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The detection of unmodeled gravitational-wave transients by ground-based interferometric
gravitational-wave detectors is an important goal for the advanced detector era. These searches
are commonly cast as pattern recognition problems, where the goal is to identify statistically sig-
nificant clusters indicating the presence of gravitational-wave transients in spectrograms of detector
strain power when the precise signal morphology is unknown. In previous work, we have introduced
a clustering algorithm referred to as seedless clustering, and shown that it is a powerful tool for de-
tecting weak and long-lived (∼10–1000 s) gravitational-wave transients. However, as the algorithm
is currently conceived, in order to carry out a search on approximately a year of data, significant
computational resources may be required for estimating background events. Currently, the use of
the algorithm is limited by the computational resources required for performing background studies
to assign significance to events identified by the algorithm. In this paper, we present an analytic
method for estimating the background generated by the seedless clustering algorithm and compare
the performance to both Monte Carlo Gaussian noise and time-shifted gravitational-wave data from
a week of LIGO’s 5th Science Run. We demonstrate qualitative agreement between the model and
measured distributions and argue that the approximation will be useful to supplement conventional
background estimation techniques for advanced detector searches for long-duration gravitational-
wave transients.

PACS numbers: 95.75.-z,04.30.-w,07.05.Bx

I. INTRODUCTION

Second-generation gravitational-wave detectors such
as Advanced LIGO [1] and Advanced Virgo [2] will be
coming online in the coming months and years. Some
searches for gravitational-wave transients seek to detect
gravitational-wave transients lasting ∼10–1000 s. Com-
pact binary coalescences of black holes (and/or neutron
stars) are one example of long-lived gravitational-wave
sources [3–5]. Uncertain models exist for more exotic
sources of long-lived transients, including emission from
rotational instabilities in protoneutron stars [6–9] and
black-hole accretion disk instabilities [10–12]. When a
matched filter search is not possible, searches for unmod-
eled long-lived transients [13–18] can be employed.

Searches for compact binary coalescences typically rely
on performing time-slides of single detector triggers, gen-
erated by performing a matched filter (in the compact
binary coalescence case) on single-detector time series
data. Time-slides are the shift of either time-series data
or triggers from one detector against those of another,
and are designed to eliminate potential gravitational-
wave content contaminating the background estimation.
Burst searches use clustering algorithms, as opposed to
matched filtering techniques, on single detector time-
frequency maps [19] or multi-detector coherent maps
[14, 20, 21]. Calculating the coherent statistic takes sig-
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nificant computational resources because the triggers are
inherently multi-detector and so the time-slides must be
done on the time-series data itself, rather than the single-
detector triggers. Because detector noise is generally
non-Gaussian, it is difficult to know if an event in one de-
tector is signal or noise. For this reason, multiple detec-
tors are required to perform gravitational-wave searches.
To estimate background, these searches time-shift the
data of each detector with respect to the other(s), by
some unphysical delay which is larger than the light
travel time between the detectors. The coherent statis-
tics are then computed between the time-shifted data in
the same way as the original search algorithm, and in this
way, false alarm rates can be estimated. Current searches
use thousands of time-slides or more [4, 22, 23]. The main
limitation on the number of time-slides that can be per-
formed is limited computational resources, although the
short-duration coherent burst pipelines have now been
tested in the ten-thousand time-slides regime. Currently,
they are moving towards the hundred-thousand time-
slide regime, while the compact binary matched filter-
ing pipelines have successfully generated 5σ background
distributions. 5σ means that the event has a SNR ex-
ceeding a significance threshold that corresponds to a 1
in 1,744,278 occurrence, after accounting for trials fac-
tors. For a single event, therefore, 1,744,278 time-slides
must be performed to determine whether an event has an
SNR exceeding a 5σ threshold. The difficulty in reaching
these levels is due to computationally intensive calcula-
tions like the matched filter used in compact binary coa-
lescence [24], calculation of the coherent SNR [25] used in



2

burst searches, and potentially seedless clustering [15–18]
in a long-duration transient search.

