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A future holographic screen is a hypersurface of indefinite signature, foliated by marginally trapped
surfaces with area A(r). We prove that A(r) grows strictly monotonically. Future holographic
screens arise in gravitational collapse. Past holographic screens exist in our own universe; they
obey an analogous area law. Both exist more broadly than event horizons or dynamical horizons.
Working within classical General Relativity, we assume the null curvature condition and certain
generiticity conditions. We establish several nontrivial intermediate results. If a surface σ divides a
Cauchy surface into two disjoint regions, then a null hypersurface N that contains σ splits the entire
spacetime into two disjoint portions: the future-and-interior, K+; and the past-and-exterior, K−.
If a family of surfaces σ(r) foliate a hypersurface, while flowing everywhere to the past or exterior,
then the future-and-interior K+(r) grows monotonically under inclusion. If the surfaces σ(r) are
marginally trapped, we prove that the evolution must be everywhere to the past or exterior, and
the area theorem follows. A thermodynamic interpretation as a Second Law is suggested by the
Bousso bound, which relates A(r) to the entropy on the null slices N(r) foliating the spacetime. In
a companion letter, we summarize the proof and discuss further implications.

I. INTRODUCTION

The celebrated laws of black hole thermodynamics [1–
4] ascribe physical properties to the event horizon of a
black hole. However, the event horizon is defined glob-
ally, as the boundary of the past of future infinity. Thus,
the location of the thermodynamic object depends on the
future history of the spacetime. For example, an observer
in a perfectly flat spacetime region might already be in-
side a black hole, if a null shell is collapsing outside their
past light-cone. By causality, Hawking radiation and the
first and second law of black hole thermodynamics should
have no manifestation for such an observer. Conversely,
once a black hole has formed, its thermodynamic proper-
ties should be observable at finite distance, regardless of
whether the collapsed region already coincides with the
true event horizon, or is headed for substantial growth in
the distant future.

Here we consider the problem of finding a geometric
object that is locally defined, and which obeys a classi-
cal law analogous to one of the laws of thermodynamics.
We will focus on the second law, whose manifestation
in classical General Relativity is the statement that the
area of certain surfaces cannot decrease. For the cross-
sections of an event horizon this was proven by Hawking
in 1971 [5], but as noted above the event horizon is not
locally defined.

We will formulate and prove a new area theorem. It is
obeyed by what we shall call a future (or past) holographic
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screen, H. H is a hypersurface foliated by marginally
(anti-)trapped surfaces, which are called leaves. This def-
inition is local, unlike that of an event horizon. It requires
knowledge only of an infinitesimal neighborhood of each
leaf. A future holographic screen exists (nonuniquely)
in generic spacetimes that have a future event horizon.
It is disjoint from the event horizon but it may asymp-
tote to it; see Fig. 1a. Past holographic screens exist in
expanding universes such as ours, regardless of whether
they have a past event horizon. Because H is not defined
in terms of distant regions, past and future holographic
screens can exist in spacetimes with no distant boundary
at all, such as a recollapsing closed universe; see Fig. 1b.
Our area law applies to all future and past holographic
screens.
Relation to previous work The notion of future or
past holographic screen has roots in two distinct bodies
of research, which had not been connected until now. It
can be regarded as a refinement of the notion of “preferred
holographic screen hypersurface” [7], which need not have
monotonic area. Alternatively, it can be viewed as a
generalization of the notion of “dynamical horizon”, which
obeys a straightforward area law but is not known to
exist in many realistic solutions. We will now discuss
these two connections for context and attribution; see
also [8]. We stress, however, that our theorem and proof
are self-contained. They rely only on classical General
Relativity, and not, for example, on any conjecture about
semiclassical or quantum gravity.

First, let us discuss the relation to the holographic
principle. (See [9–11] for earlier work and Ref. [12] for
a review.) To an arbitrary codimension 2 spatial sur-
face B, one can associate a light-sheet [13]: a null hy-
persurface orthogonal to B with everywhere nonpositive
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FIG. 1. Penrose diagrams showing examples of holographic screens. The green diagonal lines show a null slicing of the
spacetime; green dots mark the maximal area sphere on each slice. These surfaces combine to form a holographic screen (blue
lines); we prove that their area increases monotonically in a uniform direction on the screen (blue triangles). (a) A black hole
is formed by collapse of a star (inner shaded region); later another massive shell collapses onto the black hole (outer shaded
region). At all other times an arbitrarily small amount of matter accretes (white regions); this suffices to satisfy our generic
conditions. The black hole interior contains a future holographic screen that begins at the singularity and asymptotes to the
event horizon. It is timelike in the dense regions and spacelike in the dilute regions. (b) In a closed universe filled with dust,
marginally antitrapped spheres form a past holographic screen in the expanding region; its area increases towards the future.
Marginally trapped spheres form a future holographic screen in the collapsing region; its area increases towards the past. The
equator of the three-sphere at the turnaround time (black circle) belongs to neither the past nor the future screen; it is extremal
in the sense of Ref. [6].

expansion (i.e., locally nonincreasing area), in the direc-
tion away from B. The covariant entropy bound (Bousso
bound) [13] is the conjecture that the entropy of the mat-
ter on the light-sheet cannot exceed the area of B, in
Planck units. The conjecture has broad support; it has
been proven in certain limiting regimes [14–18].

There are four null directions orthogonal to any sur-
face. In each direction, the orthogonal null congruence
generates a null hypersurface with boundary B. The ex-
pansion in opposing directions, such as future-outward
and past-inward, differs only by a sign. In typical set-
tings, therefore, there will be two directions with initially
negative expansion, each of which gives rise to a light-
sheet. For example, a sphere in Minkowski space admits
light-sheets in the future and past inward directions, but
not in the outward directions. A large enough sphere near
the big bang is anti-trapped: it admits light-sheets in the
past inward and outward directions. Spheres near the
singularity of a black hole are trapped: the light-sheets
point in the future inward and outward directions.

However, it is possible to find surfaces that are
marginal: they have vanishing expansion in one oppos-
ing pair of null directions. Hence they admit a pair of

light-sheets whose union forms an entire null slice of the
spacetime [13]. In fact, in strongly gravitating regions
one can readily construct a continuous family of marginal
surfaces, which foliate a hypersurface called “preferred
holographic screen hypersurface”. The opposing pairs of
light-sheets attached to each leaf foliate the spacetime.
The Bousso bound is particularly powerful when applied
to these light-sheets. It constrains the entropy of the en-
tire spacetime, slice by slice, in terms of the area of the
leaves. All quantum information in the spacetime can be
stored on the leaves, at no more than about one qubit
per Planck area. In this sense the world is a hologram.

