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After inflation, a period of preheating may have produced a stochastic background of

high frequency gravitational waves (GWs) that would persist until today. The nature of

the inflaton’s coupling to Standard Model or other fields is unknown, so it is useful to ask

what features such fields may typically have, and how these affect predictions for the GW’s

produced. Here we consider the inflaton to be coupled to a light scalar field, and show that

even a very small quartic self-interaction term will reduce the amplitude of the GW spectrum.

For self-coupling λχ & g2, where g2 is the inflaton-scalar coupling, the peak energy density

goes as Ω
(λχ)
gw /Ω

(λχ=0)
gw ∼ (g2/λχ)2. A consequence is that if the universe reheats through an

inflaton-Higgs coupling then the spectrum would be suppressed but the dynamics would be

sensitive to the Higgs potential near the energy scale of inflation.

I. INTRODUCTION

Inflation leaves the universe cold and nearly empty of particles, so there needs to be a reheating

mechanism for energy transfer between inflaton and Standard Model fields in order to create the

thermalized particles that existed before Big Bang Nucleosynthesis began. This is typically modeled

by a small, direct coupling between inflaton and another field. The first discussions of reheating [1–

7] studied a perturbative calculation of inflaton decay into the coupled field, with energy gradually

transferred to matter fields. (Also see the reviews [8, 9].)

However, inflaton decay occurs in the context of large, coherent field oscillations and non-

perturbative effects should also be taken into account [6, 7, 10, 11]. Typically, the inflaton φ is

considered to be coupled to a field χ by an interaction 1
2g

2φ2χ2, which is χ’s only potential energy

term. As the inflaton oscillates about the bottom of its potential after inflation, the phenomenon of

parametric resonance leads to some modes of the decay product χ being excited at an exponential

rate. This effect, which may occur briefly at the beginning of a longer period of reheating, is called

preheating. (Most of the work on this subject has been in the context of direct couplings between

inflaton and matter fields; see [12] for a scenario that does not require this.)
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Preheating in these models can produce gravitational waves [13–18], since the exponential

amplification of certain modes leads to a large contribution to anisotropic stress, which sources

tensor perturbations. Predictions for the resulting spectrum are around h2Ωgw ∼ 10−10 and f ∼ 104

to 106 Hz today for massive or λφ4 inflation or could be as low as 102 to 103 Hz for hybrid inflation

models. Some work [17, 19–24] has addressed this problem in the context of various models that

relate to processes that are more specific. These find a wide range of possibilities. For example,

[21] found that decay into fermions after inflation could produce Ωgw ∼ 10−12 to 10−18, f ∼ 109

to 1010 Hz today, depending on the parameters.

These tend to fall outside the range of current, planned or proposed gravitational wave ex-

periments such as Advanced LIGO and VIRGO, KAGRA, Einstein Telescope, eLISA, DECIGO

or BBO (for an exception, see [20]). Roughly speaking, these are most sensitive to frequencies

around 10−3 to 103 Hz and signal strength corresponding to h2Ωgw ∼ 10−5 to possibly 10−14. (See

[25, 26] or the review [27].1) LIGO and VIRGO have jointly placed upper bounds on a stochastic

gravitational wave background on the order of Ωgw ∼ 5× 10−6 around 102 Hz [28]. Gravitational

wave detection at MHz frequencies has also been considered [29–31]. It has not been a major

focus, though, since comparatively reliable astrophysical sources (e.g. neutron star mergers) are

not expected in this frequency range.

This motivates the study of how robust are the predictions for the gravitational wave spectrum

from preheating. We would expect that a realistic preheating process in the early universe would

include couplings of the decay product to other fields, as well as possible self-interactions. It

will be useful to know whether these can significantly affect the observability of such a process.2

Specifically, it would be interesting to answer the question “Given a model of preheating with some

self-interaction strength, how does one estimate the overall gravitational wave production?” This is

analogous to the discussion in [33], which estimates the maximum energy density in gravitational

waves that could be produced by a cosmological process such as preheating.

Previous work has shown that for self-couplings λχ ∼ O(10−2)� g2, where g2 is the coupling

between the inflaton and scalar, parametric resonance can be significantly affected [34, 35]. How-

ever, there has been little discussion of gravitational wave production in this scenario.3 Therefore

it is difficult to give a thorough answer to the above question based on the existing literature.

1 Note that some results are given in terms of h2Ωgw, others in terms of Ωgw and still others in terms of strain

h, which is distinct from today’s Hubble constant in units of 100 km/s/Mpc that appears in h2Ωgw. Consistent

comparison of experimental sensitivities is discussed in [25].
2 While this paper was in preparation, another work [32] appeared that addresses some of these questions. We will

discuss it in Sec. VI.
3 A study of gravitational waves in M-flation preheating [36] mentions that a self-interaction can suppress the

resonance, but does not quantify this in a way that allows comparison with [34].
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This also means that it is unclear how general a gravitational wave prediction is when it ignores

interactions of the decay products.

