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We investigate properties of material ejected dynamically in the merger of black hole-neutron
star binaries by numerical-relativity simulations. We systematically study the dependence of ejecta
properties on the mass ratio of the binary, spin of the black hole, and equation of state of the
neutron-star matter. Dynamical mass ejection is driven primarily by tidal torque, and the ejecta is
much more anisotropic than that from binary neutron star mergers. In particular, the dynamical
ejecta is concentrated around the orbital plane with a half opening angle of 10◦–20◦ and often
sweeps out only a half of the plane. The ejecta mass can be as large as ∼ 0.1M⊙, and the velocity is
subrelativistic with ∼ 0.2–0.3c for typical cases. The ratio of the ejecta mass to the bound mass (disk
and fallback components) is larger, and the ejecta velocity is larger, for larger values of the binary
mass ratio, i.e., for larger values of the black hole mass. The remnant black hole-disk system receives
a kick velocity of O(100) km s−1 due to the ejecta linear momentum, and this easily dominates the
kick velocity due to gravitational radiation. Structures of postmerger material, velocity distribution
of the dynamical ejecta, fallback rates, and gravitational waves are also investigated. We also discuss
the effect of ejecta anisotropy on electromagnetic counterparts, specifically a macronova/kilonova
and synchrotron radio emission, developing analytic models.

PACS numbers: 04.25.D-, 04.30.-w, 04.40.Dg

I. INTRODUCTION

Coalescences of black hole-neutron star binaries are
one of the most promising gravitational-wave sources for
ground-based laser-interferometric detectors [1–3], along
with those of binary neutron stars and binary black holes.
The sensitivity of these detectors will reach a sufficiently
high level in the coming years to detect gravitational
waves from compact binary coalescences more often than
once a year [4, 5]. The first direct detection of gravita-
tional waves must have dramatic impact on fundamen-
tal physics. Furthermore, gravitational waves from bi-
naries involving neutron stars will tell us neutron-star
properties like the radius, compactness, and tidal de-
formability. Knowledge of neutron-star properties will
allow us to constrain the equation of state of nuclear- and
supranuclear-density matter, and therefore gravitational
waves will also give us valuable information on nuclear
physics.

Simultaneous detection of electromagnetic radiation
from compact binary mergers, i.e., electromagnetic coun-
terparts to gravitational waves, is eagerly desired [6, 7].
It will support gravitational-wave detection and en-
hance scientific returns from each coalescence event.
For example, source localization on the celestial sphere
is much more accurate with electromagnetic instru-

ments than with gravitational-wave detector networks
[8]. Gravitational-wave data analysis benefits from accu-
rate localization by solving degeneracy between the sky
location and other amplitude parameters such as the lu-
minosity distance. Accurate localization of the source is
also indispensable to find its host galaxy and to deter-
mine the cosmological redshift. By combining these in-
formation, the luminosity distance-redshift relation will
be derived without relying on the cosmic distance lad-
der,1 and we will obtain a novel method to test cos-
mological models [10]. Besides, effective sensitivity of
gravitational-wave detector is improved if we could know
the coalescence time and/or sky location of a binary from
electromagnetic counterparts [11].
Among the candidates of electromagnetic counter-

parts, a short-hard gamma-ray burst and its afterglow
are vigorously studied both theoretically and observa-
tionally (see Refs. [12, 13] for reviews). While whether
compact binary coalescences can really drive short-hard
gamma-ray bursts is still an open question, future simul-
taneous detection with gravitational-wave chirp signals
will prove this hypothesis. Prompt emission is so bright

1 See also Ref. [9] for an alternative approach free from electro-
magnetic observation.
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that it can be easily detected by gamma-ray satellites
within the horizon distance of gravitational-wave detec-
tors. Accurate localization is possible if an associated
afterglow is observed at longer wavelengths. Short-hard
gamma-ray bursts do not, however, always serve as coun-
terparts to gravitational waves because of their presum-
ably jet-like geometry. If the typical jet opening angle
is . 10◦ as suggested by jet-break observations [14, 15],
the fraction of gravitational-wave events accompanied by
observable short-hard gamma-ray bursts will be a few %
at best.
In recent years, electromagnetic counterparts have

been getting a lot more attention, and many isotropic
emission models are studied. Most of the proposed
models require ejection of unbound material from the
binary,2 where examples include a macronova/kilonova
powered by decay heat of unstable r -process elements
[20–23] and nonthermal radiation from electrons acceler-
ated at blast waves between the ejecta and interstellar
medium [24, 25]. Possible emission from the ejecta will
be isotropic if the ejecta has spherical geometry and/or a
subrelativistic velocity. Such a “4π-counterpart” is ideal
for follow-up observations, because it will accompany a
majority of gravitational-wave events unlike beamed ra-
diation of short-hard gamma-ray bursts.
Despite its forty-years-old history in theoretical astro-

physics [26, 27], mass ejection from the compact binary
merger is a young research topic in numerical relativ-
ity. Most of the previous black hole-neutron star binary
simulations in numerical relativity were performed aim-
ing at deriving gravitational waves in the late inspiral
and merger phases and at clarifying properties of rem-
nant accretion disks formed after tidal disruption of neu-
tron stars (see Ref. [28] and references therein for ear-
lier work). Mass ejection has not been studied in de-
tail compared to these topics in full general relativity
[29–33], whereas substantial effort to clarify mass ejec-
tion has been made in simulations performed in New-
tonian gravity or approximate general relativity [34–36]
(see also Refs. [37–43]). It is pointed out that dynamical
ejecta from binary neutron star mergers become less mas-
sive and more isotropic in full general relativity [44] or
conformal flatness approximation [45] than in Newtonian
gravity [35, 46, 47]. The difference due to realism of the
gravity should be most pronounced when a black hole is
involved as already suggested by existing work. Thus, it
is natural that numerical relativity is vital to study mass
ejection from the black hole-neutron star binary merger.
In this study, we perform simulations of black hole-

neutron star binary mergers using numerical-relativity
code SACRA [48] and investigate dynamical mass ejec-
tion extending our preceding work [49]. In particular, we
focus on kinematical properties of dynamical ejecta such

2 Precursor emission may not require mass ejection [16–19], and
we do not consider them in this study.

as the mass and velocity. Compared to our previous sim-
ulations [29], we adopt large computational domains to
track long-term evolution of ejecta. Because the dynam-
ical ejecta has a velocity comparable (a few tens of %)
to the speed of light as shown in this study, the large
computational domains are essential for reliable estima-
tion of ejecta properties. We also improve the treatment
of artificial atmosphere (inevitable in conservative hydro-
dynamic schemes) from our previous work [29, 48, 50–53]
and confirm that characteristic quantities of dynamical
ejecta such as the mass and velocity depend only weakly
on the atmosphere. We do not, however, study disk winds
expected to be driven by unincorporated physics.
This paper is organized as follows. Section II describes

our models of black hole-neutron star binaries including
neutron-star equations of state. Our numerical meth-
ods are also described, and diagnostics of simulations are
presented with particular emphasis on the ejecta defined
as unbound material. Numerical results of the simula-
tions are presented in Sec. III. After briefly reviewing
the merger dynamics in Sec. III A, dynamical mass ejec-
tion processes are described in Sec. III B. The depen-
dence of characteristic quantities on binary parameters
is discussed in Sec. III C, and the material structure is
investigated in Sec. III D. We also study fallback mate-
rial, remnant black hole-disk systems, and gravitational
waves in Sec. III E, Sec. III F, and Sec. IIIG, respec-
tively. Possible electromagnetic counterparts from black
hole-neutron star binaries are discussed based on the re-
sults of simulations in Sec. IV. Specifically, Sec. IVA de-
scribes the macronova/kilonova and Sec. IVB describes
synchrotron radio emission from accelerated electrons.
Section V is devoted to a summary. Numerical values
of characteristic ejecta quantities derived by simulations
are summarized in Table III. Readers interested primar-
ily in electromagnetic counterparts should read Sec. IV,
of which important results are described in Ref. [49].
Notational conventions are summarized as follows.

Throughout this paper, we adopt geometrical units in
which G = c = 1, where G and c are the gravitational
constant and speed of light, respectively. Exceptionally,
c is sometimes inserted for clarity when we discuss the ve-
locity of ejecta or fluid element. Greek and Latin indices
denote the spacetime and space components, respec-
tively. The black-hole mass, neutron-star gravitational
mass, and neutron-star circumferential radius in isola-
tion are denoted by MBH, MNS, and RNS, respectively.
The dimensionless spin parameter of the black hole,3 to-
tal mass of the system at infinite separation, mass ra-
tio, and compactness of the neutron star are defined as
χ ≡ SBH/M

2
BH, m0 ≡ MBH +MNS, Q ≡ MBH/MNS, and

C ≡ MNS/RNS, respectively, where SBH is the black-hole
spin angular momentum.

3 In our previous work [29, 52, 53], this parameter is denoted as a.
We change the convention, because a is sometimes reserved for
the specific spin angular momentum, SBH/MBH = χMBH.
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II. NUMERICAL METHOD

A. Zero-temperature equation of state

We model equations of state of zero-temperature
neutron-star matter by piecewise polytropes [54]. Neu-
tron stars in compact binaries right before the merger will
be cold enough to be modeled by zero-temperature equa-
tions of state (see, e.g., Ref. [55]). However, the realistic
equation of state of neutron-star matter is not known
precisely yet. Therefore, it is necessary to adopt vari-
ous equations of state systematically to span a plausible
range of neutron-star properties. Piecewise polytropes
are suitable for this purpose, because those with one and
three pieces for crust and core regions, respectively, are
known to be able to approximate nuclear-theory-based
equations of state accurately with a small number of pa-
rameters [54]. Following Ref. [54], we employ piecewise
polytropes of the form

P (ρ) = κiρ
Γi (ρi ≤ ρ ≤ ρi+1), (1)

where P is the pressure and ρ is the rest-mass density,
with i ∈ {0, 1, 2, 3} in this study. It is always assumed
that ρ0 = 0 and ρ4 → ∞. We fix parameters for the
lowest-density, crust region to be

Γ0 = 1.356 923 95, (2)

κ0 = 3.998 736 92× 10−8 (g cm−3)
1−Γ0

. (3)

We further set ρ2 = 1014.7 g cm−3 ≈ 5.0× 1014 g cm−3

and ρ3 = 1015.0 g cm−3 to reduce the number of free pa-
rameters. Requiring the continuity of P (ρ), each piece-
wise polytrope is characterized by four parameters. We
choose the free parameters to be the pressure at ρ2, de-
noted by P2 = P (ρ2), and adiabatic indices for the core,
{Γ1,Γ2,Γ3}.
Table I lists parameters of piecewise polytropes

adopted in this study as well as neutron-star properties
computed using them. The naming convention and pa-
rameters follow Ref. [54]. APR4 [56] is computed by a
variational method incorporating three-nucleon interac-
tions and relativistic boost corrections. This equation of
state gives the smallest radius of a 1.35M⊙ neutron star,
R1.35 = 11.1km, and thus APR4 is the softest equation
of state among those adopted in this study. Accordingly,
tidal disruption is less pronounced for neutron stars mod-
eled with APR4 than those modeled with the other equa-
tions of state. ALF2 [57] is a hybrid equation of state
obtained combining a nucleonic, APR-type equation of
state at low density and a quark-matter equation of state
with quantum chromodynamics corrections at high den-
sity. H4 [58, 59] is computed by relativistic mean-field
theory incorporating hyperons with the stiffest possible
parameters (at the time). MS1 [60] is also derived by rel-
ativistic mean-field theory for nucleonic matter and gives
R1.35 = 14.4km, which is the largest value in this study.
Thus, MS1 is an extreme example with which tidal dis-
ruption occurs most violently.

In practice, a very-high-density regime is not rele-
vant to black hole-neutron star binary coalescences as
far as canonical-mass neutron stars with MNS ≈ 1.35M⊙

[61, 62] are concerned. The reason for this is that the
maximum rest-mass density of the system, i.e., the cen-
tral density of the neutron star and maximum density in
the remnant accretion disk, is a decreasing function of
time except for subdominant oscillations. The rest-mass
density at the center of an isolated 1.35M⊙ neutron star,
ρ1.35, never exceeds ρ3 for the equations of state adopted
in this study (see Table I), and hence Γ3 never plays a
role in black hole-neutron star binary coalescences. For
MS1, even Γ2 is irrelevant, because ρ1.35 is lower than
ρ2.

4 This situation is in stark contrast to that of binary
neutron star coalescences, which depend crucially on the
high-density regime of equations of state.
In this study, we regard quantities associated with

1.35M⊙ neutron stars as characteristic quantities of the
equation of state rather than the maximum mass Mmax,
which is sensitive to behavior of matter at high density.
Table I shows the baryon rest mass M∗, compactness C,
quadrupolar tidal Love number k [63, 64], and dimen-
sionless quadrupolar tidal deformability Λ ≡ (2/3)kC−5

of a 1.35M⊙ neutron star, in addition to R1.35, ρ1,35, and
Mmax. Note that all the equations of state can support
∼ 2M⊙ neutron stars and satisfy constraints from ob-
servations of massive pulsars [65, 66], and thus they are
possible candidates of the realistic equation of state.

B. Initial condition

We adopt quasiequilibrium states of black hole-neutron
star binaries as initial data of our simulations in the same
manner as Refs. [29, 52, 53]. Here, we briefly describe
the computational method of quasiequilibrium states,
and the details are found in Refs. [29, 67]. Numerical
computations are performed using multidomain spectral
method library LORENE [68].
We solve a subset of the Einstein equation and the

hydrostatic equilibrium equations assuming the exis-
tence of helical symmetry. Hamiltonian and momen-
tum constraints are solved by a mixture of the con-
formal transverse-traceless decomposition [69] and ex-
tended conformal thin-sandwich formulation [70, 71] im-
posing the spatial conformal flatness, maximal slicing,
and preservation of them in time. The singularity as-
sociated with the black hole is handled in the puncture
framework [72], and thus we obtain initial data of the in-
duced metric γij and extrinsic curvature Kij everywhere
on the initial hypersurface (except for the exact location
of the puncture, with which simulation grids are chosen

4 This means that two-piecewise polytropes adopted in Refs. [29,
52, 53] can fully replace four-piecewise polytropes adopted here
for modeling such a stiff equation of state in simulations of black
hole-neutron star binary coalescences.
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TABLE I. Parameters and key ingredients of the adopted equations of state, where P2 (the pressure at ρ = 1014.7 g cm−3) is
shown in units of dyne cm−2. Mmax is the maximum gravitational mass of a spherical neutron star for a given equation of
state. R1.35, ρ1.35, M∗,1.35, C1.35, k1.35, and Λ1.35 are the circumferential radius, central rest-mass density, baryon rest mass,
compactness, quadrupolar tidal Love number, and dimensionless quadrupolar tidal deformability of a 1.35M⊙ neutron star,
respectively.

Model log10(P2) Γ1 Γ2 Γ3 Mmax[M⊙] R1.35 (km) ρ1.35 (g cm−3) M∗,1.35[M⊙] C1.35 k1.35 Λ1.35

APR4 34.269 2.830 3.445 3.348 2.20 11.1 8.9× 1014 1.50 0.180 0.0908 323
ALF2 34.616 4.070 2.411 1.890 1.99 12.4 6.4× 1014 1.49 0.161 0.120 734
H4 34.669 2.909 2.246 2.144 2.03 13.6 5.5× 1014 1.47 0.147 0.115 1110
MS1 34.858 3.224 3.033 1.325 2.77 14.4 4.2× 1014 1.46 0.138 0.132 1740

not to coincide). The neutron-star matter is modeled by
a perfect fluid expressed by an energy-momentum tensor
of the form

Tµν = ρhuµuν + Pgµν , (4)

where h ≡ 1 + ε + (P/ρ) is the specific enthalpy, ε is
the specific internal energy, and uµ is the fluid four-
velocity. We further assume that the fluid is in a zero-
temperature and irrotational state during the computa-
tion of initial data, and hydrostatic equilibrium configu-
rations are obtained by solving the continuity equation
and local energy-momentum conservation equation [73–
76].
Parameters characterizing a black hole-neutron star

binary are specified in initial data computations (see
Refs. [29, 67] for the details). For simplicity, we always
choose MNS to be a typical mass of observed binary neu-
tron stars, MNS = 1.35M⊙, in this study [61, 62]. With
this choice, the black-hole mass, MBH, is uniquely de-
termined by the mass ratio, Q, which we regard as an
independent parameter instead of MBH itself. We only
consider cases in which the spin angular momentum of
the black hole is zero or aligned with the orbital angu-
lar momentum of the binary,5 and thus the spin is fully
characterized by its dimensionless magnitude, χ. The or-
bital angular velocity of a binary Ω is determined by a
force-balance condition at the center of the neutron star
for a given orbital separation. We use a dimensionless
orbital angular velocity m0Ω to characterize initial data
rather than the orbital separation.

