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I. INTRODUCTION

Gravitational waves (GWs) astronomy opens a new
window to study the physical processes in the very early
universe: relic GWs propagate almost freely throughout
the universe expansion, and thus they retain the infor-
mation about the physical conditions and physical pro-
cesses at the moment of their generation (see for reviews,
[1–3] and references therein). There are various mech-
anisms that might generate such GWs. In the present
paper we focus on the generation of GWs during cos-
mological electroweak (EW) and Quantum ChromoDy-
namic (QCD) phase transitions (PTs) through the tur-
bulent helical sources which can arise and follow the PT
bubble collisions. The GW generation mechanism asso-
ciated with bubble collisions during the first order PTs
has been widely discussed in literature, starting from the
pioneering works [4–7] and re-addressed later [8–25]
For a cosmological phase transition to produce strong

enough turbulent motions and magnetic fields, which will
result in the detectable signal of GWs, they must be first
order PTs, with bubble formation and bubble collisions.
For the EWPT, with the standard EW Lagrangian plus a
Stop, the supersymmetric partner of the top quark, called
the MSSM EW Lagrangian, the EWPT is first order PT
[26]. The QCDPT has been shown to be first order PT
by lattice gauge calculations [27, 28].
Both turbulent motions and matic fields can produce

relic GWs through their anisotropic stresses, see Refs.
[29–39]. It has been pointed that the GWs generated
by magnetic fields can be detected through Laser Inter-
ferometer Space Antenna (LISA) [40–44]. In difference
to the GWs sourced solely by PTs bubble collisions, the
presence of turbulent (kinetic and magnetic sources) in-
creases the detection prospects [45] not only from EWPT
but from QCDPT too [46].1 One of main goals of Euro-
pean Space Agency (ESA) - NASA planned join mission
LISA [48], was the detection of low frequency GWs (sub-

∗Electronic address: kissling@andrew.cmu.edu
†Electronic address: tinatin@andrew.cmu.edu
1 GWs from QCDPT are potentially detectable through pulsar
timing, see Ref. [47] and references therein.

Hz region). The new development of this program is the
European only ESA mission, so called New Gravitational
wave Observatory (NGO) - aka eLISA (evolved LISA)
[49]. One of major parts of its science program consists
on the direct detection of GWs from cosmological PTs,
see Refs. [50–53] for details.

In the present paper we extend our previous study Ref.
[38], and we investigate the degree of polarization of GWs
generated via cosmological PTs through helical hydro
and magnetized turbulent sources using the formalism
given in Ref. [32]. We adjust the previous formalism to
determine the polarization degree of GWs from helical
kinetic turbulence to a more complex scenario of MHD
turbulence present during the cosmological PTs. More
precisely, we use the recent results of numerical simula-
tions [54–56] to set the statistical properties of helical
MHD turbulence. Another difference from the formalism
of Ref. [32] consists in computing the energy density and
peak frequency of GWs using the analogy with acous-
tic waves production by hydrodynamical turbulence [34]
(which we can call aeroacoustic approach [57–59]).

Charge-conjugation-Parity (CP) violation is necessary
for the production of magnetic helicity via bubble col-
lisions, [60]. EWPT and QCDPT bubble collisions re-
sult in development of helical (kinetic or/and magnetic)
turbulence, due in part to CP violation, which will lead
to circularly polarized GWs background. In the case of
strong enough helical sources [35, 36], the degree of po-
larization is potentially detectable [61–67].2

In our present study we follow the helical (chiral) mag-
netic fields generation scenarios (during PTs through
bubble collisions) presented in Refs. [73, 74] (EWPT)
and Refs. [60, 75] (QCDPT) (see also Ref. [38] for a brief
review of these models). Upon generation the magnetic
field starts to interact with primordial plasma that leads
to development of magnetically dominant MHD and sec-
ondary kinetic turbulence, for pioneering studies see Refs.
[76–79]. In what follow we adopt the results of numerical

2 The indirect tool to detect circularly polarized GWs consists
on searching parity violating signals on cosmic microwave back-
ground maps, see Refs [68–71] for original studies and Ref. [72]
for a review.
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simulations of Refs. [54–56], 3 and their phenomenologi-
cal interpretation given in Refs. [80, 81]
The structure of the paper is as follows: In Sec. II we

review the GWs generation formalism and define the cir-
cular polarization degree of GWs. We discuss the hydro
and MHD helical turbulence modeling in Sec. III and
compute the GW signal and its polarization in Sec. IV.
We give our results for both EWPT and QCDPT gener-
ated GWs in Sec. IV, and we conclude in Sec. V. We use
natural (~ = 1 = c) Lorentz-Heaviside units.