For event horizons, a classical area theorem [5] pre-
ceded the interpretation of area as physical entropy [1].
For holographic screens, the present work belatedly sup-
plies a classical area law for an object whose relevance to
geometric entropy had long been conjectured [7]. What
took so long?

In fact, the notion of “preferred holographic screen hy-
persurface” lacked a key refinement, without which our
theorem would not hold: the distinction between past
and future holographic screens. The leaves of a “preferred
holographic screen hypersurface” are marginal, that is,
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one orthogonal null congruence has vanishing expansion.
However, they were not required to be either marginally
trapped, or marginally anti-trapped. That is, no def-
inite sign was imposed on the expansion of the second,
independent orthogonal null congruence. Fig. 1b shows a
spacetime in which a “preferred holographic screen hyper-
surface” fails to obey an area law. Once we distinguish
between marginally trapped and anti-trapped surfaces,
however, we recognize that there are in fact two discon-
nected objects: a past and a future holographic screen.
Each obeys an area law, as our proof guarantees, but
in different directions of evolution. This is analogous to
the distinction between past and future event horizons.
From this perspective, it is not surprising that “preferred
holographic screen hypersurfaces” fail to satisfy an area
law without the refinement we introduce here.

This brings us to the second body of research to
which the present work owes debt. Previous attempts
to find a quasi-local alternative to the event horizon cul-
minated in the elegant notions of a future outer trapping
horizon (FOTH) [19–21] or dynamical horizon [22–24]
(see [25, 26] for reviews). In a generic, classical setting
their definitions are equivalent: a dynamical horizon is
a spacelike hypersurface foliated by marginally trapped
surfaces.

“Preferred holographic screen hypersurface” was a
weaker notion than future holographic screen; “dynam-
ical horizon” is a stronger notion. It adds not only the
crucial refinement from marginal to marginally trapped,
but also the requirement that the hypersurface be space-
like. This immediately implies that the area increases
in the outward direction [19, 22]. (Note the brevity of
the proof of Theorem IV.3 below, which alone would im-
ply an area law without the need for any of the previous
theorems, if a spacelike assumption is imposed.)

However, our present work shows that the spacelike
requirement is not needed for an area theorem. This is
important, because the spacelike requirement is forbid-
dingly restrictive [27]: no dynamical horizons are known
to exist in simple, realistic systems such as a collapsing
star or an expanding universe dominated by matter, ra-
diation, and/or vacuum energy.

Thus, the notion of a dynamical horizon (or of a
FOTH) appears to be inapplicable in a large class of re-
alistic regions in which gravity dominates the dynamics.
We are not aware of a proof of nonexistence. But we
show here that an area theorem holds for the more gen-
eral notion of future holographic screen, whose existence
is obvious and whose construction is straightforward in
the same settings. Thus we see little reason for retaining
the additional restriction to hypersurfaces of spacelike
signature, at least in the context of the second law.

In the early literature on FOTHs/dynamical horizons,
future holographic screens were already defined and dis-
cussed, under the name “marginally trapped tube” [25].1

1 The definition of “trapping horizon” [19] excludes the junctions

Ultimately, two separate area laws were proven, one for
the spacelike and one for the timelike portions of the fu-
ture holographic screens. These follow readily from the
definitions. The first, for FOTHs/dynamical horizons,
was mentioned above. The second states that the area
decreases toward the future along any single timelike por-
tion (known as “future inner trapping horizons” [19] or
“timelike membranes” [25]).

In these pioneering works, no unified area law was pro-
posed for “marginally trapped tubes”/future holographic
screens. Perhaps this is because it was natural to think of
their timelike portions as future directed and thus area-
decreasing. Moreover, the close relation to “preferred
holographic screen hypersurfaces” [7] was not recognized,
so the area of leaves lacked a natural interpretation in
terms of entropy.2 And finally, it is not immediately ob-
vious that an area law can hold once timelike and space-
like portions are considered together. Indeed, the central
difficulty in the proof we present here is our demonstra-
tion that such portions can only meet in ways that up-
hold area monotonicity for the entire future holographic
screen under continuous flow. A key element of our proof
builds on relatively recent work [34].

There is an intriguing shift of perspective in a brief re-
mark in later work by Booth et al. [27]. After explicitly
finding a “marginally trapped tube” (i.e., what we call
a future holographic screen) in a number of spherically
symmetric collapse solutions, the authors point out that
it could be considered as a single object, rather than
a collection of dynamical horizon/“timelike membrane”
pairs. They note that with this viewpoint the area in-
creases monotonically in the examples considered. Our
present work proves that this behavior is indeed general.

Analogues of a first law of thermodynamics have been
formulated for dynamical horizons and trapping hori-
zons. We expect that this can be extended to future
holographic screens. However, here we shall focus on the
second law and its classical manifestation as an area the-
orem.
Outline In Sec. II, we give a precise definition of
future and past holographic screens, and we establish
notation and nomenclature. We also describe a crucial
mathematical structure derived from the foliation of H
by marginally (anti-)trapped leaves σ(r): there exists a
vector field ha tangent to H and normal to its leaves,
which can be written as a linear combination of the or-
thogonal null vector fields ka and la. Its integral curves
are called fibers of H.

between inner and outer trapping horizons and thus precludes
the consideration of such objects as a single hypersurface.

2 It is crucial that the entropy associated with the area of leaves
on a future holographic screen H is taken to reside on the light-
sheets of the leaves, as we assert, and not on H itself. The latter
choice—called a “covariant bound” in Refs. [28–31] but related
to [32] and distinct from [13]—is excluded by a counterexam-
ple [33] and would not lead to a valid Generalized Second Law.
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It is relatively easy to see that the area of leaves is
monotonic if hala has definite sign, i.e., if H evolves to-
wards the past or exterior of each leaf. The difficulty lies
in showing that it does so everywhere.

Our proof is lengthy and involves nontrivial intermedi-
ate results. Given an arbitrary two-surface σ that splits
a Cauchy surface into complementary spatial regions, we
show in Sec. III A that a null hypersurface N(σ) ⊃ σ
partitions the entire spacetime into two complementary
spacetime regions: K+(σ), the future-and-interior of σ;
and K−(σ), the past-and-exterior of σ.

