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We consider a class of Lorentz-violating theories of gravity involving a timelike unit vector field
(the aether) coupled to a metric, two examples being Einstein-aether theory and Hořava gravity.
The action always includes the Ricci scalar of the metric and the invariants quadratic in covariant
derivatives of the aether, but the theories differ in how the aether is constructed from other fields,
and whether those fields are varied in the action. Fields that are not varied define background
structures breaking diffeomorphsim invariance, including threadings, folations, and clocks, which
generally produce novel degrees of freedom arising from the violation of what would otherwise be
initial value constraints. The principal aims of this paper are to survey the nature of the theories
that arise, and to understand the consequences of breaking diffeomorphism invariance in this setting.
In a companion paper [arXiv:1504.03305], we address some of the phenomenology of the “ponderable
aether” case in which the presence of a background clock endows the aether with a variable internal
energy density that behaves in some respects like dark matter.

I. INTRODUCTION AND SUMMARY

Longstanding puzzles of cosmology and quantum grav-
ity have led some to question the fundamental assump-
tion of general relativity, that the spacetime manifold has
no structure other than that determined by the metric.
In particular, the cosmological constant problem, dark
energy, dark matter, the trans-Planckian puzzle, the need
for a UV completion of general relativity, the problem of
time and the interpretation of quantum cosmology have
motivated exploration of modified gravity theories with
vacuum structure violating local Lorentz boost symme-
try. If exact rotational symmetry is preserved, a Lorentz
violating vacuum structure selects a preferred timelike
direction at each spacetime point. The integral curves of
this field of directions may be thought of as the flow of
an “aether fluid.” The 4-velocity ua of the aether is the
unit timelike vector field tangent to this flow.
In constructing a theory with such an aether, one must

decide whether the aether is to be treated as dynamical,
i.e. varied in the action principle, or instead as back-
ground. If the aether is dynamical, then one must further
specify how it is constructed in terms of the fields that
are varied in the action. Actually it turns out that the
distinction between varied and not varied fields is not so
clear cut: the equations of motion for scalar fields are of-
ten a consequence of the equations of motion of the other
fields. Such scalars, and the structures they define, can
therefore be regarded as “background” structure, even
though they might also be varied in the action. What is
important for the physics, however, is not how we refer
to them, but how these choices affect the degrees of free-
dom and behavior of the theories. The purpose of this
paper is to examine this question for a variety of related
aether theories.

∗ jacobson@umd.edu
† asperanz@umd.edu

It is natural to assume that the aether-metric dynam-
ics is governed by an (effective) action involving the
metric, its curvature, the aether, and covariant deriva-
tives of the aether and the curvature. Before beginning
with the detailed analysis, we would like to point out
that the theory would generally be dynamically overcon-
strained, i.e. “inconsistent,” if derivatives of the aether
were not included in the action. Suppose for example
the action S[gab, φ, u

a] is a scalar constructed from the
metric gab, a scalar field φ, and a unit vector field ua.
Suppose further that the aether enters the Lagrangian
density only via the coupling 1

2

√−g(uaφ,a)2. The vari-
ations of ua must be orthogonal to ua to preserve the
unit condition, and these impose the equation of motion
(δS/δua)(δab−uaub) =

√−g(umφ,m)[φ,b−(unφ,n)ub] = 0.
This extremely restrictive condition requires that either
φ is constant along the flow lines of ua, or the flow of
ua is hypersurface orthogonal and φ is constant on the
orthogonal hypersurfaces. This eliminates virtually all of
the solutions to the scalar equation of motion. Moreover,
even if we choose to not impose the aether equation of
motion, the scalar field is still overconstrained since, as
shown below, the other equations of motion imply that
the Lie derivative £u[(δS/δu

a)(δab − uaub)] vanishes. Al-
though a weaker condition, this still eliminates almost
all scalar field solutions. The situation is quite different,
however, if the action includes terms quadratic in aether
derivatives. Then δS/δua includes second derivatives of
the aether, so instead of overconstraining the scalar field
the extra conditions can be propagation equations for the
aether.

At lowest order in a derivative expansion, the most
general action for the metric and aether is given (up to
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the integral of a total divergence) by1

S[gab, u
a(ζ, gab)] =

−1

16πG0

∫

d4x
√−g(R +

cθ
3
θ2 + cσσ

2 + cωω
2 + caa

2),

(1)

where ζ denotes collectively independently varied fields
used in the construction of the aether ua(ζ, gab). The
terms in the integrand are the Ricci scalar R of the
metric, and the expansion θ = ∇au

a, shear σab =
∇(aub)+

1
3 (∇cu

c)hab−u(aab), twist ωab = ∇[aub]−u[aab]
and acceleration ab = ua∇aub of the aether flow (here
hab = uaub − gab is the spatial metric). In this paper we
examine how variations on the construction of ua(ζ, gab)
affect the resulting theory.
An important distinction is whether or not the aether

vector is necessarily hypersurface-orthogonal, and hence
non-twisting. The minimal structure required to deter-
mine a twist-free aether is a foliation by spacelike hy-
persurfaces, whereas the minimal structure required to
determine a twisting aether is a timelike congruence of
curves, i.e. a threading [1, 2]. A well-known example of a
foliation theory results if ua is constructed from a scalar
field T as

ua(T, gab) = gabT,b/|dT |, (2)

where |dT | = (gabT,aT,b)
1/2 is the norm of the gradi-

ent. By construction, the aether (2) is orthogonal to the
constant T surfaces. This is khronometric theory [3–5],
a.k.a. the infrared limit of the nonprojectable version of
Hořava-Lifshitz gravity [6]. Among threading theories, a
well-known example results if ua is constructed from an
independent vector field Aa as

ua(Am, gmn) = Aa/|A|, (3)

where |A| = (gmnA
mAn)1/2 is the norm of Aa. This is

Einstein-aether theory [7, 8], written in the form given
in ref. [9]. In (3) the unit constraint on ua holds by
construction, rather than being imposed via a Lagrange
multiplier term as is more commonly done.
In the constructions we study, the foliation or thread-

ing is in most cases described covariantly using scalar
fields which enter the construction of ua through their
gradients. Since the action (1) involves first derivatives
of ua, it involves second derivatives of the scalars, raising
the concern that the resulting theory might suffer from an
Ostrogradski instability [10]. However, diffeomorphism

1 We use the metric signature (+−−−). Abstract indices are de-
noted by Latin letters, spacetime coordinate indices by Greek
letters, and comma and semicolon before an index denote partial
and covariant derivative respectively. Quantities with density
weight 1 are written in caligraphic font, E,F , C, or carry a tilde,
unless they involve the metric determinant or are written explic-
itly as a variational derivative.