II. GRAVITATIONAL WAVES GENERATION

OVERVIEW

We assume that GWs are generated through kinetic
and MHD turbulence which follow the PT bubble colli-
sions [7, 29–31, 82]. To be general as possible we present
the common description for EWPT and QCDPT, defin-
ing the PT temperature as T⋆ (T⋆ = 100 GeV for EWPT
and T⋆ = 0.15 Gev for QCDPT, and the typical proper
length scale through l0 which can be associated with the
PT bubble size lb (the assumption l0 ≃ lb is well justi-
fied because in our theory bubble collisions during PT
generate a magnetic field at bubble walls, and this ini-
tial field starts to interact with primordial plasma result-
ing in development of kinetic and MHD turbulence with
a typical length scale that corresponds to the magnetic
field injection scale) [83]. We also define g⋆ as a num-
ber of relativistic degrees of freedom: for the standard
model we have g∗ = 106.75 as T → ∞. (g⋆ = 100 for
EWPT and g⋆ = 15 for QCDPT). In our further con-
sideration we assume that the duration of the turbulent
sources, τT are short compared to the universe expansion
time-scale at PTs, i.e. τT ≤ H−1

⋆ with H−1
⋆ the Hubble

radius at PT. This assumption makes possible to neglect
the expansion of the universe, although limits our con-
sideration by the GWs background generation only from
PT, and completely neglects GWs arising from decaying
turbulence (which might last log-enough after the end of
PTs).
GWs (the tensor metric perturbations above the

standard Friedmann-Lemâıtre-Robertson-Walker homo-
geneous and isotropic background) are generated from
turbulence (including kinetic and magnetic fluctuations)
through the presence of anisotropic stresses as

∇2hij(x, t) −
∂2

∂t2
hij(x, t) = −16πGΠ

(T )
ij (x, t), (1)

where hij(x, t) is the tensor metric perturbation, t is
physical time, i and j are spatial indices (repeated in-

3 We underline the nature of the secondary character of fluid mo-
tions, because the bubble collision itself might lead to develop-
ment of purely hydrodynamical turbulence during PTs, see Refs.
[31], while here we note that bubble collisions result in generation
of magnetic fields [60, 73–75].

dices are summed), and G is the gravitational constant.
We have neglected the term ∝ ∂hij(x, t)/∂t due to our

assumption of the short duration of turbulence. P
(T )
ij

(the script ”T ” indicates that we are interested on the
tensor part of the turbulent source) is the traceless part
of the stress-energy tensor Tij(x, t), which is constructed
from kinetic (K) or magnetic (M) turbulence normal-
ized vector fields4 (as we will show below the equipar-
tition is established between kinetic and magnetic turbu-
lent motions which simply doubles the source term, i.e.

Π
(K)
ij +Π

(M)
ij ≃ 2Π

(T )
ij ) given by [84]:

Π
(T )
ij (x, t) = Tij(x, t) −

1

3
δijT (x, t), (4)

here T ≡ [T ]kk is the trace of the Tij tensor.
As we can expect the kinetic and magnetic turbulent

fluctuations generate stochastic GWs, which can be char-
acterized by the wave number-space two-point function
as,

〈h⋆
ij(k, t)hlm(k′, t+ τ)〉 = (2π)3δ(3)(k− k′)×

×
[

Mijlm(k̂)H(k, τ) + iAijlm(k̂)H(k, τ)
]

. (5)

Here we use the Fourier transform pair of the ten-
sor perturbation as: hij(k, t) =

∫

d3x eik·xhij(x, t) and

hij(x, t) =
∫

d3k e−ik·xhij(k, t)/(2π)
3. The brackets

〈...〉 denote an ensemble average over realization of
the stochastic source. The spectral functions H(k, t)
and H(k, t) determine the GW amplitude and polar-

ization, 4Mijlm(k̂) ≡ Pil(k̂)Pjm(k̂) + Pim(k̂)Pjl(k̂) −
Pij(k̂)Plm(k̂), and 8Aijlm(k̂) ≡ k̂q