In this work, we begin to address this by studying the development and termination of para-

metric resonance and the production of gravitational waves in the context of λφ4 chaotic inflation

coupled to a self-interacting light scalar field. We verify by lattice simulation that the resonance

terminates early for self-coupling λχ & g2, demonstrating the condition ρfinal
χ ∼ g2/λχ mentioned

in footnote 19 of [34] (their g is our g2), and show that this leads to significant suppression of grav-

itational wave production. The resonance terminates early because the self-interaction term allows

more efficient rescattering of particles out of the resonant mode, and this can be characterized by

a condition comparing the energy density associated with the self-interaction to the inflaton-scalar

interaction energy. The early termination of the resonance means that there is less energy in the

light scalar’s fluctuations, which directly source gravitational waves. Therefore, gravitational wave

production is reduced. For λχ & λ∗χ = g2, the energy density goes as Ω
(λχ)
gw ∼ (g2/λχ)2 Ω

(λχ=0)
gw .

In Sec. V we show that this result is robust to changes in initial conditions, and that the

same scaling occurs in massive (m2φ2) inflation. Although this suggests generality to inflationary

models that are quadratic or quartic about the minimum, we point out that an important goal of

future work is to understand the effect of realistic interactions on other models that have predicted

gravitational wave spectra.

As an application of this result, one could imagine the universe reheating by a coupling between

the Higgs and inflaton, and we argue in Sec. VI that such a scenario would likely produce no

observable gravitational radiation. This is due to the size of the Higgs self-coupling, despite its

eventual running to zero in the Standard Model. However, we point out that even a resonance

too brief to produce observable gravitational waves could be relevant for the issue of vacuum

stability. Finally, if the inflaton preheats a scalar field with an extremely small self-coupling, then

the gravitational wave spectrum could directly measure this potential.

II. MODEL

Representing the universe by a spatially flat Friedmann-Robertson-Walker metric, we will

describe gravitational waves as transverse and traceless perturbations to this metric, specifically

as hij such that

ds2 = a2(η)
(
−dη2 + (δij + hij)dx

idxj
)

(1)
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with ∂ihij = 0 and hii = 0. We will take the inflaton to be a real scalar field, φ(t, ~x), and consider

it to be coupled to a massless real scalar field χ(t, ~x), with potential given by

V =
1

4
λφ4 +

1

4
λχχ

4 +
1

2
g2φ2χ2 (2)

Here we have chosen to study λφ4 chaotic inflation, and this requires some justification since

standard slow-roll inflation with this potential is inconsistent with Cosmic Microwave Background

(CMB) observations [37]. Much literature on gravitational waves from preheating takes the po-

tential as 1
4λφ

4, in particular the thorough numerical study [16], whose model corresponds to ours

with the choice λχ = 0. We expect the qualitative nature of our results to be relevant to a broad

range of inflationary scenarios (this will be discussed further in Sec. VI), and it will be useful to

refer to specific previous results in order to understand the production of gravitational waves.

We are also studying the behavior of a “light” scalar field, and so we neglect a χ mass term in

comparison with the effective χ mass that comes from the interaction term 1
2g

2φ2χ2. Comparing

these terms using the amplitude of the φ oscillations shows that this is roughly equivalent to

requiring the χ mass to be mχ �
√
g2/λ× 1012 GeV.

Here the inflaton self-coupling is set by the amplitude of the scalar power spectrum of the

CMB as λ = 10−13. The unknown coupling g2 must be small, but we will also take it to be larger

than λ; in terms of the resonance parameter q ≡ g2/λ this means 1 � q � λ−1; here we will

examine the range 10 . q . 2000, which contains most of the region with the largest gravitational

wave production [16]. We will see that this peaks around q ≈ 100− 200 and falls off slightly as q

gets larger or smaller (see Fig. 2d), although there are examples with smaller q that do not exactly

follow this trend [16]. We consider the light scalar’s self-interaction in the range λ < λχ < 1.