Was et al. demonstrated the limitation of using time-
slides to perform background estimation in the single-
detector trigger case [26, 27]. Although coherent analyses
do not use single-detector time-slides, background esti-
mation for coherent searches rely on estimating the prop-
erties of the noise with finite measurements and therefore
have error bars on their background estimation as well.
They showed that the precision on the background es-
timation using time-slides of trigger streams is in fact
limited and that the variance associated with their use
saturates at some point. The computational limitations
and the potential problems with time-slides motivate a
search for potential alternative forms of background es-
timation in gravitational-wave searches. Gravitational-
wave searches for isotropic stochastic gravitational wave
backgrounds [28, 29] and directional searches towards
Sco X-1, the galactic center, and SN1987A [30] have as-
sumed that the detection statistic is normally distributed
with a known mean and variance that can be calculated
from first principles when performing the searches. These
searches sum up data from long stretches of time, and
combined with the use of long time segments (60 s) and
Gaussianity cuts, these statistics are Gaussian by the
Central Limit Theorem. This has the significant compu-
tational cost-saving benefit of not requiring time-slides to
perform the search, although limited time-shift analyses
are used as sanity checks and to ensure that particularly
non-Gaussian frequency bins can be removed from the
analysis.

Some searches for long-duration gravitational-wave
transients use the same cross-correlation technique as
stochastic searches [14], although other methods exist
[20, 21]. They utilize cross-power spectrograms, com-
puted from the cross-correlation of two gravitational-
wave detectors, and use pattern recognition algorithms
to search for clusters of excess strain cross-power [14].
One algorithm used to search for long-duration gravita-
tional waves is seedless clustering, which integrate along
many different paths in spectrograms. This algorithm
is sensitive to signals that can be well-approximated by
parameterized curves, and the advantage of seedless clus-
tering is most pronounced for long and weak signals [15–
18]. We have previously shown how seedless clustering
algorithms can be used to significantly enhance the sen-
sitivity of searches for signals of this type [15]. Although
seedless clustering algorithms are embarrassingly paral-
lel [31], and therefore computations can be performed on
graphical processor units, seedless clustering searches are
still limited by computation of the noise background.

Cannon et al. [32] recently proposed a method to esti-
mate the false alarm probability of compact binary coa-
lescences without time-slides. They are able to approxi-
mate compact binary events as a Poisson process in or-
der to convert the calculated false alarm probability into
a false alarm rate. This in particular allows for a sta-
tistical detection of a population of events, which could

be collectively more significant than the single most sig-
nificant event alone. The method proposed in our paper
is similar in that we measure events based on the data
and then use a statistical approximation to the distribu-
tion of the measured tracks to make approximations to
the noise background. There are also a number of no-
table differences. Because long-duration transient grav-
itational waves are typically searched for using a coher-
ent combination of detector data, the trigger distribu-
tions no longer obey Poisson statistics. Instead, we will
exploit the fact that seedless clustering sums many ap-
proximately statistically independent pixels to use Gaus-
sian statistics to estimate the background. In this paper,
we demonstrate a semi-analytical approximation to the
seedless clustering output from cross-correlation spectro-
grams. One potential criticism of the analysis that fol-
lows is the fact that we compare the approximation with
data from time-slide analyses out to ≈ 3σ, not to the 5σ
distributions we present at the end of the paper. It would
be necessary to perform 5σ worth of time-slides to ver-
ify the approximation. This calculation is currently very
difficult to do computationally, and of course, if we could
perform 5σ worth of time-slides, we would not need an
approximation in the first place. Moreover, as we perform
the analysis using a relatively clean week-long stretch of
data, different sets of data could result in different results.
Therefore, we consider the analysis that follows as a first
test for the feasibility of an approximate method. As ar-
gued above, we expect the background distributions to be
better behaved in long-duration analyses than in short-
duration searches, and therefore perhaps less susceptible
to significant deviations from empirical distributions. In
the future, we can use distributions generated by future
analyses that perform more time-slides and over longer
periods to compare against the approximation to test its
utility. Therefore, although time-slides are likely required
to create confidence in a detection due to the problem
just described, we now summarize several reasons why
it is useful to consider alternative significance-estimation
strategies.

Algorithm Verification. The semi-analytic method pro-
vides a verification for the pipeline in multiple ways.
In the case where data-quality work is being performed
correctly, in general, the data should be generally well-
approximated by Gaussian noise, outside of some data
transients which pass the data quality cuts. Therefore,
background estimation should approximately follow the
distribution if it is assumed that the data is Gaussian.
Also, this provides a sanity check that the algorithm per-
forms as expected on the data. By performing a limited
number of time-slides or performing a simulated analysis
on Gaussian noise, it should be clear that the model for
the algorithm is correct, which can provide confidence
that the algorithm is performing as expected (or not).

