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Non-Gaussianity of the primordial density perturbations provides an important measure to con-
strain models of inflation. At cubic order the non-Gaussianity is captured by two parameters τNL

and gNL that determine the amplitude of the density perturbation trispectrum. Here we report mea-
surements of the kurtosis power spectra of the cosmic microwave background (CMB) temperature as
mapped by Planck by making use of correlations between square temperature-square temperature
and cubic temperature-temperature anisotropies. In combination with noise simulations, we find
the best joint estimates to be τNL = 0.4± 0.9× 104 and gNL = −1.2± 2.8× 105. If τNL = 0, we find
gNL = −1.4 ± 1.8 × 105.

PACS numbers:

I. INTRODUCTION

Existing cosmological data from cosmic microwave
background (CMB) and large-scale structure (LSS) are
fully consistent with a simple cosmological model involv-
ing six basic parameters describing the energy density
components of the universe, age, and the amplitude and
spectral index of initial perturbations. The perturba-
tions depart from a scale-free power spectrum and are
Gaussian. These facts support inflation as the lead-
ing paradigm related to the origin of density perturba-
tions [1–3]. Under inflation a nearly exponential expan-
sion stretched space in the first moments of the early uni-
verse and promoted microscopic quantum fluctuations to
perturbations on cosmological scales today [4, 5]. Mov-
ing beyond simple inflationary models with a single scalar
field, models of inflation now involve multiple fields and
exotic objects such as branes that have non-trivial in-
teractions. Such inflationary models produce a depar-
ture from Gaussianity in a model-dependent manner [6–
9]. The amplitude of non-Gaussianity therefore is an
important cosmological parameter that can distinguish
between the plethora of inflationary models [10].

The value of the first order non-Gaussian parameter,
fNL, has been obtained with increasing success using the
bispectrum - the Fourier analog of the three-point cor-
relation function of the CMB teperature. Such studies
have found fNL to be consistent with zero [11–14], with
the strongest constraint coming from Planck given by
fNL = 2.7± 5.8 [15]. The single-field, slow-roll inflation-
ary model expectation is that fNL

<∼ 1 and a constraint at
such a low amplitude level may be feasible in the future
with large scale structure data and with 21-cm intensity
fluctuations. Alternatively, with the trispectrum or four
point correlation function of CMB anisotropies [16], we
can measure the second and third order non-Gaussian
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parameters τNL and gNL. While these higher order pa-
rameters generally lead to a trispectrum that has a lower
signal-to-noise ratio than the bispectrum, there may be
models in which the situation is reversed with the trispec-
trum dominating over the bispectrum contribution. An
example of such a model is an inhomogeneous end to
thermal inflation discussed in Ref. [17].

A previous analysis using Wilkinson Microwave
Anisotropy Probe (WMAP) data out to multipole ` <
600 using the kurtosis power spectra involving two-to-
two and three-to-one temperature correlations [18, 19],
found −7.4 < gNL/105 < 8.2 and −0.6 < τNL/104 < 3.3
at the 95% confidence level (C.L.). Other measures of
the WMAP trispectrum have been presented in [20–
23]. While the Planck data have been used to constrain
τNL < 2800 at the 95% C.L. such a constraint ignored the
signal associated with gNL [15]. Using all of the Planck
data, the expectation is that gNL can be constrained with
a 68% CL uncertainty of 6.7 × 104 [21] with τNL = 0,
while τNL can be constrained down to 560 if gNL = 0
[24]. Here we present an analysis of the Planck temper-
ature anisotropy maps by making use of kurtosis power
spectra to constrain τNL and gNL jointly.

II. THEORY

We begin the discussion with the temperature trispec-
trum defined as [25]

〈al1m1
al2m2

al3m3
al4m4

〉 =
∑
LM

(−1)M
(
l1 l2 L
m1 m2 −M

)
(
l3 l4 L
m3 m4 M

)
T l1l2l3l4

(L) , (1)

where we have introduced the Wigner 3-j symbol. The
angular trispectrum, T l1l2l3l4

(L), can be further expressed in
terms of sums of the products of Wigner 3-j or 6-j sym-
bols times the so-called reduced trispectrum, T l1l2l3l4

(L).
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The full trispectrum contains permutations of the re-
duced trispectrum which are associated with Wigner 6-j
symbols [16]

T l1l2l3l4
(L) = P l1l2l3l4

(L)

+ (2L+ 1)
∑
L′

[
(−1)l2+l3

{
l1 l2 L
l4 l3 L′

}
P l1l3l2l4

(L′)

