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Abstract

We initiate a study of cosmological implications of sphaleron-mediated CP-violation arising

from the electroweak vacuum angle under the reasonable assumption that the semiclassical

suppression is lifted at finite temperature. In this article, we explore the implications for ex-

isting scenarios of baryogenesis. Many compelling models of baryogenesis rely on electroweak

sphalerons to relax a (B + L) charge asymmetry. Depending on the sign of the CP-violating

parameter, it is shown that the erasure of positive (B + L) will proceed more or less quickly

than the relaxation of negative (B+L). This is a higher order effect in the kinetic equation for

baryon number, which we derive here through order n2b+l. Its impact on known baryogenesis

models therefore seems minor, since phenomenologically nb+l is much smaller than the entropy

density. However, there remains an intriguing unexplored possibility that baryogenesis could be

achieved with the vacuum angle alone providing the required CP-violation.
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1 Introduction

The origin of the baryon asymmetry of the universe, i.e. baryogenesis, remains one of the most

compelling problems in cosmology and particle physics. A successful solution requires the violation

of three global symmetries - baryon number (B), charge conjugation (C), and the composition of

this symmetry with spatial parity (CP). A number of models take the minimal, and therefore at-

tractive, approach of exploiting the anomaly-mediated baryon number violation due to electroweak

sphalerons already present in the Standard Model (SM). As for CP-violation, however, the Stan-

dard Model is insufficient, and one has to rely on new physics. It has recently been pointed out [1]

that a CP-violating theta-term in the SU(2) electroweak (EW) sector,

Lθ = −θew
g2

32π2
W a
µνW̃

aµν , (1.1)

can lead to CP-violation in the anomalous B-violating processes. In this paper, we initiate an

exploration of how the electroweak vacuum angle θew may play a role in baryogenesis. For reviews

of baryogenesis see [2, 3].

A number of phenomenological aspects of the electroweak vacuum angle have been studied

in the literature [4–7], and these analyses have focused on zero-temperature observables, including

scattering amplitudes and vacuum energy. In contrast, we investigate the effects of θew-induced CP-

violation at finite temperature and in the context of the early universe. At the outset it is important

to recognize that this is a technical and difficult problem, since it entails quantum mechanical

interference with non-perturbative processes at finite temperature. However, it is possible to make

some progress without tackling these issues directly, and we are nevertheless able to explore the

generic implications of the term (1.1) for early universe cosmology, and to survey various potentially

interesting avenues for future research.

In section 2 we review the conditions under which the vacuum angle contributes to a physical

phase θ̄ew, and we discuss the CP-violating observables associated with θ̄ew at zero temperature.

In section 3 we study the implications of θ̄ew for anomalous baryon number violation at finite

temperature, and in section 4 we explore the implications for baryogenesis. We conclude in section 5

by summarizing our results and discussing directions for future work.

2 Physics of The Electroweak Vacuum Angle

Here we discuss zero-temperature observables associated with the electroweak vacuum angle, and

we refer the interested reader to [1] and [4, 5] for further details.

In the Standard Model, the electroweak vacuum angle is not physical, and the theta term,

Eq. (1.1), can be removed by an appropriate field redefinition, namely any combination of vector

baryon-number (B) U(1)b and lepton-number (L) U(1)l transformations,

q → e−iαb/3q and `→ e−iαl` , (2.1)
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Figure 1: CP-violation due to the electroweak vacuum angle arises as an interference between the

EW instanton in the form of the effective ’t Hooft vertex (left), and the new source of B + L

violation (right). The square vertices are derived from Eq. (2.2).

satisfying αb + αl = θew/Ng. Here Ng = 3 is the number of fermion generations, and q ∈
{QL, uR, dR} and ` ∈ {LL, eR} denote the quark and lepton fields, respectively. This conclu-

sion can be avoided, however, in the presence of additional sources of B and L violation (either

explicit or anomalous). For example, if we add to the lagrangian the dimension-6 operator

Lqqql = λ
QLQLQLLL

Λ2
, (2.2)

where QL and LL denote the quark and lepton doublets, then the transformation (2.1) no longer

removes θew completely, but rather acts to transfer the electroweak vacuum angle onto the new

operator: Lqqql → e−iθew/NgLqqql. Therefore, we may define an invariant phase

θ̄ew = arg λ+
θew
Ng

(2.3)

that is unchanged under the field redefinition (2.1). In this sense, the additional source of B and

L violation supplied by the term (2.2) is analogous to the quark mass terms in QCD that render

the QCD theta-term physical in the strong sector [8].