[

Pjm(k̂)ǫilq +

Pil(k̂)ǫjmq + Pim(k̂)ǫjlq + Pjl(k̂)ǫimq

]

are tensors, with

the projection tensor Pij(k̂) = δij − k̂ik̂j (with δij - the

Kronecker delta, k̂i = ki/k and k = |k|), ǫijl is is the
totally antisymmetric symbol. We choose GW prop-
agation direction pointing the unit vector ê3, and we
use the usual circular polarization basis tensors e±ij =

−(e1 ± ie2)i × (e1 ± ie2)j/
√
2. We define two states h+

and h− corresponding to right- and left-handed circularly

4 The kinetic and magnetic perturbation stress-energy tensor are

T
(K)
ij (x, t) = wui(x, t)uj(x, t), (2)

T
(M)
ij (x, t) = wbi(x, t)bj (x, t), (3)

where w = ρ + p is enthalpy of the fluid with density energy, ρ,
and pressure p, u(x, t) is the kinetic motion velocity field and
b(x, t) is normalized magnetic field, b = B/

√
4πw, that repre-

sents the Alfvén velocity, vA of the magnetic field. The normal-
ized energy of the magnetic field is then EM (η) = 〈b2(t)〉/2,
while the normalized kinetic energy density is given through
EK(t) = 〈u2(t)〉/2. The advantage of such representation con-
sists on eliminating the expansion of the universe, since physical
and comoving values of the normalized magnetic field amplitude
are the same.
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polarized GWs, hij = h+e+ij +h−e−ij . Through above no-
tations the circular polarization degree was derived for
GWs from Gamma Ray Bursts by [85] and in the con-
text of cosmological GWs is reproduced [32],

PGW(k) =
〈h+⋆(k)h+(k′)− h−⋆(k, )h−(k′)〉
〈h+⋆(k)h+(k′) + h−⋆(k)h−(k′)〉 =

H(k)

H(k)
.

(6)
Here we omit the time dependence of the polarization
degree PGW(k).

As we already underlined we are interested on GWs
generation only from a short duration sources acting dur-
ing PTs. After generation the GWs propagate almost
freely, and we account for the expansion of the universe
by a simple re-scaling of the frequency and the amplitude
by a factor equal to

a⋆
a0

≃ 8× 10−16

(

100GeV

T⋆

)(

100

g⋆

)1/3

, (7)

This factor is safely canceled when computing PGW(k),
although the more complex consideration of decaying tur-
bulence (long lasting sources) will make PGW(k) time
dependent function.

To estimate the polarization degree of GWs from PT
generated helical fields we need to compute two spectral
functions H(k) and H(k) at the moment of PT, which

are determined by the helical anisotropic sources Π
(K)
ij

and Π
(M)
ij . In our previous work we have computed the

typical amplitude and frequency of GWs generated dur-
ing cosmological PTs [38]. In Ref. [32] the polarization
degree of GWs from kinetic (hydro) turbulence has been
estimated. It has been shown that fully helical turbu-
lence leads to PGW(k) → 1. In the present work we
follow the GWs generation formalism from helical mag-
netized sources presented in Refs. [35, 36], and apply it
to the EWPT and QCDPT cases.

III. KINETIC AND MHD TURBULENCE

MODELING

The magnetic field amplitude (i.e. total magnetic field
energy density) is strongly limited by the big bang nucle-
osynthesis (BBN) bound requesting that the total mag-
netic field energy density cannot exceed the 10% of the
radiation density at the moment of the magnetic field
generation. In terms of the effective comoving magnetic
field value, Beff ≃ 8.4 · 10−7(100/g⋆)

1/6 Gauss (G) or in
the terms of Alfveń velocity vA ≡ |b| ≤ 0.4 [83].

