
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Equivalence principle and the baryon acoustic peak
Tobias Baldauf, Mehrdad Mirbabayi, Marko Simonović, and Matias Zaldarriaga

Phys. Rev. D 92, 043514 — Published 21 August 2015
DOI: 10.1103/PhysRevD.92.043514

http://dx.doi.org/10.1103/PhysRevD.92.043514


Equivalence Principle and the Baryon Acoustic Peak

Tobias Baldauf, Mehrdad Mirbabayi, Marko Simonović, and Matias Zaldarriaga
Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA

We study the dominant effect of a long wavelength density perturbation δ(λL) on short distance
physics. In the non-relativistic limit, the result is a uniform acceleration, fixed by the equivalence
principle, and typically has no effect on statistical averages due to translational invariance. This same
reasoning has been formalized to obtain a “consistency condition” on the cosmological correlation
functions. In the presence of a feature, such as the acoustic peak at `BAO, this naive expectation
breaks down for λL < `BAO. We calculate a universal piece of the three-point correlation function in
this regime. The same effect is shown to underlie the spread of the acoustic peak, and is calculable to
all orders in the long modes. This can be used to improve the result of perturbative calculations — a
technique known as “infra-red resummation”— and is explicitly applied to the one-loop calculation
of power spectrum. Finally, the success of BAO reconstruction schemes is argued to be another
empirical evidence for the validity of the results.

I. INTRODUCTION

Local experiments performed in a small laboratory
cannot reveal the existence of the uniform gravitational
field of a long-wavelength matter density perturbation,
e.g. δL(x, t) = δq(t) cos(q · x). By the equivalence prin-
ciple, the laboratory and all of its belongings fall with
a uniform acceleration −∇ΦL(xlab, t), where ΦL(x, t) =
−4πGa2ρ̄(t)δL(x, t)/q2, and ρ̄(t) is the mean matter den-
sity of the Universe. However, two distant laboratories
with separation larger than 1/q experience different ac-
celerations. A distant observer sees a clear correlation
between the relative motion of the two and the underly-
ing density perturbation.

The motion in the field of a long-wavelength mode is
easiest to find from the fact that everything falls in the
same way as a dark matter particle does. Possible devia-
tions are suppressed by additional derivatives of the long
mode. For dark matter, the linearized continuity equa-
tion implies v ' − ∇∇2 δ̇. The total displacement since
t = 0 is then

∆x = δq(t) sin(q · x) q/q2. (1)

The small laboratories of the cosmologist, like stars
and galaxies, are observed at a single point in their lifes-
pan. Hence, the relative motion of any given pair is im-
possible to determine. What is possible is to see how the
distribution of pairs is correlated with δL. For pairs of
any objects, say galaxies, equation (1) implies〈

δg(
x

2
, t)δg(−

x

2
, t)
〉
δL
' ξg(x, t)

+2δq(t) sin
(q · x

2

) q

q2
· ∇ξg(x, t),

(2)

where ξg(x, t) is an average 2-point correlation function.
Not surprisingly, the distribution of pairs with separa-
tion much less than the long wavelength, q · x � 1, is
hardly effected by the long mode. The second line would
in this case correspond to the effect of living in an over
(under) dense Universe. An effect of order δLx|∇ξg|,

which for an approximately scale invariant spectrum,
|∇ξg(x, t)| ∼ ξg(x, t)/x, is comparable to dynamical con-
tributions of order δLξg, which are neglected anyway on
the right-hand side (r.h.s.). However, even if q · x � 1,
when we do expect the long-wavelength mode to induce
a large relative motion, the second line of (2) is often
negligibly small. Scale invariance now implies that it is
of order δLξg/qx.