C. Dynamical simulation

Our numerical simulations are performed using an
adaptive-mesh-refinement code SACRA [48]. The Ein-
stein evolution equations are solved in a Baumgarte-
Shapiro-Shibata-Nakamura formulation [78, 79]. We
evolve the conformal-factor variableW , conformal metric
γ̃ij , conformal connection function Γ̃i, extrinsic curvature

5 We will report results of cases in which the black-hole spin an-
gular momentum is inclined with respect to the orbital angular
momentum in a subsequent paper [77].

trace K, and conformally-weighted traceless part of the
extrinsic curvature Ãij defined by

W ≡ γ−1/6 , γ̃ij ≡ γ−1/3γij , Γ̃
i ≡ −∂j γ̃

ij , (5)

K ≡ Kijγ
ij , Ãij ≡ γ−1/3

(

Kij −
1

3
Kγij

)

, (6)

where Cartesian coordinates are adopted. The lapse
function α and shift vector βi are evolved by a moving
puncture gauge condition [80, 81] of the form

(

∂t − βj∂j
)

α = −2αK, (7)

(

∂t − βj∂j
)

βi =
3

4
Bi, (8)

(

∂t − βj∂j
)

Bi =
(

∂t − βj∂j
)

Γ̃i − ηsB
i, (9)

where Bi is an auxiliary vectorial variable and ηs is a free
parameter. Initial data of the lapse function are given by
α = W , and the shift vector is initialized as βi = 0 with
Bi = 0. We adopt ηs ≈ 1/m0 in this study.
Hydrodynamic evolution equations are solved by a

high-resolution shock-capturing central scheme [82] with
third-order piecewise parabolic reconstruction [83]. We
evolve the conserved rest-mass density ρ∗, conserved mo-
mentum density ρ∗ûi, and conserved energy density ρ∗ê
defined via

ρ∗ ≡ ρα
√
γut , ûi ≡ hui , ê ≡ hαut − P

ραut
. (10)

Equations of state adopted in dynamical simulations
comprise cold and thermal parts. The former is taken
to be piecewise polytropes described in Sec. II A, and
the latter is given by an ideal-gas-like form

Pth = (Γth − 1)ρεth, (11)

where the thermal-part specific internal energy is defined
by εth(ρ, ε) ≡ ε−εcold(ρ) with εcold(ρ) the cold-part spe-
cific internal energy computed by piecewise polytropes.
Total pressure is given by P = Pcold(ρ)+Pth(ρ, ε), where
Pcold(ρ) is computed by piecewise polytropes. We choose
a fiducial value of Γth to be 1.8 following Ref. [44] (see
also Ref. [84]), and also adopt 1.6 and 2.0 for selected
models (see App. A 3). Note that these values are larger
than that adopted in our previous work [29, 52, 53], in
which Γth is always chosen to be Γ0 (see Eq. (2)).
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In our simulations, all the postmerger material is gov-
erned effectively by the same sub-nuclear-density equa-
tion of state irrespective of the adopted piecewise poly-
trope. Specifically, when the rest-mass density falls below
ρ1, the equation of state is given by the sum of the crust
polytrope and thermal correction,

P (ρ < ρ1, ε) = κ0ρ
Γ0 + (Γth − 1)ρεth. (12)

The values of ρ1 are computed as (κ0ρ
Γ1

2 /P2)
1/(Γ1−Γ0)

for each piecewise polytrope (see Sec. II A) and take 0.9–
2× 1014 g cm−3. The rest-mass density never exceeds
these values after tidal disruption of neutron stars.
An artificial atmosphere has to be set carefully to study

mass ejection accurately. According to Ref. [44], we put
an atmospheric density floor of the form

ρ∗,at = fatρ∗,0 min

[

1,

(

Rcrit

r

)nat
]

, (13)

where ρ∗,0 is the maximum (conserved) rest-mass den-
sity of the initial configuration (see Ref. [48] for our
previous treatment). We typically choose fat = 10−12

and nat = 3, and vary them for selected models (see
App. A 2). The critical radius Rcrit is chosen to be
L/16, where L is the size of the computational domain
on one side (see below). The atmospheric velocity is set
to be zero, and the atmospheric pressure is given by zero-
temperature equations of state.
The grid structure of SACRA is summarized as follows.

Computational domains are composed of nested equidis-
tant Cartesian grids, and each grid has (2N + 1, 2N +
1, N + 1) points in (x, y, z) directions. The equatorial
symmetry is imposed on the z = 0 plane. We adopt
N = 60 as a fiducial value, with which the neutron-star
radius is covered by & 50 points in the finest grid. We
also perform simulations with N = 40 and 48 for se-
lected models to check the convergence of ejecta prop-
erties (see App. A 1). The outer boundary is a cuboid
covering (x, y, z) ∈ [−L : L] × [−L : L] × [0 : L], and
outgoing-wave boundary conditions are imposed except
for the z = 0 plane. As for the adaptive-mesh-refinement
grid structure, we prepare lc coarser nonmoving grids
and lf finer moving grids. Namely, we have lc + 2lf
computational grids spanning lc + lf refinement levels,
which we always choose to be 9 in this study. The non-
moving grids are fixed around an approximate center of
mass throughout the simulation. One set of the mov-
ing grids follows the black hole, and the other set fol-
lows the neutron star. Starting from the coarsest level as
l = 0, the lth level has a grid spacing ∆xl ≡ L/(2lN),
and we specifically denote the grid spacing at the finest
level by ∆x ≡ L/(2lc+lf−1N). Finally, time steps of
all the moving grids are chosen by setting the Courant-
Friedrichs-Lewy factor to be 0.5, and those of the non-
moving grids are chosen to agree with that of the lcth
level (i.e., the coarsest moving grid). In other words, the
Courant-Friedrichs-Lewy factor is given by 0.5/2lc−l in
the nonmoving grids.

D. Binary model and grid setting

Table II lists black hole-neutron star binary models
considered in this study. We name each model after
the equation of state, mass ratio, and black-hole spin.
For example, APR4-Q3a75 is a binary modeled with the
APR4 equation of state, Q = 3, and χ = 0.75. Re-
call that MNS = 1.35M⊙ for all the models. Table II
also presents the dimensionless initial orbital angular ve-
locity m0Ω0, Arnowitt-Deser-Misner mass M0, and or-
bital angular momentum of the system J0. Here, J0 is
defined from an Arnowitt-Deser-Misner type integral by
subtracting the spin angular momentum associated with
the puncture.

We take the mass ratio, Q, from {3, 5, 7}, and the di-
mensionless spin parameter, χ, from {0.75, 0.5, 0}, where
the spins are always prograde, i.e., parallel to the orbital
angular momentum. Currently, neither the typical mass
nor spin of stellar-mass black holes is known from ob-
servations. Thus, we perform simulations systematically
adopting various values of them along with equations
of state to predict possible outcomes of binary mergers.
Here, Q = 3, 5, and 7 correspond to MBH = 4.05M⊙,
6.75M⊙, and 9.45M⊙, respectively. The low-mass black
hole with ≈ 4M⊙ is consistent with an observation of a
black hole-Be star binary [85], which could evolve into a
black hole-neutron star binary, whereas the existence of
a mass gap around 3–5M⊙ is frequently debated [86, 87].
The middle-mass, ≈ 7M⊙, and massive, ≈ 10M⊙, black
holes are safely expected to exist from observations of
x-ray binaries [86, 87]. The spin parameter is even less
constrained than the mass is [88], and we simply take
various values within our computational capabilities (see
Ref. [31] for simulations of a near-extremal black hole-
neutron star binary). We pay, however, less attention to
high-mass and low-spin black holes. This is because such
black holes are not able to disrupt companion neutron
stars before they reach the innermost stable circular or-
bit [28], and thus the merger process is essentially the
same as that of binary black holes [89]. We also do not
pay attention to retrograde spins, i.e., antiparallel to the
orbital angular momentum, irrespective of the value of Q
due to the same reason.

Table II also shows the adaptive-mesh-refinement grid
structure for each simulation. We always choose (lc, lf ) =
(5, 4) for Q = 3 and (4, 5) for Q = 5 and 7. In all the
cases, the hydrodynamic evolution equations are solved
only within L/2 ≈ 1500km for one side. Because it turns
out later that a typical velocity of dynamical ejecta is
0.2–0.3c, the ejecta motion can be safely tracked over
∼ 10ms. At the same time, the box size is larger than
the initial gravitational wavelength, and thus outgoing-
wave boundary conditions are appropriate there as far
as the gravitational wavelength is covered by & 10 grid
points.
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TABLE II. Key parameters of initial data and grid structures of simulations for models adopted in this study. Names of models
represent the equation of state, mass ratio (Q), and dimensionless spin parameter of the black hole (χ). m0Ω0, M0, and J0 are
the dimensionless initial orbital angular velocity, Arnowitt-Deser-Misner mass, and orbital angular momentum of the system,
respectively. As for grid configurations, lc and lf are the numbers of coarser nonmoving grids and of a half of finer moving
grids, respectively. The grid spacing at the finest level for N = 60 (fiducial resolution) is shown in physical units as well as a
value normalized by m0 ≈ 2(Q+ 1) km. The grid number assigned to the semimajor diameter of the neutron star is given by
Rdiam/∆x for the direction along the binary separation. The box size L is shown in physical units as well as a value normalized
by the initial gravitational wavelength λ0 = Ω0/π.

Model EOS Q χ m0Ω0 M0[M⊙] J0[M
2
⊙] lc lf ∆x (m) ∆x/m0 Rdiam/∆x L (km) L/λ0

APR4-Q3a75 APR4 3 0.75 0.036 5.35 18.74 5 4 162 0.0203 102 2486 3.6
ALF2-Q3a75 ALF2 3 0.75 0.036 5.35 18.74 5 4 186 0.0233 102 2858 4.1
H4-Q3a75 H4 3 0.75 0.036 5.35 18.74 5 4 209 0.0263 102 3215 4.6
MS1-Q3a75 MS1 3 0.75 0.036 5.35 18.74 5 4 228 0.0286 101 3501 5.0
APR4-Q3a5 APR4 3 0.5 0.036 5.35 19.15 5 4 162 0.0203 102 2486 3.6
ALF2-Q3a5 ALF2 3 0.5 0.036 5.35 19.15 5 4 186 0.0233 102 2858 4.1
H4-Q3a5 H4 3 0.5 0.036 5.35 19.15 5 4 209 0.0263 102 3215 4.6
MS1-Q3a5 MS1 3 0.5 0.036 5.35 19.15 5 4 228 0.0286 101 3501 5.0
APR4-Q3a0 APR4 3 0 0.036 5.35 19.98 5 4 162 0.0203 102 2486 3.6
ALF2-Q3a0 ALF2 3 0 0.036 5.35 19.98 5 4 186 0.0233 102 2858 4.1
H4-Q3a0 H4 3 0 0.036 5.35 19.98 5 4 209 0.0263 102 3215 4.6
MS1-Q3a0 MS1 3 0 0.036 5.35 19.98 5 4 228 0.0286 101 3501 5.0

APR4-Q5a75 APR4 5 0.75 0.040 8.04 30.13 4 5 158 0.0132 102 2429 2.6
ALF2-Q5a75 ALF2 5 0.75 0.040 8.04 30.13 4 5 181 0.0152 102 2786 3.0
H4-Q5a75 H4 5 0.75 0.040 8.04 30.13 4 5 205 0.0171 101 3144 3.3
MS1-Q5a75 MS1 5 0.75 0.040 8.04 30.13 4 5 219 0.0183 102 3358 3.6
APR4-Q5a5 APR4 5 0.5 0.040 8.04 30.99 4 5 158 0.0132 102 2429 2.6
ALF2-Q5a5 ALF2 5 0.5 0.040 8.04 30.99 4 5 181 0.0152 102 2786 3.0
H4-Q5a5 H4 5 0.5 0.040 8.04 30.99 4 5 205 0.0171 101 3144 3.3
MS1-Q5a5 MS1 5 0.5 0.040 8.04 30.99 4 5 219 0.0183 102 3358 3.6

APR4-Q7a75 APR4 7 0.75 0.044 10.73 40.96 4 5 153 0.0096 103 2358 2.1
ALF2-Q7a75 ALF2 7 0.75 0.044 10.73 40.96 4 5 179 0.0112 101 2751 2.4
H4-Q7a75 H4 7 0.75 0.044 10.73 40.96 4 5 200 0.0125 102 3072 2.7
MS1-Q7a75 MS1 7 0.75 0.044 10.73 40.96 4 5 215 0.0135 102 3301 2.9
APR4-Q7a5 APR4 7 0.5 0.044 10.73 42.35 4 5 154 0.0097 102 2372 2.1
ALF2-Q7a5 ALF2 7 0.5 0.044 10.73 42.35 4 5 179 0.0112 102 2743 2.4
H4-Q7a5 H4 7 0.5 0.044 10.74 42.35 4 5 201 0.0126 101 3086 2.7
MS1-Q7a5 MS1 7 0.5 0.044 10.74 42.35 4 5 217 0.0136 101 3329 2.9

E. Diagnostics

1. Ejecta

We analyze global ejecta properties by integrals over
unbound material [44]. We define the ejecta to be un-
bound material identified by a criterion ut < −1, which
becomes correct for a particle moving along its geodesics
in a stationary spacetime. Because we are handling a
fluid in a dynamical spacetime, this criterion is only ap-
proximate and becomes especially poor in the vicinity
of remnant black hole-disk systems. Our computational
domains always extend to & 1000km, where the gravita-
tional potential in geometrical units is . 0.01–0.02, and
thus we expect that typical errors associated with this ap-
proximate criterion are a few %. Strictly speaking, hut

rather than ut is a conserved quantity associated with a
fluid in a stationary spacetime. We check that the results
depend only weakly on the choice of criteria, because
shock heating does not play an important role in dynam-
ical mass ejection from black hole-neutron star binaries

(see Sec. III B). In consideration of the fact that our
current simulations do not incorporate any process other
than shocks responsible for heating and cooling such as
neutrino interaction, we decide to neglect thermal effects
for the purpose of classification. Because h ≥ 1 by defi-
nition, our estimates should be regarded as conservative.
In addition, this allows us to compare our results directly
with those of existing studies in numerical relativity (e.g.,
Refs. [33, 44]).
The rest mass outside the apparent horizon including

both bound and unbound portions is computed by the
integral,

Mr>rAH
≡
∫

r>rAH

ρ∗d
3x, (14)

where rAH is the angle-dependent coordinate radius of
the apparent horizon. The ejecta mass is defined by an
unbound portion of the rest mass as

Mej ≡
∫

r>rAH,ut<−1

ρ∗d
3x. (15)
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We also define the bound mass by

Mbd ≡
∫

r>rAH,ut≥−1

ρ∗d
3x

= Mr>rAH
−Mej, (16)

which may be composed of the remnant disk and fall-
back material. We do not, however, rigorously distin-
guish these two components due to the absence of rea-
sonable criteria.
The kinetic energy of ejecta Tej is defined following

Ref. [44]. First, the total energy of ejecta is defined by

Eej ≡
∫

r>rAH,ut<−1

ρ∗êd
3x, (17)

whereas the gravitational binding energy is not (and can-
not be in general relativity) appropriately subtracted.
Next, the internal energy of ejecta is defined by

Uej ≡
∫

r>rAH,ut<−1

ρ∗εd
3x. (18)

Finally, the kinetic energy of ejecta may be defined by
subtracting the rest mass and internal energy from the
total energy as

Tej ≡ Eej −Mej − Uej. (19)

Although the internal energy is likely to be converted
to the kinetic energy in the long run, we do not count
Uej as a part of Tej in this study. This does not affect
the results, because Uej is smaller than Tej by orders of
magnitude. Using the mass and kinetic energy of ejecta,
we may also define their average velocity as

vave ≡
√

2Tej

Mej
(20)

using the Newtonian relation. It should be cautioned
that the kinetic energy and average velocity defined in
this manner are not calculated taking the gravitational
binding energy associated with remnant black hole-disk
systems into account. This implies that these measures
overestimate asymptotic values when evaluated in the
vicinity of black hole-disk systems independently of the
validity of ut < −1 and that they are reliable only for dis-
tant regions. For this reason, we typically measure the
quantities of ejecta at 10ms after the onset of merger,
when the dominant portion of the ejecta leaves the cen-
tral region but still resides in our computational domains.
We also compute the linear momentum of ejecta, which

indicates the degree of ejecta anisotropy. Components of
the linear momentum of ejecta may be defined by

Pej,i ≡
∫

r>rAH,ut<−1

ρ∗ûid
3x, (21)

where the z component vanishes identically due to the
equatorial symmetry in this study. The magnitude of

the linear momentum is given by

Pej =

√

∑

i

(P 2
ej,i) , (22)

and the center-of-mass velocity of ejecta may be defined
by

vej ≡
Pej

Mej
, (23)

which we call the bulk velocity in this paper. When
the system is symmetric with respect to the equatorial
plane, the bulk velocity vanishes if (but not only if)
the ejecta is axisymmetric. A relation vej ≤ vave al-
ways holds. If the ejecta is modeled by an axisymmet-
ric outflow truncated at an opening angle ϕej, we have
vej = vave sin(ϕej/2)/(ϕej/2). These measures suffer from
the gravitational binding energy in the vicinity of black
hole-disk systems as Tej and vave do. Thus, they should
also be estimated at a distant region. The propagation
direction of ejecta with respect to our coordinate system
may be characterized by an angle defined from the linear
momentum,

Φej ≡ arctan

(

Pej,y

Pej,x

)

. (24)

In addition to these integral quantities, the mass spec-
trum with respect to the asymptotic velocity, or sim-
ply the velocity distribution of ejecta, is estimated. The
asymptotic velocity of each fluid element is defined from
an asymptotic Lorentz factor −ut as

v ≡
√

1− 1

(−ut)2
. (25)

Here, we use −ut instead of the Lorentz factor seen from
the Eulerian observer, αut, because the latter predicts
the lower end of ejecta velocity to be the local escape
velocity rather than zero. To derive the velocity distri-
bution, we only analyze unbound material on the equa-
torial plane and rescale the total mass to Mej measured
over the full region by Eq. (15). To compensate this ge-
ometrical restriction, the mass of each fluid element is
weighted by the distance from the coordinate origin, r,
when computing the total mass of unbound material on
the equatorial plane. This procedure is acceptable for
black hole-neutron star binary mergers, because material
ejected dynamically from neutron stars is concentrated
around the equatorial plane (see Sec. III B).