The above argument is not unique to the operator (2.2), but instead a physical phase θ̄ew emerges

whenever the new operator mediates interactions with a ∆(B+L) ∈ Z selection rule. For example,

a much higher dimensional operator of the form λ
Λ14 (QLQLQLLL)3 would work. Another possibility

occurs in left-right symmetric models, in which there exists a second (B + L) anomaly sourced by

instantons in the SU(2)R sector [5]. In this paper, to keep the following discussion concrete, we will

occasionally employ the interaction in Eq. (2.2) as an explicit example, but our broader conclusions

are not contingent upon this specific assumption, and in general the physical CP-violating phase

θ̄ew need not take the form as in Eq. (2.3).
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For θ̄ew 6= 0 the lagrangian is CP-violating and the phenomenological effects arise due to an

interference between the electroweak instanton and the additional B and L violating interaction(s).

The Feynman diagrams illustrating this point are shown in Fig. 1. A classic example exhibiting

CP-violation is the following instanton-mediated (B + L)-violating process. Consider the pair of

parton-level reactions related by CP conjugation [9]

X : q + q → 3¯̀+ 7q̄

X : q̄ + q̄ → 3`+ 7q ,
(2.4)

where q and ` stand for quarks and leptons. In the absence of CP-violation (θ̄ew = 0) the corre-

sponding amplitudes, MX and MX̄ , are identical. However, for θ̄ew 6= 0 we anticipate an induced

asymmetry between the transition rates that can be quantified with the dimensionless parameter:

εX ≡
|MX |2 − |MX̄ |2

|MX |2 + |MX̄ |2
. (2.5)

Since CP-violating effects derived from the electroweak vacuum angle involve the electroweak in-

stanton (see Fig. 1), the asymmetry parameter εX is suppressed by the usual semiclassical factor

∼ e−8π2/g2 ≈ 10−80 (only one factor of e−SE appears in the cross term). It is thus safe to say that

CP-violation arising from the electroweak vacuum angle is too small an effect to measure at a TeV-

scale hadron collider1. Similarly, other low energy observables such as atomic and nuclear electric

dipole moments would be insensitive to the electroweak vacuum angle. In the above estimates

we have evaluated g(mW ) ' 0.65 at the electroweak scale, since the SU(2) sector is in the Higgs

phase and we are working with constrained instantons [14]. It is illustrative to contrast with QCD,

which is in the confinement phase where the strong coupling allows for unsuppressed CP-violation,

manifested, for example, in electric dipole moments.

3 Effects of the Electroweak Vacuum Angle at Finite Temperature

It is well-known that the instanton suppression is lifted in a thermal system in which electroweak

Chern-Simons number evolves diffusively via electroweak sphalerons, allowing anomalous B-violation

to become efficient [15]. In the Higgs phase at temperature T . mW , the rate of baryon number

violation is proportional to the Boltzmann factor e−Esph/T where Esph ≈ 2mW /αw ' 5 TeV is the

energy of the static sphaleron field configuration, mW is the W-boson mass, and αw = g2/4π is

the electroweak fine structure constant [16]. In the unbroken phase (T & mW ), the energy bar-

rier is absent and baryon number violation via EW sphalerons occurs rapidly with a rate given

by Γsph ≈ γdiff/T
3 where γdiff is the Chern-Simons number diffusion coefficient (rate density)

[17, 18]. The diffusion coefficient can be inferred from dimensional arguments [19] and lattice

simulations [20, 21], and one finds the rate of (B + L)-violation to be

Γsph ' κα5
wT (3.1)

1However see also Refs. [10–12] and more recently Ref. [13] for arguments to the contrary.
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with κ ∼ 100. Therefore at electroweak temperatures Γsph is much larger than the cosmological

expansion rate H ' 3T 2/MP .

In order to make robust quantitative statements regarding the role of θ̄ew in early universe

cosmology, we need to incorporate both the B-violating and CP-violating effects of the sphaleron

in the transport equations. As mentioned in the previous section, the CP-violation can arise from

an interference between perturbative operators and the instanton or sphaleron process (see Fig.

