We begin with the Lorentz invariant

boundary term,

∫

∂M

1

n · nε
IKLeI ∧ nKDnL =

[

−
∫

M1

+

∫

M2

+

∫

I

]
1

n · nε
IKLeI ∧ nKDnL (B5)

where our integration region M is bounded by ∂M = M1∪M2∪I, M1 and M2 are space-like

slices and I a family of timelike cylinders we used to approach spatial infinity.

For the timelike boundary consider nL/
√
n · n := raeaL, r

a the normal to the cylinder,

Dcr
a = ∇cr

a where ∇ is the Levy Civita connection, γab is the induced metric on the timelike
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boundary and that εIKLebIedKeaL = eε̃bda. The term on the timelike boundary is,
∫

I

1

n · nε
IKLeI ∧ nKDnL =

∫

I

εIKLebI
nK√
n · nDc

(
nL√
n · n

)

ε̃bc

=

∫

I

εIKLebI
nK√
n · nDc(r

aeaL)ε̃
bc

=

∫

I

εIKLebI
nK√
n · n



ra DceaL
︸ ︷︷ ︸

=0 by EOM

+eaLDcr
a



 ε̃bc

=

∫

I

εIKLebI(r
dedK)eaLDcr

aε̃bc

=

∫

I

εIKLebIedKeaLr
d∇cr

aε̃bc

= −
∫

I

e (ε̃bdar
d)

︸ ︷︷ ︸

−εab

∇cr
aεbc

√
−γ

= −
∫

I

√
−γ∇cr

a (−ε̃abε̃
bc)

︸ ︷︷ ︸

δca

= −
∫

I

√
−γ∇ar

a. (B6)

Now we can recall that we define the extrinsic curvature, K, of a surface (in this case the

timelike cylinder) as the trace of Kb
a = ∇ar

b where rb is the normal to the surface, then

K = γabKab = Ka
a = ∇ar

a. With this at hand we can see that, in fact,
∫

I

1

n · nε
IKLeI ∧ nKDnL = −

∫

I

√−γ∇ar
a = −

∫

I

√−γK, (B7)

where K is the extrinsic curvature of the timelike boundary. Following an analogous deriva-

tion for the spacelike surfaces M1 and M2, we can easily see that,
∫

M1,2

1

n · nε
IKLeI ∧ nKDnL = −

∫

M1,2

√
q∇an

a = −
∫

M1,2

√
q k, (B8)

again, with q the determinant of the induced metric on M1,2, n
a and k its normal vector and

extrinsic curvature respectively. With this at hand we can see that,
∫

∂M

1

n · nε
IKLeI ∧ nKDnL = −

[

−
∫

M1

+

∫

M2

]√
q k −

∫

I

√
−γK = −

∫

∂M

√
−hK. (B9)

From (3.4) in the section III, we can see that,

1

κ

∫

∂M

√
−hK = −1

κ

∫

∂M

1

n · nε
IKLeI ∧ nKDnL (B10)

= −1

κ

∫

∂M

eI ∧ ωI −
1

κ

∫

∂M

1

n · nε
IKLeI ∧ nKdnL (B11)
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This result coincides, apart from the second term of the right hand side of the last equation,

with that given in [20] when the cosmological constant is zero. In [20] they use the Gaus-

sian (normal) coordinates and also they consider particular internal directions for the spin

connection. This “fixing” of the internal directions is reflected in the fact that the second

term of the RHS in (B11) is not present in their action.
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