As we noted above the magnetic field generated at
one scale (the magnetic field initial spectrum can be
approximated being peaked at the typical wavenumber
k0 = 2π/l0, so in Fourier k-space described by δ(3)(k−k0)
function) after interactions with plasma leads to devel-

opment of turbulence,5 and the sharply peaked initial
spectrum is redistributed respectively. For isotropic sta-

tionary turbulence the normalized magnetic vector field
two-point correlation function is:

〈b∗i (k)bj(k′)〉 = (2π)3δ(3)(k− k′)FM
ij (k) (8)

where

FM
ij (k) = Pij(k̂)SM (k) + iǫijlk̂lAM (k). (9)

The power-law spectral function SM (k) = S0k
nS and

AM (k) = A0k
nS−nA

0 knA determine the energy density
and current helicity of the magnetic field6 and nS and
nA are magnetic field and helicity spectral indices which
determine the spatial distribution of the magnetic field
and its helicity. The establishment of stationary turbu-
lence with the stationary (time- independent) two-point
correlation function given through Eqs. (8) - (9) requires
the presence of long-lasting sources. To account for the
short acting PT turbulent source (the turbulence dura-
tion time τT is short enough compared to the universe
expansion time-scale H−1

⋆ ) we have to modify the spec-
tra SM (k) and AM (k) making them time dependent, see
below.
Following the description of hydro- and MHD turbu-

lence generated during PTs, we distinguish three spa-
tial spectral sub-regimes of turbulent fluctuations: (i)
the large scale decay range kH⋆

< k < k0 (where phys-
ical wavenumbers kH⋆

= 2π/H−1
⋆ and k0 correspond to

the PT Hubble length scale and the largest PT length
size); the minimal wavenumber corresponds to the Hub-
ble scale H−1

⋆ beyond which causally generated magnetic
field is frozen-in and any interactions are forbidden due
to causality requirement; (ii) the turbulent (or so called
inertial) range k0 < k < kD (where kD the damping
scale of turbulence through viscous dissipation and mag-
netic resistivity, which is determined by plasma proper-
ties); (iii) the damping range k > kD. All these typical
wavenumbers (kH⋆

, k0, and kD) are time-dependent due
to interactions of magnetic field with plasma and the ex-
pansion of the universe. Magnetic helicity presence plays
here a crucial role leading to re-arrangement of the helical
structure at large scales [87]. The expansion of the uni-
verse lead to additional effects: namely, the PT bubble
size determined length scale l0 is strengthened by a fac-
tor a(t)/a⋆ (being ∝ t1/2 during the radiation-dominated

5 Primordial plasma is a perfect conductor with extremely high
values of kinetic and magnetic Reynolds numbers, and current
numerical simulations are still behind to approach necessary reso-
lutions and timescales to describe adequately physical conditions
and processes in the early universe.

6 Magnetic helicity defined as 〈A(x) ·B(x)〉 is a gauge-dependent
quantity, while normalized (or regular expressed through B(x))
current helicity 〈b(x) · [∇×b(x)]〉 is gauge independent, see Ref.
[86] for details, also it allows the direct analogy with the kinetic
helicity 〈u(x) · [∇ × u(x)]〉, and thus to consider both helical
sources in a common formalism.
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epoch and ∝ t2/3 during the matter-dominated epoch),
while the Hubble length scale H−1

⋆ ∝ t. As a result a per-
turbation with kH0

< k < kH⋆
(with kH0

= 2π/H0 and
H0 is the today Hubble radius) will enter the Horizon at
some point [88]. Since we are focused on the short dura-
tion sources, we will completely neglect the GWs signal
for the large-scale decay range k < k0 (where the spectral
shape of the field is given through the causal Batchelor
spectrum with nS = 2 [89]). Obviously the GWs signal
from the viscous damping range k > kD is also negligibly
small.
The realizability condition implies that |AM (k)| ≤

SM (k) (the modulus sign reflects a possibility of having
positive or negative helicity). The spectral indices values
nS and nA strongly depend on the turbulence model.
In the inertial range (k0 < k < kD), for non-helical
turbulence the Kolmogoroff model implies nS = −11/3.
Some models lead to the different spectral shapes such as
nS = −7/2 - Iroshnikov-Kraichnanmodel for magnetized
turbulence [91, 92], nS = −4 - the weak turbulence model
[93] or magnetically dominant turbulence [90]. In the
presence of helicity the consideration is even more com-
plex, and requires careful investigation through numeri-
cal simulations that it is beyond the scope of the present
paper. Based on the phenomenological dimensionless de-
scription, if the process is driven by the magnetic energy
dissipation at small scales, it is assumed nS = −11/3 and
nA = −14/3 (so called helical Kolmogoroff model) [94],
while if the process is determined by helicity transfer (in-
verse cascade) and helicity dissipation at small scales it
is adopted nS = −13/3 = nA [95].
To account the short-duration turbulence (not enough

to establish the stationary turbulent motions) we have to
consider turbulent fluctuations time-de-correlation which
can be accounted for via introducing the characteristic
function f(η(k), τ) (with η(k) the autocorrelation func-
tion), [96]:

f(η(k), τ) = exp
[

− 2π2

9

( τ

τ0

)