invariance implies that the Lagrangian is degenerate, so
that there is a possibility that the instability is absent.
In fact, as we explain in section II, for all theories we
consider, the scalar field equations are redundant with
the other field equations. Therefore the scalars need not
be varied in the action principle, so we may fix their val-
ues by a choice of coordinates at the level of the action.
The gauge-fixed action is no longer invariant under the
full group of diffeomorphisms, yet it gives a theory that
is equivalent to the one defined by the original diffeomor-
phism invariant action.2 There exists a coordinate gauge
choice for which the scalars’ gradients have constant com-
ponents, and in such a gauge the action is only first order
in derivatives of the remaining dynamical variables. (For
example, in the khronometric theory with one dynami-
cal scalar T , ua in (2) is first order in derivatives, but
with the gauge choice x0 = T its components become

uα = gα0/
√

g00, which contain no derivatives.) We con-
clude from this that there is no Ostrogradski instability
in any gauge.
In Einstein-aether theory, the threading is determined

by a “line field,” i.e. a vector field modulo local scaling.
We call this the dynamical aether theory, since it arises
from a dynamical field Aa that appears with only first
derivatives in the action. In subsection IIIA, we con-
sider a related theory where the threading is determined
by three scalar fields, that can be fixed as background
structures as explained above. We show that this fixed

threading theory is equivalent to Einstein-aether theory
except that it admits violation of the spatial initial value
constraints. The constraint violation is characterized by
a spatial covector density that is preserved along the
aether flow, and does not affect the energy-momentum
tensor.
Subsection III B considers a different theory, in which

the aether threading is determined by a line field as in
Einstein-aether theory, and there is an additional scalar
field which determines a preferred clock constrained to
measure proper time along the threads. This fixed clock

theory is equivalent to Einstein-aether theory except that
it admits violation of a single initial value constraint per
spatial point. The constraint violation is characterized
by a scalar density that is preserved along the aether
flow, and appears in the energy-momentum tensor like a
rest mass density of the aether fluid. We call this a pon-

derable aether, invoking the 19th century adjective that
was used to distinguish ordinary matter from aether. Fi-
nally in subsection III C we consider the fixed aether the-

ory, containing both a fixed threading and a fixed clock.
The four scalars that describe the background structure
completely determine the aether vector, and hence this
theory is equivalent to Einstein-aether theory with the
vector ua taken to be nondynamical.

2 It is notoriously challenging to define what it means for a the-

ory itself—as opposed to its formulation—to be diffeomorphsim
invariant [11, 12].
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In section IV, we consider foliation-type theories. Af-
ter reviewing the khronometric theory, we consider in
section IVB introducing an independent clock field. As
before this leads to a violated constraint as well as an ad-
ditional component in the stress tensor. Finally, we show
that when the clock field is constrained to coincide with
the preferred foliation, the resulting theory is projectable
Hořava gravity, and we again find a violated constraint.
This constraint violation was already studied in ref. [13],
which referred to it as “dark matter as an integration
constant.” Unlike before, however, the violation in this
case is not preserved under flows of ua for a generic form
of the action (1).

II. VARIATIONAL PRELIMINARIES

We begin by establishing the notation and several key
results that are used throughout this paper. We define
the following tensor densities, resulting from variations
of the Einstein-aether action (1),

Eab ≡
δS

δgab

∣

∣

∣

∣

uc

, Fab ≡
δS

δgab

∣

∣

∣

∣

uc

, (4)

Ec ≡
δS

δuc

∣

∣

∣

∣

gab

= gcd
δS

δud

∣

∣

∣

∣

gab

. (5)

The object to the right of the vertical line in these expres-
sions indicates which tensors are held fixed when com-
puting the variation, i.e. Eab and Fab differ in that con-
travariant uc is held fixed in the former, while covariant
uc is fixed in the latter. They are related by

Fab = Eab + E(aub). (6)

As discussed in the introduction, we are interested in
cases where ua is constructed from gab and other fields
collectively denoted ζ. The Einstein equation results
from varying the action holding ζ fixed, and hence re-
ceives a contribution from the explicit metrics appearing
in the action, as well as from the metric dependence of
ua. In all cases considered, ua depends algebraically on
the metric, and the Einstein equation takes the form

Eab + Ec
δuc

δgab
= 0. (7)

For the foliation-type theories of section IV, it is more
convenient to work with covariant uc, in which case the
expression for the Einstein equation is

Fab + Ec δuc
δgab

= 0. (8)

In some cases the Einstein-aether action is supplemented
with a Lagrange multiplier term enforcing the unit con-
straint,

Sλ = −
∫

d4x λ̃
(

gabu
aub − 1

)

. (9)

This will contribute a λ̃-dependent term to the Einstein
equation as well as the aether variations. We will write
such terms explicitly when they appear; the quantities
Eab, Fab and Ea are always defined by (4) and (5), with
the action S given by (1).
Most of the theories considered in this paper involve

scalar fields that determine the background structures
on which the theory is based. We will often make use
of the fact that the scalar equations of motion are im-
plied by the other field equations. The proof of this is
straightforward: consider an action S[gab, χ,Φ

i] that is a
diffeomorphism invariant functional of the metric, other
tensor fields χ, and scalar fields Φi. Under a diffeomor-
phism generated by ξa, the action varies by

δS =

∫
(

δS

δgab
£ξg

ab +
δS

δχ
£ξχ+

δS

δΦi
£ξΦ

i

)

(10)

This variation must vanish for all vectors ξa, and since
the first two terms are zero when the metric and χ field
equations hold, we find that

δS

δΦi
∇aΦ

i = 0. (11)

As long as the gradients dΦi are (non-vanishing and)
linearly independent, which can hold for up to four
scalars, this implies that the scalar field equations hold,
δS/δΦi = 0. If their equations of motion are automatic
in this way, we can fix the scalars at the level of the
action without losing any dynamical information. The
gauge-fixed action is no longer invariant under the full
diffeomorphism group. In our application, where a vec-
tor field ua is constructed using scalars, the gradients of
the scalars must be linearly independent in order for ua

to be nonsingular and non-vanishing. Thus, for the phys-
ically relevant configurations, those scalar field equations
are automatic.3 A scalar Lagrange multiplier, on the
other hand, need not have non-vanishing gradient, so its
field equation (i.e. the corresponding constraint) should
be imposed directly.
Finally, we recall that in any diffeomorphism invariant

theory, some of the field equations are constraints on ini-
tial data, rather than evolution equations. For Einstein-
aether theory, which contains a dynamical, contravariant
vector field ua, the quantities

C(t)
b = ∇at (2Eab + uaEb) . (12)

contain no more than first partial derivatives with respect
to t, for any choice of t and the remaining three coordi-
nates [14, 15]. When the field equations are satisfied, we

3 It can happen that the gradients fail to be independent on a set
of measure zero, e.g. on a codimension one surface, but with ua

remaining well-defined in the limit as that surface is approached.
In that case presumably continuity implies that the scalar field
equations also hold directly on that surface, at least provided the
fields are all nonsingular.
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have Eab = −λ̃uaub and Eb = 2λ̃ub, where λ̃ terms arise

from the Lagrange multiplier term (9). The λ̃ terms thus

cancel, so in Einstein-aether theory C(t)
b vanishes on shell.

When t is a time evolution coordinate, these constraints
thus restrict the allowed initial data. For a covariant
aether vector ua, the expression for the constraint has a
different appearance,

C(t)
b = ∇at (2Fa

b − Eaub) , (13)

but is in fact the same as a consequence of (6).
More generally, in the various theories we consider

here, although the quantities (12) (or (13)) will have no
higher than first t-derivatives (in appropriately adapted
gauges), some or all of them may not vanish when the
field equations hold, because the ua (or ua) field equa-
tion per se is not imposed. For this reason, we refer to
them generally as “constraint quantities,” rather than as
“constraints.” This failure of constraint equations to hold
corresponds to the lack of diffeomorphism invariance of
the gauge-fixed action. We shall analyze the form of the
constraint violation in each case as a means of charac-
terizing the extra freedom available in solutions to these
theories.