We study the dynamics in this model beginning at the end of inflation, t0 ≡ 0, once the comov-

ing horizon (aH)−1 begins to expand, with the inflaton as a homogeneous field given everywhere

by φ0 = 0.342MPl.
4 The field χ is a light “spectator” field during inflation, and at the end of

inflation each χ mode is in the de Sitter vacuum state. As shown in previous work [38, 39], as the

inflaton decays the quantum state quickly approaches a semiclassical regime with large occupa-

tion numbers, and the evolution here is equivalent to the classical evolution of an initial classical

distribution that gives

〈|χk(0)|2〉 = 1/(2λ3/2φ3
0ωk), χ̇k(0) = (iωk +H(0))χk(0) (3)

4 This particular point along the inflaton’s phase space trajectory is identical to that of [16]. This choice is further

addressed in Sec. V.
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at the beginning of reheating.5 The dynamics considered here occurs on sub-horizon scales.6

Since φ is homogeneous, the equations of motion for these fields in a spatially flat Friedmann-

Robertson-Walker (FRW) background are

φ̈+ 3Hφ̇+ λφ3 = 0 (4)

�χ+ 3Hχ̇+ λχχ
3 + g2φ2χ = 0 (5)

where H ≡ ȧ/a is the Hubble parameter, whose value is related to the total energy density ρ by

the Friedmann equation

H2 =
8πG

3
ρ. (6)

In order to study the behavior of φ and χ that follows from the above, we will express χ in terms

of modes χk
7:

χ(t, ~x) =
1

(2π)3/2

∫
d3k

(
akχk(t)e

−i~k·~x + a†kχ
∗
k(t)e

i~k·~x
)
. (7)

The amplitude of φ is still very large at the end of inflation, λχχ
2 � g2φ2, and Eq. (5) is approxi-

mately linear in χ. We can then use the mode equation

χ̈k + 3Hχ̇k +

(
k2

a2
+ g2φ2

)
χk = 0 (8)

to study the beginning of the reheating process. It will be convenient to introduce conformally

rescaled fields φ ≡ aφ/φ0, χ ≡ aχ/φ0, and time dη ≡ dt/a and define a dimensionless time

parameter and wave number

τ ≡
√
λφ0η, κ ≡ k/(

√
λφ0). (9)

Following e.g. [11, 16], we study the field spectrum in terms of a comoving number density for the

field χ,

nκ =
1

2

(
ωκ|χκ|2 +

1

ωκ
|χ ′κ |2

)
, (10)

and comoving energy density ρκ = ωκnκ, where ωκ =
√
κ2 +m2

eff =

√
κ2 + qφ

2
+ 3(λχ/λ)χ 2.

5 χk and ωk are defined below. The specific implementation for initial field conditions of [38] is as described in the

documentation for LATTICEEASY code, available at http://www.felderbooks.com/latticeeasy/.
6 For the typical example q = 120, numerical results show that preheating begins at about H = 1.1× 10−9MPl and

a = 5.5 (for a = 1 at the beginning of the simulation) and the mode k∗ ≈
√
λφ0 is excited. Then at formation the

wavelength of these perturbations is a fraction R∗/Rhorizon = (a k−1
∗ )H ∼ 10−2 of the horizon size. Since inflation

has ended, the comoving horizon (aH)−1 is increasing, so aH is decreasing and the modes excited later will be an

even smaller fraction of the horizon size.
7 Here we always use the Fourier Transform convention f(~x) = (2π)−3/2

∫
d3k f(~k) exp(i~k · ~x).
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III. PREHEATING IN THIS MODEL

We begin by briefly outlining some results from previous studies of preheating, beginning with

the case λχ = 0 (see [11] and references therein). We then use these to develop an approximate

relation that quantifies the end of preheating and that will be useful in the gravitational wave

calculation. After the end of inflation, φ oscillates in its potential with period T ≈ 7.416 (in terms

of the dimensionless time parameter τ) [11] while the modes χκ can be excited by the phenomenon

of parametric resonance. This process is typically described in terms of the resonance parameter

q = g2/λ. In general, certain modes κ will be excited as χκ ∝ exp(µκτ). The exponential growth

factor µκ will vary with κ, giving rise to resonance “bands” characterized by some central κ and

width ∆κ. We will consider the case of “broad resonance” where q � 1 (as compared with “narrow

resonance” when q < 1). In this case the spectrum of resonantly excited modes takes the form of

a broad peak whose location and width are approximately characterized by

κ∗, ∆κ ∼ q1/4. (11)

For a particular value of q, the maximum growth exponent µmax ≡ max{µκ} is [11]

µmax =
1

π
ln

(√
1 + exp

[
−πκ2

√
2/q
]

+ exp
[
−πκ2/

√
2q
])

(12)

and the resonance is efficient when κ2 ≤
√
q/(2π2). Numerically we find that typical resonant

momenta are κ∗ ∼ 1, so µmax ∼ (3/2π) exp(−π
√

2/q) which is O(10−1) for the range of q we

consider. Number density nχ ≡
∫
d3κnχκ increases in steps, twice per φ oscillation – every time

the inflaton passes through φ = 0 and χ’s effective mass-squared m2
χ = g2φ2 goes to zero, a burst

of χ particles are created.