The relative motion is noticeable only if the distribu-
tion of pairs has a feature such that the derivative in the
second line of (2) becomes large. One such feature does
exist in the Universe at the baryon acoustic oscillation
(BAO) peak. For x ∼ `BAO,

|∇ξg| ∼
1

σ
ξg �

1

`BAO
ξg, (3)

where σ is the width of the peak. At this separation,
the effect of the long mode on the distribution of pairs
is of order δL`BAOξg/σ for q � `−1

BAO, and δLξg/qσ for

`−1
BAO � q � σ−1, which are both dominant compared

to the O(δLξg) dynamical effects. In what follows, we
explore the implications of this simple observation for
the shape of the correlation functions around the BAO
scale, and its connection to broadening of the peak.1

II. CORRELATION WITH THE LONG MODE

Real space.— An approximate three-point correlation
function can be obtained in this regime by correlating (2)

1 The initial time for this problem can be taken long after the
recombination, when the acoustic peak is already in place, but
the modes of interest, including those actually forming the peak,
are still linear and Gaussian.
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FIG. 1. Upper panel: The mixed real-momentum space three-
point function of equation (4) (solid line) and the perturba-
tion theory result (dot-dashed line) as a function of r. Both
curves are obtained for q = 0.03 hMpc−1, and are normalized
by Plin(keq)ξ(2π/keq). Lower panel: The comparison between
the two results when the background (calculated from the fea-
tureless power spectrum) is subtracted.

with δ(q, t) to get〈
δ(q, t)δg(

x

2
, t)δg(−

x

2
, t)
〉

' 2Plin(q, t) sin
(q · x

2

) q

q2
· ∇ξg(x, t),

(4)

where Plin(q, t) is the linear matter power spectrum.2

Given that terms of order Plinξg have been neglected
from the r.h.s., one must ask how accurate is the above
approximation. Realistically, ξg contains also a smooth
background. Hence, the approximation is valid so long
as

sin

(
q · x̂

2
`BAO

)
q · x̂
σq2

ξwg � ξg, (5)

2 We use finite volume Fourier transformation where the cosine
mode is related to Fourier modes according to δq(t) = [δ(q, t) +
δ(−q, t)]/V . However, for convenience, the discrete momentum
sums are approximated by integrals V

∫
d3q/(2π)3. Thus,〈

δ(q, t)δ(q′, t)
〉

= P (q)(2π)3δ3(q + q′),

with δ3(0) ≡ V/(2π)3. In what follows, momentum conserva-
tion is always explicitly imposed on momentum-space correla-
tion functions, but the factor (2π)3δ3(

∑
qi) is dropped. Note

also that the sine modes do not contribute to the relative dis-
placement of pairs located at ±x

2
.

where ξwg is the “wiggle” component. In our Universe,

ξwg /ξg ≈ 0.8, the peak location `BAO ≈ 100h−1Mpc, and

the width σ ≈ 10h−1Mpc. Therefore, the corrections are
of order 10-20%, but become larger at the nodes of the
sine and as q → 2πσ−1.

Note, however, that what is more essential in the above
derivation is the breakdown of scale invariance character-
ized by σ/`BAO � 1, rather than the actual size of the
feature. Even for small ξwg /ξg, the contribution (4), with
ξg replaced by ξwg , is distinct though perhaps subleading.

We tested the above expectations by taking δg to be
the matter contrast itself, and using the tree-level expres-
sion for the bispectrum in perturbation theory—fig. 1.3

As seen, subtracting the smooth contribution of the back-
ground results in a much better agreement.

Squeezed limit bispectrum.— Taking the Fourier
transform of (4) with respect to x, we obtain the
squeezed limit (q � k) momentum space bispectrum:

〈δ(q, t)δg(k−, t)δg(−k+, t)〉

' q · k
q2

Plin(q, t)[Pg(k−, t)− Pg(k+, t)],
(9)

where k± ≡ k ± q/2. The above derivation can be gen-
eralized to the case where the fields have different time
arguments. The result, often called the squeezed limit
consistency condition (see e.g. [3–5]), reads

〈δ(q, t)δg(k−, t1)δg(−k+, t2)〉 ' q · k
q2

Plin(q, t)
[D(t1)