Sensitivity to waveform models. There are a num-
ber of papers contained in the literature about the sen-
sitivity of gravitational-wave detectors to long-duration
gravitational waves [6, 15–18]. In general, the sensitiv-
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ity studies have been performed by running the analysis
on 1,000 ft-maps to reach a FAP of 0.1%, and the sen-
sitivity to various waveform models are computed rela-
tive to this number. For a year of data, assuming ft-
maps of 250 s with 50% overlap, and a desirable FAP
of ≈ 3σ or FAP = 0.27%, there will be more than 108

maps analyzed. Before any analysis, either a search for
gravitational-waves or a waveform sensitivity study, is
performed, it is desirable to be able to estimate the back-
ground quickly. This estimate informs expectations of
potential results as well as how to setup the analysis.
Using the method described in this paper, we can analyt-
ically compute what we expect a threshold based on this
number of maps, without needing to perform an analysis
with many time-slides.

Event follow-up and electromagnetic alerts. There are
preparations for joint electromagnetic and gravitational-
wave observations in the advanced detector era [33]. Low-
latency gravitational-wave searches are aiming for run-
times ≤ 1 min. For significance estimates on this time-
scale, rapid background estimation techniques are re-
quired. The method described in this paper is able to give
an approximate FAR for any event on this time-scale. In
the case where there is eventually interest in joint electro-
magnetic and gravitational-wave observations for generic
long-duration transients, this method may be useful for
making that happen.

The remainder of the paper is organized as follows. In
Sec. II, we describe the formalism of an all-sky transient
search and seedless clustering. In Sec. III, we present
the results of a Monte Carlo and time-shifted study com-
paring the semi-analytical model to seedless clustering.
In Sec. IV, we explore the errors, both systematic and
statistical, with our method. In Sec. V, we discuss our
conclusions and suggest directions for future research.

II. FORMALISM

We use the cross-correlation of two GW strain channels
from spatially separated detectors to perform searches
for long-duration GW transients. We construct ft-maps
of cross-power signal-to-noise ratio. We divide detec-
tor strain time series into segments and compute Fourier
transforms of the segments to create the pixels, which
we denote as s̃I(t; f), where we take strain data from
detector I for the segment with a mid-time of t. Follow-
ing [15–18], the segments are 50%-overlapping and Hann-
windowed with duration of 1 s and a frequency resolution
of 1 Hz.

The expression for the cross-power signal-to-noise ratio
is as follows [14]:

ρ(t; f |Ω̂) =
2
√

2

N
Re

[
e2πif∆~x·Ω̂/c s̃∗I(t; f)s̃J(t; f)√

P ′I(t; f)P ′J(t; f)

]
.

(1)
where ∆~x is a vector describing the relative displacement
of the two detectors, Ω̂ is the direction of the GW source,

and c is the speed of light. The time delay between the
two detectors, which is a direction-dependent phase fac-

tor, is in the e2πif∆~x·Ω̂/c term. P ′I(t; f) and P ′J(t; f) are
the auto-power spectral densities for detectors I and J in
the segments neighboring t. N is a FFT normalization
factor, L× Fs, where L is the length of data in seconds
and Fs is the sampling frequency. Additional details can
be found in [14–18]

We write the total signal-to-noise ratio for a cluster of
pixels as a sum over ρ(t; f |Ω̂):

SNRtot(Γ) ≡ 1

N1/2

∑
{t;f}∈Γ

ρ(t; f |Ω̂), (2)

where N is the number of pixels in Γ, which is chosen
from a bank of parametrized frequency-time tracks, and
each track is referred to as a template.

To modify the above algorithm to perform an all-sky
search [16–18], we use complex signal-to-noise ratio:

p(t; f) =
2
√

2

N

[
s̃∗I(t; f)s̃J(t; f)√
P ′I(t; f)P ′J(t; f)

]
. (3)

This statistic preserves the complex phase information,
which encodes the direction of the source. As a proxy for
the sky location, which is unknown, we add an additional
variable ∆τ which corresponds to the time delay between
the detectors [16]. Therefore, we rewrite Eq. 2 as

SNRtot(Γ) ≡ 1

N1/2

∑
{t;f}∈Γ

Re
[
e2πif∆τp(t; f)

]
, (4)

and this sum is carried out for many randomly selected
clusters Γ. We finally define Max[SNRtot] as the maxi-
mum of SNRtot taken over all Γ.