+ (−1)L+L′
{
l1 l2 L
l3 l4 L′

}
P l1l4l3l2

(L′)
]
, (2)

where

P l1l2l3l4
= T l1l2l3l4

+ (−1)ΣUT l2l1l3l4
+ (−1)ΣLT l1l2l4l3

+ (−1)ΣU+ΣLT l2l1l4l3
, (3)

and ΣU = l1 + l2 + L and ΣL = l3 + l4 + L.
To derive the angular trispectrum given by T l1l2l3l4

(L) we
assume that the curvature perturbations ζ of the universe
generated by inflation follow as:

Φ(x) = ΦG(x)+fNL(Φ2
G(x)−〈Φ2

G(x)〉)+gNLΦ3
G(x) . (4)

where the curvature perturbation ζ and the initial grav-
itational potential are related by Φ = (3/5)ζ and τNL =
(6fNL/5)2.

We refer the reader to Ref. [24] for intermediate steps in
our derivation. Using the above form the full trispectrum
can be reduced to two forms involving the two amplitudes
τNL (associated with Φ2

G(x)−〈Φ2
G(x)〉 term in above) and

gNL coming from Φ3
G(x).

Defining T l1l2,(i)l3l4
(L) = hl1l2Lhl3l4Lt

l1l2,(i)
l3l4

(L), i =

1, 2 [26], where

hl1l2l3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)
, (5)

we find that the reduced trispectrum is

T l1l2l3l4
(L) = [τNLT l1l2,(1)

l3l4
(L) + gNLT l1l2,(2)

l3l4
(L)]. (6)

The two terms are

t
l1l2,(1)
l3l4

(L) = τNL

(5

3

)2
∫
r2
1dr1r

2
2dr2FL(r1, r2)

αl1(r1)βl2(r1)αl3(r2)βl4(r2) , (7)

and

t
l1l2,(2)
l3l4

(L) = gNL

∫
r2drβl2(r)βl4(r)[αl1(r)βl3(r)

+αl3(r)βl1(r)] . (8)

Here αl(r) = (2/π)
∫
k2dk∆TT

l (k)jl(kr) and
βl(r) = (2/π)

∫
k2dkP (k)∆TT

l (k)jl(kr). The pri-
mordial curvature power spectrum is k3P (k)/(2π2) =
(3/5)2As(k/k0)ns−1 with no “running”[27]. Here k0 is
the pivot scale set at 0.05Mpc−1. We use the public
code [33] to compute αl(r), βl(r) and the temperature
transfer function ∆TT

l (k).

In the τNL part, we define the function FL as

FL(r1, r2) =
2

π

∫
k2dkP (k)jL(kr1)jL(kr2). (9)

Following the efficient algorithm in [28], we define ξ =
r2/r1, x = kr1 and compress r1 and r2 into one dimension
such that

FL(ξ) =
2

π
r1−ns
1 λ

∫
dxxns−2jL(x)jL(ξx), (10)

Here λ = (3/5)2(2π2/k3
0)Ask

4−ns
0 . The integration is

performed in the range x ∈ [0, 105]. We validate that
this fast algorithm gives the same results as Eq. 9.

The first part of the trispectrum associated with τNL

approximates to (5/3)2Cr∗L
√
Cl1Cl2Cl3Cl4 at L < 100.

This is due to the fact that the integrand peaks at r = r∗
and Cl =

∫
r2drαl(r)βl(r) [29]. Here r∗ is the comoving

distance at last scattering surface and Cr∗L = FL(r∗, r∗).
For the comparison with the data, however, we perform
an exact calculation defined in Eqs. 7, 8. The adaptive
r-grid is used for the integration.

The estimators of the connected trispectrum are con-
structed in Refs. [19, 30] and they are given by

K
(2,2)
L (τNL, gNL) =

1

2L+ 1

∑
l1l2l3l4

1

2L+ 1

T l1l2l3l4
(L)T̂ l1l2l3l4

(L)

Cl1Cl2Cl3Cl4
,

(11)
and

K
(3,1)
l4

(τNL, gNL) =
1

2l4 + 1

∑
l1l2l3L

1

2L+ 1

T l1l2l3l4
(L)T̂ l1l2l3l4

(L)

Cl1Cl2Cl3Cl4
.

(12)

In Eqs. 11, 12, the reduced trispectrum T l1l2l3l4
(L) is eval-

uated at τNL = 1 and gNL = 1. The estimators K
(2,2)
L

and K
(3,1)
L are parametrized by these two parameters.