2. Fallback material

We estimate fallback rates of bound material based
on Newtonian relations [90]. The motion of the bound
material is assumed to follow a ballistic trajectory de-
termined by the energy and angular momentum of each
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fluid element. For this purpose, we only analyze bound
material on the equatorial plane and rescale the total
mass to Mbd measured over the full region by Eq. (16)
in a similar manner to the computation of the velocity
distribution of ejecta.
A fluid element on each grid point of the second largest

(l = 1) domain, which is the largest domain where the hy-
drodynamic evolution equations are solved, is identified
as an isolated test particle with the mass ρ(∆x1)

3 ne-
glecting the spacetime curvature at a selected time slice.
The specific energy (excluding the rest mass) Ẽ and spe-

cific angular momentum J̃ of the particle are estimated
to be

Ẽ = −ut − 1 , J̃ = uϕ, (26)

where we only consider bound material identified by
ut ≥ −1 and therefore Ẽ ≤ 0. We neglect h − 1 in the
same manner as the classification of the bound and un-
bound material. The azimuthal velocity, uϕ, is defined
from Cartesian components by transformation with re-
spect to the coordinate origin, which does not correspond
exactly to the black-hole position nor center of mass (see
discussions in Sec. III E). Assuming the presence of a
central mass Mc, the semimajor axis and eccentricity of
the orbit are given by

afb = −Mc

2Ẽ
, efb =

√

1 +
2ẼJ̃2

M2
c

(27)

in Newtonian gravity. Accordingly, the periapsis and
apoapsis distances are given by rp = afb(1 − efb) and
ra = afb(1 + efb), respectively.
We define the fallback time of each particle to be the

duration to reach the periapsis. The particle is assumed
to obey the Newtonian equation of motion,

dr

dt
=

ur

|ur|

√

2Ẽ +
2Mc

r
− J̃2

r2
, (28)

regarding ur as the radial velocity. This equation can
be integrated analytically to give the fallback time for a
particle at r = ri as

tfb =
Pfb

2
+

ur

|ur|
[I(ra)− I(ri)], (29)

where Pfb ≡ 2π
√

a3fb/Mc is the orbital period and

I(r) ≡
√

2Ẽr2 + 2Mcr − J̃2

2Ẽ

− Mc
√

−8Ẽ3
arcsin

(

2Ẽr +Mc

Mcefb

)

. (30)

Specifically, I(ra) is Pfb/4. It would be useful to recall
that the orbital period is given by

Pfb = 5.5ms
( afb
100km

)3/2
(

Mc

10M⊙

)−1/2

. (31)

For a particle with efb = 0, which appears in the central
region, we simply set tfb = Pfb/2. Physically, compo-
nents with efb ≈ 0 should be regarded as the accretion
disk rather than fallback material, while we do not have
quantitative criteria to distinguish them. Such a par-
ticle does not contribute in any way to the long-term
fallback rate due to its short orbital period. We apply
the same remedy for a particle that happens to satisfy
e2fb < 0 and/or ri < rp due to numerical errors, approxi-
mate identification of the azimuthal velocity, or abuse of
Newtonian relations. In this study, Mc is always approxi-
mated bym0 ignoring the energy loss due to gravitational
waves and existence of the mass outside the black hole,
Mr>rAH

. We checked that the results depend only weakly
on the precise value of Mc.
Finally, the fallback rate is computed by dividing the

material into small segments according to the fallback
time as

Ṁfb(t) ≡
∆M(t)

∆t(t)
, (32)

where ∆M(t) is the mass of fluid elements satisfying
t ≤ tfb < t + ∆t and ∆t(t) is arbitrarily chosen to be
≈ t/10. When we evaluate ∆M(t), the mass of each
fluid element is weighted by r in the same way as done
in the computation of the velocity distribution of ejecta.
It should be cautioned that, however, Ṁfb does not nec-
essarily correspond to the black-hole accretion rate nor
electromagnetic luminosity, because a part of the fall-
back material may be blown off from the disk as a wind
or envelope [91]. We do not discuss the fate of fallback
material in this study.

3. Black hole

Properties of remnant black holes are estimated by
integrals on apparent horizons as in our previous work
[29, 50–53]. Assuming that the spacetime is approxi-
mately stationary, the black-hole mass is estimated by

MBH,f =
Ce

4π
, (33)

where Ce is the equatorial circumferential radius of the
apparent horizon. The spin parameter of the remnant
black hole χf is estimated via the relation of Kerr black
holes,

Cp

Ce
=

√

2r̂+

π
E

(

χ2
f

2r̂+

)

, (34)

where Cp is the polar circumferential radius, r̂+ = 1 +
√

1− χ2
f is the normalized radius of the outer horizon,

and E(z) is an elliptic integral defined by

E(z) =

∫ π/2

0

√

1− z sin2 θdθ. (35)
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Comparisons among different estimates of the spin pa-
rameter suggest that the systematic error associated with
this method is ∆χf . 0.01 [29, 50, 51], and we do not
repeat them here.

4. Gravitational waves

Our method to compute gravitational waves and re-
lated quantities are summarized as follows (see App. B
of Ref. [92] for the details). We extract the Weyl scalar
Ψ4 at ≈ 400M⊙ from the coordinate origin by projecting
onto spin-weighted spherical harmonics with ℓ ∈ {2, 3, 4}
and extrapolate them to null infinity by a perturbative
method [93]. The energy, linear momentum, and angu-
lar momentum carried by gravitational waves are com-
puted by integrating Ψ4 in time [94]. The time integra-
tion for calculating them and for deriving gravitational
waveforms are performed by a fixed frequency integration
method [95]. Because we always impose the equatorial
symmetry, we only consider the z component for the ra-
diated angular momentum and denote it as ∆JGW. The
radiated linear momentum, which only has the x and
y components, is decomposed into the magnitude ∆PGW

and angle ΦGW in the same way as the ejecta (see Eq. (22)
and Eq. (24), respectively). The radiated energy is de-
noted as ∆EGW.

III. RESULT OF SIMULATIONS

In this section, we present results of our numerical
simulations. Numerical values of characteristic quanti-
ties are shown in Table III, to which we refer repeatedly
throughout this section. These values are estimated con-
sistently at 10ms after the onset of merger.6

A. Overview of merger dynamics

We begin with a brief review of the dynamics of black
hole-neutron star binary mergers (see Ref. [28] for de-
tails). Black hole-neutron star binaries evolve as a result
of gravitational radiation reaction and eventually merge.
Our initial conditions are chosen to evolve for ∼ 3.5 to
7.5 orbits before the merger, where the exact numbers de-
pend on model parameters. Eccentricities are estimated
to be e ∼ 0.01–0.02 for all the models using methods de-
scribed in Ref. [92], and they introduce uncertainties of
the same order in ejecta properties (see App. A 4 for the
estimate).
The fate of the system after the merger is determined

primarily by competition between the orbital separation

6 We define the time of the onset of merger, tmerge, by the condi-
tion that a part of neutron-star matter of mass 0.01M⊙ falls into
the apparent horizon in this and also previous work [29, 52, 53].

at which tidal disruption occurs (hereafter, the tidal dis-
ruption radius), rtd, and the radius of the innermost sta-
ble circular orbit, rISCO. If rISCO is larger than rtd, no
appreciable tidal disruption occurs, and the neutron star
is simply swallowed by the black hole. In this case, the
remnant disk, fallback material, and ejecta are all negli-
gible for our astrophysical interest. Although we do not
pay particular attention to such cases in this study, mod-
els like APR4-Q3a0 and ALF2-Q7a5 fall into this cate-
gory (see the next paragraph). By contrast, if rtd is larger
than rISCO, part of the disrupted material spreads around
the black hole in the form of a tidal tail, while more than
a half is still swallowed. Figure 1 shows rest-mass density
profiles on the equatorial plane in the central region at
selected time slices for H4-Q5a75 as an example of this
category. Material that remains outside the apparent
horizon can be divided into bound and unbound mate-
rial, and the former always dominates the latter for the
models considered in this study.7 The bound material
may be further divided into disk and fallback compo-
nents. The unbound component is generated primarily
by tidal torque exerted on the elongated neutron star dur-
ing tidal disruption, and details of the dynamical mass
ejection process are described separately in Sec. III B.
Appreciable tidal disruption occurs when (i) the

neutron-star equation of state is stiff and the compact-
ness is small, (ii) the mass ratio is small, and/or (iii)
the black-hole spin is large (for a prograde orbit). These
three conditions are reflected in our naming convention
of the models. Note that, if we presume MNS to be fixed,
condition (i) can be rephrased as “the neutron-star ra-
dius is large,” and condition (ii) as “the black-hole mass
is small.” On one hand, rtd is expected to scale in the
same way as the mass-shedding radius rms, which is de-
termined by the condition that the black-hole tidal force
becomes equal to the neutron-star self gravity at the stel-
lar surface (see, e.g., Ref. [28]),

rtd ∝ rms ∼ Q1/3RNS, (36)

and the dependence on the black-hole spin is not very
strong [96, 97]. On the other hand, rISCO is written as
r̂ISCO(χ)MBH, where r̂ISCO(χ) is a decreasing function
of the dimensionless spin parameter, χ [98]. Recalling
RNS/MBH = 1/(CQ), we expect the ratio to satisfy

rtd
rISCO

∝ 1

CQ2/3r̂ISCO(χ)
, (37)

and a large value of this ratio should signal apprecia-
ble tidal disruption. This expectation has been verified
by previous studies of disk formation and gravitational-
wave emission [28], and Table III indicates that dynami-
cal mass ejection also becomes efficient when these three

7 Hierarchy among the swallowed mass, bound mass, and unbound
mass could change for extreme binary parameters [31].
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TABLE III. Characteristic physical quantities of the material measured at 10ms after the onset of merger for our fiducial,
N = 60 runs. Mr>rAH

is the rest mass outside the apparent horizon. Mbd and Mej are the bound and unbound masses,
respectively, and the unbound material is identified as the ejecta. Note that Mr>rAH

= Mbd +Mej. Tej and Pej are the kinetic

energy and linear momentum of ejecta, respectively. vave ≡
√

2Tej/Mej and vej ≡ Pej/Mej are the average and bulk velocities
of ejecta, respectively.

Model Mr>rAH
[M⊙] Mbd[M⊙] Mej[M⊙] Tej (erg) Pej[M⊙] vave vej

APR4-Q3a75 0.19 0.18 0.01 5× 1050 2× 10−3 0.23 0.19
ALF2-Q3a75 0.27 0.23 0.05 3× 1051 9× 10−3 0.25 0.21
H4-Q3a75 0.33 0.29 0.05 2× 1051 9× 10−3 0.24 0.20
MS1-Q3a75 0.35 0.28 0.07 4× 1051 0.01 0.25 0.21

APR4-Q3a5 0.08 0.08 2× 10−3 1× 1050 4× 10−4 0.21 0.17
ALF2-Q3a5 0.19 0.17 0.02 1× 1051 5× 10−3 0.24 0.20
H4-Q3a5 0.24 0.21 0.03 1× 1051 6× 10−3 0.23 0.20
MS1-Q3a5 0.26 0.21 0.05 3× 1051 0.01 0.24 0.21
APR4-Q3a0 4× 10−4 4× 10−4 2× 10−5 6× 1047 1× 10−6 0.20 0.08
ALF2-Q3a0 0.03 0.03 3× 10−3 1× 1050 3× 10−4 0.22 0.11
H4-Q3a0 0.10 0.10 6× 10−3 3× 1050 1× 10−3 0.22 0.18
MS1-Q3a0 0.16 0.14 0.02 8× 1050 3× 10−3 0.23 0.19

APR4-Q5a75 0.07 0.06 8× 10−3 5× 1050 8× 10−4 0.25 0.10
ALF2-Q5a75 0.24 0.20 0.05 3× 1051 0.01 0.28 0.21
H4-Q5a75 0.32 0.27 0.05 3× 1051 0.01 0.27 0.22
MS1-Q5a75 0.36 0.28 0.08 6× 1051 0.02 0.28 0.23
APR4-Q5a5 5× 10−4 4× 10−4 9× 10−5 4× 1048 5× 10−6 0.23 0.05
ALF2-Q5a5 0.04 0.03 0.01 8× 1050 7× 10−4 0.27 0.06
H4-Q5a5 0.14 0.12 0.02 1× 1051 4× 10−3 0.26 0.19
MS1-Q5a5 0.23 0.18 0.05 3× 1051 0.01 0.27 0.21

APR4-Q7a75 2× 10−3 2× 10−3 5× 10−4 4× 1049 3× 10−5 0.27 0.06
ALF2-Q7a75 0.07 0.05 0.02 2× 1051 2× 10−3 0.29 0.07
H4-Q7a75 0.19 0.16 0.04 3× 1051 7× 10−3 0.29 0.19
MS1-Q7a75 0.30 0.23 0.07 5× 1051 1× 10−2 0.30 0.23
APR4-Q7a5 1× 10−5 1× 10−5 3× 10−6 1× 1047 1× 10−7 0.23 0.04
ALF2-Q7a5 5× 10−4 3× 10−4 2× 10−4 1× 1049 9× 10−6 0.27 0.05
H4-Q7a5 6× 10−3 3× 10−3 3× 10−3 3× 1050 2× 10−4 0.29 0.06
MS1-Q7a5 0.04 0.02 0.02 1× 1051 1× 10−3 0.30 0.07
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FIG. 1. Rest-mass density profile on the equatorial plane in the central region at selected time slices for H4-Q5a75. Black filled
circles show the interior of apparent horizons. The left, middle, and right panels correspond to a late inspiral phase, tidal tail
formation, and quasistationary remnant accretion disk, respectively. The merger sets in at t = 26.49ms for this model.

parameters (C, Q, and χ) are advantageous for tidal dis-
ruption. The dependence of ejecta properties on these
parameters is discussed in more detail in Sec. III C.

B. Mass ejection process and morphology

We first explain mechanisms of dynamical mass ejec-
tion and general properties of ejecta by closely investi-
gating APR4-Q3a75 in Sec. III B 1. Mass ejection mecha-
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nisms and qualitative trends are the same for all the black
hole-neutron star binary models simulated in this study,
whereas differences in (semi)quantitative properties are
found. We next discuss differences in ejecta geometry
among models in Sec. III B 2. Characteristic quantities
and their differences are described in Sec. III C.