A. Parameterizations

In any seedless clustering algorithm, Γ is chosen such
that it is sensitive to the morphology of the gravitational
waves being searched for. There are two types we will
consider in this paper, although the method is generic
enough to work for any parameterization.

Bézier curves. For generic narrow-band long transient
gravitational waves [15, 16], Γ is chosen randomly from
the set of quadratic Bézier curves [34] subject to the con-
straint that the curve persists for a duration tmin. Three
time-frequency control points determine the template:
P0 (tstart, fstart), P1 (tmid, fmid), and P2 (tend, fend), and
the curve is parameterized by ξ = [0, 1]:(

t(ξ)
f(ξ)

)
= (1− ξ)2P0 + 2(1− ξ)ξP1 + ξ2P2. (5)

These arrays allow the sum in Eq. 2 to be computed for
a large number of templates in parallel. For practical ap-
plications, the number of templates T is typically chosen
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to be T = O(104 − 108). To perform a computationally
feasible all-sky analysis, T = 2× 104 templates are feasi-
ble, and we use this number in the analysis that follows.

Post-Newtonian templates for compact binary coales-
cences. Another parameterization for Γ currently in the
literature creates templates based on a post-Newtonian
model for chirp-like signals created by circular compact
binary coalescences [17]. For searches for compact binary
coalescences with seedless clustering, we can use a more
specialized template bank consisting of parametrized
chirps:

f(t) =
1

2π

c3

4GMtotal

7∑
k=0

pkτ
−(3+k)/8, (6)

where

τ =
ηc3(tc − t)
5GMtotal

, (7)

where the expansion coefficients pk can be found in [35],
G is the gravitational constant and Mtotal is the total
mass of the binary. These templates are parameterized
by the coalescence time and the chirp mass. It was shown
in [17] that while the waveform depends on the individ-
ual component masses, the main features of the signal can
be well-approximated by only the chirp mass, and we can
approximate that the individual component masses are
equal. This has similarities to the matched-filtering tem-
plate banks used in compact binary searches [3, 4]. The
key difference is that to first-order, chirp mass is the only
term that contributes to the time-frequency evolution,
and therefore the template bank is only one-dimensional.
Combined with the fact that this method is only sensitive
to the pixelated frequency evolution of the gravitational
wave (instead of the phase), the templates used in this
analysis are significantly coarser than that in traditional
searches.

B. Semi-analytical approximation

We now describe a semi-analytical approximation to
the background of our seedless clustering algorithms.
Seedless clustering, which computes the sum of pixels in a
track, divided by the square root of the number of pixels
in the track, lends itself to modeling due to its simplic-
ity. By the central limit theorem, the sum of a sufficiently
large number of independent random variables, each with
a well-defined expected value and well-defined variance,
will be approximately normally distributed. Therefore,
we expect that the sum of many pixels will approach a
normal distribution, given by

P (z)dz =
1

σ
√

2π
e−(z−µ)2/2σ2

dz (8)

Because seedless clustering measures the maximum
SNRtot of many tracks, here we seek the extreme value

distribution for SNRtot. This is motivated by the desire
for a distribution with which to compare those measured
from an analysis using the algorithm. We can analyt-
ically compute a probability distribution for this maxi-
mum value as follows. Given a random sample of SNRtot

drawn from many maps, (X1, ..., XN ), from a continuous
distribution with a probability density function f(x) and
cumulative density function F (x), the cumulative density
function of the maximum of SNRtot is then given by

CDFMax[SNRtot](z) = P (max(Xi) < z)

= P (X1 < z, ...,XN < z) = P (X1 < z)...P (XN < z)

(9)

where the third equality assumes that the random sam-
ples are independent. In some cases where the random
samples are not independent but the correlated distribu-
tions are conservative, as in some of our analyses below,
an upper-bound can instead be derived

CDFMax[SNRtot](z) = P (X1 < z, ...,XN < z)

≤ P (X1 < z)...P (XN < z).
(10)

We will discuss the effect of this assumption in section IV.
In the case where the probability density functions are
identical, the equation becomes

CDFMax[SNRtot](z) = [P (X < z)]N = [FX(z)]N . (11)

We show below that we can use this equation, where
the CDFs are given by Gaussian CDFs, to approximate
the seedless clustering distributions. Even though in our
case FX(z) is derived from a Gaussian distribution, equa-
tion 11 is true for any general distribution represented by
FX(z). Hence in cases where the analytic expression for
FX(z) is difficult to derive or approximate, one can use
the observed distribution.