1). Independently, the two processes can be treated at finite temperature using well-established

techniques: perturbative processes are conveniently computed using quantum mechanical matrix

element methods, but the transition state theory computation of the Higgs phase sphaleron [22],

or the evaluation of the sphaleron diffusion constant in the symmetric phase [21] entirely bypasses

the quantum amplitude, giving the rate directly. To our knowledge, a fully quantum mechanical

treatment of the sphaleron process at finite temperature that retains the required phase information

for interference is not known, and remains an important open problem.

Despite this technical challenge, it is possible to make progress in understanding the CP-violating

effects by asking how the electroweak vacuum angle arises in the kinetic equation for (B+L) number

density. Writing the Noether current for U(1)b+l as jµb+l, then the volume-averaged (B+L) charge

density is given by

nb+l(t) =
1

V

∫
d3x 〈j0

b+l(x)〉 . (3.2)

As discussed in Appendix A, the expectation value is calculated with respect to an out-of-equilibrium

statistical ensemble that encodes the initial charge asymmetry [17, 18]. Using also the anomaly

equation,

∂µj
µ
b+l = 2

Ngg
2

32π2
W a
µνW̃

aµν , (3.3)

with Ng = 3 the number of fermion generations, one obtains the kinetic equation,

dnb+l

dt
= −Γsph nb+l(t) , (3.4)

with the rate given by Eq. (3.1). An initial (B + L) asymmetry is erased on a time scale Γ−1
sph,

and the evolution is CP-symmetric, i.e. positive and negative charge asymmetries have identical

evolutions.

We now turn to the question of how these relaxation rates are modified by the presence of a

non-vanishing electroweak vacuum angle. We assume new physics that contains B and L violating

interactions, such as Eq. (2.2), and that there is a physical CP-violating phase θ̄ew. The new

interaction provides a second channel through which (B+L) erasure can be accomplished, and the

rate in (3.4) then becomes Γsph → Γb+l = Γsph + ΓN.P., where ΓN.P. is the rate of (B+L)-violation

induced by the new physics.

However, because the rate equation (3.4) is invariant under CP reflection, nb+l → −nb+l, this

equation alone cannot describe CP-violation derived from the electroweak vacuum angle. Rather,
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the CP-violating effects manifest themselves in terms higher order in nb+l. To order O(nb+l)
2 the

rate equation becomes

dnb+l

dt
= −Γb+l nb+l(t) +G2 nb+l(t)

2 + · · · , (3.5)

where G2 has units of volume per time. This form of the rate equation is no longer CP-invariant

as long as G2 6= 0, and the corresponding solution then becomes

nb+l(t) =
ni e
−Γb+l(t−ti)

1−
(
1− e−Γb+l(t−ti)

)
G2ni
Γb+l

. (3.6)

The evolution described by this solution depends on a new dimensionless parameter G2ni/Γb+l,

which can be either positive or negative depending on the signs of G2 and ni. The solution is shown

in Fig. 2. In the parameter regime G2ni/Γb+l � 1 and the long-time limit Γb+l(t − ti) � 1, the

solution reduces to

nb+l(t) ∼
(

1 +
G2ni
Γb+l

)
ni e
−Γb+l(t−ti) . (3.7)

For the case G2ni > 0, the prefactor is larger than 1 and the abundance is enhanced compared to

the G2ni < 0 case. In this way we see how the parameter G2 controls the effects of CP-violation.

A formal derivation of (3.5) is presented in Appendix A, where we express G2 in terms of

thermal expectation values. An explicit evaluation of G2 is subject to the technical challenges

described earlier, and is beyond the scope of this work. Instead, we perform a rough estimate

of the dependence of G2 on the parameters appearing in our model. Recall that G2 has the

units of volume per time. Since it parametrizes CP-violating effects, G2 should be proportional to

θ̄ew. Additionally, we expect a factor of γdiff ∼ α5
wT

4 associated with sphaleron diffusion in the

electroweak unbroken phase, and three factors of (λ/Λ2) from the operator (2.2) to achieve the

required interference. Combining these terms, and including additional factors of T to obtain the

correct mass dimension, we estimate G2 as

∼ θ̄ew α5
wT

4

(
λ

Λ2

)3

(3.8)

up to a loop factor that may involve additional factors of the gauge couplings. The dimensionless

quantity appearing in the solutions above is then estimated as

|G2|ni
Γb+l

∼ θ̄ew λ3T
6

Λ6

(
ni
nγ

)(
Γb+l

α5
wT

)−1

, (3.9)

where we have used the photon number density, nγ ∼ T 3, as a normalization factor. In a successful

baryogenesis model, the ratio η ≡ ni/nγ will be at the level of the baryon asymmetry of the universe,