1. Case study: APR4-Q3a75

Figure 2 depicts the typical process of dynamical mass
ejection at tidal disruption for model APR4-Q3a75. Once
tidal disruption sets in, the neutron star is drastically
elongated and forms a tidal tail. While the high-density
innermost part is immediately swallowed by the black
hole, the outer part spreads to a distant orbit and lags
behind. Thus, the tidal tail exhibits a trailing one-armed
spiral structure, and the black hole exerts tidal torque on
the tail, increasing its orbital angular momentum. The
outer part of the tail moves further outward due to the
gain of angular momentum, and the outermost part ac-
quires enough kinetic energy to become unbound from
the system, as marked by black curves in Fig. 2. In the
course of this process, the pressure gradient in the tidal
tail should also boost the outer part. This angular mo-
mentum transport proceeds in an unstable manner until
the tidal tail winds around the black hole and collides
with itself to form a nearly axisymmetric black hole-disk
system. This mechanism generates most of the dynami-
cal ejecta as well as bound material which eventually falls
back to the black hole-disk system.
Although a small amount of unbound material appears

to be ejected toward ϕ ∼ −45◦ with a large velocity
in Fig. 2, where ϕ is the azimuthal angle in spherical
coordinates, this appears to be an artifact created by
the artificial atmosphere and finite grid resolutions as
we discuss in App. A 5. This observation is consistent
with Ref. [33]. The mass, energy, and linear momentum
of this component is negligible compared with the main
component discussed in the previous paragraph, and thus
the values shown in Table III are not affected.
Dynamical mass ejection from black hole-neutron star

binaries is anisotropic [49]. Figure 2 shows that the
ejected material takes a crescentlike shape on the equa-
torial plane during its early evolution for APR4-Q3a75.
Although the relative size of central region occupied by
bound material will become negligible as the rear velocity
approaches zero (see below), the ejecta never sweep out
the whole equatorial plane. Furthermore, it is concen-
trated around the equatorial plane and does not extend
above the central black hole, because this mass ejection
is driven by tidal torque, which works most efficiently in
the equatorial plane. This situation should be contrasted
with dynamical mass ejection from binary neutron stars,
in which quasiradial oscillations of remnant massive neu-
tron stars eject an appreciable amount of material toward
polar regions via shock interaction [44]. To elucidate the
difference, we show the thermal part of specific internal

energy, εth, in Fig. 3. As shocks do not play a role,
the tidal tail including the ejecta is not heated signifi-
cantly except for the self-colliding region of the tidal tail.
The self-colliding shock interaction eventually thermal-
izes and circularizes material in the central region, and a
hot accretion disk is formed. We will discuss properties
of the accretion disk later (see also Sec. III F). Apparent
heating at the outermost part of the tidal tail is caused
by the artificial atmosphere and thus spurious.
Figures 2 and 3 suggest that the dynamical ejecta orig-

inates from the outer core and crust of the neutron star
retaining its very low electron fraction (the number of
electrons per baryon), Ye . 0.1, at zero temperature
[56].8 Because Mej for APR4-Q3a75 is comparable to
the typical mass of neutron star crusts, 0.01M⊙ (see,
e.g., Ref. [99]), the ejecta stripped from the outermost
part of the tidal tail in a highly nonspherical manner
stems not only from the crust but also from the core
(see also Fig. 3 of Ref. [36]). In fact, Mej for other bi-
nary models can easily exceed the typical crust mass.
Nevertheless, the ejecta would not come from the in-
ner core, because the densest part of the neutron star
is swallowed by the black hole and bound material sep-
arates the black hole and ejecta. Thus, the dynamical
ejecta should come mainly from the outer core and partly
from the crust. The absence of shocks suggests that the
low electron fraction of the outer core is not modified
very much during dynamical mass ejection, and this is
consistent with results obtained by previous smoothed-
particle-hydrodynamics simulations [34–36]. Such ejecta
are expected to be a promising site of r -process nucle-
osynthesis producing predominantly second- and third-
peak elements via fission cycling, while the production
of first-peak elements may not accompany [100, 101]. It
has to be cautioned that this estimation is speculative to
some extent, because our simulations are performed with-
out taking the electron fraction into account. We plan
to revisit this topic with more sophisticated equations of
state and neutrino transport schemes [102].
Figure 4 shows the long-term evolution of the dynam-

ical ejecta in the distant region. This figure shows that
the outer edge of the ejecta expands in a nearly homoge-
neous manner after the angular momentum transport by
tidal torque ceases. The azimuthal component of velocity
decreases approximately as r−1 due to angular momen-
tum conservation and soon becomes negligible compared
to the radial component as shown in Fig. 4. This im-
plies that the kinetic energy of ejecta is dominated by
the radial velocity, and thus the average velocity, vave,
estimated from the kinetic energy approximately equals
to the typical radial velocity. Opening angles of ejecta in
the equatorial and also meridional (not shown in Fig. 4)

8 Identifying the origin of postmerger material is much more
difficult in mesh-based simulations than in smoothed-particle-
hydrodynamics simulations. Rigorous confirmation would re-
quire post-process calculations using Lagrangian tracer particles.
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FIG. 2. Rest-mass density profile for APR4-Q3a75 during tidal disruption and dynamical mass ejection. Note the different
spatial and density scales among the columns. Black filled circles show the interior of apparent horizons. Black arrows show
the spatial component of covariant four-velocity, ui. Unbound components satisfying ut < −1 are marked by black curves, and
we checked that contours marking hut < −1 nearly overlap with them. The top, middle, and bottom rows are the xy, xz, and
yz planes, respectively. The merger sets in at t = 18.48ms for this model. This figure should be compared with Figs. 3–5 of
Ref. [44] where binary neutron stars are studied.

planes are approximately conserved, because the direc-
tion of velocity does not change appreciably once hydro-
dynamic interaction becomes negligible. Note that en-
ergy injection by the r -process heating will moderately
change the ejecta geometry [103].
Figure 4 also shows that the radial thickness of the

dynamical ejecta increases in the long-term evolution of
the ejecta, because the ejecta head is faster than the
rear. Specifically, the head will maintain a velocity on
the order of the escape velocity of the neutron star, while
the rear velocity will approach zero (separation of bound
and unbound components) as the material climbs up the
gravitational potential well. The radius of the central
bound region will become negligible compared to the ra-
dial thickness of the dynamical ejecta for exactly the
same reason.
After disk formation, unbound material is newly gen-

erated from the disk region due to shock heating. Figure
5 shows the shock heating-driven disk outflow on the xz,
meridional plane. When the tidal tail collides with itself,
shock interaction increases εth near the contact surface.
Because the rest-mass density is not high in the relevant

region, thermal pressure dominates the cold-part pres-
sure.9 The heated material expands, and some material
is puffed up off the equatorial plane. In addition, shock
interaction circularizes incoming tail material, and thus
the disk region extends radially. Cold fallback material
eventually accumulates and circulates around the outer
edge of hot disk material, as is visible from the right
panel of Fig. 5 at x ≈ 120 km. When the accumulated
cold material becomes very massive, shocks develop be-
tween the cold and hot material. Shock heating occurs
continually at the outer edge of the disk due to this in-
teraction, and material is also puffed up there. Mate-
rial off the equatorial plane exhibits (seemingly) random
motion, and a part of it collides with another part. Fi-
nally, some of the material is ejected from the system as
hot blobs, and the rest eventually falls back to the disk
surface. In contrast to dynamical mass ejection due to

9 This should correspond to the dominance of gas and radiation
pressure over electron degeneracy pressure.
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FIG. 3. Profile of the thermal part of specific internal en-
ergy, εth, for APR4-Q3a75. The time slice is taken to be
the same as the right column of Fig. 2. The black filled cir-
cle, arrows, and curves have the same meanings as those in
Fig. 2. Green dashed curves show contours of ρ = 108, 1010,
and 1012 g cm−3. This figure should be compared with Figs. 7
and 8 of Ref. [44] where binary neutron stars are studied, tak-
ing different spatial scales into account.

tidal torque, this mechanism ejects material mainly to-
ward nonequatorial (vertical) directions. As is evident
from the left panel of Fig. 5, however, the mass of ejecta
generated by this heating is much smaller than that by
the tidal torque. The situation will change if magnetic
fields [104], neutrino heating [36, 105], and/or nuclear
interactions [106, 107] are taken into account, whereas a
significant fraction of the disk material has to be ejected
to dominate over dynamical mass ejection.

2. Variety of ejecta morphology

The ejecta geometry may be characterized by an open-
ing angle in the equatorial plane, ϕej, and that in the
meridional plane, θej, where the latter is defined to refer
only to material with z ≥ 0, taking the equatorial sym-
metry into account. In the nearly spherical mass ejection
expected for supernovae and binary neutron star merg-
ers [44], ϕej and θej should be regarded as 2π and π/2,
respectively. We give estimates based on analytic argu-
ments of the opening angles for black hole-neutron star
binaries in App. B to compare with numerical results.
Figure 6 shows the morphology of dynamical ejecta

on the equatorial plane for various models. This figure
implies that a softer equation of state, a larger mass ra-
tio, and a smaller black-hole spin lead to a larger value
of ϕej when other parameters are fixed.10 In particular
for the case in which mass ejection is not very substan-
tial, an unbound portion revolves more than one orbit
(ϕej > 2π) taking a spiral shape at generation, and rear-
end collisions occur in overlapping directions to form a
ring shape. Traces of the rear-end collisions are observed
as bumps on boundaries between bound and unbound
material (black closed curves) in Fig. 6. In these cases,
the bulk velocity, vej, is lower than 0.1c and is less than
a half of the average velocity, vave (see Table III). The
reason for this is that the ejecta linear momentum, Pej,
is very small for nearly axisymmetric mass ejection.
This catalog suggests that ϕej tends to become large

when tidal disruption occurs only weakly. This tendency
does not agree with the estimate obtained by time-scale
arguments in App. B. A possible explanation of this
tendency is the periastron advance in general relativity,
which is pronounced when tidal disruption occurs very
close to the innermost stable circular orbit [108]. As an
extreme example, orbital parameters of a test particle can
be finely tuned so that it experiences an arbitrarily large
number of revolutions traveling near marginally stable
orbits [109, 110]. Although the ejecta material cannot
be finely tuned due to its finite spatial extent and does
not experience infinitely many revolutions, i.e., ϕej will
not diverge, the dynamical ejecta should be able to have
a large value of ϕej if mass ejection takes place near the
innermost stable circular orbit. Indeed, tidal disruption
should have occurred very close to the innermost stable
circular orbit, i.e., rtd ≈ rISCO, when the ejecta mass
is small but nonnegligible. This is consistent with the
tendency observed in Fig. 6.
From the observational viewpoint, dynamical ejecta

with a large opening angle, ϕej & 2π, may not be very
important, because a large opening angle is attained by
ejecta with small mass, for which electromagnetic radia-
tion is expected to be weak. Strong electromagnetic ra-

10 APR4-Q3a0 might seem to have a smaller ϕej than ALF2-Q3a0,
but this simply reflects the fact that the ejecta of APR-Q3a0 is
extremely tiny.
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FIG. 4. The same as Fig. 2, but on the equatorial plane at late times in the distant region. The black curves and arrows have
the same meanings as those in Fig. 2. In this model, the ejecta linear momentum points toward Φej ≈ −100◦, i.e., close to the
−y direction (see Eq. (24) for the definition).
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FIG. 5. Profile of rest-mass density (left) and thermal part of the specific internal energy (right) on the xz plane for APR4-
Q3a75 after the disk formation. The black arrows and curves have the same meanings as those in Fig. 2. Green dashed curves
show contours of ρ = 108, 1010, and 1012 g cm−3.

diation should accompany substantial mass ejection, say
Mej & 0.01M⊙, where ϕej takes a value close to π in most
cases. However, substantial but nearly axisymmetric dy-
namical mass ejection such as that for ALF2-Q7a75 is
not completely excluded.

The opening angle in the meridional plane does not dif-
fer very much among models as far as substantial mass
ejection occurs. Figure 7 shows morphology of dynam-
ical ejecta on the meridional plane for various models.
This figure shows that the opening angle θej takes val-
ues between 1/5 and 1/3 (or 10◦ and 20◦) for cases with
Mej & 0.01M⊙. The variation of θej up to a factor of . 2
is observed among models with substantial mass ejec-
tion, but the ejecta driven by tidal torque never extend
to, say, θej > 30◦. At the same time, θej is very small
when mass ejection is not efficient. Hence, sphericity is
never achieved even approximately for cases considered
in this study. This figure also suggests that θej tends to
become small when Q is large. This is consistent with
the analytic expectation presented in App. B.

C. Characteristic quantities of ejecta

Here we discuss characteristic quantities of dynamical
ejecta such as the mass and velocity, focusing on their
dependence on binary parameters. As described in the
beginning of this section, we measure ejecta quantities at
10ms after the onset of merger. To check that estimation
at that time gives acceptable results, we first investigate
time evolution of ejecta quantities in Sec. III C 1. Next,
we discuss the dependence in Sec. III C 2.

1. Time evolution

Figure 8 shows the time evolution of Mej, Tej, and Pej

for selected models. All these values suddenly increase
right after the onset of merger. The time evolution in-
dicates that most of dynamical mass ejection progresses
over ≈ 2ms and that the evolution relaxes afterward ir-
respective of the models.
The ejecta mass settles to a quasistationary value

within ∼ 5ms. This confirms the observation in
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FIG. 6. Rest-mass density profile on the equatorial plane for various models at ≈ 10ms after the onset of merger. Unbound
components satisfying ut < −1 are marked by black curves. From left to right, the equation of state is APR4, ALF2, H4,
and MS1. From top to bottom, (Q,χ) is (3, 0), (3, 0.5), (3, 0.75), (5, 0.75), and (7, 0.75). The left panel on the third row is
APR4-Q3a75 described in detail in Sec. III B 1. Traces of rear-end collisions are found as bumps on inner black closed curves
at ϕ ≈ π/2 for ALF2-Q3a0 and APR4-Q5a75 and at ϕ ≈ 0 for APR4Q7a75 and ALF2Q7a75.

Sec. III B 1 that mass ejection due to disk activity does
not contribute significantly to the total mass of ejecta in
our simulations. Therefore, the measurement of Mej at
10ms after the onset of merger is safely justified.

The kinetic energy and linear momentum peak at 1–
2ms after the onset of merger and decrease afterward.
The reason of this decrease is that the ejecta lose en-
ergy in climbing up the gravitational potential well of the

central black hole-disk system. The Newtonian formulas
indicate that Tej measured at 10ms after the onset of
merger overestimates its final value by (m0Mej/r)/Tej ∼
30%–40% for models shown in Fig. 8, and this is consis-
tent with the later evolution. This will result in ∼ 15%–
20% overestimation of the ejecta velocity, and thus this
error has to be kept in mind in the following discussions,
along with those described in App. A. If we measure



16

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

APR4-Q3a00.5c

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

ALF2-Q3a00.5c

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

H4-Q3a00.5c

-1200 -600 0 600 1200

x (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

MS1-Q3a00.5c

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

APR4-Q3a50.5c

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

ALF2-Q3a50.5c

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

H4-Q3a50.5c

-1200 -600 0 600 1200

x (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

MS1-Q3a50.5c

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

APR4-Q3a750.5c

-1200 -600 0 600 1200

y (km)

0

600

1200
z 

(k
m

)

5
6
7
8
9
10
11
12

ALF2-Q3a750.5c

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

H4-Q3a750.5c

-1200 -600 0 600 1200

x (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

MS1-Q3a750.5c

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

APR4-Q5a750.5c

-1200 -600 0 600 1200

x (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

ALF2-Q5a750.5c

-1200 -600 0 600 1200

x (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

H4-Q5a750.5c

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

MS1-Q5a750.5c

-1200 -600 0 600 1200

x (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

APR4-Q7a750.5c

-1200 -600 0 600 1200

x (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

ALF2-Q7a750.5c

-1200 -600 0 600 1200

y (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

H4-Q7a750.5c

-1200 -600 0 600 1200

x (km)

0

600

1200

z 
(k

m
)

5
6
7
8
9
10
11
12

MS1-Q7a750.5c

FIG. 7. The same as Fig. 6 but on a meridional, xz or yz plane, chosen to be the one which is closer to the direction of Φej.
Unbound components satisfying ut < −1 are marked by black curves. From left to right, the equation of state is APR4, ALF2,
H4, and MS1. From top to bottom, (Q,χ) is (3, 0), (3, 0.5), (3, 0.75), (5, 0.75), and (7, 0.75). The left panel on the third row is
APR4-Q3a75 described in detail in Sec. III B 1.

these values at . 5ms after the onset of merger and use
them as proxies for their final values, final ejecta veloci-
ties can be overestimated nearly by 100%. Hence, a large
computational domain is a prerequisite for an accurate
study of mass ejection.11

2. Dependence on binary parameters

We start by looking at the total mass remaining out-
side the apparent horizon,Mr>rAH

= Mbd+Mej, to check
consistency with previous work. Figure 9 plots Mr>rAH

measured at 10ms after the onset of merger (presented in
Table III) as a function of the compactness, C. This fig-
ure supports the discussion in Sec. III A. That is, a small
neutron-star compactness, small mass ratio, and large
black-hole spin increase the strength of tidal disruption

11 The amount of error depends on estimation methods. For exam-
ple, the kinetic energy can also be defined by

∫
ρ∗(−ut − 1)d3x

(F. Foucart, private communication).

resulting in the increase of Mr>rAH
. Our present simula-

tions reproduce quantitatively the results of our previous
simulations [29, 52, 53], as well as those by other authors
(see Ref. [111] for a compilation). The dependence of
Mr>rAH

on C is approximately linear within the range
studied here, until it levels off at . 0.01M⊙. This sug-
gests that the effect of neutron-star properties onMr>rAH

is reasonably captured by the compactness, C.
The ejecta mass, Mej, is correlated with the strength of

tidal disruption as Mr>rAH
is, but the dependence of Mej

on binary parameters is complicated. Figure 10 shows
Mej as a function of C. Plots of Tej and Pej exhibit simi-
lar behavior. For fixed values of Q and χ, Mej increases
as C decreases. This is qualitatively the same as Mr>rAH

and supports the expectation that strong tidal disrup-
tion is accompanied by efficient mass ejection. However,
the correlation is weaker between Mej and C than be-
tween Mr>rAH

and C for fixed values of Q and χ. This
suggests that the boundary separating bound and un-
bound material, ut = −1, is not determined solely by the
compactness but is also sensitive to the stellar structure.
This observation is consistent with Ref. [33], which found
a similar fact by comparing their results with some of our
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FIG. 8. Time evolution of the mass (top), kinetic energy
(middle), and linear momentum (bottom) of ejecta for se-
lected models.

results reported in Ref. [112]. It is reasonable that de-
tailed properties of the equation of state could play an
important role during dynamical mass ejection via effects
such as the pressure gradient and/or central condensa-
tion.

The ejecta mass, Mej, does not depend monotonically
on the mass ratio, Q, for fixed values of C and χ (see
Fig. 10). The reason for this is that the ejecta tends to
comprise a large fraction of material remaining outside
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the apparent horizon for a large mass ratio, especially
when tidal disruption is weak and Mr>rAH

is not very
large. Figure 11 shows the correlation between the ejecta
mass, Mej, and bound mass, Mbd. This figure indicates
that Mej does not decrease very rapidly with the decrease
of Mbd (and equivalently Mr>rAH

) for a large value of
Q. Specifically, Mej ≥ 0.01M⊙ can be achieved when
Mbd & 0.01M⊙ for Q = 7, while it is possible only when
Mbd & 0.1M⊙ for Q = 3. The fact that mass ejection can
be substantial even if tidal disruption is not very strong
for a large value of Q is encouraging for electromagnetic
counterpart searches, because astrophysical black holes
are expected to prefer large mass ratios [86, 87].