III. BACKGROUND STUDY

We can test the approximations by performing the
analysis on Monte Carlo Gaussian noise and initial LIGO
noise from the Hanford, WA (H1) and Livingston, LA
(L1) detectors. We create complex signal-to-noise ra-
tio spectrograms p(t; f) using Eq. 3 and analyze each
with the various seedless clustering algorithms. Follow-
ing [15, 16], we create 250 s maps in a band between
100–250 Hz with spectrogram resolution of 1 s× 1 Hz us-
ing 50%-overlapping Hann windows. The results for each
are as follows.

A. Bézier parameterization

We begin by analyzing the performance of the analytic
model on the Bézier parameterization.

We run the seedless clustering algorithm over hundreds
of these maps and save SNRtot for each of the tracks in
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FIG. 1: The plot on the left is the background distribution for the seedless clustering algorithm cluster SNR defined in
equation 4. Monte Carlo denotes Gaussian colored noise. Time-shift denotes real time-shifted data with vetoes to limit the
effects of instrumental artifacts. The theoretical line corresponds to the Gaussian approximation to the distribution given by
Eq. 8. The plot on the right is the standard deviation of SNRtot as a function of track length. The standard deviation differs
on the order of a few percent across the track lengths considered. In our analysis, we approximate the standard deviation of
SNRtot across track length as constant.

the map. The left of Fig 1 shows a histogram of the re-
sulting SNRtot distribution for both the Monte Carlo and
initial LIGO data. We fit Eq. 8 to the resulting distribu-
tions. We find best fits of µ = 0.0007 and σ = 0.99. The
fact that the distribution has approximately a mean of
zero and a standard deviation of one is expected based on
the fact that ρ has a mean of 0 and we use the

√
N nor-

malization in the SNRtot calculation. We find that the
agreement is reasonable out to the tails of the distribu-
tion. The right of figure 1 shows the standard deviation
of the distribution as a function of track length. The
standard deviation differs on the order of a few percent
across the track lengths considered. For the sake of sim-
plicity, we assume that the distribution is approximately
independent of track length.

We now simulate an all-sky search by performing 100
time-slides in a week of data. The data are processed
with a glitch identification cut [36] as if it were a real
analysis. In order to apply the algorithm from [36], we
assume that the source is optimally oriented with an
optimal sky position. To compare this to the analytic
approximation in equation 11, we use the Gaussian fit
shown in Fig 1 to approximate the SNRtot distribution.
The steps required to turn the SNRtot distribution into a
p-value vs. SNR distribution are as follows. To generate
a SNRtot value for a single simulated map, we generate
N random numbers consistent with the Gaussian distri-
bution of mean and variance as estimated above. We
then take the maximum value of these values to com-
pute the Max[SNRtot]. To generate a p-value vs. SNR
distribution, Max[SNRtot] is generated for M instances

of spectrograms, where 1/M is the smallest p-value re-
quired. Max[SNRtot] is placed in ascending order. The
p-value is calculated as an array between 1/M and 1 with
spacing given by 1/M. For a Gaussian distribution where
the mean and standard deviation are the same across all
trials, this process can also be performed analytically by
simply computing equation 11 for the measured distribu-
tion.