The T̂ l1l2l3l4
(L) denotes the full trispectrum from data or

simulation.
In our analysis, lmin ≤ l1, l2, l3, L ≤ lmax, lmin =

2 and lmax = 1000. The trispectrum computing
time is proportional to O(l4max) at a single L. In
order to make these calculations more efficient, we

use Monte Carlo integration for K
(2,2)
L , i.e., replacing∑lmax

l1=lmin

∑lmax

l2=lmin

∑lmax

l3=lmin

∑lmax

l4=lmin
by V/Nsamples

∑
l.

The vector l(=l1, l2, l3, l4) is uniformly sampled from

[lmin, lmax]4 and V = (lmax − lmin)4. For K
(3,1)
L , we re-

strict the diagonal elements within 2 ≤ L ≤ 20 and val-
idate that a bigger upper bound negligibly modifies the
trispectrum. The Wigner 3-j symbols’ intrinsic selec-
tion rule also helps reduce the computation time. With
all these efficient algorithm, we can achieve a hour-level
computation time, which is about three orders of magni-
tude faster than the brute-force calculation. We show the
theoretical predictions of these estimators for the case in
Fig. 1 for a fixed set of τNL and gNL values for which
non-Gaussian simulated maps are available.
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FIG. 1: The estimator validation using WMAP simulations
with τNL = 3600.

From simulated and real data, spherical harmonic

coefficients a
(sim)
lm and a

(data)
lm are computed by inverse

spherical harmonic transformation (SHT). Then the two
weighted maps are generated from definitions A(r,n) =∑
lm αl(r)ãlmYlm(n) , B(r,n) =

∑
lm βl(r)ãlmYlm(n)

and ãlm = alm/Cl where the angular power spectrum

Cl is inclusive of noise. a
(data)
lm is calculated by anafast of

Healpix which removes monopole and dipole. To correct

the masking effect, we scale the masked modes a
(sim)
lm and

a
(data)
lm by 1/

√
fsky to match the underlying temperature

power spectrum. These masked modes are also beam-
and pixel window-deconvolved. In the following text, we
neglect “n” for brevity.

From A and B maps, we construct C(r1, r2) =
A(r1)B(r2). Then we make C ′lm = FL(r1, r2)Clm(r1, r2)
and D(r1, r2) = C ′(r1, r2)A(r2). Here Clm(r1, r2) =∫
dnY ∗lm(n)C(r1, r2,n). We can calculate four types of

power spectra:

JABA,B
l (r1, r2) =

1

2l + 1

∑
m

Dlm(r1, r2)B∗lm(r2), (13)

JAB,AB
l (r1, r2) =

1

2l + 1

∑
m

Fl(r1, r2)

[AB]lm(r1)[AB]∗lm(r2); (14)

LABB,B
l (r) =

1

2l + 1

∑
m

[ABB]lm(r)B∗lm(r); (15)

and

LAB,BB
l (r) =

1

2l + 1

∑
m

[AB]lm(r)[BB]∗lm(r). (16)

When all the power spectra are integrated along the
line of sight, they become:

JABA,B
l =

∫
r2
1dr1r

2
2dr2J

ABA,B
l (r1, r2); (17)

LABB,B
l =

∫
r2drLABB,B

l (r); (18)

JAB,AB
l =

∫
r2
1dr1r

2
2dr2J

AB,AB
l (r1, r2); (19)

and

LAB,BB
l =

∫
r2drLAB,BB

l (r). (20)

The trispectrum estimators

K
(2,2)
L =

(5

3

)2

JAB,AB
L + 2LAB,BB

L , (21)

and

K
(3,1)
L =

(5

3

)2

JABA,B
L + 2LABB,B

L (22)

are then constructed from the correlations associated
with A and B maps that are either from data or sim-
ulations.