η ∼ 10−10. Additionally, the validity of the effective field theory interpretation of Eq. (2.2) requires

T < Λ.
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Figure 2: The erasure of an initial (B + L) asymmetry by electroweak sphalerons and explicit

(B +L)-violating operators. The curves represent the solution (3.6). For G2 = 0 (dashed line) the

evolution is CP-symmetric, i.e., it is independent of the sign of the initial charge asymmetry. For

G2 > 0 an initial positive charge density will relax more slowly than a negative one, and for G2 < 0

the behavior is reversed.

This expression provides a useful estimate for the purposes of this paper, but our analysis of the

implications for baryogenesis will not depend on this specific form for G2. However, the estimate

does assume that the electroweak symmetry is restored and sphaleron diffusion occurs rapidly with

a rate density γdiff ∼ α5
wT

4. In the Higgs phase, sphaleron diffusion is Boltzmann suppressed,

γdiff ∼ T 4e−Esph/T , and we expect that G2 acquires a similar suppression. It is also worth noting

that CP-violating effects in the sphaleron sector do not shift the equilibrium point away from

nb+l = 0 [23–25].

It is possible that the electroweak vacuum angle may have other imprints at finite temperature

apart from the modified kinetic equation (3.5), and this would be an interesting avenue to explore.

4 Potential Implications for Baryogenesis

Sphalerons play a central role in many of the most compelling models of baryogenesis, including

electroweak baryogenesis and leptogenesis. In these models, perturbative particle physics yields a

CP-asymmetry, i.e. the unequal abundances of particles and anti-particles belonging to a particular

species or multiple species collectively, such as lepton number. Sphalerons then convert this into
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a baryon asymmetry as they equilibrate (B + L) [15, 26]. Since the new physics we are discussing

changes the process of charge relaxation by sphalerons, as seen in (3.6), it is important to determine

the impact this may have on existing models of baryogenesis, and to ask whether entirely new

directions for baryogenesis appear.

In this section we explore these possibilities. We will endeavor to keep our discussion general,

and in particular we do not specify what new physics or even which operator has been added to the

SM to yield the invariant phase θ̄ew. Note that some operators such as Lqqql in (2.2) will violate

(B + L) explicitly, and one is inclined to ask whether baryogenesis can be accomplished without

invoking the sphaleron. A model of baryogenesis using the operator Lqqql exists [27] in which the

CP-violation is provided by relative phases between different elements of the flavor matrix λ which

are perturbative in origin. Here we are considering a distinct source of CP-violation that can arise

even when λ is diagonal. Note that there is an analogous distinction in the Standard Model, where

CP-violation due to δCKM arises from relative phases between elements of the quark Yukawa/mass

matrix, but CP-violation arising from θ̄qcd is a flavor-independent phase multiplying the overall

matrix, and is manifestly non-perturbative in nature.

4.1 Leptogenesis

In the standard picture of leptogenesis [28] one extends the Standard Model to include a right-chiral

Majorana neutrino with a mass well above the electroweak scale. The Majorana neutrino decays

into the SM Higgs and leptons, and if the interaction violates CP then there is a preference for

decay into leptons over anti-leptons, or vice versa. A lasting lepton asymmetry can be generated

when these decays freeze out in the early universe at a temperature equal to the Majorana mass

scale. Above the electroweak scale sphalerons are in thermal equilibrium, and between freezeout and

the electroweak phase transition they then convert the initial lepton asymmetry into the required

baryon asymmetry. (For a review see [29].)

In the models we are interested in, the conversion of a leptonic asymmetry to a baryonic one

is governed by (3.5), and the challenge is to understand the effects of the CP-odd term with

coefficient G2 on the generation of the final baryon asymmetry. As we have already seen in (3.6),

CP-violating effects are controlled by the dimensionless ratio G2ni/Γb+l where ni = nl is the initial

lepton asymmetry in the context of leptogenesis. In order to generate a baryon asymmetry of the

observed order of magnitude, nb ∼ 10−10nγ , the initial lepton asymmetry typically needs to be at

the same level. Since (3.9) implies that G2ni/Γb+l < 10−10, the CP-asymmetric evolution described

by (3.6) is probably too small to play a significant role in leptogenesis. Moreover, since sphalerons

remain in equilibrium for a long time, the asymptotic solution with nb+l ≈ 0 is eventually reached,

and any CP-asymmetry in the preceding evolution is erased.
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4.2 Nonlocal Electroweak Baryogenesis

Models of baryogenesis at the electroweak scale typically require the electroweak phase transition

to be first order so that it proceeds through the nucleation and percolation of bubbles of broken

electroweak symmetry. These models are classified as local if both CP- and B-violation occur at

the bubble wall, or nonlocal if B-violation occurs in front of the wall.