The exponential amplification of some χκ derived from Eq. (8) is a solution for small χ (ap-

proximately zero) and homogeneous φ, when the mode equation for χκ is linear. As this process

evolves, this will become a worse approximation and the problem will become fully nonlinear.

Therefore, Eq. (8) is only useful for understanding the beginning of the reheating process, and in

general it is the coupled equations of motion Eq. (4) and Eq. (5) that must be solved.

These can be studied by lattice simulation, and we have used the C++ code LATTICEEASY

[40] in order to simulate the evolution of these interacting scalar fields in an expanding universe.

Fig. 1 shows results for q = 120. This is a useful example since [16] presents detailed results for

preheating and gravitational wave production for q = 120 in the absence of a self-coupling. Fig. 1a

shows the spatially-averaged energy density ρχ ≡ 〈12 χ̇
2 + 1

2a2
(∂jχ)2 + 1

4λχχ
4〉 as a function of time.
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FIG. 1: Evolution of preheating for q = 120. (a) Energy density ρχ as a function of time for

λχ = 0. (b) Energy density ρχ as a function of time for λχ = 10−8. (c) Energy density of φ and

χ, as well as energy density in the interaction term, for λχ = 0. (d) Same as (c), but for

λχ = 10−8. The spatially averaged quantity q〈14λχχ
4〉 is also shown. (e) The spectrum in χ at

several times of interest, for λχ = 0. The solid line corresponds to approximately the time when

the exponential growth ends. (f) Same as (e), for λχ = 10−8.
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Fig. 1c shows for λχ = 0 the sum of the spatially-averaged energy densities ρφ ≡ 〈12 φ̇
2 + 1

2a2
(∂jφ)2 +

1
4λφ

4〉 and ρχ, as well as the energy density only in the interaction term, ρint ≡ 〈12g
2φ2χ2〉. Fig. 1e

shows the spectrum in χ for the same choice of parameters. The spectrum is shown at several

times, and the solid line corresponds to approximately the time when the exponential growth ends.

We can understand how preheating progresses by observing that the transfer of energy between

χ and φ, and among different modes χκ and φκ, occurs in the following distinct stages. First,

oscillations of the homogeneous φ excite modes of χ centered around some κ = κ∗, and the initially

small inhomogeneities of χ become large. There is some backreaction onto φ, whereby the g2

2 φ
2χ2

interaction term broadly excites modes φκ up through ≈ 2κ∗, and inhomogeneities in φ begin to

grow.

The second stage occurs once q1/2ρint ≈ ρφ + ρχ. This is a useful, approximate numerical

result, that is essentially the same as Eq. 6 in [41]. Then χκ∗ efficiently rescatters, i.e. interacts

with other modes, and its exponential growth ends. The total energy in χ continues to grow a bit

until ρχ ≈ ρφ. This is evident in Fig. 1a. Large field inhomogeneities break up and the spectrum

broadens towards larger k. This broad spectrum where energy density becomes approximately

evenly distributed among modes is evident in Fig. 1e. This figure indicates the spectrum at the

time when the exponential growth ends with a solid curve. Spectra before this time are indicated

by dashed curves, and spectra after this time are indicated by dotted curves. This stage is discussed

and examples of field configurations are shown in [42]. Some work has also examined the final,

so-called “turbulent thermalization” stage in detail [43, 44].

We now consider the case of nonzero λχ. This has been studied to some extent in [34, 35, 45],

and here we find results consistent with theirs. Fig. 1b shows ρχ as a function of time. The

resonance ends earlier in comparison with the λχ = 0 situation of Fig. 1a. Fig. 1d shows ρφ + ρχ,

ρint and 〈14λχχ
4〉 for λχ = 10−8. Fig. 1f shows the spectrum in χ at several times of interest,

and the solid line again corresponds to approximately the time when the exponential growth ends.

Here the end of this stage still corresponds to a large mixing between modes, but in this case it is

the quartic self-interaction that is significant.

In general, we find from numerical simulation that when λχ becomes significantly larger than

g2, the resonance terminates earlier than for the λχ = 0 case, i.e. for any λχ > λ∗χ ∼ g2. In terms of

energy transfer, when q1/2
〈

1
4λχχ

4
〉
≈ ρint, the resonance ends. This is analogous to the condition

we described for λχ = 0, and will be useful. Depending on the size of λχ, this may occur before or

after the relation q1/2ρint ≈ ρφ + ρχ becomes true. To summarize, the resonant stage of preheating
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ends by the following condition:

(ρφ + ρχ) ≈ q1/2ρint for λχ < λ∗χ, (13)

ρint ≈ q1/2

〈
1

4
λχχ

4

〉
for λχ > λ∗χ. (14)

The powers of 1/2 are approximate – when comparing the size of the oscillating energy densities,

as in Fig. 1c and Fig. 1d for example, there is some ambiguity in determining exactly what the

value of the energy is when the resonance ends. We can estimate the value λ∗χ where the condition