In Sec. III B, we consider a hypersurface foliated by
Cauchy-splitting surfaces σ(r). We prove that K+(r)
grows monotonically under inclusion, if the surfaces σ(r)
evolve towards their own past-and-exterior. This puts on
a rigorous footing the equivalence (implicit in the con-
structions of [7]) between foliations of H and null folia-
tions of spacetime regions. The proofs in Sec. III do not
use all of the properties of H; in particular they do not
use the marginally trapped property of its leaves. Thus
our results up to this point apply to more general classes
of hypersurfaces.

In Sec. IV, we do use the assumption that the leaves
of H are marginally trapped, and we combine it with
the monotonicity of K+(r) that we established for past-
and-exterior evolution. This allows us to show that the
evolution of leaves σ(r) on a future holographic screen
H must be everywhere to the past or exterior (assuming
the null energy condition and certain generic conditions).
This is the core of our proof. We then demonstrate that
such evolution implies that the area A(r) of σ(r) increases
strictly monotonically with r.

We close Sec. IV with a theorem establishing the
uniqueness of the foliation of a given holographic
screen. The holographic screens themselves are highly
nonunique. For example, one can associate a past (fu-
ture) holographic screen with any observer, by finding the
maximal area surfaces on the past (future) light-cones of
each point on the observer’s worldline.

II. HOLOGRAPHIC SCREENS

We assume throughout this paper that the spacetime
is globally hyperbolic (with an appropriate generalization
for asymptotically AdS geometries [34, 35]). We assume
the null curvature condition (NCC): Rabkakb ≥ 0 where
ka is any null vector. In a spacetime with matter sat-
isfying Einstein’s equations this is equivalent to the null
energy condition: Tabkakb ≥ 0.
Definition II.1. A future holographic screen [7] (or
marginally trapped tube [24, 25]) H is a smooth hypersur-
face admitting a foliation by marginally trapped surfaces
called leaves.

A past holographic screen is defined similarly but in
terms of marginally anti-trapped surfaces. Without loss
of generality, we will consider future holographic screens
in general discussions and proofs.

By foliation we mean that every point p ∈ H lies on
exactly one leaf. A marginally trapped surface is a codi-
mension 2 compact spatial surface σ whose two future-
directed orthogonal null geodesic congruences satisfy

θk = 0 , (II.1)
θl < 0 . (II.2)

The opposite inequality defines “marginally anti-
trapped”, and thus, past holographic screens. Here θk =
∇̂aka and θl = ∇̂ala are the null expansions [36] (where
∇̂a is computed with respect to the induced metric on
σ), and ka and la are the two future directed null vector
fields orthogonal to σ.

We will refer to the ka direction as outward and to the
la direction as inward. For screens in asymptotically flat
or AdS spacetimes, these notions agree with the intuitive
ones. Furthermore, in such spacetimes any marginally
trapped surface, and hence any holographic screen, lies
behind an event horizon. However, holographic screens
may exist in cosmological spacetimes where an indepen-
dent notion of outward, such as conformal infinity, need
not exist (e.g., a closed FRW universe). In this case the
definition of H requires only that there exist some con-
tinuous assignment of ka and la on H such that all leaves
are marginally trapped. See Fig. 1 for examples of holo-
graphic screens.

Definition II.2. The defining foliation of H into leaves σ
determines a (D−2)-parameter family of leaf-orthogonal
curves γ, such that every point p ∈ H lies on exactly one
curve that is orthogonal to σ(p). We will refer to this set
of curves as the fibration of H, and to any element as a
fiber of H.

Convention II.3. Thus it is possible to choose a (non-
unique) evolution parameter r along the screen H such
that r is constant on any leaf and increases monotonically
along the fibers γ. We will label leaves by this parameter:
σ(r).

The tangent vectors to the fibers define a vector field
ha on H. For any choice of evolution parameter the
normalization of this vector field can be fixed by requir-
ing that the function r increases at unit rate along ha:
h(r) = ha (dr)a = 1. (Since H can change signature, unit
normalization of ha would be possible only piecewise, and
hence would not be compatible with the desired smooth-
ness of ha.)

Remark II.4. Since fibers are orthogonal to leaves, a tan-
gent vector field ha can be written as a (unique) linear
combination of the two null vector fields orthogonal to
each leaf:

ha = αla + βka (II.3)

Moreover, the foliation structure guarantees that ha van-
ishes nowhere: it is impossible to have α = β = 0 any-
where on H. (These remarks hold independently of the
requirement that each leaf be marginally trapped.)
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FIG. 2. The null vectors la and ka orthogonal to a leaf σ
of the foliation of H at some point. The evolution of H is
characterized by vector ha normal to the leaves and tangent
to H. Depending on the quadrant ha points to, H evolves
locally to the future, exterior, past, or interior (clockwise from
top).

Convention II.5. As shown in Fig. 2, ha is spacelike and
outward-directed if α < 0, β > 0; timelike and past-
directed if α < 0, β < 0; spacelike and inward-directed if
α > 0, β < 0; and finally, timelike and future-directed if
α > 0, β > 0. We denote such regions, in this order (and
somewhat redundantly): S−+, T−−, S+−, T++.
Remark II.6. Our key technical result below will be to
demonstrate that α cannot change sign on H. Thus on
a given screen H, either only the first two, or only the
second two possibilities are realized. (The latter case can
be reduced to the former by taking r → −r.)
Remark II.7. Because α and β cannot simultaneously
vanish, S+− and S−− regions cannot share a boundary
or be separated by a null region; they must be separated
by a timelike region. Similarly T++ and T−− regions
must be separated by a spacelike region.

Below we will consider only holographic screens that
satisfy additional technical assumptions:
Definition II.8. A holographic screen H is regular if

(a) the first generic condition is met, that Rabkakb +
ςabς

ab > 0 everywhere on H, where ςab is the shear
of the null congruence in the ka-direction;

(b) the second generic condition is met: let H+, H−, H0

be the set of points in H with, respectively, α > 0,
α < 0, and α = 0. Then H0 = Ḣ− = Ḣ+.

(c) every inextendible portion Hi ⊂ H with definite sign
of α either contains a complete leaf, or is entirely
timelike.

(d) every leaf σ splits a Cauchy surface Σ into two dis-
joint portions Σ±.

Analogous assumptions have been used in the more re-
stricted context of dynamical horizons. The first generic
condition is identical to the regularity condition of [24].