III. TWISTING AETHER: THREADING

THEORIES

A twisting aether flow does not determine a preferred
foliation of spacetime by spacelike hypersurfaces, but
it does define a preferred threading of spacetime. In
Einstein-aether theory, this threading is specified by an
independently varied vector field modulo local scale, from
which the aether 4-velocity ua (3) is constructed with the
use of the metric (alternatively, one can use a Lagrange
multiplier term to enforce the unit constraint on ua). In
this section we consider three other ways of constructing
ua. In the first subsection, the threading is determined
by three scalar fields which are Lagrangian (comoving)
coordinates for the aether. In the following two subsec-
tions, an additional scalar field ψ is introduced into both
the line field and the Lagrangian coordinate construc-
tions of ua. The field ψ is an independent “clock” that
marks time along the threads, and is constrained to agree
with proper time by a Lagrange multiplier term. These
constructions are all very closely related to each other,
but they yield theories that differ insofar as different in-
tegration constants are required to determine a solution,
corresponding to different initial value constraints that
are violated.

A. Fixed threading theory

A threading can be specified as the curves along which
three scalar fields ϕI , I = 1, 2, 3 are all constant. If the

theory is to depend only on these curves as one dimen-
sional sub-manifolds, and not on any parameterization,
the action must be invariant under all smooth invertible
field redefinitions of the scalars,

ϕI 7→ ϕ̄I(ϕJ ). (14)

This can be achieved by restricting the action to depend
on ϕI only via the unit aether 4-velocity

ua(ϕI , gab) = J̃a/|J̃ |, (15)

with J̃a the metric-independent vector density

J̃a = ǫ̃abcdϕ1
,bϕ

2
,cϕ

3
,d, (16)

where ǫ̃abcd is the alternating symbol, i.e. the Levi-Civita
tensor density of weight 1. The vector field defined in
(15) is invariant under the “ϕ-diffeos” (14), since both the
numerator and denominator are rescaled by the Jacobian
determinant det

(

∂ϕ̄I/∂ϕJ
)

. The corresponding action
(1) is then a functional of the metric and the three scalar
fields.
Note that the action is quadratic in second derivatives

of the scalars ϕI . This implies that the field equations
will be fourth order in derivatives of the scalars, and
third order in derivatives of the metric (arising from the
Christoffel connection terms). However, as explained in
section II, we may treat the scalars as fixed, not varied
in the action, without changing the dynamical content of
the theory. Since the ϕI define a threading, we call this
the fixed threading theory. In the co-moving gauge, where
ϕI are equal to the spatial coordinates, uα contains no
derivatives, and the field equations arising from metric
variations are of second order.

1. Relation to zero temperature perfect fluid

The dynamics of perfect fluids was formulated long ago
in terms of three Euler potentials ϕI [16, 17], a formula-
tion that has recently been fruitfully exploited with the
application of ideas from effective field theory (see e.g.

[18]). In that setting, the vector density J̃a represents the

conserved entropy current and |J̃ | is the entropy density
in the fluid rest frame. The entropy current is invari-
ant under ϕ-diffeomorphisms with unit Jacobian deter-
minant. Unlike for our aethereal application, full ϕ-diffeo
invariance is not imposed, because the entropy density is
physically meaningful. The presence of conserved parti-
cle number necessitates an additional scalar field with a
shift symmetry in the action. Our “clock field” ψ intro-
duced below [see e.g. (46)] is directly analogous to this,
although the corresponding chemical potential ua∇aψ is
required by the unit norm constraint to be everywhere
equal to unity.
For fluids without conserved particle number, the ac-

tion at first order in derivatives is the integral of minus
the energy density expressed as a function ρ(b) of the
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entropy density scalar b = |J̃ |/√−g. The function ρ(b)
determines the equation of state of the fluid. The aether
fluid has the property that at first derivative order its
energy density is independent of the entropy density, as
required by the full ϕ-diffeo symmetry. This happens
for a thermal fluid only at zero temperature, hence the
aether can be considered a zero temperature fluid. The
action for such a fluid is just proportional to the space-
time volume, so the stress-energy tensor at this derivative
order is nothing but a (possibly vanishing) cosmological
constant, motivating the name “vacuum fluid” for the
aether. The dynamics of the vacuum fluid is governed
at lowest derivative order by the action (1) involving the
“strain” of the fluid.

2. Comparison with Einstein-aether theory

Under variations of the fields, in ua(Am, gmn) (3) and
ua(ϕI , gmn) (15), the variation of ua has both a parallel
and a perpendicular part,

δua = δua‖ + δua⊥. (17)

The metric variation generates only δua‖, while the Am

and ϕI variations generate only δua⊥. The metric-induced
variation in both cases is just what is needed to keep
ua a unit vector: 0 = δ(gmnu

mun) = (δgmn)u
mun +

2gmau
mδua implies that δua‖ = − 1

2u
aumunδgmn, hence

δua‖ =
1

2
ua umunδg

mn. (18)

The perpendicular part of the variation is given in
Einstein-aether theory by

δua⊥ = (δam − uaum)δA
m (19)

and in the fixed threading theory by

δua⊥ =
1

2|J̃ |
(δam − uaum)ǫ̃mbcdǫIJKϕ

I
,bϕ

J
,c δϕ

K
,d . (20)

Thus the metric equation of motion (7) is the same in
terms of gmn and um in the background threading theory
as it is in Einstein-aether theory,

Eab +
1

2
ucEcuaub = 0. (21)

The remaining equations of motion arise in both theories
from the variation δua⊥, and here a discrepancy arises.
In Einstein-aether theory the equation of motion aris-

ing from perpendicular aether variation (19) is

E⊥
m ≡ (δam − uaum)Ea = 0, (22)

while in background threading theory it is

EK ≡ δS

δϕK
= 0. (23)

Diffeomorphism invariance of the action implies that the
scalar equations (23) hold as a consequence of the Ein-
stein equation [cf. discussion around Eq. (11)], so they
add no new information. On the other hand, the perpen-
dicular aether equation (22) adds restrictions in Einstein-
aether theory.
To discover the precise relation between the equations

of motion (22) and (23), note that since ua(ϕI , gmn) is
constructed covariantly, diffeo variations of its arguments
induce its diffeo variation δua = £ξu

a as a vector field.
In particular, the perpendicular component of £ξu

a is
equal to the variation induced via £ξϕ

K , so the cor-
responding contributions to the variation of the action
S[gab, u

a(ϕI , gmn)] are also equal,

∫

E⊥
m£ξu

m =

∫

EK£ξϕ
K . (24)

Now using £ξu
a = −£uξ

a and integrating by parts we
obtain

∫

(£uE⊥
m − EKϕK,m)ξm = 0 (25)

for all vector fields ξm, which yields the identity

£uE⊥
m = EK ϕK,m. (26)

Thus (22) implies (23) (provided again that the gradients
ϕK,m are linearly independent), but (23) implies only that
the Lie derivative of (22) holds.
We thus see that in the fixed threading theory the Ein-

stein equation implies

£uE⊥
m = 0. (27)

Put differently, instead of the aether equation (22) one
has

E⊥
m = −µ̃⊥m, (28)

where the “source term” µ̃⊥
m is a covector density that

satisfies umµ̃⊥
m = 0 and is conserved along the aether

flow,

£uµ̃
⊥
m = 0. (29)

A transparent way to express the conservation law (29) is
to use adapted coordinates, xI = ϕI , and to choose x0 =
τ with uaτ,a = 1, so that the components of the aether 4-
velocity are all constant, uα = δατ . Then the components
of the Lie derivative are just the partial derivatives with
respect to τ , and (29) takes the simple form

∂τ µ̃
⊥
α = 0. (30)

The three components µ̃⊥
I are then just constants of in-

tegration on each thread, while µ̃⊥
τ vanishes identically.