Eq. (14) becomes more important than Eq. (13) in terms of an energy argument. For small enough

λχ, we will have 〈14λχχ
4〉 � ρφ + ρχ, so the self-interaction will not play a role in ending the

resonance. This will no longer be true once

q1/2

〈
1

4
λχχ

4

〉
∼ ρφ + ρχ. (15)

This can be related to the value of χ when the resonance ends by observing that, around this

critical value λ∗χ where behavior transitions from Eq. (13) to Eq. (14), we will also have

ρφ + ρχ ∼ q1/2

〈
1

2
g2φ2

endχ
2
end

〉
(16)

so that

1

4
λχ〈χ4

end〉 ∼
1

2
g2〈φ2

endχ
2
end〉 (17)

For (〈φ2χ2〉/〈χ4〉)end ∼ O(1) this means that

λ∗χ ∼ g2. (18)

This agrees with numerical results showing that the maximum energy density begins to decrease

dramatically with increasing λχ around this value. For example, q = 120 will give λ∗χ ∼ 120 ×

10−13 ∼ 10−11. We check this by defining for each λχ the quantity ρmax
χ as the time average

over several oscillations once ρχ has stopped increasing with time. Fig. 2b shows that around

λ∗χ ≈ 10−11, ρmax
χ begins to decrease as λ−1

χ . We now seek to quantify the effect that this has on

gravitational wave production.

IV. GRAVITATIONAL WAVE SPECTRUM

The metric perturbation hij defined in Eq. (1) can be rescaled as hij ≡ ahij . Neglecting a

term that goes as a′′/a ∼ (aH)2 [16], the equation of motion is

h
′′
ij −∇2hij = 16πGa3ΠTT

ij (19)
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where G is Newton’s constant and ΠTT
ij is the transverse traceless projection of the anisotropic

stress:

Πij = a−2 (Tij − 〈p〉gij) . (20)

The second term in Eq. (20) will be neglected since gij is the sum of a homogeneous, isotropic part

whose transverse traceless projection is zero, and a perturbation that is higher order in G. The

Fourier Transform of Eq. (19) is

h
′′
ij(
~k) + k2hij(~k) = 16πGa3ΠTT

ij (~k) (21)

We consider ΠTT
ij to be a source acting continuously during the time interval η0 < η < ηf ,

solve Eq. (19) using Green’s functions, and use this solution to find the energy density of the tensor

perturbation. As shown in [16], the result of this procedure is

dρgw

d ln k
(η > ηf ) =

Sk
a4(η)

(22)

where Sk is defined by

Sk =
4πGk3

V

∫
dΩ
∑
i,j

(∣∣∣∣∫ ηf

ηi

dη′ cos(kη′)a(η′)TTT
ij (η′,~k)

∣∣∣∣2 +

∣∣∣∣∫ ηf

ηi

dη′ sin(kη′)a(η′)TTT
ij (η′,~k)

∣∣∣∣2
)

(23)

where V is the volume of the box considered and
∫
dΩ is an integral over directions in k space.8 Sk

only depends on the dynamics occurring during gravitational wave generation, and the TT part of

the energy-momentum tensor is defined in terms of projection operators by

TTT
ij (η,~k) =

(
Pil(k̂)Pjm(k̂)− 1

2
Pij(k̂)Plm(k̂)

)
Tlm(η,~k) (24)

Pij(k̂) = δij − k̂ik̂j (25)

We obtain the spectrum of gravitational waves numerically using the LATTICEEASY code

mentioned above, modified to in order to compute Eq. (22) as described above. We will give results

in terms of Ωgw = ρgw/ρtotal, at the “time of production” defined as approximately the time when

energy in gravitational waves stops increasing noticeably. This is very well approximated by the

value at the end of the simulation at τ = 250, and denote with a subscript “p” quantities evaluated

at this time. The relation between the results we give and their present values depends somewhat

8 Our physical results are independent of box size, as we use a numerical Fourier Transform that takes this into

account. This is described in the LATTICEEASY documentation.
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on the equation of state throughout reheating, but previous works have established that in λφ4

preheating, the equation of state very rapidly becomes that of radiation, so that the energy density

in gravitational waves will be [16]

h2Ωgw =

(
Sk
a4ρ

)
p

(
g0

g∗

)1/3

h2Ωrad

=
(
9.3× 10−6

)
(Ωgw)p (26)

where h2Ωrad = 4.3×10−5, g∗/g0 ≈ 100. Similarly, frequencies today are related to comoving wave

numbers at the time of preheating by

f =

(
k

aρ1/4

)
p

4× 1010 Hz ∼ κ× 107 Hz (27)

where in the last step we have taken (a4ρ)p ∼ λφ4
0 (see e.g. Fig. 1a; we begin with ρχ ≈ 0 and

ρφ ≈ 2× 1
4λφ

4
0 and throughout the simulation the quantity a4(ρφ + ρχ) ≈ constant).