The increase of Mej/Mbd with the mass ratio, Q, im-
plies that material remaining outside the apparent hori-
zon tends to become more energetic when Q is larger.
This speculation is supported by the fact that the av-
erage velocity of ejecta, vave, is larger for a larger mass
ratio. Figure 12 shows vave as a function of C. A typical
value of vave is 0.22–0.25c for Q = 3, and this rises to
0.25–0.28c for Q = 5 and 0.28–0.3c for Q = 7. This can
be ascribed to the higher energy of material remaining
outside the apparent horizon for a larger value of Q. The
effect of the mass ratio on ejecta velocities via gravita-
tional potential is pointed out in the context of tidal dis-
ruption of a main sequence star during a nearly parabolic
encounter with a supermassive black hole, where a half of
the star is expected to become unbound [113]. Although
the qualitative trend is the same, dynamical processes
should play a crucial role in realizing this dependence in
the inspiral of black hole-neutron star binaries, because
all the neutron-star material is bound to the system at
the onset of tidal disruption. Note that the systematic
error in vave associated with the residual gravitational
binding described in Sec. III C 1 is not likely to modify
this tendency qualitatively, because all the values of vave
are systematically overestimated.

The dependence of the ejecta mass, Mej, on the black-
hole spin, χ, is simpler than that on C andQ (see Fig. 10).

Namely, a large black-hole spin increases the amount of
ejecta for fixed values of C and Q. We do not find signifi-
cant dependence of Mej/Mbd on χ. The average velocity,
vave, tends to increase as χ increases.
The ejecta mass, Mej, is correlated with the mass re-

maining outside the apparent horizon, Mr>rAH
, as indi-

cated in Fig. 11. Quantitatively, we obtain

Mej

M⊙
= (0.27± 0.07)

(

Mr>rAH

M⊙

)1.3±0.2

, (38)

by fitting all the data shown in Table III with equal
weights, where the range indicates the 1-σ asymptotic
standard error. If we fit the data of models with differ-
ent values of Q separately, relations become

Mej

M⊙
=











(0.41± 0.14) (Mr>rAH
/M⊙)

1.8±0.3 (Q = 3)

(0.23± 0.06) (Mr>rAH
/M⊙)

1.1±0.2
(Q = 5)

(0.15± 0.02) (Mr>rAH
/M⊙)

0.73±0.09 (Q = 7)

.

(39)
It is evident that the power-law index is smaller for a
larger value of Q, and thus the separate fitting may be
more appropriate. These relations give us an approxi-
mate estimate of Mej combined with a fitting formula for
Mr>rAH

provided in Ref. [111]. Sources of the error come
from both simulations and fitting procedures, and only
the latter is taken into account in Eqs. (38) and (39).

D. Ejecta and envelope structure

First in Sec. III D 1, we investigate matter profiles on
the equatorial plane, where most of the material resides.
It includes disk, fallback, and ejecta components. Next,
material distribution along the z axis is investigated in
Sec. III D 2. It will be important for gamma-ray bursts,
because a hypothetical jet (or fireball) can achieve an
ultrarelativistic velocity only if the baryon load is not
very high [114]. Finally, we investigate the velocity dis-
tribution of dynamical ejecta in Sec. III D 3, which is
required to predict electromagnetic radiation quantita-
tively [7, 23]. Detailed structures of material obtained
from our simulations are not expected to be very real-
istic, because the equation of state in a relevant regime
is composed of a single zero-temperature polytrope and
ideal-gas-like thermal correction. We still believe that
our results capture qualitative properties of the mate-
rial structure, particularly for ejecta in distant regions
where hydrodynamic interaction does not play an impor-
tant role.

1. Equatorial plane

Figure 13 shows density profiles along the x and y axes
at 10ms after the onset of merger for selected models.
Corresponding snapshots are given in Fig. 6. The mate-
rial at r . 100 km is in an approximately axisymmetric
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state for all the models. This implies that accretion disks
are formed in the central regions at this time. For a given
value of Mr>rAH

, the rest-mass density in the disk region
is higher when Q is smaller. The reason for this is that
characteristic length scales are proportional to the total
mass of the system, and thus to Q + 1. Accordingly,
characteristic rest-mass density should be proportional
to (Q+1)−2 for a given value of Mr>rAH

. This tendency
was already reported in Ref. [29].

Density profiles outside the disk region depend signif-
icantly on the azimuthal angle. On one hand, the rest-
mass density steeply decreases along directions with no
ejecta. In Fig. 13, the +y direction of APR4-Q3a75 and
−x direction of H4-Q5a75 fall into this category. The +x
direction of MS1-Q7a75 also corresponds to this case, but
a high-density region is still observed up to ≈ 500km, be-
cause the tidal tail has not fallen back and collided with
itself yet in this direction. On the other hand, approxi-
mately constant density plateaus extend up to ∼ 1000km
along directions that the ejecta sweep. For example, the
−x and −y directions of APR4-Q3a75 exhibit sudden
changes of the structure at ≈ 200km from steep decline

to plateaus. Similar situations are also found in the +x
and −y directions of H4-Q5a75 and −x and +y direc-
tions of MS1-Q7a75, except for pronounced low-density
regions between disk regions and plateaus. These gaps
are more prominent for systems with a larger neutron-
star radius at a fixed time (i.e., 10ms) from the onset of
merger and eventually disappear as tidal tails fall back.
When material spreads in a nearly axisymmetric manner
with ϕej & 2π, plateau-like profiles are observed in all
the directions like ALF2-Q3a0. In any case, the plateaus
change to rapidly decaying profiles at their outer edges.

The ejecta as an unbound portion is smoothly con-
nected to a bound portion in the plateau regions. When
the ejecta mass is large, the ejecta tends to occupy a
large fraction of plateau material, particularly along a di-
rection with the fastest expansion. The highest-density
direction always disagrees with the fastest-expanding di-
rection, in which the rest-mass density is typically lower
by an order of magnitude at a given radius than the high-
est. For example, the rest-mass density of ejecta is the
highest in the −y direction for APR4-Q3a75, whereas the
fastest direction is the −x direction. This is because low-
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Solid and dashed portions of each curve denote unbound and
bound material, respectively. Assuming homologous expan-
sion, the radius is multiplied by 2 for the 5ms profile and
divided by 1.5 for the 15ms profile, so that they can be com-
pared directly with that at 10ms. Similarly, the density is
divided by 23 for the 5ms profile and multiplied by (1.5)3 for
the 15ms profile. The velocity is not scaled and is truncated
at ρ = 105 g cm−3 to avoid showing artificial atmospheres
accumulated near ejecta surfaces. Truncation of profiles at
≈ 850 km for 15ms is due to escape of material from the sec-
ond largest domain, outside which hydrodynamic evolution
equations are not solved.

density material is ejected from the outer part of neutron
stars prior to the high-density material from the inner
part during mass ejection driven by the tidal torque. The
ejecta of ALF2-Q3a0 is more axisymmetric than those of
the other models, and a bump at ≈ 650km in the +y
direction reflects the rear-end collision of the tidal tail
with ϕej > 2π. Note that the spatial distribution of dy-
namical ejecta is different from that for binary neutron
star mergers, where a moderately steep power-law with
the index ≈ −3.5 is observed [115].
The ejecta evolves in an approximately homologous

manner. That is, the velocity of each fluid element is
kept approximately constant, and its position and den-

sity evolve according to the free-expansion law,

r ∝ t , ρ ∝ t−3. (40)

Figure 14 shows rest-mass density and velocity profiles at
5, 10, and 15ms after the onset of merger in the −x and
−y directions of APR4-Q3a75. In these plots, the radius
and rest-mass density are scaled according to Eq. (40)
so that those at 5 and 15ms can be compared directly
to those at 10ms. Both the density and velocity profiles
overlap approximately among different time slices after
the scaling, and the agreement is particularly good be-
tween 10 and 15ms. These facts imply that homologous
expansion is achieved at the late phase. We also observe
approximate homologous expansion for other models, but
the deviation is slightly more severe for a larger value of
Q at a fixed time (i.e., 10ms) due probably to stronger
residual gravitational binding.

2. Polar direction

Figure 15 shows rest-mass density and velocity profiles
along the z axis for H4-Q3a5. Because our purpose is
to study the formation of an envelope, profiles at several
time slices are shown together without scalings. At 5ms
after the onset of merger, no unbound material is found,
and the rest-mass density is very low everywhere. This
is because tidal torque does not eject material toward
the polar region. Material is pushed significantly toward
the polar region only after the shock heating in the disk
region sets in. This is reflected in the increase of the rest-
mass density for t − tmerge & 10ms. Unbound material
is ejected from the disk with v ≈ 0.3c in the beginning
and is beyond a radius of 1000km by ≈ 35ms for this
particular model.
A long-lived envelope is formed following the shock-

driven disk outflow. The velocity of envelope material is
smaller than the typical ejecta velocity, and in particular,
the radial velocity of bound material falls below 0.1c at
55ms. This suggests that the envelope is in an approx-
imately stationary state at this time. Indeed, the rest-
mass density profiles do not change very much from 25
to 55ms. The profile may be approximated by a power
law, ρ ∝ r−penv , with its index penv ≈ 2–3. The mag-
nitude of rest-mass density implies that the total mass
of the envelope formed after the merger of H4-Q3a5 is
much smaller than that formed after binary neutron star
mergers [44, 115]. This could be advantageous for a hy-
pothetical jet to overcome a baryon loading problem, but
it will not be easy to obtain a collimated jet in the ab-
sence of a heavy envelope. Firm conclusions to the jet
propagation require an extensive study of disk winds.
It takes a long time for the remnant of a high mass

ratio binary merger to develop a long-lived envelope in
the polar region. Figure 16 shows rest-mass density and
velocity profiles along the z axis for MS1-Q7a75. In
this model, the ejecta generated by the disk are beyond
1000km only for t− tmerge & 45ms, and material behind
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it exhibits significantly more time variability than that
of H4-Q3a5. The velocity profile with v & 0.1c also indi-
cates significant time variability. It can, however, still be
seen that the rest-mass density of the envelope is compa-
rable to that of H4-Q3a5 (Fig. 15). Thus, we may safely
conclude that the mass of the envelope formed after the
merger is much smaller for black hole-neutron star bina-
ries than for binary neutron stars unless (or possibly even
if) binary parameters are extreme as far as the dynamical
processes are concerned.

3. Velocity distribution

Figure 17 shows the velocity distributions of dynami-
cal ejecta normalized by the ejecta mass, Mej, measured
at 10ms after the onset of merger for selected mod-
els. Namely, integrating each distribution over the ve-
locity returns unity. They are derived by analyzing un-
bound material on the equatorial plane as described in
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FIG. 16. The same as Fig. 15 but for MS1-Q7a75.

Sec. II E 1, and we checked that estimation at different
time slices gives very similar results.

All the models exhibit a relatively flat distribution with
a cutoff at low and high velocities rather than, say, a
power-law distribution. This agrees semiquantitatively
with previous results obtained in Newtonian simulations
[35]. This distribution implies that the density struc-
ture of ejecta can be approximated by ρ ∝ v−2 ∝ r−2

within the range between lower and higher cutoff ve-
locities, because the free-expansion law, Eq. (40), gives
dM/dv ∝ ρv2. This observation is largely consistent with
the spatial profile shown in Fig. 13.

The velocity distribution is shifted toward larger ve-
locities when the ejecta mass is larger (see the top panel
of Fig. 8 for visual comparisons). We also find that the
distribution tends to be shifted toward larger velocities
when the mass ratio, Q, is larger. This is consistent
with the observations ofMej/Mbd and vave in Sec. III C 2,
where the dynamical ejecta from a high mass ratio binary
is seen to be energetic. Previous numerical-relativity sim-
ulations also found this tendency [33].
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E. Fallback

The fallback rate as a function of time is found to
obey a power law with the index −5/3 irrespective of
the models. Figure 18 shows fallback rates determined
by the method described in Sec. II E 2 analyzing matter
profiles at 10ms after the onset of merger for selected
models. Aside from statistical fluctuations due to the
limited number of grid data, overall behavior is consis-
tent with the structureless power law, Ṁfb ∝ t−5/3, and
no significant time evolution is found when we compute
Ṁfb at different time slices. This power-law fallback rate
is known to be achieved after tidal disruption of main

sequence stars by supermassive black holes [116, 117].
The same power law is found for black hole-neutron star
binaries in Newtonian simulations [35, 90] and is also
reported in a numerical-relativity simulation for a single
binary model with the Γ = 2 polytrope [118]. Our results
confirm their findings for a wide range of binary parame-
ters in numerical relativity. Nuclear interaction neglected
in this study may not be important, because Newtonian
studies show that nucleosynthesis in the nuclear statisti-
cal equilibrium does not modify the power-law behavior
[35, 90] and r -process heating can modify it only on rare
occasions [119].
This power-law behavior implies that the mass spec-

trum with respect to specific energy takes a constant pro-
file, i.e., dMfb/dẼ = const. The usual reasoning be-
hind the power-law index −5/3 is the combination of

dMfb/dPfb = (dMfb/dẼ)(dẼ/dPfb), the Keplerian rela-

tion Pfb ∝ a
3/2
fb ∝ (−Ẽ)−3/2, and the assumption that

dMfb/dẼ is constant. The first and second relations are
universal. The third assumption is verified for tidal dis-
ruption of main sequence stars by various hydrodynamic
simulations (e.g., Ref. [120]) and is pointed out to be
more appropriate for a stiffer polytrope due to stronger
shock interaction [121]. Because the neutron-star self
gravity cannot be neglected and shocks do not appear
to play a significant role in energy redistribution for a
neutron star disrupted by a stellar-mass black hole, the
reason for constant energy distribution is nontrivial and
may be worth future investigation.
Although the overall magnitude of the power law is not

computed very accurately by our approximate estimation
method, we may safely conclude that the fallback rates
span Ṁfb ∼ 10−4–10−2M⊙ s−1(t/1 s)−5/3 when substan-
tial mass ejection occurs. Because the periapsis distance
of fallback material is found to agree approximately with
the radius at which the neutron star is disrupted, the
material will join the accretion disk before reaching the
periapsis. Thus, the black-hole accretion rate and elec-
tromagnetic luminosity could be smaller than the fallback
rate (see Refs. [91, 106] for relevant discussions).
In this analysis, the center of mass is always assumed

to be located at the coordinate origin. This is not jus-
tified in a rigorous manner, because the remnant black
hole-disk system acquires a substantial velocity of O(100)
km s−1 by two mechanisms. One is backreaction from the
anisotropic mass ejection [47, 49], and the other is recoil
due to the anisotropic gravitational-wave emission [122].
We will describe the former and latter in Sec. III F and
Sec. III G, respectively.

F. Remnant disk and black hole

Because remnant disks and black holes are thoroughly
investigated in previous work [28], we describe their prop-
erties only briefly. The amount of mass outside the ap-
parent horizon, Mr>rAH

, is shown in Table III and is
discussed in Sec. III C 2. Typical accretion time scales
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due to purely hydrodynamic processes are estimated to
be 30–300ms when measured at ≈ 10ms after the onset
of merger irrespective of the models. We do not go into
details of accretion dynamics, expecting that realistic be-
havior will be determined by unincorporated physics like
neutrino processes and magnetohydrodynamics.
One feature of remnant disks overlooked in our previ-

ous studies is the existence of standing spiral accretion
shocks. Figure 19 shows rest-mass density profiles on the
equatorial plane in the central region at different time
slices for H4-Q5a75. This figure (see also the right panel
of Fig. 1) shows that sharp spirals extending to the appar-
ent horizon stay in approximately the same location over
10ms without exhibiting any rotation. Similar structures
are found for most of the models as long as the remnant
disk is appreciable, and we find no cases in which this spi-
ral structure disappears by the end of simulations, which
is at & 50ms after the onset of merger for the longest
runs. The standing spiral shocks appear to be formed as
a trace of self-collision of tidal tails rather than as a re-
sult of disk instability. This spiral structure should serve
to dissipate angular momentum of disk material and en-
hance mass accretion by the remnant black hole.
The mass and dimensionless spin parameter of the rem-

nant black holes at 10ms after the onset of merger are
listed in Table IV. They are consistent with our previous
results for models with comparable binary parameters
[29, 52, 53]. After the measurement, the dimensionless
spin parameters increase by up to ≈ 0.01 due to long-
term accretion depending on the models. Thus, the val-
ues of χf shown in Table IV may be regarded as the lower
limits of hypothetical final configurations which will be
achieved by purely hydrodynamic processes.
The remnant black hole-disk system including fallback

material receives a recoil velocity due to backreaction of
anisotropic mass ejection [47, 49], which we call the ejecta
kick velocity. The ejecta kick velocity, Vej, is estimated
by linear-momentum conservation as

Vej ≈
Pej

m0

= 555km s−1

(

Pej

0.01M⊙

)(

Q+ 1

4

)−1

, (41)

where MNS = 1.35M⊙ is assumed. For simplicity, the
mass of the remnant black hole-disk system is approxi-
mated by m0 in this expression, neglecting energy loss
to ejecta and to gravitational waves. The former is
. 0.02m0 and the latter is . 0.03m0 for the cases con-
sidered here, where the energy radiated during the very
early inspiral phase that existed before our initial condi-
tion, m0 − M0, is also taken into account. Because the
ejecta mass is large only when tidal disruption occurs
at a distant orbit and gravitational radiation is not very
strong, the sum of both does not exceed 0.03m0.
Values of the ejecta kick velocity for each model are

presented in Table IV. This table shows that Vej can be
several hundreds of km s−1 when mass ejection is efficient

and easily dominates kick velocities due to gravitational
radiation reaction, VGW, which we discuss in Sec. IIIG.