The freedom to choose these integration constants differ-
ent from zero is what distinguishes the fixed threading
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theory from Einstein-aether theory. For lack of a better
name, we shall call µ̃⊥

m the vector source density (VSD).
The identity (26) shows that the ϕK equation of mo-

tion is “weaker” than the perpendicular um equation of
motion, but this discrepancy remains a bit mysterious,
since it would seem that variations of ϕK produce all
possible perpendicular variations of um. Of course the
difference must arise because ϕK occurs in the action
with an extra derivative, but why exactly is that impor-
tant? The answer lies in the boundary conditions. When
we drop boundary terms we are holding ϕK fixed at the
boundaries, in particular the initial and final boundary.
This entails an integral constraint on the um variations
(the endpoints of each thread are fixed), which translates
into the fact that the ϕK variations imply only the time
derivative of the um equation of motion.
A simple example serves to illustrate this point. Sup-

pose we have a mechanical system in one dimension
with Lagrangian L(x, ẋ), and we make the replacement
x = ẏ, and treat y(t) as the basic dynamical vari-
able. Then the action variation is δS =

∫

(δS/δx)δẏ =
−
∫

(d/dt)(δS/δx)δy, so the y equation of motion is the
time derivative of the x equation of motion. It is weaker
than the x equation of motion because not all x varia-
tions are included in the y-version of Hamilton’s princi-
ple. Since the initial and final values y1,2 are fixed in the
y-variations, there is an implicit constraint on the inte-
gral of x due to the fact that

∫

x dt =
∫

ẏ dt = y2 − y1.
We could include this constraint directly in the x-version
of Hamilton’s principle with the addition of a Lagrange
multiplier term λ(

∫

x dt−∆y). The result would be the
equation of motion δS/δx = λ, where the Lagrange mul-
tiplier λ is an undetermined constant corresponding to a
constant external force. In the y equation, λ corresponds
to the extra integration constant needed to specify a so-
lution.
How does a nonzero VSD for the aether field equa-

tion change the aether theory? In another paper, we
find that it does not alter the Newtonian limit or static,
spherical stars (assuming no radial aether component)
[19], and by symmetry homogeneous, isotropic cosmol-
ogy is unaltered. However, it acts as an external force
for wave modes, shifting the equilibrium amplitude away
from zero. In the next subsection we show that, more
generally, the source density integration constants char-
acterize a violation of the initial value constraints of
Einstein-aether theory. In the following subsection we
show that magnitude of the source density is diluted as
the aether expands with the universe, which suppresses
its observable consequences.

3. Initial value constraint violation

The VSD µ̃⊥
m in (28) suggests that the fixed threading

theory requires more initial data than Einstein aether
theory, since µ̃⊥

m is a freely specifiable initial source for
the aether equation. This new freedom can be charac-

terized in terms of violated Einstein-aether initial value
constraints.
For an arbitrary fourth coordinate x0, the constraint

quantities (12) take the form

C(0)
α = 2E0

α + u0Eα, (31)

When the metric field equation (21) holds, (28) implies
that these quantities are nonvanishing and instead satisfy

C(0)
α = −u0µ̃⊥

α . (32)

The ua component constraint uαC̃(0)
α = 0 holds, since

uαµ̃⊥
α = 0, but the three “perpendicular constraints” are

violated.
In adapted coordinates, xI = ϕI , the constraint viola-

tion is preserved in time. This is easiest to see with the
choice x0 = τ , with τ the proper time along the threads.
Then we have u0 = 1, and (30) shows that the compo-

nents of the constraint C̃(τ)
α are preserved in τ . In fact

the same result holds for any choice of the fourth coor-
dinate x0: the condition uαµ̃⊥

α = 0 implies that under
a change from τ to x0, the components of the covector
density µ̃⊥

α change only by the Jacobian factor ∂τ/∂x0,
while u0 = (∂x0/∂τ)uτ . Therefore the components of the
x0-constraint (32) in (x0, xI) coordinates are the same as
those of the τ -constraint in (τ, xI) coordinates. Since
u0∂0 = ∂τ , the previous result implies that also4

∂0C(0)
α = 0. (33)

This equation shows that the new freedom takes the form
of an infinite collection of conserved quantities. The con-
straint violation may be freely specified at an initial time,
but remains constant at all subsequent times.
The vanishing of the constraint quantities in Einstein-

aether theory is a consequence of full spacetime diffeo-
morphism symmetry. The fixed threading theory re-
spects only the thread preserving diffeomorphisms, which
in adapted coordinates take the form t 7→ t̄(t, xI), xI 7→
x̄I(xJ ). Intuitively, since we cannot perform arbitrary
gauge transformations of the spatial coordinates as we
evolve in time, there should be no constraints associated
with those diffeomorphisms imposed on the dynamics.

This is why we find that C(0)
I , the spatial constraint quan-

tities for evolution along the threads, are non-vanishing.
By contrast, for evolution with respect to a parameter

that is constant on the threads, say x3, all constraint
quantities vanish, since ua∇ax

3 = 0, so the number
of initial value constraints remains equal to four. This
might be expected since as we evolve in x3, we can per-
form both time and spatial diffeomorphisms. (That these
are required to preserve the fibers evidently does not
cause the constraints to be lost.) This gauge symme-
try means the dynamics cannot be fully deterministic, so
that some field equations must be constraints.

4 A covariant version of this argument uses (29) and the identity
£u/(u·dx0)[(u ·dx

0)µ̃⊥
m] = £uµ̃⊥

m, which holds in view of the unit

density weight and umµ̃⊥m = 0.
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4. Cosmological evolution of source density

In homogeneous isotropic symmetry, the VSD neces-
sarily vanishes, and the background threading theory is
identical to Einstein-aether theory. It is natural to imag-
ine some kind of fluctuations around the symmetric con-
figuration however. Since the VSD arises as integration
constants, its power spectrum cannot be derived from
the properties of quantum vacuum fluctuations. At this
point we have identified no principle to select a primor-
dial spectrum of VSD. What we can say however is that
the amplitude will decrease as the universe expands.

To characterize the amplitude of the VSD we use the
scalar quantity

κ ≡ [gabµ̃⊥
a µ̃

⊥
b /(−g)]1/2. (34)

An approximate redshift law for κ can be easily ob-
tained by using for gab the homogeneous isotropic metric
ds2 = dt2 − a(t)2dxidxi, and neglecting the anisotropic
corrections to the conservation law (29). Then the co-
ordinates (xi, t) are adapted to ua, and the conservation

law takes the form ∂tµ̃
⊥
i = 0, so (34) yields κ ∝ a−4. The

physical effects of the VSD therefore decrease like those
of radiation as the universe expands.

B. Fixed clock theory: a ponderable aether

In section IIIA, we introduced three scalar fields that
defined a threading. In the co-moving gauge, these
scalars have the effect of breaking spatial diffeomorphism
symmetry when fixed at the level of the action. In this
section we consider a different theory, in which temporal
rather than spatial diffeomorphism symmetry is broken.
This involves introducing a “clock” field ψ that defines a
preferred notion of time along the aether flow.

Since the clock field ψ is a scalar, we may again fix ψ to
a background value at the level of the action. In analogy
to the fixed threading we expect this fixed clock to lead
to a violation of an initial value constraint and therefore
to produce, in effect, an additional degree of freedom.
The constraint violation in this case is quite analogous to
the “dark matter as an integration constant” [13] in pro-
jectable Hořava gravity. The latter is due to the absence
of the local Hamiltonian constraint in that theory. That
constraint normally arises from the variation of the lapse
function N = (gtt)−1/2, but in projectable Hořava grav-
ity N = N(t) depends only on t. It is therefore not varied
independently at each point on a constant t surface, so
the associated local constraint is not imposed. The co-
variant construction of an aether with a fixed clock given
here yields a similar effect. Unlike in the projectable
Hořava case, however, the “dark matter mass current” is
conserved in the fixed clock aether theory.