D(t)
Pg(k−, t1)− D(t2)

D(t)
Pg(k+, t2)

]
,

(10)

where D(t) is the linear growth factor. The k± in the
arguments of Pg are normally approximated by k, which

3 The tree-level bispectrum is given by

B(k1,k2,k3) = 2[F2(k1,k2)P (k1)P (k2) + 2 permutations], (6)

where Fn are the usual Standard Perturbation Theory (SPT)
kernels [1]:

F2(k1,k2) =
5

7
+

2

7

(k1 · k2)2

k2
1k

2
2

+
1

2
(k1 · k2)

(
1

k2
1

+
1

k2
2

)
. (7)

For simplicity, the plots are made using the BBKS power spec-
trum [2] modified to account for BAO wiggles

P (k) = PBBKS(k)(1 + Tw(k/keq.)) , (8)

where keq = 0.01hMpc−1 is the equality scale, and the transfer
function Tw(x) is given by

Tw(x) = a sin(fx)W (x, xmax)(1−W (x, xmin)) ,

where W (x, x0) = exp(−x2/x2
0). The parameters are chosen to

reproduce the observed BAO peak: a = 0.05, f = 1, xmax = 30,
and xmin = 3.
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is valid in the q → 0 limit: the difference

Pg(k±, t)− Pg(k, t) = ±1

2
q · ∇kPg(k, t) (11)

results in an O(q0) term in (10) that is comparable to
other dynamical effects of the long mode. This has led to
the conclusion that the 1/q contribution to the squeezed
limit bispectrum vanishes at equal times. (The 1/q piece
survives in unequal time correlations. Measuring unequal
time correlations is equivalent to watching the galaxies
as they fall in the long wavelength gravitational field.
Unfortunately, this is practically impossible.)

However, the above reasoning does not necessarily hold
when considering squeezed triangles with small but finite
q. In the presence of the acoustic feature, Pg(k, t) has an

oscillatory component with period 2π`−1
BAO, which can be

smaller than q. In this regime, the approximation (11)
is invalid and the difference is proportional to the power
Pwg (k, t) in the acoustic peak – the Fourier transform of
ξg after the subtraction of a smooth background. The
r.h.s. of (9) now reads

2Plin(q, t) sin

(
q · k̂

2
`BAO

)
q · ∇k̂

`BAOq2
Pwg (k, t), (12)

where ∇k̂ ≡ k∇k. To derive this expression, we have
used the fact that the Fourier transform of a sharp fea-
ture is generically a fast oscillating piece times a smooth
envelope; equation (8) is an example. For q`BAO � 1 the
result is enhanced by a factor of k/q.4

Nevertheless, compared to other dynamical contribu-
tions, expression (12) is suppressed by Pwg (k)/Pg(k). In
the case of the initial matter power spectrum this ratio
has support for k`BAO < 100 and reaches a maximum
of approximately 0.05 at k`BAO ∼ 10. The overall result
turns out to be a subdominant component of the full
momentum space bispectrum, essentially because most
of the power at high k comes from short distance cor-
relations ξg(x ∼ 2π/k) rather than the acoustic feature.
A comparison with the tree-level matter bispectrum is
shown in fig. 2. As seen, once the smooth background
is subtracted, what remains is well approximated, in the
squeezed limit, by the universal result (12).

III. BAO SPREAD AND RECONSTRUCTION

Intuitively, the above result describes how galaxy pairs,
which are more likely to be found at distance `BAO, are

4 In the case of higher point correlation functions (9) generalizes
to

〈δ(q, t)δg(k1, t) · · · δg(kn, t)〉 ' Plin(q, t)∑
i

q · ki
q2
〈δg(k1, t) · · · δg(|k + q|, t) · · · δg(kn, t)〉 ,

which again scales as 1/q for q > 2π`−1
BAO.
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FIG. 2. Upper panel: The bispectrum calculated using equa-
tion (12) (solid line) and the tree-level perturbation theory re-
sult (dot-dashed line) as a function of k, for q = 0.03 hMpc−1.
Both curves are normalized by P 2

lin(keq). Lower panel: The
same as above with the smooth background subtracted.

moved to larger or smaller separations in the presence of a
mode of wavelength longer than σ. When averaged over
the long modes, these motions lead to the well-known
spread of the acoustic peak, as will be discussed in the
rest of the paper.