G. Gravitational waves

Gravitational waves from black hole-neutron star bi-
naries are thoroughly investigated in our previous work
[29, 52, 53], and derived waveforms are used to construct
phenomenological models aiming at data analysis [123–
125]. In the following, we instead discuss integrated or
instantaneous properties of gravitational waves.
The energy, linear momentum, and angular momen-

tum carried away by gravitational waves are presented
in Table IV. While the energy ∆EGW and the angular
momentum ∆JGW are presented as they are, the magni-
tude of linear momentum ∆PGW is shown instead as the
velocity imparted to the remnant black hole-disk system
including fallback material,

VGW ≈ ∆PGW

m0
, (42)

where we adopt m0 as in Eq. (41). We call VGW the
gravitational-wave kick velocity. Although the accuracy
in computing ∆PGW is not very high due to mode cou-
plings, we do not find VGW larger than 100km s−1 for
the models considered in this study. Broadly speaking,
the ejecta kick velocity, Vej, dominates the gravitational-
wave kick velocity, VGW, when Mej & 0.01M⊙.
The ejecta kick velocity and gravitational-wave kick

velocity partially cancel out each other, because their
angles Φej and ΦGW point in approximately opposite di-
rections. Figure 20 shows the difference between them,
Φej − ΦGW, versus Mej. The differences cluster around
π irrespective of the model parameters, and this means
that ejecta and gravitational waves carry linear momenta
in opposite directions. This tendency does not depend
on grid resolutions. While the origin of anticorrelation
is nontrivial, it is reasonable that Φej − ΦGW prefers a
specific value, because both dynamical mass ejection and
linear-momentum emission are determined primarily by
merger dynamics including tidal disruption. The largest
velocity in the coalescence event is achieved by the plunge
motion of material promptly swallowed by the black hole
after tidal disruption, and the plunge should emit the lin-
ear momentum efficiently in its direction due to the large
velocity (see Refs. [126, 127] for relevant discussions). A
possible explanation of the anticorrelation between Φej

and ΦGW is that the linear momentum is emitted right
after tidal disruption primarily in the direction of the
plunge motion, which should be opposite to the ejecta
motion. This anticorrelation implies that the realistic
value of the remnant velocity is given approximately by
|Vej − VGW|.
Finally, we comment on the possible existence of a

tight correlation between the strength of tidal effects
and gravitational-wave frequency at the maximum ampli-
tude, which is suggested to exist for binary neutron stars
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FIG. 19. The same as Fig. 1 (H4-Q5a75) but at different time slices.

TABLE IV. Characteristic physical quantities associated with the remnant black hole measured at 10ms after the merger
and with gravitational waves for our fiducial, N = 60 runs. MBH,f and χf are the mass and dimensionless spin parameter,
respectively, of the remnant black hole. Vej and VGW are the magnitude of velocities imparted to the remnant black hole-disk
system due to ejecta backreaction and gravitational-wave recoil, respectively. ∆EGW and ∆JGW are the energy and angular
momentum, respectively, radiated by gravitational waves.

Model MBH,f [M⊙] χf Vej (km s−1) VGW (km s−1) ∆EGW[M⊙] ∆JGW[M2
⊙]

APR4-Q3a75 5.07 0.87 100 90 9.3× 10−2 5.6
ALF2-Q3a75 5.02 0.86 500 60 6.3× 10−2 4.6
H4-Q3a75 4.99 0.88 500 60 4.9× 10−2 4.0
MS1-Q3a75 4.97 0.88 800 20 4.0× 10−2 3.5
APR4-Q3a5 5.17 0.77 20 70 9.2× 10−2 5.3
ALF2-Q3a5 5.10 0.76 300 70 6.1× 10−2 4.3
H4-Q3a5 5.07 0.76 300 50 4.8× 10−2 3.7
MS1-Q3a5 5.05 0.75 600 50 3.9× 10−2 3.3

APR4-Q3a0 5.26 0.55 < 1 60 8.2× 10−2 4.3
ALF2-Q3a0 5.26 0.56 20 30 6.1× 10−2 3.8
H4-Q3a0 5.20 0.55 70 40 4.6× 10−2 3.2
MS1-Q3a0 5.16 0.53 200 40 3.6× 10−2 2.8

APR4-Q5a75 7.80 0.85 30 20 0.16 10
ALF2-Q5a75 7.69 0.83 400 40 0.11 9.1
H4-Q5a75 7.65 0.83 400 70 9.0× 10−2 8.0
MS1-Q5a75 7.62 0.83 700 50 7.5× 10−2 7.2
APR4-Q5a5 7.90 0.71 < 1 30 0.13 8.8
ALF2-Q5a5 7.89 0.71 30 30 0.11 8.3
H4-Q5a5 7.81 0.70 200 50 8.9× 10−2 7.4
MS1-Q5a5 7.74 0.68 400 50 7.2× 10−2 6.7

APR4-Q7a75 10.5 0.83 < 1 40 0.17 14
ALF2-Q7a75 10.5 0.83 40 30 0.16 13
H4-Q7a75 10.4 0.82 200 40 0.13 12
MS1-Q7a75 10.3 0.81 400 30 0.11 11
APR4-Q7a5 10.6 0.67 < 1 30 0.12 10
ALF2-Q7a5 10.6 0.67 < 1 30 0.12 11
H4-Q7a5 10.6 0.67 6 20 0.11 10
MS1-Q7a5 10.6 0.67 30 20 0.10 9.9

[128, 129]. Figure 21 shows a dimensionless gravitational-
wave frequency of the (2, 2) mode at the maximum am-
plitude, m0Ω22,peak, as a function of a tidal coupling con-
stant,

κ =
2Q

(1 +Q)5
k

C5
=

3Q

(1 +Q)5
Λ, (43)

adapted to black hole-neutron star binaries [130] (see also
Ref. [131]). This figure suggests the existence of relations
independent of the mass ratio and equation of state. If
the correlations are tight, it implies that the finite-size
effect in the black hole-neutron star binary merger is de-
scribed fairly well by the quadrupolar tidal deformability
up to tidal disruption. These relations depend on the
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FIG. 21. Dimensionless gravitational-wave frequency of (2, 2)
mode gravitational waves, m0Ω22,peak, at the amplitude peak
as a function of the tidal coupling constant κ defined by
Eq. (43). The dashed line is a fit obtained from binary neu-
tron star simulations due to Ref. [128].

black-hole spin, and our results suggest that m0Ω22,peak

is smaller for a larger black-hole spin. This agrees with
Ref. [129]. The same value of χ may not be compared
directly among different mass ratios except for nonspin-
ning cases, and effective spin parameters weighted by the
mass ratio such as χ[1 + 3/(4Q)]Q2/(1 + Q)2 (see, e.g.,
Refs. [132, 133]) will be more appropriate. If such cor-
relations are confirmed accurately by future simulations,
they would help to extract neutron-star equations of state
without detailed analysis of the phase evolution, just
as knowledge of the cutoff frequency would do [29, 50–
53, 134].

Because the gravitational-wave amplitude peaks dur-
ing rapid increase of the frequency, the error of
m0Ω22,peak is not very small. Typical errors are esti-

mated to be ≈ 5% due to eccentricities,12 ≈ 10% due to
the finite resolution, and ≈ 5% due to the gravitational-
wave extraction method like extraction radii (even with
the extrapolation). Hence, the total error may be ≈ 20%
in the worst case.

A relation satisfied by nonspinning black hole-neutron
star binaries (if really exists) is not necessarily the same
as that by binary neutron stars, because the merger
dynamics is very different. We include a fitting curve
derived from binary neutron star simulations [128] in
Fig. 21. We cannot determine whether the relations are
different or not from the current data by two reasons.
One is the numerical error associated with each simu-
lation. The other is the fact that tidal coupling con-
stants, κ, spanned by binary neutron star simulations are
much larger than those by black hole-neutron star binary
simulations, and thus the extrapolated relations cannot
be seriously trusted. Specifically, the relation derived
in Ref. [128] is obtained by fitting results of simulations
with 26 ≤ κ ≤ 440, none of which overlaps with that
in our current simulations. It may be worth future in-
vestigation to test whether relations are distinct between
binary neutron stars and nonspinning black hole-neutron
star binaries.

IV. ELECTROMAGNETIC COUNTERPART

In this section, we discuss expected characteristics of
electromagnetic counterparts based on the properties of
dynamical ejecta derived by our simulations. We focus
primarily on the effect of anisotropy, which is character-
ized by the opening angle in the equatorial plane, ϕej, and
in the meridional plane, θej, on the macronova/kilonova
[20–23] and synchrotron radio emission [24, 25]. A con-
cise summary of main results derived in this section is
found in Ref. [49], in which other aspects of ejecta like
gravitational-wave memory emission and cosmic-ray ac-
celeration are also discussed.

For simplicity, we adopt slightly different notations for
ejecta quantities in this section from those in other sec-
tions. Specifically, we denote the ejecta mass by M in-
stead of Mej. The opening angles are denoted by θ and ϕ
instead of θej and ϕej, respectively. Recall that θ(= θej)
is defined as the half-opening angle taking the equatorial
symmetry into account, and a full sphere corresponds to
θ = π/2 and ϕ = 2π. We also adopt short-hand nota-
tions M−2 ≡ M/(0.01M⊙), θi ≡ θ/(1/5), and ϕi ≡ ϕ/π.
We recover the speed of light, c, everywhere.

12 This is estimated as twice the eccentricity in the inspiral phase,
because it is difficult to isolate the eccentricity contribution dur-
ing the merger phase.
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A. Macronova/kilonova

The macronova/kilonova is quasithermal radiation
from ejecta heated by decay of unstable r -process ele-
ments. The dynamical ejecta from mergers of black hole-
neutron star binaries will be composed primarily of neu-
trons as discussed in Sec. III B 1, and then r -process ele-
ments should be synthesized [26, 27]. After the neutrons
are exhausted within a few seconds, β-decay and fission
of unstable r -process elements heat the ejecta.13 The
heated ejecta emit radiation primarily in red-optical and
infrared bands on a day-to-month time scale [135], where
a bunch of Doppler-broadened lines associated with the
complicated energy-level structure of r -process elements
blanket the emission in blue-optical and ultraviolet bands
[136, 137].

1. Analytic model

Qualitative features of the macronova/kilonova from
anisotropic ejecta can be understood by modifying the
prototypical model for spherical ejecta proposed in
Ref. [20]. In this section, we introduce short-hand no-
tations V−1 ≡ V/(0.1c) for the surface velocity, κ1 ≡
κ/(10 g−1 cm2) for the opacity, and f−6 ≡ f/10−6 for the
heating efficiency. The precise meaning of these quanti-
ties are explained in the following.
We approximate hydrodynamic evolution of ejecta by

the free expansion of a uniform-density truncated sphere
characterized by the opening angles θ and ϕ. The radius
of the (truncated) sphere is given by R(t) = V t using
the surface velocity V , and thus the rest-mass density of
ejecta is

ρ(t) =
3πM

4θϕV 3t3
. (44)

In this uniform-density free-expansion model, the surface
velocity is related to the average velocity of ejecta defined
by Eq. (20) via V =

√

5/3vave ≈ 1.3vave. Because the
ejecta material is expected to be radiation-dominated in
the relevant epoch due to r -process heating, the internal
energy density u is related to the pressure P and tem-
perature T by u = 3P = aT 4, where a is the radiation
constant. The time evolution of the internal energy den-
sity is derived by the first law of thermodynamics as

t3
du

dt
+ 4t2u =

3πM

4θϕV 3
ε̇− 3π

4θϕV 3
L, (45)

where ε̇ is the specific heating rate and L is the luminos-
ity. Time-dependent quantities are u, ε̇, and L.

13 Some of the energy liberated in the β-decay does not contribute
to the heating because of the energy deposited to neutrinos and
γ-ray photons [22]. The latter does not escape freely in the early
stage of ejecta evolution and contribute to the ejecta heatup.

We assume that the specific heating rate is given by
a power law ε̇(t) = fc2/t parametrized by heating ef-
ficiency f in the same manner as the spherical model
[20]. An appropriate value of heating efficiency, f , will
depend significantly on the electron fraction (the num-
ber of electrons per baryon) [100, 103]. The uncertainty
is particularly high when fission is an important heating
source rather than β-decay of elements near the stability
line [100]. In this study, we take the fiducial value of f
to be 10−6 following Ref. [100].
We give the luminosity by a diffusion approximation

in a similar manner to the spherical model [20] but as-
suming geometry adapted to anisotropic mass ejection.
The assumption is that the radiation is emitted not from
the truncated spherical surface but from the cross section
of truncation. In the language of our simulations, pho-
tons from the anisotropic ejecta are assumed to escape
mainly into the ±z directions, and the emitting surfaces
are taken to be those observed from the ±z direction
like ones depicted in Fig. 6. The temperature gradient
dT/dr relevant to the diffusion flux is approximated by
≈ T/(θR) rather than ≈ T/R of spherical ejecta under
this assumption. Thus, the flux may be given by

F (t) ≈ σSBT
4

κρθR
, (46)

where κ is the opacity and σSB is the Stefan-Boltzmann
constant. In this estimation, a factor of order unity is
neglected in exactly the same manner as in Ref. [20]. The
emitting area is then given approximately by 2×ϕR2/2 =
ϕR2, where the first “2” stands for two emitting surfaces
at +z and −z, and therefore the bolometric luminosity
may be given by

L(t) ≈ ϕ2V 4c

3πκM
t4u. (47)

This expression does not reduce to that for spherical
ejecta even if we adopt θ = π/2 and ϕ = 2π because of
different assumptions. The neglected truncated spherical
surface has the area (4/π)θϕR2, and thus the luminosity
may be underestimated by a fraction of (4/π)θ ≈ 30%.
Although this term can be included with no difficulty, we
omit this contribution so that the parameter dependence
becomes clear.
The value of opacity, κ, is highly uncertain due to our

incomplete knowledge of r -process elements and their
line features [136, 137]. Although the realistic opacity
of r -process elements is safely assumed to be dominated
by various bound-bound transition lines in optical and
ultraviolet wavelengths, no complete line list exists so
far. In this study, we take the fiducial value of κ to
be 10 g−1 cm2, because this approximately reproduces
results obtained by radiation transfer simulations per-
formed adopting currently available line lists [137]. The
gray approximation adopted in this model is not realistic
and limits the predictability of spectra.
The thermodynamic evolution equation can be solved

analytically. For this purpose, it is convenient to cast the
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equation into a dimensionless form. First, we normalize
the surface velocity by the speed of light as βs ≡ V/c
in the usual manner. Next, we define a characteristic
time scale by the condition that the optical depth of a
characteristic path becomes unity, κρθR = 1, and this
gives a critical time of the onset of transparency,

tc =

√

3πκM

4ϕV 2
. (48)

Finally, a characteristic internal energy density can be
defined by

uc = fρ(tc)c
2 =

√

4ϕf2c4

3πκ3θ2M
. (49)

Introducing dimensionless variables t̃ = t/tc and ũ =
u/uc, we obtain the dimensionless evolution equation,

dũ

dt̃
+

(

4

t̃
+

3πt̃

16θβs

)

ũ =
1

t̃4
, (50)

which has an analytic solution

ũ(t) =
C

t̃4
exp

(

− 3πt̃2

32θβs

)

+

√

32θβs

3π

1

t̃4
Y

(
√

3π

32θβs
t̃

)

,

(51)
where C is the integration constant and Y is Dawson’s
integral defined by

Y (x) ≡ e−x2

∫ x

0

es
2

ds. (52)

Because the initial internal energy of ejecta is rapidly lost
due to the adiabatic cooling,14 we may safely set the in-
tegration constant, C, to be zero. The key issue which
allows us to derive this analytic solution for nonspheri-
cal ejecta is that the temporal dependence of each term
(adiabatic cooling, radiative cooling, and heating) is not
affected by the geometry in our model.
The peak time, peak bolometric luminosity, and ef-

fective temperature at the peak time can be estimated
using this solution. Note that Dawson’s integral takes
the maximum value yp ≈ 0.54 at xp ≈ 0.92. The peak
time is

tpeak = xp

√

8κθM

ϕV c

= 11day κ
1/2
1 M

1/2
−2 V

−1/2
−1 θ

1/2
i ϕ

−1/2
i . (53)

The peak bolometric luminosity is

Lpeak = yp

√

ϕf2MV c5

2θκ

= 1.8× 1040 erg cm−3 f−6κ
−1/2
1 M

1/2
−2 V

1/2
−1 θ

−1/2
i ϕ

1/2
i .