Together with the null curvature condition, Rabkakb ≥ 0,
it ensures that the expansion of the ka-congruence be-
comes negative away from each leaf. The second generic
condition excludes the degenerate case where α vanishes
along H without changing sign. Either condition ex-
cludes the existence of an open neighborhood in H with
α = 0. Both are aptly called “generic” since they can fail
only in situations of infinitely fine-tuned geometric sym-
metry and matter distributions. The third assumption is
substantially weaker than the definition of a dynamical
horizon, since we do not require global spacelike signature
of H. The fourth assumption will play a role analogous
to the assumption of achronality of the dynamical hori-
zon. It holds in typical spacetimes of interest (including
settings with nontrivial spatial topology, such as S1×S2,
as long as the holographic screen is sufficiently localized
on the sphere). We leave the question of relaxing some
or all of these assumptions to future work.

Remark II.9. Assumption II.8.c and Remark II.7 imply
that H contains at least one complete leaf with definite
sign of α.

Convention II.10. Let σ(0) ⊂ H be an arbitrary leaf
with definite sign of α. We will take the parameter r to
be oriented so that α < 0 on σ(0), and we take r = 0 on
σ(0). By convention II.3 this also determines the global
orientation of the vector field ha. For past holographic
screens, it is convenient to choose the opposite conven-
tion, α > 0 on σ(0).

III. LEAVES INDUCE A MONOTONIC
SPACETIME SPLITTING

In this section, we will use only a subset of the defin-
ing properties of a holographic screen. In Sec. III A, we
examine the implications of Assumption II.8.d, that each
leaf split a Cauchy surface. We show that a null surface
orthogonal to such a leaf splits the entire spacetime into
two disconnected regions K±(σ).

In Sec. III B, we use the foliation property of the holo-
graphic screen. (However, nowhere in this section do we
use the condition that each leaf be marginally trapped,
or Assumptions II.8.a-c.) We show that in portions of
H where α is of constant sign, the sets K±(σ(r)) satisfy
inclusion relations that are monotonic in the evolution
parameter r.

Together these results imply that an α < 0 foliation
of any hypersurface H into Cauchy-splitting surfaces σ
induces a null foliation of the spacetime, such that each
null hypersurface N(σ) splits the entire spacetime into
disconnected regions K±(σ).

In the following section, we will add the marginally
trapped condition and the remaining technical assump-
tions, to show that on a future holographic screen, αmust
have constant sign.
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A. From Cauchy Splitting to Spacetime Splitting

By Assumption II.8.d, every leaf σ splits a Cauchy
surface Σ into two disconnected portions Σ+ and Σ−:

Σ = Σ+ ∪ σ ∪ Σ− , σ = Σ̇± . (III.1)

We take Σ± to be open in the induced topology on Σ, so
that Σ± ∩ σ = ∅. We consider the following sets shown
in Fig. 3a:

• I+(Σ+), the chronological future of Σ+: this is the
set of points that lie on a timelike future-directed
curve starting at Σ+. (Note that this set does not
include Σ+.)

• D−(Σ+), the past domain of dependence of Σ+:
this is the set of points p such that every future-
directed causal curve through p must intersect Σ+.
(This set does include Σ+.)

• Similarly, we consider I−(Σ−) and D+(Σ−).

Definition III.1. From the Cauchy-splitting property of
σ, it follows3 that the four sets defined above have no
mutual overlap. However they share null boundaries:

N+(σ) ≡ İ+(Σ+)− Σ+ = Ḋ+(Σ−)− I−(D+(Σ−))
(III.2)

N−(σ) ≡ İ−(Σ−)− Σ− = Ḋ−(Σ+)− I+(D−(Σ+))
(III.3)

Note that N+(σ) ∩N−(σ) = σ. We define

K+(σ) ≡ I+(Σ+) ∪D−(Σ+)−N+(σ) ; (III.4)
K−(σ) ≡ D+(Σ−) ∪ I−(Σ−)−N−(σ) ; (III.5)
N(σ) ≡ N+(σ) ∪N−(σ) (III.6)

Thus

N(σ) = K̇+(σ) = K̇−(σ) ; (III.7)

and the sets N , K+, and K− provide a partition of the
spacetime (Fig. 3b).

Lemma III.2. There exists an independent characteri-
zation of N+, N−, and thus of N : N+(σ) is generated
by the future-directed null geodesic congruence orthogonal
to σ in the Σ− direction up to intersections: p ∈ N+(σ)
if and only if no conjugate point or nonlocal intersection
with any other geodesic in the congruence lies between σ
and p.

This follows from a significantly strengthened version
of Theorem 9.3.11 in Ref. [36], a proof of which will
appear elsewhere. Similarly N− is generated by the
past-directed σ-orthogonal null congruence towards Σ+.
(Hence if σ is marginally trapped then N± both are light-
sheets of σ [13].)

3 The proofs of the following statements are straightforward and
use only well-known properties of I± and D±.

Corollary III.3. Lemma III.2 implies that N depends
only on σ, not on the Cauchy surface Σ. Moreover, the
sets K+ and K− are then uniquely fixed by the fact that
N splits the spacetime: K+ is the largest connected set
that contains I+(N) but not N .

Thus our use of σ (as opposed to Σ+ and/or Σ−) as
the argument of the sets K±, N± is appropriate.

B. Monotonicity of the Spacetime Splitting

Until now, we have only used the Cauchy-splitting
property of σ. We will now consider a family of such
leaves, σ(r), that foliate a hypersurface H. (We use this
notation instead of H, in order to emphasize that H need
not satisfy the additional assumptions defining a future
holographic screen.) A tangent vector field ha can be
defined as described in Remark II.4, with decomposition
ha = αla + βka into the null vectors orthogonal to each
leaf. We take Σ+ to be the side towards which the vector
la points. (This convention anticipates Sec. IV. In the
current section, ka and la need not be distinguished by
conditions on the corresponding expansions.) To simplify
notation, we denote K+(σ(r)) as K+(r), etc.