We start as in Einstein-aether theory with a dynamical
vector field Aa but, rather than defining the aether 4-

velocity dividing by |A|, we define it by

ua(Am, ψ) =
Aa

Amψ,m
, (35)

where ψ is the clock field. By construction we have
uaψ,a = 1, so ψ is a parameter on the aether flow com-
patible with ua. Note that (35) is unchanged under a
thread-dependent shift ψ 7→ ψ+υ, with υ constant along
each thread, Aa∇aυ = 0 (note this symmetry was called
a “chemical shift” in the works on effective field theory
for fluids [18]). The requirement of this symmetry pre-
cludes standard kinetic or potential terms for ψ and, since
uaψ,a = 1, a term like (uaψ,a)

2 only adds a constant to
the action.
Unlike its Einstein-aether cousin ua(Am, gmn) (3),

ua(Am, ψ) is not a unit vector by construction, so we
impose the unit constraint by adding a Lagrange multi-
plier term (9) to the action, enforcing the relation

(Amψ,m)2 = gmnA
mAn. (36)

It seems at first that this could be satisfied either by
solving a first order ODE for ψ on each thread, or by
restricting gmn (the condition is independent of the scale
of Am so it can not be satisfied by restricting that scale).
However, solving (36) for ψ by integrating along each
thread would be inconsistent with fixing ψ at both end-
points in Hamilton’s principle unless further constraints
on variations of Aa and gab are imposed. Instead, it is
simplest to view the unit constraint as fixing a compo-
nent of the metric in terms of Am and ψ,m. Since ψ is a
scalar field, its equation of motion is satisfied by virtue
of the other equations of motion (provided ψ,m 6= 0). It
can therefore be considered fixed. We call this the fixed

clock theory since, when the unit constraint is satisfied,
ψ marks proper time on each thread.
The variation of (35) is given by

δua = −uaumδψ,m +
1

A · dψ (δam − uaψ,m)δAm. (37)

The ψ equation of motion thus takes the form of a current
conservation law,

(µ̃um),m = 0, µ̃ ≡ µ
√−g ≡ ua

(

2λ̃ua − Ea
)

, (38)

The Aa equation of motion is

1

A · dψ (δam − uaψ,m)(Ea − 2λ̃ua) = 0, (39)

which is equivalent to

Ea − 2λ̃ua = −µ̃ψ,a. (40)

In this theory, ua has no metric dependence, so the Ein-
stein equation is

Eab + λ̃uaub = 0, (41)
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which in light of (38) becomes

Eab +
1

2
ucEcuaub +

1

2
µ̃uaub = 0. (42)

The aether stress tensor thus picks up the extra dust-like
contribution, µuaub, which is not present in Einstein-
aether theory. Together with the conservation equation
(38) this suggests the interpretation of µ̃ as the internal
energy density of the aether, and motivates the descrip-
tive term ponderable aether. Notice that even in the ab-
sence of the aether terms in the action (1), the Lagrange
multiplier term (9) alone suffices to introduce the aethe-
real dust stress tensor µuaub.
The sign of µ is not fixed, so the aethereal dust can

contribute negative energy density to the source in the
metric field equation. Normally the presence of nega-
tive energy could produce an instability, since the system
could evolve to a highly excited state of compensating
positive and negative energy components. However, as a
consequence of the conservation equation (38), the spa-
tial integral of µ is conserved along any bundle of aether
worldlines, precluding instabilities of that sort.
The initial value formulation of the fixed clock theory

differs from that of Einstein-aether theory by a violated
constraint equation. As explained previously for the fixed

threading theory, the quantity C(t)
α defined in (12) has

only first t-derivatives of the metric and the aether 4-
velocity. For the background clock theory it has second
derivatives, since the aether 4-velocity (35) involves the
derivative of ψ. In the adapted coordinate “clock gauge”
x0 = ψ, however, uα is algebraic,

uα(Aµ, ψ) = Aα/A0, (43)

so C̃(t)
α has only first t-derivatives for any choice of t.

When the Aa and metric equations (40) and (41) hold,
we have

C(t)
b = −(uat,a)µ̃ψ,b. (44)

The right hand side vanishes when contracted with any
vector tangent to the constant ψ surface, so the presence
of nonzero µ̃ in the aether equation (40) leads to a sin-
gle constraint violation. The additional freedom in the
theory is parameterized by µ̃. If we choose t = ψ as the
evolution parameter and use the clock gauge, (44) takes
the form

C(ψ)
α = −µ̃δ0α. (45)

If we further choose spatially adapted coordinates, so
that uα = δα0 , the right hand side of equation (45) is
constant in x0 as a consequence of (38). As in the fixed
threading theory, the new degrees of freedom are, in this
sense, “totally integrable.”
We have found that for evolution with respect to any

coordinate t such that u ·dt 6= 0, the ψ-component of the
constraint quantities does not vanish. This is because the
fixed clock breaks time diffeomorphism symmetry. The

clock shift symmetry remains, but it allows for only a
single, time independent shift, so the ψ surfaces cannot
be deformed as we evolve along the threads. The compo-
nents of the constraints in the directions tangent to the ψ
surfaces are preserved, since the threads are determined
by a dynamical vector field, rather than by a background
structure.
The contribution µuaub has the form of a pressureless

fluid source in the Einstein equation, but its divergence is
not zero when the aether is not geodesic. In homogeneous
isotropic cosmology, however, it does behave exactly as
pressureless dust, with µ ∝ a−3. During an inflationary
period µ would be exponentially suppressed, so in the
standard inflationary cosmological model it would pre-
sumably be too small today to have any observable effect.
If there were some way to transcend the classical conser-
vation law for µ and generate a nonzero value around the
time of matter radiation equality, it could play the role of
the homogeneous dark matter in a ΛCDM model.5 This
leads to the question of how it would behave as structure
forms. Its nongeodesic character suggests that it would
not form structure in the manner of geodesic dark mat-
ter. In another paper [19] we have examined the growth
of linearized perturbations, and found that if µ were to
comprise the homogeneous dark matter density at early
times it would lead to an unacceptably high growth rate
on super-horizon scales and no growth on sub-horizon
scales.

C. Fixed aether theory

In the previous two sections, we considered a theory
with broken spatial diffeomorphisms, the fixed thread-
ing, and one with broken temporal diffeomorphisms, the
fixed clock. In this section we combine these features
and consider an aether theory with broken spatial and
temporal diffeomorphisms.
We now define the aether 4-velocity by

ua(ϕI , ψ) =
J̃a

J̃mψ,m
, (46)

where J̃a is the vector density constructed from ϕI de-
fined in equation (16), and ψ is a scalar clock field. Like
the aether 4-velocity of the background threading theory
(15), ua(ϕI , ψ) is unchanged under all ϕ-diffeos (14) and,
as in the fixed clock theory, it has the clock shift sym-
metry, ψ 7→ ψ + υ(ϕI) (again, this corresponds to the
“chemical shift” in the effective theory of fluid dynamics

5 If it were generated earlier, e.g. at reheating, it would quickly
dominate unless fine-tuned to an extremely small value relative
to the radiation energy density. Mechanisms for generating dark
matter after inflation have been proposed for the related pro-
jectable Hořava gravity [13] and mimetic dark matter [20, 21]
theories.