For this purpose, it is necessary to keep higher order
terms in the expansion (2). At second order in relative
displacement, now caused by the modes q1 and q2, the
r.h.s. reads

2δq1δq2 sin
(q1 · x

2

)
sin
(q2 · x

2

) qi1qj2
q2
1q

2
2

∂i∂jξg(x, t). (13)

As before, this is the leading effect of the long mode if x ≈
`BAO, and ξg is the correlation function in the absence of
the q modes. By correlating (13) with two long modes
one can obtain the double-squeezed four-point correlation
function. Alternatively, averaging over the long modes
with q < Λ � 2πσ−1, gives the first correction to the
observed two-point correlation around the peak:

ξ̃g(r, t) ≈ ξg,L(r, t) + ξg,S(r, t) + Σ2
Λξ
′′
g,S(r, t), (14)

where r ≡ |x|, prime denotes ∂/∂r, and terms suppressed
by σ/`BAO are neglected. ξg,L(x, t) – the direct contri-
bution of the long-modes to the correlation function –
and ξg,S(x, t) – that of the short modes in the absence of
the long modes– are assumed to be isotropic. Note that
while ξg,S contains the full short scale nonlinearities, only
the leading effect of the long modes on the short modes
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has been kept in (14). For each q mode, this scales as
Plin(q)(`BAO/σ)2 for q � `−1

BAO, and Plin(q)/(qσ)2 for
q > `BAO. The corrections are suppressed by one or
more powers of σ/`BAO and qσ, respectively. Hence, due

to the bulk motions, ξ̃g has a broader peak with Σ2
Λ given

by

Σ2
Λ ≈

1

6π2

∫ Λ

0

dqPlin(q)[1−j0(q`BAO)+2j2(q`BAO)], (15)

where jn is the nth order spherical Bessel function.
It is easy to perturbatively confirm the above result

when ξg is taken to be the dark matter correlation: The
leading contribution of the long wavelength modes to the
one-loop power spectrum of the peak reads5

Pw1−loop(k > Λ) =
1

2

∫ Λ d3q

(2π)3

(q · k)2

q4
Plin(q)

[Pwlin(|k + q|) + Pwlin(|k − q|)− 2Pwlin(k)] .

(17)

For q � k the expression in the square brackets simplifies

to −4Pwlin(k) sin2(q · k̂`BAO/2), giving

Pw1−loop(k > Λ) = Σ2
Λk

2Pwlin(k), (18)

and taking the Fourier transform with respect to k re-
produces (14).

Note that for any k, our approximation is valid for all
q � k while the above expressions are based on a rigid
separation of scales above and below Λ. Of course, in
reality Pwg (k) has support in a large range of momenta,

roughly (0.05−1) hMpc−1. Even if a q-mode falls in this
range, it is still true that its leading effect on higher k
modes is the mere bulk motion. Therefore, it contributes
to the peak power through ξg,L, and at the same time,
broadens it by dispersing the shorter modes. A better
estimate of the width can be obtained by including for
each k the broadening effect of all smaller q modes, i.e.
by taking Λ to increase with k. Below, we will implement
this idea by taking Λ = εk, with ε� 1.

Taking ε = 1/2, the above expression (18) predicts an
effective broadening of Σεk∗ ≈ 5.5h−1Mpc, where k∗ is
defined by Σεk∗k∗ = 1. This turns out to be a sizable
fraction of the actual width of the observed matter cor-
relation function. We compare the theoretical prediction

5 The full one-loop power spectrum is given by∫
d3q

(2π)3
[6F3(q,−q,k)Plin(k) + 2F 2

2 (q,k− q)Plin(|k− q|)]Plin(q) .