Fig. 2a shows the spectrum obtained in the case q = 120, for λχ = 0 and λχ = 10−9. The

decrease in the energy produced in gravitational waves is evident from this, and Fig. 2b shows

how this depends on λχ, as a fraction of the peak energy density when λχ = 0. The solid lines

in Fig. 2c show Ωgw for the cases q = 12 and q = 1200. Evidently the effect of λχ is to end the

resonance early and suppress gravitational wave production. Once preheating ends, the additional

contribution of inhomogeneities to the gravitational wave spectrum is negligible [16].

To estimate how this effect depends on the model parameters q and λχ, we note that Ωgw ∼

(TTT
ij )2 ∼ (∂iχ)4. The energy density Ωgw is dominated by the most recently produced part of the

spectrum before the resonance ends (this is particularly clear in Fig. 8 of [16]), so for the purposes

of this estimate we will ask how the maximum amplitude of χ depends on q and λχ. We have seen

that χ grows until the condition Eq. (14), 1
2qλ〈φ

2χ2〉 ∼ 1
4λχ〈χ

4〉, is satisfied. (Also, comparison of

Fig. 1a with Fig. 1b shows this since ρχ ∼ (∂iχ)2.) This suggests a parametric scaling

χ2
end ∝ qλ/λχ = g2/λχ (28)

Then the expectation that Ωgw ∼ (χ2
end)2 becomes

Ωgw ∝
(
g2/λχ

)2
. (29)

Our numerical results confirm this relation as shown in Fig. 2b and Fig. 2c. For λχ < λ∗χ,

the peak energy in gravitational waves decreases only very slightly with increasing λχ, as the self-

interaction term plays a small role in mixing modes and damping inhomogeneities. Once λχ > λ∗χ,



12

2 5 10 20
10-13

10-11

10-9

10-7

10-5

Κ

W
gw

ΛΧ=0

ΛΧ=10-9

(a)

10-13 10-11 10-9 10-7 10-5 0.00110-15

10-12

10-9

10-6

0.001

1

Λ Χ

W
gw

HΛ Χ
L�

W
gw

HΛ Χ
=
0L Ρ Χ

final � Ρ Χ
finalHΛ Χ =0L

Wgw � WgwHΛ Χ =0L Hg2�Λ Χ L2

g2�Λ Χ

(b)

10-13 10-11 10-9 10-7 10-5 0.00110-25

10-21

10-17

10-13

10-9

ΛΧ

W
gw

HΛ Χ
L

q=12

q=1200

(c)

20 50 100 200 500 100010-21

10-18

10-15

10-12

10-9

10-6

q

W
gw

WgwHΛΧ=0L

WgwHΛΧ=10-7L

Hg2�ΛΧL2 ´ WgwHΛΧ=0L

(d)

FIG. 2: Peak of gravitational wave energy density spectrum, defined in Eq. (22), as a fraction of

total energy density at end of preheating stage. (a) Spectrum for q = 120 and two choices of

self-coupling λχ. (b) Amplitude of peak of GW spectrum, and final average value for ρχ after

preheating ends, for q = 120 and as a function of λχ. These quantities are presented as fractions

of their value in the λχ = 0 case. For comparison, dashed curves are also shown for the scaling

behavior Eq. (28) and Eq. (29). (c) Amplitude of peak of GW spectrum, Ω∗gw, as a function of λχ

for q = 12 and q = 1200, compared with Eq. (29). (d) Value of Ωgw as a function of the resonance

parameter, q, for λχ = 0 and λχ = 10−7, and the prediction Eq. (29) applied to the latter case.

the energy density in gravitational waves scales in the manner given by Eq. (29). For λχ ∼ 10−2,

we see that ρχ and Ωgw no longer decrease significantly with increasing λχ. This is simply because

the unstable resonance never begins, and the quartic self-interaction can no longer dramatically

decrease Ωgw by ending the resonance earlier. Fig. 2d shows how the value of Ωgw at the time of
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production depends on the resonance parameter, q, for both λχ = 0 and λχ = 10−7. In the latter

case, we also show the prediction of the scaling relation Eq. (29).

V. GENERALITY

So far, we have examined results in the context of λφ4 chaotic inflation, with the self-coupling

λ and the initial condition of the inflaton field identical to a previous work that thoroughly in-

vestigated the dynamics of gravitational wave production during preheating [16]. This allows the

results of the previous sections to be directly compared with that work. However, observational

data indicates that the λφ4 chaotic potential is not favored [37], so an important question is the

generality of the results we have quoted above. In this section we will address this question in two

ways, before pointing out interesting directions for future work. We will consider massive (m2φ2)

inflation, another standard example in which preheating is studied, and we will also consider a

range of initial conditions for φ within both the λφ4 and m2φ2 cases.