In models of nonlocal electroweak baryogenesis [15, 30–32] particles scattering from the bubble

wall experience a CP-violating interaction that injects a CP-asymmetry into the plasma ahead of

the wall. As this asymmetry diffuses in front of the bubble wall, sphalerons then act to process

it into a baryon asymmetry via (3.5). Finally, the bubble wall passes, and the baryon asymmetry

is then in the interior of the bubble, where baryon number violation is negligible, and the newly

created baryon number is thus preserved.

When investigating the effect of CP-violation in the sphaleron sector on electroweak baryoge-

nesis, we encounter the same challenge that arose in the case of leptogenesis; namely, the CP-

asymmetry created at the bubble wall is already very small, and the higher order CP-violating

effects in (3.5) do not play any significant role. Partly because of this, it is interesting to consider

the possibility that the electroweak vacuum angle might provide all of the requisite CP violation

to achieve baryogenesis at the electroweak scale and thereby obviate the need for CP-violating in-

teractions in the Higgs sector. Such a scenario would necessarily go beyond the discussion of Sec. 3

in which CP-violation arises through the way that sphalerons process an initial CP-asymmetry.

Instead, here we would be imagining that sphaleron-mediated transitions alone could give rise to

both the CP- and B-asymmetries.

One possibility is that electroweak sphalerons at the bubble wall might induce the appropriate

CP- and B-violating scatterings of particles in the plasma, as in the example in Sec. 2, such

that a net baryon number is created and diffuses into the bubble, where sphalerons are out of

equilibrium. In this way, sphalerons at the bubble wall would provide the source of B-number.

This scenario has its own challenges. Within the bubble wall the Higgs condensate is nonzero,

0 < 〈Φ0〉 < v, and the rate of sphaleron-mediated reactions acquires a Boltzmann suppression

e−Esph/T with Esph ≈ 4π〈Φ0〉/g ∼ 5 TeV. Since sphalerons are sparse in the wall, it seems unlikely

that the scattering of particles could be efficient enough to generate the observed baryon asymmetry.

Moreover, the vacuum angle alone may not be sufficient to bias the creation of a global B-asymmetry,

even though it allows for B-violation in individual scattering processes. In other words, unitarity of

the S-matrix and CPT invariance might forbid the generation of a global asymmetry via inelastic

scattering processes alone [33, 34].

4.3 Local Electroweak Baryogenesis

In local models of electroweak baryogenesis, both CP and baryon number are violated at the same

point in space, typically at the bubble wall, with a variety of different implementations in the
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literature (see, e.g. [2]). In one such scenario [35–38], the passage of the bubble wall leaves behind

nontrivial field configurations with a net winding number that can be associated, in a specific

gauge, with Chern-Simons number of the SU(2) gauge fields. As these unstable configurations

unwind to the vacuum, the associated level crossing can generate baryons and antibaryons through

the anomaly, Eq. (3.3). The inclusion of sufficient CP-violation, with an appropriate sign, then

biases the unwinding of these configurations in favor of the production of a net baryon number.

In a second scenario, the passage of the bubble wall “kicks” a sphaleron-like field configuration

toward one of the adjacent vacua [37–39]. Once again, appropriately chosen CP-violation biases

kicks that increase Chern-Simons number, and a baryon asymmetry is generated by the associated

level crossing.

Beyond the framework of local electroweak baryogenesis, there exists a closely related class of

non-thermal electroweak baryogenesis models. In these scenarios the universe is never heated above

the electroweak scale and the electroweak phase transition does not occur. Nevertheless, nontrivial

field configurations with winding can be produced nonthermally, for instance during the preheating

epoch at the end of inflation or through a rapid quench [40–42], and CP-violation then biases the

unwindings toward the generation of a baryon asymmetry.

The key ingredient in these models is the incorporation of an appropriate source of CP-violation.