(16)
For q � k it reduces to (17). Incidentally, this coincides with

1

2

∫
q�k

d3q

(2π)3
P−1

lin (q) 〈δqδ−qδkδ−k〉 ,

as expected from the remark after (13).
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FIG. 3. The acoustic peak in the matter correlation function
in linear theory (solid), 1-loop perturbation theory (dashed),
and simulation.

with the result of an N -body simulation6 in fig. 3. It is
seen that the perturbative treatment has completely de-
formed the shape of the peak. A more accurate descrip-
tion should, therefore, treat the relative motions non-
perturbatively.

Infra-red resummation.— We can obtain a formula
which is valid to all orders in the relative displacement
δq/q, by rewriting (2) as (see e.g. [8])

〈
δg(

x

2
, t)δg(−

x

2
, t)
〉
δL
'
∫

d3k

(2π)3
eik·x

exp
[
2iδq(t) sin

(q · x
2

)q · k
q2

]
〈δg(k, t)δg(−k, t)〉 .

(19)

As before, this is only relevant in the presence of a fea-
ture. Taking the expectation value over the realizations
of the q modes, approximating them, as we did so far, as
being Gaussian, and using 〈exp(iϕ)〉 = exp(−

〈
ϕ2
〉
/2)

for Gaussian variables, we obtain our final expression
for the dressed two-point correlation function around

6 We are measuring power spectra and correlation functions in a
suite of 16 dark matter only simulations, each of which captures
the evolution of 10243 particles in a box of 15003 h−3Mpc3. The
matter density parameter is Ωm = 0.272, the tilt ns = 0.967 and
the normalization σ8 = 0.81. The leading cosmic variance has
been divided out, such that the error bars reflect the sub-leading
cosmic variance.
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r ≈ `BAO

ξ̃g(x) '
∫

d3k

(2π)3
eik·xe−Σ2

εkk
2

〈δg(k, t)δg(−k, t)〉ε . (20)

To write the exponent in the above form, we have used
the fact that ∇2 ≈ ∂2

r [and therefore k2 ≈ (x̂ · k)2] up to
corrections of order σ/`BAO. In principle, the exponen-
tial factor should only multiply the peak power Pwg (k),
though in practice the smooth background at r ≈ `BAO is
insensitive to the presence of this factor since Σ� `BAO.
The subscript ε on the momentum space expectation
value on the r.h.s. indicates that it should be evalu-
ated in the absence of modes with momentum q smaller
than εk, though it contains all short scale nonlinearities.
Within a perturbative framework, it is possible to include
dynamical effects of the long modes, as well as their non-
Gaussianity by writing more complicated expressions (see
below).

To get an idea of how well (20) performs, we set
δg = δ and approximate the exclusive expectation value
in the integral first by the linear matter power spectrum,
and then by the 1-loop perturbation theory result. The
first approximation underestimates the broadening by ne-
glecting short scale nonlinearities and therefore predicts
a slightly sharper peak.

Let us discuss the 1-loop approximation in more de-
tails to see how (20) can be used to improve perturbative
results. Two points have to be kept in mind: (i) The
broadening is only relevant for the acoustic peak, hence
the exponential broadening in (20) multiplies Pwε (k). (ii)
Replacing Pwε (k) with the 1-loop power spectrum double-
counts the effect of the long modes since the 1-loop re-
sult already contains Σ2

εkk
2Pwlin(k) [c.f. (18)]. Hence in

this context the infra-red resummed version of the 1-loop
power spectrum presented in [7] can be simplified and
written as:

P̃ (k) = Pnwlin (k) + Pnw1−loop(k)