Specifically, this means that we will begin the numerical situation – corresponding to the end

of inflation, with the inflaton’s energy about evenly split between kinetic and potential – with

the inflaton field at various lower points on its potential than in the original case. Here, we are

not primarily concerned with representing a complete model of inflation, but rather are studying

how preheating and gravitational wave production proceed within a potential that is quadratic or

quartic about the minimum, without regard to the model’s behavior at higher (inflationary) field

values. In this spirit, we also study the m2φ2 case with a few choices of mφ. It is worth pointing

out that not all inflationary models end with oscillations of the field responsible for inflation about

its zero; see for example the Abelian Higgs and Higgs-dilaton models [20, 46].

For every situation we have tried, the same approximate scaling behavior of reduced grav-

itational wave production with increased self-interaction λχ holds. In particular, we display

some typical results in Fig. 3 and Fig. 4. For the case of λφ4 inflation, with q = 120 and

φ(0) = φ0 ≡ 0.342MPl, we plot the gravitational wave spectrum in Fig. 3 and the scaling be-

havior with λχ in Fig. 4a. These results were presented in Sec. IV, and they are provided again

for direct comparison with alternative scenarios. We label this choice of parameters as φ4 − I. We

also show results for q = 120 and φ(0) = φ0/10, referred to as φ4 − II, as well as q = 120 and

φ(0) = φ0/100, referred to as φ4 − III.

Fig. 3 compares the gravitational wave spectra of the φ4 − I and φ4 − II parameter choices,

for both λχ = 0 and λχ = 10−9. In both cases, evidently, there is a significant reduction in
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FIG. 3: Peak of gravitational wave energy density spectrum, defined in Eq. (22), as a fraction of

total energy density at end of preheating stage. Spectrum for q = 120 and two choices of

self-coupling λχ. The curves labeled φ(0) = φ0 are identical to those shown in Fig. 2a,

corresponding to the original initial condition for the inflaton field. The curves labeled

φ(0) = φ0/10 correspond to starting the inflaton a factor of 10 lower on the potential, as

described in the text. The magnitude of the gravitational wave spectrum is changed, but the

effect of turning on λχ is the same.

gravitational wave production that accompanies an increase in λχ, despite the difference in overall

amplitude of the spectrum. In Fig. 4a, we show how this reduction depends on λχ for each of the

parameter choices φ4 − I, φ4 − II, φ4 − III. We find the same scaling behavior as before: there is a

λ∗χ above which gravitational wave production is suppressed by a factor of (g2/λχ)2.

In the case of massive inflation, we replace Eq. (2) with the potential

V =
1

2
m2
φφ

2 +
1

4
λχχ

4 +
1

2
g2φ2χ2 (30)

i.e. the light field χ has the same potential and interactions with the inflaton as it did previously,

but the inflaton potential is quadratic rather than quartic. In this case we find that, as above,

there is some λ∗χ such that for λχ > λ∗χ, gravitational wave production tends to be suppressed by

λ−2
χ . We again plot three typical examples. We refer to q ≡ g2φ(0)2/4m2

φ = 60, φ(0) = 0.1MPl,

mφ = 10−6MPl as φ2 − I. We refer to q = 15, φ(0) = 0.01, mφ = 10−9 as φ2 − II. We refer to

q = 15, φ(0) = 0.001, mφ = 10−9 as φ2 − III. Fig. 4b shows how the gravitational wave spectra in

these cases scale with λχ. For ease of comparison with the scaling relation λ−2
χ we plot the results

as a function of λχ/λ
∗
χ, where λ∗χ = 10−6, 10−9, 10−7 for φ2 − I, φ2 − II, φ2 − III respectively.

As before, λ−2
χ fits well (until λχ becomes large enough that preheating no longer starts, so that

increasing λχ won’t further decrease the gravitational wave production).
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FIG. 4: Peak of gravitational wave energy density spectrum, defined in Eq. (22), as a fraction of

total energy density at end of preheating stage and normalized to the value when λχ = 0. Here

we show several typical examples where the initial condition and/or parameters of the model are

varied, as described in the text. As in Sec. IV, there is some value λ∗χ above which the peak of

the gravitational wave spectrum decreases as λ−2
χ . Once λχ is large enough, the preheating

resonance never starts and there is no further suppression with increasing λχ, an effect also seen

in Sec. IV. (a) Varying initial conditions for λφ4 inflaton potential. (b) Varying initial conditions

and mass parameter for m2φ2 inflaton potential. For ease of comparison, this result is given as a

function of λχ/λ∗, where λI
∗ = 10−6, λII

∗ = 10−9, λIII
∗ = 10−7.