Theorem III.4. Consider a foliated hypersurface H
with tangent vector field ha defined as above. Suppose
that α < 0 on all leaves σ(r) in some open interval, r ∈ I.
Then

K̄+(r1) ⊂ K+(r2) , (III.8)

or equivalently K−(r1) ⊃ K̄−(r2), for all r1, r2 ∈ I with
r1 < r2. That is, the sets K±(r) are monotonic in r
under inclusion; and the monotonicity is strict in the
strong sense that the entire boundary N(r1) of the open
set K+(r1) is contained in the open set K+(r2).4

Proof. We will first prove the inclusion monotonicity of
K± under an infinitesimal evolution step r → r+δr. The
assumption that α < 0 implies that H locally evolves
towards the past or exterior of its leaves: for sufficiently
small δr < 0,

σ(r + δr) ⊂ K−(r) . (III.9)

Since K−(r) ∩K+(r) = ∅, it follows that H cannot lo-
cally evolve into the future or interior of any of its leaves:

σ(r + δr) ∩K+(r) = ∅ . (III.10)

Let δH be the small portion of H between r and r + δr;
the above results imply that

δH ⊂ K−(r) , δH ∩K+(r) = ∅ . (III.11)

4 It is not difficult to strengthen this theorem by proving the con-
verse. However this requires using assumption II.8.b which is
used nowhere else in this Section. Moreover, the converse is not
needed in this paper.
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FIG. 3. (a) Each leaf σ splits a Cauchy surface. This defines a partition of the entire spacetime into four regions, given by the
past or future domains of dependence and the chronological future or past of the two partial Cauchy surfaces. (b) The pairwise
unions K± depend only on σ, not on the choice of Cauchy surface. They can be thought as past and future in a null foliation
defined by the lightsheets N .

By Corollary III.3, we may choose the sets Σ+(r) to
suit our convenience. It is instructive to consider first
the special case where we can find a Cauchy surface such
that Σ+(r + δr) = X, where

X ≡ Σ̄+(r) ∪ δH , (III.12)

and we recall that an overbar denotes the closure of a set.
This is the case when β > 0 between σ(r) and σ(r+ δr),
i.e., if δH is spacelike. Both the future of a set, and
the past domain of dependence of a set cannot become
smaller when the set is enlarged; hence,

I+(X) ⊃ I+(Σ+(r)) ,

D−(X) ⊃ D−(Σ+(r)) , (III.13)

and so the infinitesimal version of Eq. (III.8) follows triv-
ially from the definition of K+.

Now consider the general case, with no restriction on
the sign of β. Thus, δH may be spacelike, timelike (β <
0), or null (β = 0); indeed, it may be spacelike at some
portion of σ(r) and timelike at another. One can still
define the submanifold X as the extension of Σ+(r) by
δH, as in Eq. (III.12); see Fig. 4. Again, this extension
cannot decrease the future of the set, nor its past domain
of dependence,5 as described in Eq. (III.13).

5 The future of a set is defined for arbitrary sets. The domain of
dependence is usually defined only for certain sets, for example
for closed achronal sets in Ref. [36]. Here we extend the usual
definition to the more general set X: p ∈ D−(X) iff every future-
inextendible causal curve through p intersects X. This is useful
for our purposes; however, we caution that certain theorems in-
volving D± need not hold with this broader definition.

However, X need not be achronal and hence, it need
not lie on any Cauchy surface. In this case, we consider
a new Cauchy surface that contains σ(r + δr). Because
α < 0, this surface can be chosen so that Σ+(r + δr)
is nowhere to the future of X; see Fig. 4. Since X and
Σ+(r + δr) share the same boundary σ(r + δr), α > 0
then implies thatX is entirely in the future of Σ+(r+δr):

X ⊂ I+(Σ+(r + δr)) (III.14)

Moreover, the set X together with Σ̄+(r + δr) forms a
“box” that bounds an open spacetime region Y , such that

Y ⊂ I+(Σ+(r + δr)) . (III.15)

All future-directed timelike curves that pass through
Σ+(r + δr) enter Y and then can exit Y only through
X. Hence D−(X) ⊂ Y ∪D−(Σ+(r + δr)). Since α < 0,
for all points outside of Y ∪ D−(Σ+(r + δr)) there ex-
ist future-directed timelike curves that evade X. Hence
equality holds:

D−(X) = Y ∪D−(Σ+(r + δr)) . (III.16)

To obtain the infinitesimal inclusion relation,

K+(r + δr) ⊃ K+(r) , (III.17)

by Eq. (III.13) it suffices to show that K+(r + δr) ⊃
I+(X)∪D−(X). Indeed if p ∈ I+(X) by Eq. (III.14) p ∈
I+(Σ+(r+δr)) ⊂ K+(r+δr). And if p ∈ D−(X) then by
Eqs. (III.16) and (III.15) we again have p ∈ K+(r + δr).

To obtain the stricter relation

K+(r + δr) ⊃ K̄+(r) , (III.18)
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σ(r)

σ(r+δr)

    Σ   (r) 

    Σ   (r+δr) 

δHX
Y

K+(r+δr)K   (r)+

+

+

FIG. 4. Proof that K+(r) grows monotonically under inclu-
sion, for any foliation σ(r) of a hypersurface H with α < 0.
See the main text for details and definitions.

we note that σ(r) ⊂ X; hence by Eq. (III.14), for ev-
ery point p ∈ σ(r) there exists a timelike curve from
Σ+(r + δr) to p. This curve can be continued along
the null generator of N+(r) starting at p to a point
q ∈ N+(r), and then slightly deformed into a time-
like curve connecting p to q. By Lemma III.2, every
point in N+(r) lies on a generator starting at σ(r).
Hence, N+(r) ⊂ K+(r + δr). A similar argument yields
N−(r) ⊂ K+(r+ δr). Since N(r) = N+(r)∪N−(r) and
K̄+(r) = K+(r) ∪N(r), Eq. (III.18) follows.

To extend Eq. (III.18) to Eq. (III.8), one may iterate
the above infinitesimal construction. The only way this
could fail is if the iteration gets stuck because the steps δr
have to be taken ever smaller to keep Eq. (III.9) satisfied.
Suppose therefore that the iteration can only reach an
open set (r, r∗) but no leaves in the set (r∗, r2). But this
contradicts the assumption that α < 0 at r∗.

IV. AREA LAW

In this section, we prove our main result: that the
area of the holographic screen is monotonic. The most
difficult part of this task is proving that α cannot change
sign on H, Theorem IV.2). We then prove our Area
Theorem IV.3. We begin by stating a useful Lemma.