(54)

14 Further energy injection could modify the thermodynamic evo-
lution via different ε̇(t) [23].

The effective temperature is defined from the diffusion
flux, Eq. (46), by Teff ≡ (F/σSB)

1/4, and its value at the
peak time is

Tpeak =
y
1/4
p

x
1/2
p

(

ϕf2c5

8a2θ3κ3MV

)1/8

= 1900K f
1/4
−6 κ

−3/8
1 M

−1/8
−2 V

−1/8
−1 θ

−3/8
i ϕ

1/8
i . (55)

These expressions share the same parameter dependence
as those derived in Ref. [49] by random-walk arguments.
This indicates that the parameter dependence is robust
as far as similar assumptions are adopted.
In the range of opening angles observed in our nu-

merical simulations, the macronova/kilonova from black
hole-neutron star binaries tends to peak slightly earlier
with slightly higher bolometric luminosity than that from
the spherical ejecta for given values of other parameters.
This tendency is also observed in radiation transfer sim-
ulations [135]. When the opening angle in the meridional
plane, θ, is small, the peak time becomes early and the
peak bolometric luminosity increases. The reason for this
is that photons can escape easily from the ejecta when θ is
small. Specifically, the optical depth κρθR at tpeak is pro-
portional to θ−1 and independent of ϕ. When the open-
ing angle in the equatorial plane, ϕ, is small, the peak
time becomes late and the peak bolometric luminosity
decreases. The reason is that a small value of ϕ increases
the rest-mass density, optical depth, and characteristic
time scales. The dependence of luminosity may be un-
derstood by the constancy of Lpeaktpeak for both cases.
The combined effects of these two angles tend to prefer
the slightly earlier peak with slightly brighter emission.
When the ejecta becomes transparent, the bolometric lu-
minosity does not depend on the geometry, because we
simply have L = ε̇M even within this model derived with
the diffusion approximation.15

At a given time, the material temperature T and effec-
tive temperature Teff are higher for the anisotropic ejecta
than for the spherical one due to different geometry. In
typical situations, the material temperature, T , is higher
by about a factor of two, and this agrees approximately
with the result of Ref. [135]. The reason of the high
temperature is that the decay heat of unstable r -process
elements is deposited to a small volume for a given mass
and velocity of ejecta. Accordingly, the effective temper-
ature, Teff , is higher by ≈ 30%–50%. Even this amount
of difference could have a significant effect on the ob-
served flux (not to be confused with the diffusion flux,
Eq. (46), which is trivially related to Teff) in optical and
near-infrared bands, because the typical value of Tpeak is
in the infrared band. Thus, a small increase of Teff could
enhance the flux at optical and near-infrared bands. In

15 It is probable that the photons are depleted when the free-free
emission becomes inefficient [21], and this effect is not taken into
account in the current model.
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fact, we see that absolute/apparent magnitudes increase
by 1–2 in these bands if we assume a perfect blackbody
spectrum. We do not, however, regard this amount of in-
crease as very quantitative, because realistic spectra will
be very different from the blackbody. The high temper-
ature could also affect possible dust formation [138].
The dependence of the peak quantities on f , κ, M , and

V is the same as that of the spherical model [20]. A large
value of f increases the luminosity, a large value of κ de-
lays the peak and decreases the luminosity, a large value
of M delays the peak and increases the luminosity, and
a large value of V hastens the peak and increases the lu-
minosity. Among these parameters, the ejecta mass can
become much larger for black hole-neutron star binaries
than for binary neutron stars [44], and higher luminos-
ity could be achieved [112]. In fact, this difference may
dominate corrections due to the opening angles. Typi-
cal velocities of ejecta cannot be very different. Heating
efficiency and opacity could change reflecting different
compositions of ejecta, but we do not discuss them in
this study.

2. Directional dependence, line, and polarization

We briefly discuss possible aspects of the
macronova/kilonova from anisotropic ejecta that cannot
be captured in the analytic model developed above. An
obvious outcome of the anisotropy is the directional
dependence (see Refs. [139, 140] for binary neutron
stars). Emission should be brighter when observed from
the direction perpendicular to the equatorial plane than
in the equatorial plane. Specifically, the flux will be
larger by 1/θ ≈ 3–5 near tpeak for the former situation.
Accordingly, the light curves will exhibit different
evolution near tpeak and become indistinguishable after
the entire ejecta becomes transparent. These behavior
are observed in radiation transfer simulations [135].
Follow-up observations of electromagnetic counterparts
will benefit from this directional dependence, because
gravitational waves are emitted most strongly in the
direction perpendicular to the equatorial plane, in which
the macronova/kilonova will be the brightest. That is,
observed binaries will be biased toward the brightest
direction of the macronova/kilonova.
A chance to observe spectral lines associated with r -

process elements will be better for black hole-neutron
star binaries than for binary neutron stars. In any case,
it will be very challenging to observe such lines from
the macronova/kilonova, because a bunch of lines are ex-
pected to be significantly blended due to Doppler broad-
ening in the ejecta with a large surface velocity. This
broadening may be mitigated in the direction perpen-
dicular to the equatorial plane, because the expansion
velocity is smaller by a factor of θ than in other direc-
tions and spherical cases. Furthermore, the emission is
expected to be the brightest in this direction. Thus, the
macronova/kilonova associated with black hole-neutron

star binaries would deserve detailed spectroscopic obser-
vations to seek a (serendipitous) strong and isolated line
(see also Ref. [136] for relevant discussions).
Potential diagnostics of the anisotropic geometry is

polarization induced by electron scattering, but the
polarization degree is not likely to be high for the
macronova/kilonova. If the optical depth to electron
scattering is sufficiently high and lines do not contribute
to depolarization significantly, the linear polarization ob-
served from the equatorial plane would be 4%–5% be-
cause of the highly deformed photosphere [141]. However,
the number density of free electrons will be much smaller
in the ejecta composed of r -process elements than in, e.g.,
the supernova ejecta near the peak luminosity. While
the r -process elements have the mass number & 100, the
ionization degree will not be particularly high around the
peak of macronova/kilonova [136, 137]. Hence, the opac-
ity for electron scattering will be lower by about three or-
ders of magnitude than that for bound-bound transitions
if κ = 10g−1 cm2 is an appropriate representative. The
optical depth to electron scattering will be only O(10−2)
near tpeak when the total optical depth is at most O(10),
and therefore the polarization degree may be reduced by
a similar factor. In addition, interaction with lines will
further depolarize the radiation [142].

B. synchrotron radio emission

Nonthermal radiation such as synchrotron emission is
expected to arise from blast waves formed between the
ejecta and ambient interstellar medium in a similar man-
ner to the supernova remnant and gamma-ray burst af-
terglow [24, 25]. Subrelativistic blast waves will develop
as the ejecta sweeps the interstellar medium, and the ki-
netic energy of ejecta is converted to postshock internal
energy. A fraction of the internal energy at the forward
shock will be converted to energy of nonthermal electrons
assembled from the interstellar medium and of amplified
magnetic fields. The accelerated electrons will radiate
synchrotron emission in a magnetized environment, and
the emission would be observed in radio bands [7, 24] and
possibly in optical, x-ray, and γ-ray bands [25].

1. radiation at the deceleration time

The most luminous emission is expected when the
ejecta begins to be decelerated significantly, and the de-
celeration time tdec depends on the ejecta geometry for
a given mass and velocity of ejecta. We describe the
synchrotron radio emission expected at tdec adopting a
simplified version of the nonrelativistic model developed
in Ref. [25] (see also Ref. [143]). We do not, however,
attempt to model the time evolution in this study, be-
cause the lateral expansion should become important af-
ter the deceleration time for the anisotropic ejecta. While
the late-time evolution of the spherical ejecta will be de-
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scribed reasonably by Sedov-Taylor’s self-similar solution
as in Ref. [7], it is difficult to formulate the lateral ex-
pansion of the anisotropic ejecta in a simple manner. We
introduce short-hand notations v−1 ≡ v/(0.1c) for the
ejecta velocity, n0 ≡ n/(1 cm−1) for the ambient number
density, ǫe,−1 ≡ ǫe/0.1 for the fraction of postshock inter-
nal energy given to nonthermal electrons, ǫB,−1 ≡ ǫB/0.1
for the fraction of postshock internal energy given to
magnetic fields, and D2 ≡ D/(100Mpc) for the distance
from the observer to the site of binary coalescence. We
also introduce the fraction η of accelerated electrons and
power-law index p of the Lorentz factor distribution.
The ejecta is decelerated significantly when the mass

comparable to its own is assembled from the interstel-
lar medium. The deceleration radius of the anisotropic
ejecta is given by

Rdec =

(

3πM

4θϕnmp

)1/3

= 1.1 pc n
−1/3
0 M

1/3
−2 θ

−1/3
i ϕ

−1/3
i , (56)

where mp is the proton mass and n is the number density
of ambient medium. Modeling the ejecta by a single-
velocity shell with v, the corresponding deceleration time
is

tdec =
Rdec

v

= 38year n
−1/3
0 M

1/3
−2 v−1

−1θ
−1/3
i ϕ

−1/3
i . (57)

Here, the ejecta velocity, v, may be identified with the
average velocity of ejecta, vave, defined by Eq. (20). The
value of the ambient density, n, should vary by orders
of magnitude depending on the location of the binary
coalescence, and we normalize it by the typical value of
the Galactic disk, 1 cm−3, following previous work [7, 24,
25]. These expressions reduce to values for the spherical
ejecta when we set θ = π/2 and ϕ = 2π.
If the typical opening angles observed in numerical

simulations are kept until the deceleration time, Rdec

and tdec are larger by a factor of 2–3 than those for the
spherical ejecta for given values of the other parameters.
The reason for this is that only a limited fraction of the
volume inside Rdec is swept by the anisotropic ejecta.
Whereas the ejecta will approach a spherical state to
some extent before tdec [103], the synchrotron radio emis-
sion from black hole-neutron star binaries will be a long-
lasting event than that for binary neutron stars.
The geometry does not modify the Lorentz factor dis-

tribution of nonthermal electrons and magnetic fields.
The number of assembled electrons at tdec is given by

Ne,tot =
M

mp

= 1.2× 1055 M−2. (58)

Assuming that a fraction η ≤ 1 of these electrons are ac-
celerated to power-law distribution of the Lorentz factor

γe with the index p > 2 as

dNe(γe)

dγe
∝ γ−p

e (γm < γe), (59)

the minimum Lorentz factor may be derived from the
number and energy of accelerated electrons as

γm =
ǫe
η

p− 2

p− 1

mp

me

(v/c)2

2

= 0.92 g(p)η−1ǫe,−1v
2
−1, (60)

where me is the electron mass, ǫe is the fraction of post-
shock internal energy given to the accelerated nonthermal
electrons, and g(p) ≡ (p−2)/(p−1). Care must be taken
in applying this equation to subrelativistic blast waves,
because γm can fall below unity and become unphysical,
particularly when the ejecta is significantly decelerated
(not considered here). The strength of magnetic fields is
given by

B =
√

9πǫBnmpv

= 6.5mGauss ǫ
1/2
B,−1n

1/2
0 v−1, (61)

where ǫB is the fraction of postshock internal energy con-
verted to magnetic fields.
Parameters characterizing microphysics, p, η , ǫe, and

ǫB, are all uncertain. Following Ref. [7], we normalize
ǫe and ǫB by 0.1 and take the fiducial value of p to be
2.5, which gives g(p) = 1/3. Typical values of p observed
in nonrelativistic blast waves may be 2.5–3 [144]. The
fiducial value of η is set to be unity. Detailed spectro-
scopic observations of nonthermal radiation could deter-
mine these parameters in principle [25].
Quantities characterizing the instantaneous spectrum

are estimated as follows. The synchrotron frequency of
an electron with γe is defined by νe(γe) ≡ qBγ2

e /(2πmec),
where q is the elementary charge, and the power of the
electron is by Pe(γe) ≡ σTcB

2γ2
e /(6π), where σT is the

Thomson cross section. The specific flux from a single
electron at its peak frequency, νe, is estimated to be
Pν ≈ Pe/νe = σTmec

2B/(3q) independently from the
electron Lorentz factor. The characteristic frequency of
the electron distribution corresponding to γm is given by

νm = 1.5× 104Hz g(p)2η−2ǫ2e,−1ǫ
1/2
B,−1n

1/2
0 v5−1. (62)

An unabsorbed specific flux, i.e., a hypothetical specific
flux in the absence of self-absorption, at νm is estimated
to be

Fν,m =
ηNe,totPν

4πD2

= 2.4 Jy ηǫ
1/2
B,−1n

1/2
0 M−2v−1D

−2
2 , (63)

where D is the distance from the observer to the site
of binary coalescence. If we neglect synchrotron self-
absorption and cooling, the specific flux is given by
Fν,m(ν/νm)1/3 below νm and Fν,m(ν/νm)−(p−1)/2 above
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νm. We show below that the self-absorption could sup-
press the radio spectrum, while the cooling is not impor-
tant in the radio band.
The self-absorption frequency νa may be obtained ap-

proximately by comparing the hypothetical unabsorbed
flux with the blackbody flux in the Rayleigh regime [143].
The blackbody flux at νm is given by

Fν,BB = 2πν2mγmme
Aem

4πD2
, (64)

where Aem is the blackbody emitting area. While this
should be 4πR2

dec for the spherical ejecta, we take Aem =

ϕR2
dec ∝ θ2/3ϕ−1/3 for the anisotropic ejecta in a similar

manner to Sec. IVA 1. It is readily found that νm < νa
when Fν,BB < Fν,m, and vice versa. The case that νm <
νa is typical for subrelativistic blast waves, and the self-
absorption frequency is defined as the frequency at which
the synchrotron and blackbody fluxes equal. Specifically,
we obtain

νa =

(

Fν,m

Fν,BB

)2/(4+p)

νm

= 3.9× 107Hz η−2(p−2)/(4+p)

× ǫ
2(p−1)/(4+p)
e,−1 ǫ

(2+p)/[2(4+p)]
B,−1 n

(14+3p)/[6(4+p)]
0

×M
2/[3(4+p)]
−2 v

(5p−2)/(4+p)
−1 θ

4/[3(4+p)]
i ϕ

−2/[3(4+p)]
i ,

(65)

where the prefactor is given for p = 2.5 and varies by
a factor of two within 2.1 < p < 3.16 The dependence
on the opening angles is inherited from the emitting area,
Aem, and νa is smaller by a few tens % for the anisotropic
ejecta than for the spherical one. The self-absorption fre-
quency can increase to ∼ 1GHz in a plausible parameter
range, and thus the self-absorption could be important at
low-frequency radio bands for such cases. When νa < νm,
we instead obtain νa = (Fν,m/Fν,BB)

3/5νm.
The cooling Lorentz factor γc at the deceleration time,

above which the radiative energy loss plays a significant
role, is estimated by the condition γcmec

2 = P (γc)tdec,
and we obtain

γc =
6πmec

σTB2tdec

= 1.5× 104 ǫ−1
B,−1n

−2/3
0 M

−1/3
−2 v−1

−1θ
1/3
i ϕ

1/3
i . (66)

The corresponding cooling frequency is given by

νc = 4.3× 1012Hz ǫ
−3/2
B,−1n

−5/6
0 M

−2/3
−2 v−1

−1θ
2/3
i ϕ

2/3
i . (67)

Although the cooling frequency decreases by a factor of
several for the anisotropic ejecta due to the long deceler-
ation time, this could affect the radio spectrum at high
frequency only in a limited parameter range.

16 More precisely, the prefactor (6.0× 1011)2/(4+p)
×

1.5× 104 Hz g(p)2(p−1)/(4+p) is applicable to all the val-
ues of p > 2.

Finally, the instantaneous spectrum for νm < νa < νc
is given by

Fν

Fν,m
=



















(νa/νm)−(p+4)/2(ν/νm)2 (ν < νm)

(νa/νm)−(p−1)/2(ν/νa)
5/2 (νm ≤ ν < νa)

(ν/νm)−(p−1)/2 (νa ≤ ν < νc)

(νc/νm)−(p−1)/2(ν/νc)
−p/2 (νc ≤ ν)

.

(68)
The third segment is most relevant to radio observations,
and it would be useful to reexpress the spectrum in this
range as

Fν = 0.12mJy
( ν

1GHz

)−(p−1)/2

× η1−pǫp−1
e,−1ǫ

(p+1)/4
B,−1 n

(p+1)/4
0 M−2v

(5p−3)/2
−1 D−2

2 , (69)

where the prefactor is for p = 2.5 and decreases by a
factor of 40 as p increases from 2.1 to 3.17 This ex-
pression indicates that the emission associated with the
massive ejecta from black hole-neutron star binaries will
be bright.

2. proper motion

Aside from the expansion, the anisotropic ejecta from
black hole-neutron star binaries exhibits center-of-mass
motion, and thus the proper motion of radio images
could be observed [49]. The characteristic distance of
the center-of-mass motion may be given approximately
by Rcom = vejtdec = Rdec(vej/vave). The projected dis-
tance on the celestial sphere should be smaller by a factor
of ≈ 2 due to the angular average, whereas the observa-
tional bias due to the directional dependence of grav-
itational radiation should mitigate this decrease. The
expected amount of projected travel distances is O(1)
pc (see Eq. (56)), and we expect the radio image of the
anisotropic ejecta to move O(1) mas during its bright
emission for a event at O(100) Mpc. This amount of
proper motion could be resolved by current radio instru-
ments depending on the parameters and observed fre-
quency [145] and could help to distinguish black hole-
neutron star binaries from binary neutron stars only by
electromagnetic counterparts.