+e−Σ2
εkk

2

(1 + Σ2
εkk

2)Pwlin(k) + e−Σ2
εkk

2

Pw1−loop(k),

(21)

where the first line contains just the smooth part of the
power spectrum.7 When considering loop integrals with
large internal momenta, one should allow for the possi-
bility of higher derivative corrections to the dark matter
equations of motion in an Effective Field Theory (EFT)
framework [9]. These corrections compensate for the er-
ror made in treating the short-scale modes as a perfect
fluid. Therefore, the EFT 1-loop power spectrum differs
from (16) by one such correction:

P1−loop(k) = P13(k) + P22(k)− 2R2k2Plin(k), (22)

where R (also known as speed of sound) is chosen to be
1.8 h−2Mpc2 in order to obtain 1% agreement with the

7 In practice, Pnw1−loop can be obtained by substituting Plin(k) with

its no-wiggle part in the loop integrals (16) since Pwlin/P
nw
lin � 1.
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FIG. 4. The ratio of various theoretical approximations to the
power spectrum to the simulation result. Solid: IR-resummed
(21), short-dashed: 1-parameter 1-loop EFT (22), dot-dashed:
0-parameter 1-loop EFT (22) with R = 0, and long-dashed:
linear. The gray shaded region on the IR-resummed EFT
curve gives the statistical error.

simulation results up to kmax = 0.3hMpc−1 (see fig. 4).
This choice is a rough estimate of R, made in order to
illustrate how the resummation improves matching the
BAO oscillations for k > 0.1hMpc−1. The exact value of
R is irrelevant for the shape of the acoustic peak.

The above resummation formula (21) can be straight-
forwardly extended to any order in perturbation theory
and to higher order statistics such as the bispectrum or
trispectrum. Note that in this approximation the lead-
ing dynamical effect of the long modes on short modes is
also taken into account. The comparison between the IR-
improved power spectrum (21), and the original 1-loop
result (22) can be seen in fig. 4. The IR-resummation
clearly reduces the residual wiggles in the EFT predic-
tion and can thus increase the range over which the the-
ory agrees with simulations, as was pointed out in [7].

For the correlation function, the broadened acoustic
peak resulting from the IR-resummed linear and 1-loop
power spectra is shown together with the initial peak in
fig. 5. Although the first approximation does not fully
capture the smoothing of the peak seen in the data, it
shows that indeed most of the spread is caused by the
bulk motions.

Without resummation the 1-loop EFT (or SPT) power
spectra result in a spurious double-peaked feature at the
BAO scale similar to the one shown in fig. 3. This is
because they only include Σ2

εkξ
′′(r) while higher deriva-

tive terms 1/n!Σ2n
εk ξ

(2n)(r) that partially cancel this fea-
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ture are not absent. The presence of this feature is the
cause for the common wisdom that SPT does not work
for the correlation function. As the good performance of
the IR-resummed EFT proves, the failure is not related
to the high-k behavior of the perturbation theory but
to the missing non-perturbative treatment of motions.
One can indeed see that the IR-resummed EFT provides
a good description of the correlation function down to
10 h−1Mpc separations [7].

Another feature of fig. 5 that is worth emphasizing is
the shift of the peak compared to the linear correlation
function. This shift is expected to be due to corrections
to ξ̃g of order Σ2ξ′g/`BAO, which are smaller than the
broadening effects by a factor of σ/`BAO [10]. They are
not entirely fixed by symmetries since the cross corre-
lation between a displacement and other nonuniversal
effects — e.g. arising from living in an over dense re-
gion — caused by a long wavelength mode contributes at
the same level. Nevertheless, they can be calculated in
perturbation theory and are included, to leading order,
in the 1-loop result, which predicts the position of the
peak reasonably well. On the other hand, the BAO re-
construction schemes, to be discussed below, reproduce
the original peak by virtue of undoing the displacements
caused by the long modes which also eliminates the above
mentioned cross correlations.

For comparison, we have also plotted in fig. 5 the
Zel’dovich correlation function, which is known to give
a relatively accurate description of the BAO spread. We
will next argue that the success of the Zel’dovich approx-
imation is because it can be formulated as (20).