We perform two search simulations using the Bézier
parameterization. The first uses Bézier templates com-
puted for a specific search direction. The second loops
over time-delays for each template. By searching over 40
different time-delays, corresponding to 40 different sky
rings, a computationally efficient all-sky search can be
performed. This was demonstrated in [17] to be suffi-
cient to recover signals in arbitrary directions. The top
left of Fig 2 demonstrates the analysis for the first simu-
lation using 20,000 tracks, showing both empirical time-
slides as well as the theoretical approximation method
explained as before (both the 10th, 50th, and 90th per-
centiles). We find excellent agreement between the an-
alytic model and empirical time-slides for the directed
search. The distributions for the all-sky search, on the
top right of Fig 2, however, are not generally within 1σ.
We explore systematic errors related to this in the next
section. Finally, we show the Max[SNRtot] required for
a 5-sigma gravitational-wave detection using the Bézier
parameterization in figure 3.
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FIG. 2: Background distributions computed for the seedless clustering algorithm using both Bézier and chirp-like templates.
The distributions are generated from time-shifted initial LIGO data. The top row corresponds to the Bézier templates and
the bottom row chirp-like templates. The left column corresponds to a directed search (in a specific sky direction) and the
right to an all-sky search performed looping over 40 time-delays for each template. The theoretical line corresponds to using
Gaussian distributions with standard deviations presented in figure 3. The dotted lines correspond to 1σ error bars on the
analytic approximation. These are derived from simulating the p-value vs. SNR distribution using many random seeds, in
essence creating thousands of p-value vs. SNR distributions consistent with the measured distributions, and computing the
median and 1σ error bar for each p-value. The analytical background distributions for the directed searches are consistent
with the measured background (within 1σ). The distributions for the all-sky searches, however, are not generally within 1σ.
This is due to the assumption in the analytic-model that the loop over time-delays creates more independent trials, which is
not the case and biases the result (please see the text for more details).

B. Compact binary coalescence parameterization

We now analyze the performance of the analytical
model on the chirp templates. We create maps assuming
Gaussian noise consistent with the design sensitivity of
Advanced LIGO. Following [17], we create 660 s maps in
a band between 10–150 Hz with a spectrogram resolution
of 1 s× 1 Hz.

We perform a similar analysis to the above. We find
best fits for the Gaussian distribution of µ = −0.004

and σ = 1.06. The major difference between the Bézier
and chirp-like template analysis is the degree of correla-
tions between the drawn tracks. In the Bézier case, the
tracks are drawn randomly and the degree of correlation
is simply determined by the overlap between the tracks.
In the chirp-like template case, the degree of correlation
is much higher, despite the significantly fewer templates
used in the analysis. This correlation arises from the step
in time and overlap in parameter space between chirp-
like templates of similar chirp mass. This correlation is
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important because it changes the standard deviation of
the SNRtot of the tracks in individual maps and there-
fore the final distribution of Max[SNRtot]. Fig 3 demon-
strates the cumulative density function of the standard
deviation of the SNRtot for the two parameterizations.
In the Bézier case, the standard deviation of SNRtot is
approximately a step function, which allows for the use
of a single standard deviation to cover all cases. The
distribution is significantly broader for chirp-like tem-
plates due to track correlations. It is for this reason
that we modify the Bézier p-value algorithm by drawing
from the measured distribution of standard deviations of
the maps when drawing from the Gaussian distribution.
The bottom of Fig 2 demonstrates the algorithm using
both empirical Monte carlo noise as well as the theoreti-
cal approximation method explained as before (both the
10th, 50th, and 90th percentiles) for both a directed and
all-sky search. Similar to the Bézier case, we find excel-
lent agreement between the analytic model and empirical
time-slides for the directed search, while the distributions
for the all-sky searches, however, are not generally within
1σ. We explore systematic errors related to this in the
next section. We show the Max[SNRtot] required for a
5-sigma gravitational-wave detection using the chirp-like
parameterization in figure 3.

IV. UNCERTAINTIES: STATISTICAL AND
SYSTEMATIC

We now explore the systematic and statistical errors
in our measurement. The measurement of the statistical
errors in this analysis is straight-forward. Each simula-
tion is computationally cheap, as it involves generation
and manipulation of matrices of random numbers, and
therefore can be performed over and over again to gen-
erate distributions. This was done in order to generate
the 1σ distributions in Fig 2, for example.