9

[18]). Also, as in the latter theory, it is not normalized
by construction, so the Lagrange multiplier term (9) is
again used to impose the unit constraint.
Since ua(ϕI , ψ) is constructed entirely from four scalar

fields, its variations arise solely from variations of the four
scalars. As explained above, provided the four gradients
ϕI,a, and ψ,a are linearly independent, which is required
for them to define a threading with parameter ψ, the
equations of motion for the four scalars will follow from
the Einstein equation. They can therefore be held fixed
in the action. This fixed aether theory is thus equivalent
to Einstein-aether theory with an aether vector ua that is
not varied in the action; that is, the aether field equation
Ea of Einstein-aether theory is not imposed.
When the gab and λ̃ equations of motion hold, how-

ever, the (vanishing) variation of the action S[gab, u
a, λ̃]

with respect to a diffeomorphism generated by ξa is given
by

∫

(Ea − 2λ̃ua)£ξu
a =

∫

ξa£u(Ea − 2λ̃ua). Since this
vanishes for all ξa we infer that

£u(Ea − 2λ̃ua) = 0. (47)

This is similar to (27) in the fixed threading theory, but
includes the component of Ea along ua. Thus although
the aether field equation is not imposed, it holds with the
addition of an undetermined, “constant” source term,

Ea − 2λ̃ua = −µ̃a, £uµ̃a = 0. (48)

Equation (48) implies

λ̃ =
1

2
(µ̃+ uaEa) , (49)

with

µ̃ ≡ µ
√−g ≡ uaµ̃a. (50)

Therefore, as in the fixed clock theory, the aether stress
tensor contribution (λ̃/

√−g)uaub picks up the extra term
µuaub not present in Einstein-aether theory. Also, (48)
and £uu

a = 0 imply £uµ̃ = (µ̃ua),a = 0, so that µ
acts like a “dark matter” source of gravity that can be
interpreted as the internal energy density of a ponderable
aether.
When we work in co-moving, clock gauge (xI =

ϕI , x0 = ψ), the diffeomorphism symmetry is broken
down to time independent transformations xI → f I(xJ )
and x0 → x0 + f(xJ ), so we should expect all four con-

straints to be violated. When the metric and λ̃ equations
are satisfied, the x0-constraint quantity (12) for the fixed
aether theory in these coordinates takes the form

C(0)
α = 2E0

α + u0Eα = −µ̃α. (51)

This indeed confirms that all four initial value constraints
of Einstein-aether theory are violated. This is as ex-
pected, since for evolution with respect to any parameter
that advances along the threads, there remains no diffeo-
morphism freedom that would make the dynamics under-
determined. For evolution with respect to a parameter

s that is constant along the threads, we again find that
all constraints vanish. In addition to the s-dependent
thread preserving diffeomorphisms, the clock field’s shift
symmetry allows for s-dependent changes in ψ. Thus,
we find four additional initial value freedoms per spatial
point, which again by (48) are “totally integrable.”

IV. FOLIATION THEORIES

We now turn to theories involving a foliation of space-
time by spacelike hypersurfaces. These theories are dis-
tinct from threading theories because the aether vector,
constructed as the unit normal to the foliation, is nec-
essarily twist-free. The simplest foliation type theory
is khronometric theory, the low energy limit of nonpro-
jectable Hořava gravity. After reviewing its construction
in section IVA, we proceed in section IVB to add a fixed
clock to the theory as was done for the threading theories
in section III B. As in that case, the resulting theory ex-
hibits constraint violation, and similarly contains a “dark
matter” component in the Einstein equation. Finally, in
section IVC we consider the case where the foliation and
the clock field coincide. This results in the projectable
version of Hořava gravity, and we discuss the relation be-
tween the constraint violation and the “dark matter as
an integration constant” of that theory [13].

A. Khronometric theory

A twist-free aether can be described by a scalar field
T , dubbed the “khronon,” whose level sets define the
hypersurfaces orthogonal to the aether 4-velocity [3–5].
In order that the theory depend only on the foliation by
hypersurfaces, and not the values of T , the the action
must be invariant under monotonic reparametrizations

T → T̄ (T ). (52)

The gradient of T transforms as T̄,a = (dT̄/dT )T,a, so the
numerator and denominator of the aether 4-velocity (2)
both acquire a factor dT̄/dT , and these factors cancel.
Therefore the action S[gab, u

a(T, gmn)] (1) is invariant
under T reparametrizations.
Just as in the threading theory, this action is quadratic

in second derivatives of T , so when T is varied it yields
equations of motion that are fourth order in derivatives
of T and third order in derivatives of the metric. Again,
as explained in section II, we may fix T at the level of the
action without changing the dynamics. In the adapted
gauge where T is identified with one of the spacetime
coordinates, we have from (2)

uα(T, gab) = gαT /
√

gTT . (53)

Since the aether 4-velocity is an algebraic function of
the metric components in this gauge, and the action
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(1) produces a second order field equation for the met-
ric (terms with more than two spatial derivatives occur
in the full Hořava-Lifshitz theory). In this formulation,
which is equivalent to Hořava’s original one [6], the action
is invariant only under T -foliation preserving diffeomor-
phisms, together with T -reparametrizations (52).
We can now examine the constraints for this theory.

The metric dependence of uc induces a variation δuc =
− 1

2ucuaubδg
ab, so the metric field equation (8) reads

Fab −
1

2
Ecucuaub = 0. (54)

When this equation is satisfied, the constraint (13) is
equal to

C(t)
b = −(∇at)Ea⊥ub. (55)

If we choose t = T then, since dT ∝ u, the right hand

side vanishes, so all the constraints C(T )
b vanish in the

adapted gauge.
This is complementary to the situation described in

section IIIA 3 for the threading theory. There we found
that for evolution with respect to a parameter constant
on the threads, the constraint quantities vanish. He we
find a similar result: for evolution with respect to a pa-
rameter s that is constant on the foliation, the constraint
quantities vanish. We can still make s-dependent time
reparameterizations and spatial diffeomorphisms under
this evolution, so we expect constraints associated with
these gauge transformations. If instead we were to con-
sider evolution with respect to a different parameter s′

that is not constant on the foliation, we would find the T -
component of the constraint violated. This is because the
foliation cannot be deformed in an s′-dependent fashion,
so the theory loses that gauge symmetry and the associ-
ated constraint.

B. Fixed clock foliation theory

We can add a fixed clock to the foliation theory by
following the method introduced above for the twisting
aether. We introduce the clock field ψ and define the
aether 4-velocity covector as

ua(T, gmn, ψ) =
T,a

gmnT,mψ,n
, (56)

which is constrained by a Lagrange multiplier term to
have unit norm. The unit constraint requires that the
lapse N = (gabT,aT,b)

−1/2 be equal to (gabT,aψ,b)
−1,

which freezes one metric degree of freedom (in the
adapted gauge, it fixes (gTψ)2 = gTT ). The field equa-
tions for both of the scalars T and ψ again follow from
the Einstein equation, provided T,a and ψ,a are linearly
independent. Although the gradients dT and dψ are both
timelike, they will generically be independent whenever
the aether is accelerated, since

£u(u[aψ,b]) = a[aψ,b]. (57)

Thus, the gauge in which both T and ψ are set equal to
coordinates will generically be nonsingular.
The ψ field equation gives a conservation law, corre-

sponding to its shift symmetry ψ → ψ + const.,

[(Ea − 2λ̃ua)uau
m],m = 0. (58)