V. SUMMARY

We performed numerical-relativity simulations of black
hole-neutron star binary mergers to study dynamical
mass ejection. The mass ratio, black-hole spin, and
neutron-star equation of state were systematically varied
to reveal the dependence of ejecta properties on these

17 The prefactor (6.5 × 104)(1−p)/2
×24 Jy g(p)p−1 is applicable to

all the values of p.
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parameters. We found that dynamical mass ejection is
driven primarily by tidal torque exerted from black holes
to elongated neutron stars, and this process progresses
over ≈ 2ms after the onset of merger. The dynamical
ejecta is concentrated around the equatorial plane with
a half opening angle of 10◦–20◦ and sweeps out about a
half of the plane, except for cases that mass ejection is
inefficient. Because of this anisotropy, the ejecta carries
a bulk linear momentum, and thus the remnant black
hole-disk system receives an ejecta kick velocity due to
the backreaction.

The ejecta mass can be as large as ∼ 0.1M⊙, and the
average velocity of ejecta defined from the kinetic energy
is typically 0.2–0.3c. Dynamical mass ejection tends to
become efficient when the neutron-star compactness is
small, the mass ratio is small, and/or the black-hole spin
is large. The dependence of ejecta properties on the com-
pactness, however, is not as simple as that of the total
mass remaining outside the apparent horizon. This sug-
gests that not only the compactness but also detailed
properties of the equation of state influence ejecta prop-
erties significantly. Furthermore, the dependence on the
mass ratio is not always monotonic. The ratio of the
ejecta mass to the bound mass is large when the mass
ratio is large, and the average velocity of ejecta is also
large for such cases. These suggest that the dynamical
ejecta from higher mass ratio binaries is more energetic
for a given ejecta mass.

We also found that bound envelope along the polar axis
of the central remnant is not as heavy as that for binary
neutron star mergers as far as the dynamical processes
are concerned. This would be advantageous for a hy-
pothetical gamma-ray burst jet to overcome the baryon
loading problem, while how to collimate it is uncertain
in the absence of a heavy envelope. Fallback rates of
bound material obey the canonical −5/3 power law. The
remnant disk exhibits a standing spiral shock structure,
which enhances mass accretion.

Because the gravitational-wave kick velocity imparted
to the remnant does not exceed 100km s−1 for our mod-
els, the ejecta kick velocity dominates motion of the rem-
nant. We found that ejecta and gravitational waves usu-
ally carry the linear momentum in the opposite direction,
and thus these two kick velocities would partially cancel
out. Tight correlations between the gravitational-wave
frequency at the maximum amplitude and tidal coupling
constant was suggested to exist in a similar manner to
that found for binary neutron stars. The relations for
black hole-neutron star binaries depend on the black-hole
spin.

Properties of electromagnetic counterparts were dis-
cussed based on the results of numerical simulations
focusing on the effect of ejecta anisotropy. An ana-
lytic model of the macronova/kilonova shows that both
the material and effective temperatures become high for
anisotropic ejecta from black hole-neutron star binaries.
We also found that the peak time is slightly early and the
peak bolometric luminosity is slightly high for the typical

ejecta opening angles. The synchrotron radio emission is
long-lasting for the anisotropic ejecta, and the proper
motion of the radio images could also be observed. The
most significant difference from electromagnetic counter-
parts associated with binary neutron stars would come
from different ejecta masses for both emission models.
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Appendix A: Convergence and uncertainty

Ejecta are only a fraction of material remaining outside
the horizon, which itself is only a fraction of a neutron
star. Therefore, quantities associated with ejecta could
entail large fractional errors. Furthermore, our numer-
ical simulations have various parameters both physical
and unphysical. In this appendix, we estimate errors and
uncertainties in our computations. We also discuss seem-
ingly spurious high-velocity ejecta found in Sec. III B 1.

1. Convergence with respect to the grid resolution

Finite grid resolutions are obvious sources of errors.
First of all, we demonstrate that reasonable convergence
behavior is observed in our numerical simulations. Fig-
ure 22 shows the merger time, tmerge, as a function of grid
resolutions represented by N (see Sec. II C for the defi-
nition) for selected models. The exact convergence order
estimated from numerical data varies among models and
typically lies between 2 and 3. Taking the different ac-
curacy for different parts of our code SACRA [48] into
account, the observed behavior is reasonable.
Table V compares characteristic quantities among dif-

ferent grid resolutions for selected models. It is evident
that these quantities are not always monotonic with re-
spect to the grid resolution. Such behavior is frequently
seen in hydrodynamic quantities, which severely suffer
low convergence order when shock waves exist. Rela-
tive errors are smaller for Mr>rAH

than for Mej, and this
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TABLE V. The same as Table III but for runs with different grid resolutions for selected models. The fiducial grid resolution
adopted in the body text is N = 60.

N Mr>rAH
[M⊙] Mbd[M⊙] Mej[M⊙] Tej (erg) Pej[M⊙] vave vej

APR4-Q3a75

60 0.194 0.182 0.0111 5.48 × 1050 2.08× 10−3 0.235 0.187
48 0.210 0.201 0.0087 3.98 × 1050 1.61× 10−3 0.227 0.186
40 0.206 0.198 0.0079 3.40 × 1050 1.41× 10−3 0.219 0.178

APR4-Q5a75
60 0.068 0.059 0.0084 4.77 × 1050 8.30× 10−4 0.252 0.099
48 0.070 0.063 0.0067 3.60 × 1050 7.87× 10−4 0.246 0.118
40 0.074 0.069 0.0047 2.43 × 1050 6.51× 10−4 0.239 0.137

MS1-Q5a75
60 0.356 0.277 0.0785 5.55 × 1051 1.80× 10−2 0.281 0.223
48 0.361 0.282 0.0795 5.26 × 1051 1.80× 10−2 0.272 0.226
40 0.370 0.290 0.0797 5.28 × 1051 1.77× 10−2 0.272 0.222

H4-Q7a75
60 0.194 0.157 0.0375 2.78 × 1051 7.19× 10−3 0.288 0.192
48 0.207 0.171 0.0360 2.64 × 1051 6.89× 10−3 0.287 0.191
40 0.214 0.179 0.0341 2.41 × 1051 6.64× 10−3 0.281 0.195
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FIG. 22. Merger time normalized by the total mass,
tmerge/m0, versus grid resolutions for selected models. We
assume a hypothetical convergence order 2.5 for all the mod-
els. Actual numerical data for APR4-Q3a75, MS1-Q5a75, and
H4-Q7a75 show convergence order 2.2, 2.9, and 3.1, respec-
tively.

suggests that accurate determination of boundaries sepa-
rating bound and unbound material is an important but
difficult task. If we assume the first-order convergence
between N = 60 and 48 results, the worst-case error
with N = 60 results are ≈ 30%, 40%, and 100% for
Mr>rAH

, Mbd, and Mej, respectively. The accuracy of
Mej is especially low when the ejecta mass is as small
as Mej . 0.01M⊙, and the error decreases to . 20% for
more massive ejecta. It is reasonable that the relative
error is large for small mass ejecta, where the absolute
error is always estimated to be ≈ 0.005–0.01M⊙ for Mej.

2. Effect of an artificial atmosphere

An artificial atmosphere affects ejecta properties.
Some portion of the atmosphere happen to satisfy the un-
bound criterion, ut < −1, as a result of hydrodynamic in-
teraction, and this error spuriously increases the amount
of ejecta. At the same time, the atmosphere brakes phys-
ical material ejected from neutron stars, and this error
spuriously decreases the amount of ejecta. Low atmo-
spheric density will mitigate both these errors. Another
source of error is a steep density gradient at the neu-
tron star surface, which induces spurious shock heating
in numerical simulations and helps material to become
unbound. Although this error will be suppressed as grid
resolutions are improved to resolve the stellar surface ac-
curately, lowering the atmospheric density at a fixed res-
olution does not always suppress it, because the shock
could become strong.
Table VI compares characteristic quantities obtained

with different values of fat. We find that ejecta quanti-
ties like Mej, Tej, and Pej increase by ≈ 0.5% for N = 60
when the atmospheric density is decreased by an order
of magnitude, while the corresponding change (either in-
crease or decrease) is ≈ 1%–2% for N = 40. Although
the dominant mechanism responsible for the error is not
certain, this suggests that the error associated with the
artificial atmosphere will decrease significantly as grid
resolutions are improved probably due to suppression of
spurious shocks at the stellar surface. We also find a
similar amount of variations when we change the value
of atmospheric power-law index nat from 3 to 2.

3. Effect of thermal correction Γth

Dynamical mass ejection is expected to be governed
basically by zero-temperature equations of state, be-
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TABLE VI. The same as Table III but with different values of fat for APR4-Q3a75 with N = 60 and 40. The fiducial value of
fat adopted in the body text is 10−12.

fat Mr>rAH
[M⊙] Mbd[M⊙] Mej[M⊙] Tej (erg) Pej[M⊙] vave vej

N = 60

10−11 0.196 0.185 0.0111 5.45 × 1050 2.07 × 10−3 0.235 0.186
10−12 0.194 0.182 0.0111 5.48 × 1050 2.08 × 10−3 0.235 0.187
10−13 0.194 0.183 0.0112 5.51 × 1050 2.08 × 10−3 0.235 0.186

N = 40
10−10 0.207 0.199 0.0080 3.44 × 1050 1.43 × 10−3 0.219 0.178
10−11 0.209 0.201 0.0078 3.33 × 1050 1.38 × 10−3 0.219 0.177
10−12 0.206 0.198 0.0079 3.40 × 1050 1.41 × 10−3 0.219 0.178

cause shock heating does not play a significant role.
However, ejecta properties depend weakly on the finite-
temperature part of equations of state due to the spurious
shock heating. Thus, dependence of results on Γth also
requires investigation.
Table VII compares characteristic quantities obtained

with different values of Γth for selected models. Results
do not depend monotonically on the value of Γth. This
fact suggests that the effect of Γth is not very physical,
and the difference is ascribed to numerical errors such
as spurious shock heating. We checked that the differ-
ences develop during dynamical mass ejection which pro-
gresses over ≈ 2ms after the onset of merger, and late-
time physical shock heating in the disk region does not
introduce significant differences. The difference of results
among different values of Γth is as large as ≈ 20% when
Mej . 0.01M⊙ and tends to become small when mass
ejection is efficient. We regard the difference observed in
Table VII as an estimate of systematic uncertainty, which
could converge as grid resolutions are improved.

4. Effect of different initial separations as a
substitute for the eccentricity

Ejecta properties computed in our simulations devi-
ate from those of hypothetical genuinely circular mergers
due to unphysical eccentricities inherent in initial data.
Specifically, different orbital and approaching velocities
at tidal disruption lead to deviations of characteristic
quantities on the order of the eccentricity. Although this
error can be eliminated by iterative eccentricity reduction
[92, 146], it is demanding to reduce the eccentricities for
all the models considered in this study.
To estimate systematic errors associated with unphysi-

cal eccentricities, we instead compare results obtained by
models with different values of m0Ω0 with e ∼ 0.01–0.02
for APR4-Q3a75. These models should merge at differ-
ent true anomaly (angle measured from the periapsis),
admitting that it is very difficult to quantify this state-
ment in numerical simulations. Therefore, the results
will give us an idea of errors associated with eccentrici-
ties. As shown in Table VIII, ejecta quantities like Mej,
Tej, and Pej fluctuate within ±2.5% as expected from the
value of the eccentricity. Because the increase/decrease

of a single ejecta quantity is accompanied by that of the
others, derived quantities like vave and vej are relatively
robust with respect to the unphysical eccentricity.

5. Comment on seemingly spurious high-velocity
ejecta

In Sec. III B 1, a small amount of unbound material
is found to be ejected with a large velocity. We re-
gard this component as an artifact, because the amount
of high-velocity ejecta does not converge even approxi-
mately with respect to grid resolutions, admitting that
ejecta cannot be decomposed unambiguously into physi-
cal and unphysical components unless reliable extrapola-
tion to the continuum limit is performed. We speculate
that this high-velocity ejecta is created by the artificial
atmosphere and finite grid resolutions. They induce un-
physical shocks at the stellar surface during the inspiral
phase, and tenuous material continuously flows out from
the inner edge of the neutron star. This artificial out-
flow is accumulated around the black hole and forms a
small unphysical disk during the inspiral phase, whereas
some of this disk may be supplied by the neutron star in
a physical manner after the onset of mass shedding. A
fraction of this unphysical disk is ejected impulsively dur-
ing the merger (due possibly to tidal torque exerted by
the neutron star) with a large velocity reflecting the large
escape velocity of black holes, i.e., the speed of light.

Appendix B: Analytic estimate of ejecta opening
angle

As we discussed in Sec. III B 2, the ejecta geometry
may be characterized by the opening angle in the merid-
ional plane, ϕej, and that in the meridional plane, θej.
Before looking at numerical results, it is instructive to
estimate these angles by analytic arguments for compar-
isons. These estimates help us to distinguish between
expected and unexpected features.

Allowing more than one revolution, the opening an-
gle of dynamical ejecta in the equatorial plane should be
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TABLE VII. The same as Table III but for runs with different values of Γth for selected models. The fiducial value of Γth

adopted in the body text is 1.8. All the simulations are performed with N = 60.

Γth Mr>rAH
[M⊙] Mbd[M⊙] Mej[M⊙] Tej (erg) Pej[M⊙] vave vej

APR4-Q3a75

1.6 0.196 0.184 0.0116 5.95× 1050 2.13× 10−3 0.240 0.184
1.8 0.194 0.182 0.0111 5.48× 1050 2.08× 10−3 0.235 0.187
2.0 0.192 0.184 0.0082 3.69× 1050 1.51× 10−3 0.225 0.184

H4-Q3a75
1.6 0.326 0.280 0.0455 2.41× 1051 9.34× 10−3 0.243 0.205
1.8 0.331 0.285 0.0454 2.30× 1051 9.22× 10−3 0.238 0.203
2.0 0.334 0.287 0.0464 2.35× 1051 9.28× 10−3 0.238 0.200

APR4-Q5a75
1.6 0.064 0.053 0.0108 6.75× 1050 8.82× 10−4 0.265 0.082
1.8 0.068 0.059 0.0084 4.77× 1050 8.30× 10−4 0.252 0.099
2.0 0.072 0.063 0.0089 5.08× 1050 9.80× 10−4 0.253 0.110

H4-Q5a75
1.6 0.314 0.261 0.0529 3.74× 1051 1.14× 10−2 0.281 0.216
1.8 0.316 0.266 0.0502 3.33× 1051 1.10× 10−2 0.272 0.220
2.0 0.320 0.269 0.0516 3.34× 1051 1.13× 10−2 0.269 0.220

TABLE VIII. The same as Table III but with different initial angular velocity, m0Ω0, for APR4-Q3a75. The fiducial value of
m0Ω adopted in the body text is 0.036. All the simulations are performed with N = 60.

m0Ω0 Mr>rAH
[M⊙] Mbd[M⊙] Mej[M⊙] Tej (erg) Pej[M⊙] vave vej

0.036 0.194 0.182 0.0111 5.48× 1050 2.08 × 10−3 0.235 0.187
0.034 0.206 0.194 0.0112 5.59× 1050 2.11 × 10−3 0.236 0.188
0.032 0.203 0.192 0.0109 5.38× 1050 2.02 × 10−3 0.235 0.186
0.030 0.205 0.194 0.0114 5.64× 1050 2.12 × 10−3 0.236 0.186

given by

ϕej ≈ 2π
ttd
Ptd

, (B1)

where ttd is the time scale of tidal disruption and Ptd is
the orbital period at the tidal disruption radius, rtd (see
Eq. (36)). On one hand, ttd may be given approximately
by the sound crossing time tsc of the neutron star as

ttd ≈ tsc ∝
1√
ρ̄
, (B2)

where ρ̄ is the average stellar rest-mass density, which is
determined by the equation of state. On the other hand,
Ptd should be given by

Ptd ≈ 2π

√

r3td
m0

∝
√

Q

(1 +Q)ρ̄
, (B3)

where Eq. (36) is used and spin-induced corrections are
temporarily neglected. This suggests that the depen-
dence of ϕej on the equation of state is weak, because ρ̄

cancels. This expression also suggests that ϕej is smaller
for a larger mass ratio, but the expected change is less
than 10% between Q = 3 and 7. Prograde black-hole
spins will decrease ϕej, because the orbital frequency
around a Kerr black hole is given by [98]

ΩK =

√
MBH

r3/2 + χM
3/2
BH

, (B4)

and thus Ptd increases as χ increases.

The opening angle of dynamical ejecta in the merid-
ional plane, θej, is determined by the ratio of the velocity
perpendicular to the orbital plane, v⊥, to that in the
equatorial direction, v‖, as θej ≈ arctan(v⊥/v‖) ≈ v⊥/v‖.
This value should be given by the ratio of the neutron-
star radius perpendicular to the orbital plane to the tidal
disruption radius, rtd (see Eq. (36)). Thus, the de-
pendence of θej on the equation of state will be weak
again, because both v‖ and v⊥ should scale linearly with
RNS. Dependence on the mass ratio is expected to be
θej ∝ Q−1/3, inherited from rtd, but the expected change
is only 25% between Q = 3 and 7. The spin will not
modify the value of θej.
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