Lemma IV.1. Let N be a null hypersurface and let χ
be a spacelike surface tangent to N at a point p. That is,
we assume that one of the two future-directed null vectors
orthogonal to χ, κa, is also orthogonal to N at p. We may
normalize the (null) normal vector field to N so that it

χ p

k

N

FIG. 5. An example illustrating Lemma IV.1: in Minkowski
space, the spatial sphere χ is tangent to the null plane N at
p and lies outside the past of N near p. It is easy to see that
this implies that χ is a cross-section of a future light-cone
that shares one null generator with N . In this example it
is obvious that χ expands faster than N at p, as claimed in
Lemma IV.1.

coincides with κa at p. Let θ(χ) be the null expansion of
the congruence orthogonal to χ in the κa direction, and
let θ(N) be the null expansion of the generators of N .
Then:

• If there exists an open neighborhood O(p) ∩ χ that
lies entirely outside the past of N ,6 then θ(χ) ≥ θ(N)

at p.

• If there exists an open neighborhood O(p) ∩ χ that
lies entirely outside the future of N , then θ(χ) ≤
θ(N) at p.

Proof. See Lemma A in Ref. [34]. Our Lemma is stronger
but the proof is the same; so instead of reproducing it
here, we offer Fig. 5 to illustrate the result geometrically.
It generalizes to null hypersurfaces an obvious relation
in Riemannian space, between the extrinsic curvature
scalars of two codimension 1 surfaces that are tangent
at a point in a Riemannian space but do not cross near
that point.

Theorem IV.2. Let H be a regular future holographic
screen with leaf-orthogonal tangent vector field ha =
αla + βka, whose orientation is chosen so that α < 0
at the leaf σ(0). Then α ≤ 0 everywhere on H.

Proof. By contradiction: suppose that the setH+ ⊂ H of
points with α > 0 is nonempty. Let σ(0) be the complete
leaf that exists by Remark II.9 and has r = 0, α < 0,

6 I.e., there exists no past directed causal curve from any point on
N to any point in O(p) ∩ χ.
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σ(0)
N

Case 1 Case 2

Case 3 Case 4

r

FIG. 6. The four types of spacelike-timelike transitions on a
future holographic screen that would violate the monotonicity
of the area, and which our proof in Sec. IV will exclude. Near
σ(0), the area increases in the direction of the arrow. On
the far side of the “bend” the area would decrease, in the
same direction. There are other types of spacelike-timelike
transitions which preserve area monotonicity under uniform
flow; these do arise generically (see Fig. 1a).

by Convention II.10. By continuity of α, there exists an
open neighborhood of σ(0) where α < 0.

We first consider the case where H+ has a component
in the r > 0 part of H (cases 1 and 2 in Fig. 6). Let
σ(1) be the “last slice” on which α ≤ 0, i.e., we use our
freedom to rescale r to set

1 = inf{r : r > 0, σ(r) ∩H+ 6= ∅} (IV.1)

By the second generic condition II.8.b, α < 0 for all
leaves σ(r) with 0 < r < 1; hence by Theorem III.4 we
have K−(0) ⊃ K̄−(1). Since the former set is open and
the latter is closed, there exists an open neighborhood of
K̄−(1) that is contained in K−(0). Thus for sufficiently
small ε we have

K−(0) ⊃ K−(1 + ε) . (IV.2)

By continuity of α, σ(1) must contain at least one point
with α = 0. Let p denote this point; or, if there is more
than one such point, let p denote a connected component
of the set of points with α = 0 on σ(1). Since there is no
point with α = β = 0, there exists an open neighborhood
O(p) ⊂ H in which β has definite sign. (Note that we do
not assume that β is of fixed sign for 0 < r < 1.)

Case 1 We now specialize further to the case where β >
0 in O(p), so that the assumed sign change from α < 0 to
α > 0 corresponds to a transition of ha from spacelike-
outward (S−+) to timelike-future-directed (T++). The
following construction is illustrated in Fig. 7.

Let σ+(1+ε) be the set of points with α > 0 on the leaf
σ(1+ε). If there is more than one connected component,
we choose σ+(1 + ε) to be the component at least one
of whose fibers intersects p. By choosing ε sufficiently

small, we can ensure that σ+(1 + ε) ⊂ O(p). Let Γ be
the set of fibers that pass through σ+(1 + ε).

Because α > 0, all fibers in Γ enter K−(1 + ε) as we
trace them back to smaller values of r. But σ(0) is en-
tirely outside of this set: by definition, σ(0)∩K−(0) = ∅,
so Eq. (IV.2) implies σ(0) ∩K−(1 + ε) = ∅. Hence, all
fibers in Γ also intersect N(1 + ε), at some positive value
of r < 1+ ε. Because β > 0 in O(p), this intersection will
be withN−(1+ε). By smoothness and the second generic
assumption, the intersection will consist of one point per
fiber. (Otherwise a fiber would coincide with a null gen-
erator of N−(1 + ε) in a closed interval.) The set of all
such intersection points, one for each fiber in Γ, defines a
surface φ, and the fibers define a continuous, one-to-one
map σ+(1 + ε) to φ. Similarly, the closures of both sets,
σ̄+(1 + ε) and φ̄ are related by such a map. Note that
these two sets share the same boundary at r = 1 + ε.

Let R be the minimum value of r on the intersection:
R ≡ inf{r(q) : q ∈ φ̄}. Since σ̄+(1 + ε) is a closed subset
of a compact set, it is compact; and by the fiber map, φ̄
is also compact. Therefore R is attained on one or more
points in φ̄. Let Q be such a point. Since R < 1 but
φ̇ ⊂ σ(1 + ε), Q /∈ φ̇, and hence Q represents a local
minimum of r. Hence the leaf σ(R) is tangent to the null
hypersurface N−(1 + ε) at Q.

Since Q achieves a global minimum of r on φ̄, σ(R) lies
nowhere in the past of N−(1 + ε) in a sufficiently small
open neighborhood of Q. For suppose there existed no
such neighborhood. Then fibers arbitrarily close to the
one containingQ (and hence connected to σ+(1+ε) would
still be insideK−(1+ε) at R. Hence we could find a value
r < R on φ by following such a fiber to smaller values of
r until it leaves K−(1+ε). But this would contradict our
construction of Q as a point that attains the minimum
value of r on φ.

Thus, Lemma IV.1 implies that θσ(R)
k ≥ θN

−(1+ε)
k at Q.

By the first generic assumption, the latter expansion is
strictly positive, so we learn that θσ(R)

k > 0 atQ. But this
contradicts the defining property of holographic screens,
that all leaves are marginally trapped (θσ(r)k = 0 for all
r).