Defining, as usual, the scalar density µ̃ = (2λ̃ua−Ea)ua,
we now have

λ̃ =
1

2
(µ̃+ uaEa) , (59)

as in the fixed aether case (49). The metric equation of
motion receives a contribution from the metric variation
in ua, namely δuc = −ucu(aψ,b)δgab. The metric field
equation is then

Fab − λ̃uaub − (Ec − 2λ̃uc)ucu(aψ,b) = 0. (60)

Rearranging to compare with (54), this becomes

Fab −
1

2
Ecucuaub +

1

2
µ̃
(

uaub + 2u(aψ
⊥
,b)

)

= 0, (61)

where ψ⊥
,b = ψ,b−ub is the projection of ψ,b perpendicular

to ub. The µ̃ term gives the difference between this theory
and the khronometric theory, and it takes the form of
non-geodesic “dark matter” with momentum density.
Unlike the previous fixed clock theories, here the clock

field itself has an effect on the dynamics via the per-
pendicular component of ψ,b in the stress tensor (61).
Since umψ,m = 1, ψ is determined on each thread by its
value at one point. Hence the value of ψ on one spacelike
hypersurface must be chosen as initial data in order to
integrate the equations of motion.
We now examine the constraints. Using T as the time

coordinate, enforcing the Einstein equation (61), and us-
ing the fact that u ∝ dT , we find for the constraint quan-
tities

C(T )
b = −N−1µ̃ψ,b. (62)

Thus the T -surface constraint is violated in the ψ-
component, for essentially the same reasons given in sec-
tion III B for the fixed clock theory. The conservation
law (58) implies £uµ̃ = 0, and we have £udψ = 0, so the
constraint violation satisfies

£u

(

NC(T )
b

)

= 0. (63)

This conservation law is more complicated than the anal-
ogous one for the threading theory (33). In the adapted
gauge where T and ψ are coordinates (and in which
the field equations are second order in derivatives), the
vector ua cannot be chosen to be proportional to ∂T ,
since u · dψ = 1. Instead, we can choose a gauge where
u = N−1∂T + ∂ψ, in which case (63) becomes

∂TCβ + ∂ψ(NCβ) = 0. (64)

Hence, we see that the constraint violation evolves ac-
cording to a first order differential equation that also in-
volves ψ-derivatives of the metric component N .
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C. Projectable Hořava gravity

Our final example of a foliation theory is projectable
Hořava gravity, which can be obtained from khronomet-
ric gravity (section IVA) by imposing in the action the
restriction that the lapse function be constant on each
foliation surface, N = N(T ). The aether then takes the
form ua = N(T )T,a. An aether of this form satisfying
the unit constraint is geodesic (ua∇aub = ua∇bua =
1
2∇b(u

aua) = 0), so the acceleration term caa
2 in the

action (1) becomes superfluous.
The projectability restriction can be implemented by

adding to the Lagrangian density a Lagrange multiplier
term λ̃abN,aT,b. Here λ̃

ab is an antisymmetric tensor den-

sity, and N(g, T ) = (gmnT,mT,n)
−1/2 is the lapse func-

tion. In the adapted gauge x0 = T , the new constraint
term becomes λ̃i0N,i, with N = (g00)−1/2. The Hamilto-
nian constraint, which arises from variations of the lapse,
now contains an additional piece −∂iλ̃i0 from the La-
grange multiplier term. This term represents a local vio-
lation of the Hamiltonian constraint. Since the violation
is a spatial divergence, the integral of the Hamiltonian
constraint will still be imposed on a compact space with-
out boundary. This integrated constraint is the generator
of global time reparameterizations, and follows from the
global variations of the lapse function N(T ) in the origi-
nal 3+1 formulation of projectable Hořava gravity. With
asymptotically flat boundary conditions, the integrated
Hamiltonian constraint will not vanish, but equal the flux
of λ̃i0 through the sphere at spatial infinity. This is con-
sistent with the fact that the metric is fixed at infinity, so,
in particular, the variational principle does not include
global variations of the lapse.
An alternative version of the projectable theory lacks

the global time reparameterization gauge symmetry, and
correspondingly the global Hamiltonian constraint is not
imposed [22–24]. This version arises from a fixed clock
foliation theory (section IVB) when the clock is required
in the action to be constant on the foliation slices. To im-
plement this we may add to the Lagrangian a Lagrange
multiplier term λ̃abψ,aT,b, with λ̃

ab an antisymmetric ten-
sor density. The corresponding constraint implies that
dψ ∝ dT , so that ua (56) takes the form ua = ψ,a/|dψ|2.
Having imposed this form for ua, the λ̃

ab constraint can
be omitted. At this point T has disappeared from the
action, its role being taken over by ψ.6 The unit con-
straint then implies that |dψ| = 1, so that ua = ψ,a,
and the lapse in the adapted gauge x0 = ψ is fixed equal
to 1. There is no global lapse variation, and no global
Hamiltonian constraint. This covariant formulation of
projectable Hořava gravity has been described before in

6 We could have kept the role of T explicit, using dψ ∝ dT to
express (56) as ua = T,a/(ψ′|dT |2). The unit constraint then
implies ψ′|dT | = 1, so that we have ua = ψ′(T )T,a. The lapse
function is thus given by N = N(T ) = ψ′(T ).

[3, 25].7

The Einstein equation in this formulation of pro-
jectable Hořava gravity results from explicit metric vari-
ations alone, since ua is metric-independent, and it reads

Fab − λ̃uaub = 0. (65)

Using the definition of µ̃ in (59) we can rewrite this as

Fab −
1

2
Ecucuaub −

1

2
µ̃uaub = 0, (66)

which looks like the khronometric theory equation (54)
with an additional “dark matter” component.8 We note
a peculiar difference from the foliation + clock theory: µ̃
appears in (66) with the opposite sign as in (61). Thus, in
projectable Hořava theory, positive µ̃ represents negative
energy density, whereas it gives positive energy density
in the foliation + clock theory.
The on-shell value of the constraint quantity (13) as-

sociated with the clock field ψ is

C(ψ)
b = µ̃ub, (67)

so again we find a single constraint violated, due to the
presence of the “dark matter energy density” µ̃.
Unlike previous cases considered in this paper, µ̃ is

generically not conserved along the aether flow in pro-
jectable Hořava gravity. The conservation equation
comes from the clock field equation of motion, which
reads

∇a

[

Ea − 2λ̃ua
]

= 0. (68)

Decomposing this equation into parallel and perpendic-
ular components, we find evolution equation for µ̃,

£uµ̃ = ∇aEa⊥. (69)

Since the aether equation of motion is not imposed, this
means the “dark matter” may be generated or destroyed
along the flow of ua. Non-conservation of the “dark mat-
ter as an integration constant” was pointed out in [13],
where it was suggested that this could provide a mecha-
nism for the generation of dark matter during the early
universe. In that paper, it was assumed that the the-
ory agrees with general relativity in the IR, so that the
coupling parameters ci are zero. (Recall that the La-
grange multiplier term results in nonzero µ̃ even when the
aether couplings are zero.) In this limit, Ea = 0, so we
would recover the conservation equation £uµ̃ = 0 were
it not for the higher derivative terms included in the the
full Hořava-Lifshitz theory [13]. We note that the non-
conservation of µ̃ is potentially problematic. Apparently
nothing enforces that −µ̃ remain positive, so instabilities
might arise.9

7 For some closely related theories, see [20, 21, 26–28].
8 In the formulation with the integrated constraint, we would
find the same Einstein equation, with the identification of µ̃ =
uc∇dλ̃

dc

9 Only when µ̃ is conserved due to the aether parameters being
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V. DISCUSSION