One frequently considered possibility is to use the pseudoscalar operator L = (b/M2)Φ†ΦWW̃ ,

which couples the Higgs field to the electroweak gauge fields. Unlike the theta term in Eq. (1.1),

this operator is not a total derivative; it directly affects the equations of motion, thereby leading

to the necessary CP-asymmetric evolution. In contrast, the theta term can lead to an asymmetric

evolution only as the result of a quantum interference [6, 43, 44]. For instance, an unwinding field

configuration may generate a baryon number via level crossing, or it may not if there is interference

with an explicit (B+L)-violating interaction, such as Eq. (2.2). In some sense, the anomaly creates

(B+L), and the perturbative operator immediately destroys it. It is interesting to consider whether

θ̄ew 6= 0 provides a new source of CP-violation that might alter the usual predictions of nonlocal

electroweak baryogenesis.

4.4 Baryogenesis from a Large CP-Asymmetry

In the cases of leptogenesis and nonlocal electroweak baryogenesis, we have seen that the CP-

violating effects of the vacuum angle have negligible impact on the final baryon asymmetry due to

the smallness of the charge asymmetries compared to the entropy density. This is not due to the

smallness of θ̄ew, and in fact this parameter is totally unconstrained. Instead it is a consequence

of the small initial CP-asymmetry that the sphalerons act upon. It is interesting to consider how

the CP-violating sphaleron transitions would affect baryogenesis if the CP-asymmetry were much

larger.

In the context of the electroweak phase transition, we might imagine that some mechanism

generates a large, random CP-asymmetry in front of the bubble walls. This differs from usual
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nonlocal electroweak baryogenesis where each bubble produces a CP-asymmetry with the same

sign. In a two Higgs doublet model with spontaneous CP-violation, for instance, different bubbles

are formed from different linear combinations of the Higgs fields, and CP-violating interactions

with the fermions can lead to CP-asymmetries of different signs in different regions of space [45].

Due to the CP-violating effects discussed in Sec. 3, sphalerons in front of the walls will process the

positive and negative CP-asymmetries at different rates. Suppose that regions with nb+l < 0 relax

back to zero net baryon number more quickly than regions with nb+l > 0. If sphalerons remain in

equilibrium long enough, eventually the entire system will be bought back to the equilibrium point

at which nb+l = 0. However, if the phase transition ends before the relaxation is complete, there

will remain a residual asymmetry. To estimate the asymmetry we evaluate Eq. (3.7) with ni > 0

and subtract the same function with ni < 0 to find

nb+l

ni
≈ 2

G2ni
Γb+l

e−Γb+l∆t , (4.1)

where ∆t is the time elapsed between the creation of the (B+L) asymmetry ni and the completion

of the phase transition. To achieve a relic baryon asymmetry of the correct order, ∆t should not

be much larger than Γ−1
b+l, in order to avoid erasing too much of the asymmetry. In the most

optimistic case, ni = nγ , we find nb+l/nγ ∼ 10−10 for

Γb+l∆t ∼ 24 + log
G2nγ
Γb+l

. (4.2)

It is worth noting, however, that the exponential sensitivity of this result implies that a high degree

of parametric tuning is required to ensure that the predicted baryon asymmetry is neither too large

nor too small.

5 Summary and Discussion

Although the electroweak theta term can be removed by a field redefinition in the SM, the vacuum

angle contributes to a physical, invariant phase θ̄ew in some minimal extensions of the SM. In this

case, θ̄ew 6= 0 can provide a new source of CP-violation, acting in an analogous manner to the better-

known QCD vacuum angle in the strong interactions. Effects of the theta term at zero temperature

entail an instanton suppression, which renders them effectively unobservable, and implies that the

CP-violating phase θ̄ew is experimentally unconstrained. At finite temperature, however, non-

perturbative effects become unsuppressed, and in fact the electroweak sphaleron plays a key role in

many models of baryogenesis. In this paper we have initiated a study of how CP-violation in the

sphaleron sector, arising from the electroweak vacuum angle, might impact baryogenesis.