Case 2 Next we consider the case where β < 0 in the
neighborhood of the assumed transition from α < 0 to
α > 0 that begins at r = 1 (see Fig. 6). This corresponds
to the appearance of a spacelike-inward-directed region
within a timelike-past-directed region: T−− → S+−.

We note that the direct analogue of the above proof
by contradiction fails: tracing back the generators from
σ+(1 + ε) to σ(0), one finds that they pass through
N+(1 + ε), rather than N−(1 + ε). But N+ has neg-
ative expansion by the first generic condition, whereas
N− had positive expansion. There is no compensating
sign change elsewhere in the argument; in particular,
the tangent leaf σ(R) with vanishing expansion again
lies nowhere in the past of N+ in a neighborhood of
the tangent point Q. Thus no contradiction arises with
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(1+ε)N-

φ

S

σ(1)

T

σ(1+ε)

σ(0)

-+

++

(a)

σ(R)

r

S T

σ(1+ε)σ(1)

φ
p-+ ++

(b)

FIG. 7. A case 1 transition (S−+ → T++) is impossible. The proof crucially involves the intersection φ of a light-sheet N
originating just behind the assumed transition, with the region prior to the transition. For further details see the main text.
(a) Spacetime diagram with two spatial directions suppressed. (b) Diagram of the holographic screen H only, with only one
spatial direction suppressed. Vertical lines correspond to leaves; top and bottom edge should be identified. Portions of different
signature are indicated by shading and labels. In general, the transition boundary (thick red line) will not coincide with a leaf
(thin black vertical lines).

Lemma IV.1.
Instead, we show that every case 2 transition implies

the existence of a case 1 transition at a different point
on H, under the reverse flow r → c − r. Since we have
already shown that case 1 transitions are impossible, this
implies that case 2 transitions also cannot occur.

Let us first illustrate this argument in the simple case
where the transition occurs entirely on a single leaf: α <
0 for 0 ≤ r < 1, α = 0 at r = 1, and α > 0 for 1 < r ≤ 2.
Under a reversal of the flow, r → 2 − r, α and β both
change sign. With this flow direction, the latter region
now contains a leaf σ(0) on which α < 0, and thus the
starting point of our case 1 proof. The putative sign
change of α corresponds to a case 1 transition S−+ →
T++. The case 1 proof by contradiction rules out this
transition.

In general, the case 2 transition need not occur on
a single leaf, so we shall assume for contradiction only
that α first becomes positive at some point on or subset
of σ(1), as in the case 1 proof, and that β < 0 in a
neighborhood of this set. Let H̃+ denote the connected
region with α > 0 that begins at this transition. Since
the transition is T−− → S+−, H̃+ contains some spacelike
points; and hence by Def. II.8.c, H̃+ contains a complete
leaf with α > 0. We use our freedom to rescale r to set

2 = inf{r : r > 0, σ(r) ⊂ H̃+} (IV.3)

By the second generic assumption, Def. II.8.b, this choice
implies the existence of an open interval (2, 2 + ε) such
that every leaf in this interval is a complete leaf with
α > 0. Let us call this intermediate result (*); see Fig. 8
which also illustrates the remaining arguments.

We now consider the boundary B that separates the
α < 0 from the α > 0 region, i.e., the connected set of
points with α = 0 that begins at r = 1. Because α and

β cannot simultaneously vanish, we have β < 0 in an
open neighborhood of all of B. Thus, B separates a T−−
region at smaller r from a S+− region at larger r. We
note that B must intersect every fiber, or else H+ would
not contain a complete leaf. Moreover, B must end at
some r∗ ≤ 2, or else there would be points with α < 0 in
the interval (2, 2 + ε), in contradiction with (*).

If r∗ = 2 then under the reverse flow starting from the
complete leaf at r = 2 + ε there is a case 1 transition at
r = 2 from S−+ to T++, and we are done. This is shown
in Fig. 8a.

The only remaining possibility is that B ends at some
r∗ ∈ (1, 2); this is shown in Fig. 8b. Then every leaf with
r ∈ (r∗, 2) must contain points with α < 0, or else there
would be a complete leaf with α > 0 at some r < 2, in
contradiction with Eq. (IV.3). Therefore each leaf with
r ∈ (r∗, 2) must intersect one or more α < 0 regions H̃(i)

−
that are disconnected from the T−− region bounded byB.
None of these regions H̃(i)

− can contain a complete α < 0

leaf, because this would imply that H̃+ does not contain
a complete α > 0 leaf. From Def. II.8.c it follows that
each region H̃(i)

− is everywhere timelike, i.e., of type T−−.
But this implies that a T−− region ends at r = 2 where
α becomes positive. Moreover, the S+− region in which
the T−− region ends has complete leaves in some open
interval (2, 2 + ε) by our result (*). Thus we find again
that under the reverse flow starting from the complete
leaf at r = 2 + ε there is a case 1 transition at r = 2 from
S−+ to T++.

We have thus established that a case 2 transition at
r = 1 implies a case 1 transition at the same or a larger
value of r, after reversal of the direction of flow. Since
case 1 transitions are impossible, we conclude that case
2 transitions are also impossible.
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σ(1)

r

ST

B

σ(2)

- -
+ -

(a)

σ(r  )

r

S

*

B

σ(1) σ(2)

T- -
+ -

T- -

T- -

(b)

FIG. 8. A case 2 transition (T−− → S+−) is impossible. By assumption, the α > 0 region contains a complete leaf σ(2+ ε). In
the text we show that the complete-leaf region begins at some leaf σ(2) where a T−− → S+− boundary comes to an end: either
the original one (a), or a different one containing a T−− region with no complete leaf (b). The endpoint (green dot) becomes
the starting point of a case 1 transition (S−+ → T++) under reversal of the flow direction; but this case has already been ruled
out.

φ

σ(-(1+ε))

r

Case 3

T++S- +

σ(0)

r
Flow
Reversal

Case 4Case 3

σ(0)

r

S- + S+ -

S- +

T++T++

S- +
S+ -

T- -

T- -

T++

σ(0)

FIG. 9. (a) Case 3 is ruled out analogously to case 1, by contradiction. (b) Case 4 is analogous to case 2: the transition is
impossible because it would imply a case 3 transition elsewhere on H, under reversal of the flow direction.