These estimators are applied to 143 GHz and 217 GHz
temperature datasets, as well as the cross-correlation
143 × 217 GHz. For the cross correlation, the estima-
tors are

K
(2,2)
L (143× 217) =

(5

3

)2

J
A(143)B(217),A(143)B(217)
L

+ 2L
A(143)B(217),B(143)B(217)
L , (23)

and

K
(3,1)
L (143× 217) =

(5

3

)2

J
A(143)B(217)A(143),B(217)
L

+ 2L
A(143)B(217)B(143),B(217)
L . (24)

III. SIMULATION VALIDATION

To validate our estimates of the connected trispectra,
we make non-Gaussian CMB signal simulations. The
non-Gaussian maps for WMAP are publicly available [34]
so we simulate maps with nside = 512 and lmax = 600,
and all the WMAP experimental settings, consistent
with 5-year observations, are adopted. For the signal
part, alm = aG

lm + fNLa
NG
lm and we choose fNL = 50,

i.e., τNL = 3600 given the expected relation between
fNL and τNL, independent of the exact value of gNL.
Note that the non-Gaussian simulations we use assume
gNL = 0 and in a joint model fit to data we test this
expectation. The WMAP 5-yr noises are then added
in the signal simulations. The WMAP simulation is
T (n) =

∑
lm blplalmYlm(n) + σ0/

√
N(n)nwhite(n). Here

σ0 is the noise per observation and N(n) is the number of
observations per pixel. Both σ0 and N(n) are provided
by WMAP. The estimator of the connected trispectrum
is K̂L = 1/4!(KL − KGaussian

L ). In Fig. 1 we show that
the average connected parts from 100 full-sky realizations
are consistent with the theoretical calculations.
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IV. DATA ANALYSIS AND RESULTS

We use 2013 Planck 143 GHz and 217 GHz tempera-
ture maps for the present analysis. We use the foreground
mask to remove the point sources and galactic emissions
for both frequencies. The 217 GHz map cleaned after
the 70% foreground mask still contains visible emission
around the galactic plane, so we use an extended mask
to further cut the 217 GHz data around it. The resulting
sky fractions for both maps become 73% and 58%. At
143 GHz, the map is convolved with a 7′ Gaussian beam
and has 45µK arcmin noise. At 217 GHz, it is 5′ and
60µK arcmin. Following Ref. [31], point sources (PS) and
cosmic infrared background (CIB) are also included in
simulated data. The power spectra for these two sources
are CPS

l = 2π/30002 and CCIB
l = 2π/(l(l+1))(l/3000)0.8,

respectively. The foreground power at these frequencies
are CA×Bl = APS

A×BC
PS
l + ACIB

A×BC
CIB
l with the param-

eters APS
143×143 = 64µK2, APS

143×217 = 43µK2, APS
217×217 =

57µK2, ACIB
143×143 = 4µK2, ACIB

143×217 = 14µK2, ACIB
217×217 =

54µK2. In addition, a 10µK arcmin white noise is added
into the simulations. The data structure is expressed as
T (n) =

∑
lm almblplYlm(n) + n(n) where n is a direc-

tion on the sky, bl is the beam transfer function, pl is the
pixel transfer function at nside = 2048, and n(n) is the
noise simulation. We use 100 signal and noise realiza-
tions from the FFP6 simulation set of the Planck collab-
oration [32]. We use the best-fit cosmological parameters
from “Planck+WP+highL” [27]. Specifically, Ωbh

2 =
0.022069, Ωch

2 = 0.12025, τ = 0.0927, ns = 0.9582,
As = 2.21071× 10−9 at pivot scale k0 = 0.05Mpc−1, and
H0 = 67.15km s−1Mpc−1 [27].

We calculate both trispectra K
(2,2)
L and K

(3,1)
L from

Gaussian simulations and data for Planck. The Gaus-
sian term in the trispectra KGaussian

L is averaged from 100
Planck simulations for frequency combinations 143×143
GHz, 143× 217 GHz and 217× 217 GHz, and is removed
from the raw signal, which is defined as the combination
of the connected part and the disconnected part. All
the trispectra are shown in Fig. 2. It is seen that the
disconnected components dominate the raw signal and
our simulations can precisely recover these significant
biases. Also, all the trispecta show consistent shapes.
From 100 simulations, the full covariance matrix M is
obtained for each frequency combination and the vec-

tor Vb = (V
(2,2)
b , V

(3,1)
b ). Here b is index of trispec-

trum band. We choose five bands for each spectrum:
L=[2,152], [152,302], [302,452], [452,602], [602,800]. Here
we use ∆L = 150 and Lcut = 800. We want to both
avoid systematic issues with the high L trispectra and
get enough signal-to-noise, so we choose this conserva-
tive cut here.

We choose a binning function to maximize the sensi-
tivity

V̂b =
∑
L∈b

wbLŜL =

∑
L∈b SLŜL/N

2
L∑

L∈b S
2
L/N

2
L

, (25)
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FIG. 2: The raw trispectra calculated from Planck data and
simulations for 143×143 GHz (top) and 143×217 GHz (bot-
tom). In both plots Gaussian bias dominates the raw signal.