Zel’dovich approximation.— The matter correlation
function can be related to the correlation function of the
relative displacement ∆s(z) of two points with initial
(Lagrangian) separation z:

1+ξ(x) =

∫
d3k

(2π)3
eik·x

∫
d3ze−ik·z

〈
e−k·∆s(z)

〉
. (23)

In the Zel’dovich approximation, ∆s is replaced by its
linear expression, and the above expectation value is triv-
ially expressed in terms of the variance

Aij(z) =
〈
∆si(z)∆sj(z)

〉
=

∫
d3q

qiqj

q4
Plin(q) sin2

(q · z
2

)
.

(24)

Let us define Zel’dovich power spectrum as the result of
the inner integral in (23) at k 6= 0:

Pz(k) =

∫
d3ze−ik·ze−

1
2A

ij(z)kikj , (25)

which in the presence of the BAO feature contains an
oscillating component Pwz (k). This can be approximated
by the product of a non-smoothed piece times a broad-
ening factor, as in (20): Define AijS (z,Λ), and AijL (z,Λ)
by the same integral as in (24), but taken, respectively,

linear

IR-resummed linear

IR-resummed 1-loop

Zel'dovich
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FIG. 5. Various theoretical approximations to the acoustic
peak in the correlation function as well as simulation mea-
surements. Solid: linear, dashed: IR-resummed linear, dot-
dashed: IR-resummed 1-loop, and dotted: Zel’dovich.

over short modes q > Λ, and long modes q < Λ. So we
have

Aij(z) = AijS (z,Λ) +AijL (z,Λ). (26)

A Zel’dovich power spectrum in the absence of the long
modes Pz,S(k,Λ), where Λ � k, can now be defined by

replacing Aij → AijS in (25). This is the analog of the
last factor in (20): it contains the full nonlinear effect of
the short modes in the Zel’dovich approximation, but no
long modes whatsoever.

Consider now the full Pz(k). The integral in (25) is
dominated by z = O(1/k), and, if k is in the support of

Pwz (k), by z = ±`BAOk̂ +O(1/k). The second contribu-

tion is what we called Pwz (k). Here, AijL (z) is first of all
appreciable, and second, it can be approximated to be a

constant given by its value at z = `BAOk̂ to yield

Pwz (k) ≈ e− 1
2A

ij
L (`BAOk̂,Λ)kikjPwz,S(k,Λ)

≈ e−Σ2
Λk

2

Pwz,S(k,Λ).

(27)

The second equality holds up to terms suppressed by
σ/`BAO. Replacing Λ → εk results in the desired ana-
log of (20).

Hence, the Zel’dovich approximation, despite being a
crude model of short scale dynamics, gives an accurate
description of BAO broadening by taking into account
the leading displacement caused by all longer wavelength
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FIG. 6. The same as fig. 1 with q = 0.1 hMpc−1. All curves
are normalized by Plin(keq)ξ(2π/keq). Upper panel: Without
high-pass filter. Lower panel: With high-pass filter. In both
cases the smooth background is subtracted.

modes on any given scale k.8

BAO reconstruction.— This naturally leads us to the
discussion of BAO reconstruction, and its connection to
the long-short correlations (4) and (12). The BAO re-
construction is a method to reproduce a sharper acoustic
peak by undoing the bulk motion induced by the long
wavelength modes, and hence, it is based on the same
underlying idea that led to our results [13, 14]. Given

8 Two alternative approximations have been proposed in the liter-
ature (e.g. [11, 12]) to model the broadening effects:

Pw(k) ≈ e−Σ2
∞k

2
Pwlin(k), (28)

and
Pw(k) ≈ e−σ

2
vk

2
Pwlin(k), (29)

where the velocity dispersion σ2
v is given by the same integral

as in (15) with Λ = ∞, but without the last square brackets.
The two expressions happen to give similar results for the mat-
ter correlation function, and to be in good agreement with the
result of simulations. However, we think the agreement in our
Universe is accidental. The velocity dispersion is missing the fac-
tor sin2(q · x/2) in the relative displacement, which suppresses
the contribution of the super-long modes. Had there been more
power at large scales, or if keq`BAO � 1, (29) and (28) would
have differed significantly. On the other hand, equation (28) ap-
proximates the short-long effects by the same expression as that
of the long-short effects. This is not justified by any symmetry
argument, and is an overestimation in the real universe. (28)
would predict too much spreading if there was more power in
small scales.

that the leading effect of the long mode is a uniform
acceleration, this procedure roles back part of the time-
evolution, which as we saw leads to the broadening of the
BAO peak.