Cases 3 and 4 Our consideration of cases 1 and 2 has
ruled out the possibility of points with α > 0 at any r >
0. (Recall that r = 0 corresponds to a complete leaf with
α < 0.) We must now also rule out the possibility that α
might be positive in the region r < 0; this corresponds to
cases 3 and 4 in Fig. 6. Again, assume for contradiction
that such a transition occurs, and focus on the transition
nearest to r = 0. We may rescale r so that this transition
ends at r = −1. That is, α < 0 for all r ∈ (−1, 0), but all
leaves in some interval (−(1+ ε),−1) contain points with
α > 0. Again, a further case distinction arises depending
on the sign of β at this transition.

The proof of case 3 (Fig. 9a), where β > 0 at the

transition, proceeds exactly analogous to that of case 1.
Fibers that connect the offending region to r = 0 must
cross the null hypersurface N+(−(1 + ε)), implying the
existence of a leaf σ(R), −1 < R < 0 that is tangent to
N+(−(1+ε)) and nowhere to the future of N+(−(1+ε)).
But N+ contracts at this tangent point whereas σ(R)
has vanishing expansion, in contradiction with the second
part of Lemma IV.1.

The proof of case 4 (Fig. 9b) proceeds analogous to
that of case 2, by showing that a case 4 transition at
r = −1 implies the existence of a transition at some
r ≤ −1 that is recognized as a case 3 transition after
reversal of the flow direction, and hence ruled out.
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We now state and prove the area law.

Theorem IV.3. The area of the leaves of any regular
future holographic screen H increases strictly monotoni-
cally:

dA

dr
> 0 . (IV.4)

Proof. By Theorem IV.2, α < 0 everywhere on H. In
regions where β is of definite sign, the result would
then follow from the analysis of Hayward [19] (using a
2+2 lightlike formalism) or that of Ashtekar and Krish-
nan [22] who used a standard 3+1 decomposition. It
should be straightforward to generalize their proofs to
the case where β may not have definite sign on some or
all leaves. However, since this would necessitate the in-
troduction of additional formalism, we will give here a
simple, geometrically intuitive proof. Our construction
is shown in Fig. 10.

Consider two infinitesimally nearby leaves at r and
r + dr, dr > 0. Construct the null hypersurface N(r)
in a neighborhood of σ(r). Also, construct the null hy-
persurface L+(r + dr) generated by the future-directed
null geodesics with tangent vector la, in a neighborhood
of σ(r + dr). By Theorem IV.2, for sufficiently small dr
these null hypersurfaces intersect on a two-dimensional
surface σ̂(r, r + dr), such that every generator of each
congruence lies on a unique point in σ̂(r, r + dr).

Note that in regions where H is spacelike, β > 0, the
intersection will lie in N+(r); if H is timelike, β < 0, the
intersection will lie in N−(r); but this makes no differ-
ence to the remainder of the argument. Crucially, Theo-
rem IV.2 guarantees that the intersection always lies in
L+(r+dr), and never on L−(r+dr), the null hypersurface
generated by the past-directed null geodesics with tan-
gent vector −la. We now exploit the defining property of
H, that each leaf is marginally trapped (θσ(r)k = 0). This
implies

A[σ̂]−A[σ(r)] = O(dr2) ; (IV.5)
A[σ(r + dr)]−A[σ̂] = O(dr) > 0 . (IV.6)

Hence, the area increases linearly in dr between any two
nearby leaves σ(r), σ(r+ dr). This implies that the area
increases strictly monotonically with r.

Corollary IV.4. The above construction implies, more
specifically, that the area of leaves increases at the rate

dA

dr
=

∫
σ(r)

√
hσ(r) αθ

σ(r)
l . (IV.7)

where hσ(r)ab is the induced metric on the leaf σ(r) and
hσ(r) is its determinant. Note that the integrand is pos-
itive definite since α < 0 and all leaves are marginally
trapped; in this sense the area theorem is local. How-
ever, the theorem applies to complete leaves only, not to
arbitrary deformations of leaves.
Corollary IV.5. For past holographic screens, we recall
the contrasting convention that α > 0 on σ(0). The above
arguments then establish that α > 0 everywhere on H.
Eqs. (IV.4) and (IV.7) hold as an area theorem.

Remark IV.6. We note that the area increases in the out-
side or future direction along a past holographic screen.
With an interpretation of area as entropy, the holo-
graphic screens of an expanding universe thus have a
standard arrow of time.
Remark IV.7. By contrast, the area increases in the out-
side or past direction along a future holographic screen.
Thus, the arrow of time runs backwards on the holo-
graphic screens inside black holes, and near a big crunch.
Perhaps this intriguing result is related to the difficulty of
reconciling unitary quantum mechanics with the equiva-
lence principle [37–44].

We close with a final theorem that establishes the
uniqueness of the foliation of H:

Theorem IV.8. Let H be a regular future holographic
screen with foliation {σ(r)}. Every marginally trapped
surface s ⊂ H is one of the leaves σ(r).

Proof. By contradiction: suppose that s is marginally
trapped and distinct from any σ(r). Thus s intersects
the original foliation in a nontrivial closed interval [r1, r2]
and is tangent to σ(r1) and σ(r2). The θ = 0 null vector
field orthogonal to s must coincide with ka at the tangent
point with σ(r2). Since r1 < r2, Theorems IV.2 and III.4
imply that N(r2) does not everywhere coincide with the
null hypersurface orthogonal to s with tangent vector ka

at σ(2). Lemma B in Ref. [34] then implies that θ(s)
k(s)
6= 0

somewhere on s, in contradiction with the assumption
that s is marginally trapped.
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σ(r)

H

σ(r+dr)

σ(r+2dr)

σ(r, r+dr)

σ(r+dr, r+2dr)

N(r)

L +(r+dr)

A(r) A(r+dr)>A(r)H

A(r)

FIG. 10. Proof that α < 0 implies an area law, by a zig-zag construction. For any pair of infinitesimally nearby leaves, consider
the intersection σ̂ of the light-sheet pair N(r) tangent to the marginal direction ka, with the lightsheet L+(r + δr) generated
by la. To first order in δr, the area is constant as we leave H from σ(r) along N(r) to σ̂, and the area increases as we follow
L+ from σ̂ back onto H. This construction assumes only that α < 0, so that evolution is in the −la direction; it does not
require H to have uniform signature near σ(r). (a) Timelike case, with one spatial dimension suppressed and relevant 2-surfaces
labeled. (b) Spacelike case, with all spatial dimensions suppressed. In this plot, we choose to label the relevant null surfaces;
the two-surfaces are labeled by their area not by their name.
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