TABLE I: The constraints of τNL, gNL with ∆L = 150 and
Lcut = 800 from different frequency combinations. The 68%
C.L. is given by ∆χ2 = 2.3 except the last row.

Freq.Combination τNL[×104] gNL[×105]

143 × 143 −0.7 ± 1.1 −1.8 ± 3.8

143 × 217 2.1 ± 1.5 −1.2 ± 4.0

143 × 143 + 143 × 217 0.4 ± 0.9 −1.2 ± 2.8

143 × 143 + 143 × 217 0 −1.4 ± 1.8

here SL = (2L + 1)KL is the fiducial model with τNL =

gNL = 1, NL = (2L+ 1)KGaussian
L and ŜL = (2L+ 1)K̂L

which is the connected trispectrum from the simulation
or data.

The likelihood function of the data is given as

χ2(τNL, gNL) =
∑
ν

∑
bb′

(V
(ν)
b −V̂ (ν)

b )M
−1,(ν)
bb′ (V

(ν)
b′ −V̂

(ν)
b′ ),

(26)
where the two free parameters are τNL, gNL, b index of
the band, and ν the index of the frequency combination.

We draw O(106) samples for two parameters from
Monte Carlo Markov chains with flat priors −106 ≤
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FIG. 3: The 68%, 95% and 99% confidence levels for different
combinations are indicated by the transparency of the con-
tours. The frequency combinations 143× 143 GHz, 143× 217
GHz and 143 × 143 + 143 × 217 GHz are shown in blue, red
and black colors.

TABLE II: The constraints of τNL, gNL with different ∆L and
Lcut for the combination 143×143+143×217. The 68% C.L.
is given by ∆χ2 = 2.3.

143 × 143 + 143 × 217 τNL[×104] gNL[×105]

[∆L = 150, Lcut = 800] 0.4 ± 0.9 −1.2 ± 2.8

[∆L = 150, Lcut = 850] 0.3 ± 0.9 0.3 ± 1.4

[∆L = 150, Lcut = 900] 0.4 ± 0.9 1.8 ± 1.4

[∆L = 200, Lcut = 800] 0.6 ± 0.9 −0.8 ± 2.9

τNL ≤ 106 and −107 ≤ gNL ≤ 107. The 217 GHz map is
still significantly contaminated by CIB although we use
a very conservative cut which removes 40% of the sky,
so we do not include 217× 217 GHz into our parameter
estimation. The constraints for τNL and gNL are listed
in Table I. In the last row of Table I, we show the 1-
parameter constraint on gNL with τNL = 0. For all the
combinations, we find that τNL and gNL are consistent
with zero. We check the consistency between different
frequency combinations in Fig. 4. From Fig. 4, it is seen
that different bin sizes do not change the results. We
also check the impact of effective L range on the param-
eters. From Fig.4, we find that adding more L range can
result in a higher value of gNL and the possible interpre-
tation is that the small scale non-Gaussian structures of
unresolved point sources and CIB beyond the foreground
mask could result in a non-negligible trispectrum at high
L. All the results shown in Fig. 4 are summarized in
Table II.

-4 -2 0 2 4
τNL[×104]

-1.0

-0.5

0

0.5

1.0

g N
L
[×

10
6 ]

-4 -2 0 2 4
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0

0.5

1.0

g N
L
[×

10
6 ]

FIG. 4: The 68%, 95% and 99% confidence levels for the
combination 143 × 143 + 143 × 217 with different bin sizes
(top) and Lcut (bottom) are indicated by the transparency of
the contours. In the top, for ∆L = 150, the contour is shown
in black and green for ∆L = 200. For both cases, Lcut=800.
In the bottom, Lcut = 800 is shown in black, Lcut = 850 in
red, Lcut = 900 in blue. In these cases ∆L = 150.

V. SUMMARY

We present the first joint constraints on τNL, gNL us-
ing Planck kurtosis power spectra that trace square
temperature-square temperature and cubic temperature-
temperature power spectra. The Gaussian biases in these
statistics are corrected for with simulations and we make
use of non-Gaussian simulations to test our pipeline. We
find the best joint estimate of the two parameters to be
τNL = (0.4± 0.9)× 104 and gNL = (−1.2± 2.8)× 105. If
τNL = 0, gNL = (−1.4± 1.8)× 105.
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