The numerical computations involved make it impractical to check here every imaginable sit-

uation of interest to verify this relation. We have shown that gravitational wave production from

preheating in potentials with minimum at zero can be extremely sensitive to the value of the light

field’s self-coupling term, and that result is not exclusive to one particular model or choice of pa-

rameters. Therefore, an important goal of future work will be to fully characterize this effect in

other realistic models, and better understand the implications for observability.

VI. DISCUSSION AND CONCLUSIONS

In this work we have studied the effect of a nonzero self-interaction on gravitational wave

production during preheating of a scalar field. Previous work has considered the dynamics of

preheating for a light, self-interacting scalar, as well as gravitational wave production by preheating

of a non-self-interacting scalar. This work is an extension of these results, and in particular shows
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that the spectrum of gravitational waves that survive until today is very sensitive to the light

scalar’s self-interaction. Our main result within the λφ4 model is that for self-coupling λχ & g2,

the preheating resonance is terminated early, and the gravitational wave spectrum is significantly

reduced:

Ωgw ≈
(
g2

λχ

)2

Ω
(λχ=0)
gw for λχ & g

2. (31)

We have also begun to address the question of generality of this result, as discussed in Sec. V.

For various choices of the inflaton’s initial condition in the λφ4 model, we have seen that Eq. (31)

holds. Additionally, for an m2φ2 inflationary potential, the result that the gravitational waves

are suppressed as λ−2
χ is shown, for several parameter choices. While this suggests generality to

inflation models with potentials quadratic or quartic about a minimum at zero, an important

question for future work is to study the effect of the light field’s interactions in other preheating

models that have been shown to predict gravitational waves. As our work shows, predictions that

neglect such interactions - even if they are extremely small - may not necessarily be accurate.

It is easy to imagine that in a realistic preheating scenario, decay products will have their own

self-interactions or further interactions with other fields, that will end the resonance early. Re-

cently, another paper studied the effect of interactions of χ with further light degrees of freedom,

as well as self-interactions in the context of a curvaton decaying to Higgs [32]. Although the model

is not identical to ours, it also found that self-interactions can be important in terminating the

resonance early. Furthermore, they found that interaction with the additional light scalars, as char-

acterized by the contribution to a thermal term, has the ability to significantly affect the resonance

and either end it early or prevent it from occurring at all. They did not consider gravitational

wave production, but following the argument given here in Sec. IV it is reasonable to expect that

this early termination of the resonance can further reduce any production of gravitational waves.

Analyses of other scenarios have shown that preheating can be sensitive to nonlinear interaction

terms of decay products [23], or other nonperturbative effects motivated by new physics above the

TeV scale [47–51]. Another interesting goal for future work would be to incorporate the effects of

interactions such as those studied in this paper into a more general framework for obtaining order-

of-magnitude estimates of gravitational wave production, as in [33]. Although current constraints

on MHz gravitational wave backgrounds are not sensitive to these processes [29], this could be very

useful in evaluating the potential for observability in future experiments.

One interesting possibility is that reheating occurred through an inflaton-to-Higgs coupling,

since the Higgs is a natural candidate to couple to beyond-Standard Model fields [52–55]. The
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running of the Higgs self-coupling is sensitive to any new physics that comes in at high energies,

but it has not been directly measured and will be difficult to measure at the LHC. One might

hope that since λH runs from 0.13 at the weak scale to zero around 1010 GeV in the Standard

Model [56], the condition λH � 1 could be satisfied. This would avoid enormous damping of the

preheating resonance, and thereby provide a possible cosmological probe of λH. The self-coupling

remains O
(
10−1

)
up to ∼ 108 GeV, though, which suggests that there will not be significant (or

any) preheating resonance. However, above this scale the self-coupling decreases and the effective

potential reaches a maximum (in the Standard Model – small changes in input parameters or new

physics beyond the Standard Model can significantly affect this; see e.g. [57–60]).

The condition Eq. (14) suggests that a more relevant condition than the self-coupling may

be the magnitude of the Higgs potential. The configuration of χ at the end of inflation (initial

configuration for this problem) is certainly sensitive to the potential at large field values, as it

corresponds to approximately χrms ∼ 1012 GeV ∼ Hinf .
9 If one takes Eq. (14) to apply as the

condition for whether parametric resonance does or does not occur, then the result could be a

resonance pushing Higgs oscillations toward the vacuum instability region.10 New physics that

prevents λH from becoming negative would likely be more than sufficient to prevent a resonance

from occuring. These rough estimates also ignore the possibilities of a different running of λH from

the new inflaton coupling, as well as thermal effects. We leave the resolution of these questions to

future work.
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