Operationally, the reconstruction method consists of
three steps: (i) Choosing a rigid separation Λ between
long and short modes, and solving for the linear dis-
placement field produced by the long modes. (ii) Mov-
ing back all points according to this linear displacement
field (as one would do in the Zel’dovich approximation).
(iii) Adding back the original smooth field that is largely
erased by step (ii). In this procedure, the only effect of
the long modes on the short modes that has been reliably
taken into account is the linear displacement. Hence, the
effectiveness of the method seems to be a strong indica-
tion of the validity of (4). But, there are two caveats.
First, the reconstruction method does not significantly
affect the smooth part of the correlation function, hence
it only verifies (4) after background subtraction.

Second, the threshold Λ is practically chosen within
the support of Pwg , where as mentioned above, the modes
both contribute to the peak, and cause it to spread. It is
natural to suspect equation (4) to become a poor approx-
imation for these q modes, due to their dynamical self-
coupling. On the other hand, the reconstruction method
would primarily deal with the effect of the q modes on
higher k modes. Therefore, the effectiveness of recon-
struction implies that even for these relatively larger val-
ues of q, once the contribution of modes below the thresh-
old Λ is removed from δg, equation (4) should be a good
approximation.

To test this expectation in perturbation theory, we in-
sert a high-pass filtered power spectrum Pg(k) = (1 −
W (k, q))Plin(k) into the tree-level matter bispectrum,
while keeping Plin(q) unfiltered. The inverse Fourier
transform with respect to k is then to be compared to
the r.h.s. of (4), with ξg obtained from the same high-
pass filtered Pg(k). The results are shown in fig. 6, and
seem to be in moderate agreement. The high-pass fil-
ter effectively picks small laboratories, free-falling in the
background of the long wavelength mode.

IV. CONCLUSIONS

We used the leading Newtonian effect of a long wave-
length matter perturbation δL to derive approximate for-
mulas for its correlation with the distribution of pairs (4),
as well as the squeezed limit bispectrum (12), in the pres-
ence of the BAO feature. The derivation is based only on
two underlying assumptions: first, the equivalence prin-
ciple, by which we imply that no additional (fifth) force is
universally sourced by material objects, and second, lo-
cal formation of tracers which forbids nontrivial bias with
respect to locally unobservable quantities such as veloc-
ity and gravitational potential. This requires absence,
or rather smallness, of primordial local non-Gaussianity.
Therefore, the result holds beyond the standard pertur-
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bation theory, and apply equally well to biased tracers. In
the real Universe, it gives the dominant component of the
real space correlation at x ∼ `BAO, but a subdominant–
though still unique and distinguishable–piece in momen-
tum space.

Next, we explored the connection with the broaden-
ing of the acoustic peak, where the same universal effect
but averaged over the long modes is known to account
for most of the spread in the observed Universe. We de-
rived a formula for the observed correlation function (20),
which resums the induced motion by the long modes to all
orders. A simpler way to implement this IR-resummation
in perturbation theory was proposed, and the result was
shown to be in good agreement with the numerical re-
sults from a N -body simulation, and with the Zel’dovich

approximation. It was shown that the Zel’dovich approx-
imation to the correlation function can be recast into
the form of our IR-resummed formula (20), which we
take as the explanation for its success in predicting the
BAO spread. Finally, we discussed BAO reconstruction
method as a practical application of the same underlying
idea.
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