Of more interest, perhaps, is consideration of the sys-
tematic errors in the method. There are a number of
reasons we might expect small disagreements between
the theoretical model and the empirical results. A major
source of systematic error is in the rotation of pixels in the
all-sky searches, where time-delays are looped over. This
involves a rotation in the complex plane of the individ-
ual pixels that make up the tracks. This creates difficulty
for the analytic analysis. Because the analysis amounts
to a rotation, the 40 time-delays do not correspond to
40 independent trials (which would simply multiply the
number of tracks by 40). In the analysis above, we sim-
ply multiplied the number of tracks by 40, corresponding
to the 40 time-delays in the analysis. In the left of Fig. 4,
we explore this effect by simulating tracks without any
rotation (the directional case) and with 40 rotations (the
all-sky case), and compare this to the distribution of 40
random tracks. We show that using 40 random tracks
is conservative relative to using the 40 time-delays case.
This indicates that multiplying the number of trials by

40, as is done in the analysis, is conservative. In this
case, using equation 10, which places an upper-bound on
the distribution is more accurate than equation 9, which
assumes that the trials are independent.

One possibility to do even better is to actually mea-
sure the covariances between the rotated pixels. This sit-
uation is similar to [30]. In this work, the authors place
limits on gravitational-wave strain from different portions
of the sky. This was difficult because the distribution of
maximum SNR for a sky map contains non-zero covari-
ances that exist between different pixels (or patches) on
the sky. They simulate the covariance between pixels
numerically, by simulating many realizations that have
expected covariances described by the Fisher matrix. In
this case, we could numerically compute a covariance ma-
trix, which we can diagonalize to create a basis of non-
covariant variables. Then, one would generate random
realizations of these non-covariant variables and use the
covariance matrix to convert them into a set of randomly
generated covariant variables. One difficulty is that the
distribution of the non-covariant variables might not be
the same as the covariant variables. With this method,
we could determine the set of covariant variables which
describe the distribution of SNRtot.

Another potential systematic error arises from the use
of equation 9, in particular the assumption that the trials
are independent. One way in which this manifests is that
real detectors have noise transients and non-stationary
noise, which violate some of the approximations used
here. Severe non-Gaussianity which eludes both the pixel
thresholds and the Gaussianity cuts applied in the anal-
ysis would show up not only potentially as a loud back-
ground trigger, but would increase the correlation be-
tween tracks (as any track that passes through those pix-
els would have an increased SNRtot). Generating purely
random numbers to approximate SNRtot is an approxi-
mation. This is because the tracks are analyzed on the
same map, and therefore overlapping tracks will have cor-
related SNRtot values. This has the effect in the analysis
of changing the effective σ from map to map. One poten-
tial conservative solution would be to measure the σ in
each map and then generate Max[SNRtot] distributions
using that value. Another implicit assumption is that
the pixels in the tracks are uncorrelated. This assumes
that the noise is Gaussian and stationary and ignores
the correlation between pixels in the maps. However, the
cross-power statistic uses PSD’s from adjacent pixels (in
the time direction) to estimate σ (from Eq. (2)). This is
to avoid a bias in pixel SNR for an isolated loud pixel.
This means there is a correlation between adjacent pixels.
In the right of Fig. 4, we explore this effect by computing
the overlaps between the templates used in the compact
binary search. Due to the need for maximal coverage of
the parameter space, there is significant overlap between
templates. The use of equation 9 biases the analysis in
this case. Computations such as this could be used to
modify equation 9 to account for the lack of indepen-
dence between templates by determining the number of
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effective trials from the data. V. CONCLUSIONS AND FUTURE WORK

In previous work, we showed how a seedless cluster-
ing algorithm could significantly improve the sensitivity
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of searches for long-lived, unmodeled gravitational-wave
transients [15–18]. Here, we show how the simplicity of
the search statistic allows for the development of a semi-
analytic approximation to the background generated by
the algorithm and compared the performance using a
week of LIGO S5 time-shifted data. We described algo-
rithmic subtleties not addressed by this model and quan-
tify the errors between the model and the measured dis-
tribution. We argued that it will be useful for pipeline
characterization, as well as potentially for low-latency
FAP reporting for gravitational-wave searches.

In the future, we will move beyond the simple models
presented here to more complicated models. Some ex-
amples could be using non-Gaussian distributions, such
as the Student-t distribution, to better approximate the
tails of the distribution, which is where we expect the
strongest disagreement [37]. Other ideas include using
the Edgeworth expansion to put bounds on the devia-
tion from Gaussianity. As the tracks in individual maps
are correlated (due to the fact that some will overlap and
use the same pixels), we could also consider generating
correlated random values when generating our distribu-
tions for SNRtot.
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