In Sec. 3 we have argued that CP-violation due to the electroweak vacuum angle will lead to

an asymmetric erasure of an initial (B + L) asymmetry. The central point is that an initial excess

of antibaryons will reach equilibrium more quickly than one of baryons, or vice versa, depending

on the sign of the CP-violating phase θ̄ew, as shown in Eq. (3.6) and Fig. 2. In Sec. 4 we have
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considered the implications for models of baryogenesis that rely on sphalerons to provide B-number

violation. Since the CP-violation shows up as a higher order effect in the kinetic equation (it is

proportional to the square of the charge density; see Eq. (3.5)), it appears to have a negligible

impact on models of baryogenesis in which the charge asymmetry is only ∼ 10−10 of the entropy

density. In models with a larger initial asymmetry, the CP-violating behavior of the sphaleron can

play a nontrivial role in baryogenesis. Ideally one would like to construct a model of baryogenesis

using only the CP-violation associated with the EW sphaleron.

Our research opens a number of avenues for potentially interesting future work. First, a more

complete understanding of the mechanisms we have discussed could be obtained through a rigorous

calculation of the quantity G2, involving a fully quantum mechanical treatment of the interference

effects at finite temperature. Second, beyond the situation discussed here, it is worth noting that

the QCD sector also has a process that mediates the anomalous violation of chiral charge at finite

temperature; this is the so called strong sphaleron [46]. It would be interesting to investigate how

the CP-asymmetric charge erasure that we discussed in Sec. 3 manifests in the strong sector. In

light of the strong constraints on θ̄qcd from bounds on the neutron EDM, we do not anticipate

quantitatively significant effects in the SM. However, if the vacuum angle is elevated to an axion

field, then it could have taken a larger value in the early universe, and thus the QCD and EW

axions (see, e.g. [47]) present a third direction for future work.
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A Derivation of the Kinetic Equation

In this appendix we derive the kinetic equation for the (B + L) charge density, given by Eq. (3.5).

The leading order term was first worked out in Ref. [17] using the Zubarev density matrix [48]

(see also [18]). We follow the same approach here, and extend it by calculating and retaining the

subleading term. In this section we drop the “B+L” subscript on the charge current and density

for clarity of presentation.

When the theory contains an explicit (B + L)-violating operator O(x), the anomaly equation

(3.3), is extended to the current conservation equation

∂µj
µ = 2

Ngg
2

32π2
W a
µνW̃

aµν + δO , (A.1)

where δO is the Noether variation of O. Taking the expectation value and performing a spatial

12



average gives the initial form of the kinetic equation

∂n

∂t
= 2Ng〈

g2

32π2
W a
µνW̃

aµν〉+ δO , (A.2)

where n = 〈j0〉 is the charge density, and the bar denotes spatial averaging. In thermal equilibrium

the density matrix is simply

ρ0 =
e−βH

Tr e−βH
, (A.3)

and n is static, since the sources vanish. When the system is prepared with an initial asymmetry,

its return to equilibrium is described by the Zubarev density matrix [48]

ρz(t) =
e−β(H+h(t))

Tr e−β(H+h(t))
, (A.4)

where

h(t) ≡ − lim
ε→0

∫ t

−∞
dt′ ε eε(t

′−t)µ(t′)N(t′) . (A.5)

The charge operator is N(t) =
∫
d3x j0(x), and the chemical potential µ(t) parameterizes the charge

asymmetry via

n(t) = cdof Ng µ(t)T 2 , (A.6)

where cdof is the effective number of fermionic degrees of freedom per generation in equilibrium

with the sphaleron.

Assuming that µ(t) is slowly varying, we approximate

h(t) ≈ −µ(t)N(t) + µ(t) lim
ε→0

∫ t

−∞
dt′ eε(t

′−t)Ṅ(t′) . (A.7)

Furthermore, when the charge asymmetry is small, we can expand ρz for h� H to find

ρz ≈
(

1 + C1 − 〈C1〉0 + C2 − 〈C2〉0
)
ρ0 , (A.8)

where 〈·〉0 is an expectation value with respect to ρ0, and we have introduced the operators

C1 ≡ −β
∫ 1

0
dλ e−λβH h eλβH (A.9)

C2 ≡
β2

2

∫ 1

0
dλ

∫ 1

0
dσ
[
(λ)e−σλβH h e−(1−σ)λβH h eλβH

+ (1− λ) e−λβH h e−σ(1−λ)βH h e(σ+λ−σλ)βH
]
. (A.10)

If h and H commute with each other, then we have C1 = −βh and C2 = β2h2/2.