In this paper we studied a variety of aether theories in-
cluding and modifying Einstein-aether theory and the IR
limit of Hořava-Lifshitz gravity (khronometric gravity),
which differ only in how the aether is constructed from
the independently varied fields in the action. When those
fields are scalars, their equations of motion are implied by
the other equations of motion, so they may be regarded
as defining fixed background structures. We found that it
can be consistent to include such background structures,
and that they often induce extra degrees of freedom ow-
ing to the loss of diffeomorphism constraints.
The specific structures we considered were the fixed

threading and fixed foliation, as well as a fixed clock field
that could be included in either the threading or foliation
theories. We also considered a non-fixed threading, de-
scribed by a vector field rather than a triple of scalar
fields. For the fixed threading theory, the Einstein equa-
tion was unaltered relative to Einstein-aether theory, but
the perpendicular aether equation of motion and the cor-
responding constraint equations were modified by a con-
stant source term. The foliation theory without addi-
tional structure is equivalent to nonprojectable Hořava
gravity. For this theory, the initial value constraints hold
in the adapted gauge, but the Einstein equation differs
from the threading-type theories since the aether appears
naturally as a covector ua.
The addition of the (fixed) clock field ψ modifies the

Einstein equation by an additional term that has the form
of a pressureless dust stress tensor, which can be thought
of as due to an internal energy density of the aether.
We therefore called such aethers “ponderable.” The fixed
clock also leads to a violation of the ψ component of the
initial value constraint. When a fixed clock is added
to the fixed threading theory, we obtain a “fixed aether”
theory, which is equivalent to describing the aether by a
vector field that is not varied in the action. When a fixed
clock is added to the foliation theory and constrained to
be constant on the preferred foliation, the projectable
version of Hořava gravity results.
The appearance of a dark-matter-like component in

the Einstein equation is also a feature of the recently
proposed mimetic dark matter theory [20]. In this the-
ory, the physical metric gab is constructed from another
metric ḡab and a scalar φ such that the gradient ∇aφ
is unit by construction, gab = (ḡcd∇cφ∇dφ)ḡab. It was
shown in [30] that this theory is equivalent to ordinary
Einstein gravity, supplemented with a scalar field φ that
appears in the action only via the constraint term im-
posing that ∇cφ is unit. The discussion of section IVC
therefore demonstrates that this theory is equivalent to
projectable Hořava gravity with vanishing aether action,

zero has it been shown that fluctuations around positive energy
backgrounds have positive energy [3, 29].

that is, with the parameters ci set to zero.10 Thus, the
mimetic dark matter theory can be viewed as a special
case of the aethereal theories described here.
The threading theory formalism discussed here resem-

bles the Lagrangian description of perfect fluids. The
aether, constructed from the comoving potentials ϕI ,
acts as a zero temperature “vacuum fluid”, according
to the thermodynamic relations developed in [18]. The
vanishing of the temperature is closely tied with the en-
hanced symmetry of the aether fluid, which includes all
ϕI -diffeomorphisms rather than only the volume preserv-
ing ones. It was mentioned in [31] that such an enhanced
symmetry is not possible without adding more fields, but
this is true only for an action that is first order in deriva-
tives.11 The lowest order terms in the aether action in-
volve second derivatives of ϕI . A derivative expansion for
a fluid action was discussed in [18, 32], and the aethereal
terms invariant under all ϕI -diffeomorphisms appear in
the latter reference.
The clock field ψ in the aether theories is analogous

to the phase field introduced in [18] for fluids carrying
a conserved particle number. In particular, it possesses
the same “chemical shift” symmetry, ψ 7→ ψ + υ(ϕI),
which, in the aethereal case, corresponds to a freedom to
shift the initial value of the clock along each thread. The
scalar y = ua∇aψ has a thermodynamic interpretation
as the chemical potential for particles charged under the
shift symmetry. In our aethereal setting, however, y is

10 More generally, all the background clock theories discussed here
can be formulated using the ḡab metric construction of [20] (see
also [29] for the case of a vector field), instead of imposing the
unit constraint with a Lagrange multiplier term. If we define the
physical metric as gab = (ḡcducud)ḡab for a covariant aether, or
as gab = (ḡcdu

cud)−1ḡab for a contravariant aether, the aether
vector automatically has unit norm with respect to the physical
metric. The action depends only on the conformal class of ḡab, so
the ḡab variation gives a trace free equation, (Gab −Tab)− (G−
T )uaub = 0, where Gab and Tab are the variational derivatives of
the action with respect to gab, and the traces G and T are their
contractions with gab. For the fixed aether theory, there is no ua

variation equation, and instead of the usual Einstein equation we
have only this Einstein equation with an additional source with
pressureless dust energy-momentum tensor and energy density
G− T . Thus we have recovered the ponderable aether discussed
in the text. The equivalence to a mimetic dark matter theory
arises in the case when there is no aether action. Then Tab is
just the matter stress tensor and is conserved when the matter
satisfies its equation of motion, so the Bianchi identity implies
the conservation law ∇a[(G−T )ûaûb] = 0. The extra term thus
behaves in this case as geodesic dark matter dust.

11 With the addition of another scalar field it is possible. An ex-
ample is provided by a Lagrangian F (y) that is a function only
of the chemical potential y = ua∇aψ, where ua is the fluid ve-
locity (15). This would not contain higher derivative terms, and
it is invariant under full ϕI diffeomorphisms (not just volume
preserving ones). It also has the chemical shift symmetry, so
its symmetries are the same as those of the fixed aether theory.
It can be shown that an F (y) Lagrangian possesses the same
dynamics as an uncharged perfect fluid. It cannot produce an
equation of state p = 0, whereas the formulation using only ϕI

cannot produce ρ = 0.
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fixed everywhere equal to unity by construction of ua

[see, e.g. Eq. (46)], and ψ measures proper time along
the flow.
Having elucidated the basic structure of these theories,

it is interesting to consider the phenomenological conse-
quences of the presence of the background structures. In
a companion paper [19], we considered some of the as-
trophysical and cosmological implications of the source
densities for the threading-type theories. In particular,
we examined whether the new component in the Ein-
stein equation for ponderable aethers with fixed clocks
could play the role of dark matter. The two main re-
sults of that analysis are that (i) the “aethereal dark
matter fluid” has pressure, hence does not seed struc-
ture formation on sub-horizon scales, so another dark
matter component must be present, and (ii) during mat-
ter domination, the presence of a homogeneous ponder-
able aether energy density causes problematic growth
of the isocurvature modes on super-horizon scales. In
particular, for isocurvature amplitudes of order 10−5 at
radiation-matter equality (which would be the value ex-
pected from inflation [33]), the growth at large scales
becomes inconsistent with CMB and large scale struc-
ture observations when the ponderable aether contributes
more than 1% of the homogeneous energy density. On
the other hand, these results do not apply to the “dark
matter as an integration constant” [13] in projectable
Hořava gravity. That theory results from taking the limit

ca → ∞, cω → ∞ of Einstein-aether theory [4, 9]. In that
limit the dark matter fluid is pressureless, and the large-
scale isocurvature modes are decaying.

Finally, it should perhaps be emphasized that, in a
theory with conserved “aethereal dark matter” current,
the primordial value of the internal energy density of the
aether would be driven very nearly to zero if there is
an early period of inflation. This leads to the curious
conclusion that the nondynamical and dynamical aether
theories could appear to be essentially equivalent in their
phenomenological predictions.
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[3] D. Blas, O. Pujolàs, and S. Sibiryakov, J. High Energy
Phys. 2009, 029 (2009), arXiv:0906.3046v2 [hep-th].
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