13



The left side of the kinetic equation (A.2), can be written as ṅ = 〈Ṅ〉/V . Using (A.8), the

expectation value of the number operator is

〈Ṅ〉 ≈ 〈Ṅ〉0 + 〈ṄC1〉0 − 〈Ṅ〉0〈C1〉0 + 〈ṄC2〉0 − 〈Ṅ〉0〈C2〉0 . (A.11)

There is no spontaneous charge generation in equilibrium, 〈Ṅ〉0 = 0, and we find

〈Ṅ〉 ≈ 〈ṄC1〉0 + 〈ṄC2〉0 (A.12)

up to higher order terms in βµ� 1, which we have dropped. The result 〈Ṅ〉0 = 0 follows from the

time-reversal invariance of ρ0.

Using (A.7) and (A.9), the leading term can be written as

〈ṄC1〉0 =− µ(t)β lim
ε→0

∫ t

−∞
dt′eε(t

′−t)
∫ 1

0
dλ
〈
Ṅ(t)e−λβHṄ(t′)eλβH

〉
0
, (A.13)

where, in simplifying, we have used 〈ṄN〉0 = 0, which follows from the CPT invariance of ρ0. Now,

using (A.6) we obtain

〈ṄC1〉0 ≈ −ΓV n(t) , (A.14)

where we have defined

Γ ≡ 1

cdofNgT 3V
lim
ε→0

∫ t

−∞
dt′eε(t

′−t)
∫ 1

0
dλ
〈
Ṅ(t) e−λβHṄ(t′)eλβH

〉
0
, (A.15)

which is the rate of (B + L) violation. Using the current conservation equation, (A.1), it is a

standard calculation to relate this matrix element to the Chern-Simons number diffusion coefficient

γdiff . One finds Γ ∼ Ngγdiff/cdofT
3, plus a term that arises from the explicit (B + L)-violating

operator O(x). We have dropped an inconsequential O(1) coefficient (see [18] for more details.)

We evaluate the quadratic term 〈ṄC2〉0 similarly. First, we substitute h from (A.7) into C2

from (A.10), and use (A.6) to eliminate µ(t) for n(t). This gives

〈ṄC2〉0 ≈ G2V n(t)2 , (A.16)
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where

G2 ≡−
1

2c2
dofN

2
gV T

6

{∫ 1

0
dλ

∫ 1

0
dσ

[
(λ)
〈
Ṅ(t)e−σλβHN(t) e−(1−σ)λβHN(t) eλβH

〉
0

(A.17)

+ (1− λ)
〈
Ṅ(t) e−λβH N(t) e−σ(1−λ)βH N(t) e(σ+λ−σλ)βH

〉
0

]

−
∫ 1

0
dλ

∫ 1

0
dσ lim

ε→0

∫ t

−∞
dt′ eε(t

′−t)

[
(λ)

〈
Ṅ(t)e−σλβH Ṅ(t′) e−(1−σ)λβH N(t) eλβH

〉
0

+ (λ)
〈
Ṅ(t)e−σλβH N(t) e−(1−σ)λβH Ṅ(t′) eλβH

〉
0

+ (1− λ)
〈
Ṅ(t)e−λβH N(t) e−σ(1−λ)βH Ṅ(t′) e(σ+λ−σλ)βH

〉
0

+ (1− λ)
〈
Ṅ(t)e−λβH Ṅ(t′) e−σ(1−λ)βH N(t) e(σ+λ−σλ)βH

〉
0

]

+

∫ 1

0
dλ

∫ 1

0
dσ lim

ε→0

∫ t

−∞
dt′ lim

ε′→0

∫ t

−∞
dt′′eε(t

′−t)eε
′(t′′−t)

[
(λ)
〈
Ṅ(t)e−σλβHṄ(t′) e−(1−σ)λβHṄ(t′′) eλβH

〉
0

+ (1− λ)
〈
Ṅ(t) e−λβH N(t′) e−σ(1−λ)βH N(t′′) e(σ+λ−σλ)βH

〉
0

}
.

Unlike in the previous calculation, it is not obvious that we can use CPT invariance to drop any of

these terms. Näıvely, operator products like ṄṄN are odd under CPT, but the standard analysis

is made more complicated because the operators are evaluated at different times. However, it is

important to note that these triple operator products are odd under CP, which takes N → −N .

Therefore, CP-invariance implies G2 = 0, and we expect 〈ṄC2〉0 to be nonzero when the system is

CP-violating. Thus, the kinetic equation for the (B + L) charge density takes the form (3.5).
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