K4/3
]

(10)

with τ0 - the largest turbulent eddy turn-over time, K ≡
k/k0. In this case, to determine the magnetic field two
point correlation function in real (x) space, we have to
account for magnetic field fluctuations at different time
moments and at different positions, i.e. 〈bi(x, t)bj(x +
R, t + τ)〉. Accordingly, in Fourier space, the two-point
correlation function will be determined by the F̄M

ij (k, t)
with the time dependent spectral functions SM (k, t) and
AM (k, t):

F̄M
ij (k, t) =

[

Pij(k̂)SM (k, t) + iǫijlk̂lAM (k, t)
]

× f(η(k), t) (11)

Comparing with the stationary spectrum, see Eq. (8),
we see that formally we replace FM

ij (k) ≡ FM
ij (k, t), by

F̄M
ij (k, t) = FM

ij (k, t)f(η(k), τ), To avoid a complex de-
scription of accounting time dependence of S(k, t) and

A(k, t), we use the Proudman argument for kinetic tur-
bulence [57], according which the description of decaying

turbulence lasting for τT can be replaced by the descrip-

tion of stationary turbulence with time duration of τT /2.
Below we briefly discuss our approach.

Turbulence during PTs generated through magnetic
helicity can described through two major stages [36]:
during the first stage the main process is determined by
the magnetic energy direct cascade that last few largest
eddy turnover times τ0 = 2π/(k0v0), where v0 < 1 is the
turbulent eddy velocity (v0 ≃ M for kinetic turbulence
where M is the Mach number and v0 ≃ vA for mag-
netic turbulence) determined by PT and magnetogenesis
model parameters, see Ref. [31, 97], i.e. τT = s0τ0 (with
s0 = 3 − 5). The magnetic field induces vorticity fluc-
tuations, and at the end of the first (semi)equipartition
between kinetic and magnetic energies is reached, that
results in doubling the value of the source for GWs. The
magnetic energy density power spectra are then deter-
mined by the proper dissipation rate per unit enthalpy
εM as: S0 = π2CKε2/3 with CK constant order of unity,
and ε = k0v

3
0 . Note that the autocorrelation function

η(k) = ε1/3k2/3/
√
2π [98]. Although the Kolmogoroff

model is valid only for non-relativistic turbulence, while
during PTs we might deal with v0 ≃ 1 (relativistic tur-
bulence), our estimates for the amplitude and polariza-
tion degrees of GWs signal are qualitatively justified, see
[29]. The second stage consists on helicity transfer (in-
verse cascade). The scaling laws for this stage are still
under debate. Based on our previous consideration [36],
we assume that (i) the details of the scaling laws dur-
ing this stage will not affect substantially our estimates;
(ii) instead of considering decay-turbulence we will again
consider the stationary turbulence with scale-dependent
duration time. Then we obtain for the helical Kolmogo-
roff model, A0 = π2CKσ/(k0ε

1/3), where σ is the mag-
netic helicity dissipation rate per unit enthalpy, leading
to A0/S0 = σ/(εk0). The helical Kolmogoroff model is
mainly relevant for weakly helical fields, |A(k)| ≪ S(k),
which is a case of magnetic fields generated during PTs.7

According to results of recent numerical simulations, see
Ref. [56], the weakly helical turbulence even account-
ing for the free decay of turbulence, show an establish-
ment of the spectra in a good agreement with the heli-
cal Kolmogoroff model, as well as equipartition between
magnetic and kinetic energy densities. Thus we adopt
nS = −11/3 and nH = −14/3 for the inertial range, with

S0 = π2k
2/3
0 v20 and A0 = hS0 with h which determines

the fraction of helicity dissipation, h ≡ σ/(εk0). The
turbulence fluctuation velocity v0 = vA is determined
by the magnetogenesis mechanism and for the model of
our interest is given by v0 ≃ 0.2 (Beff,in ≃ 5 · 10−7 G)

7 Note that the substantially helical case is usually determined by
the helicity transfer (inverse cascade), S0 = CSσ

2/3 and A0 =
CAσ2/3 [95].
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[38] for EWPT model of Refs. [73, 74] and v0 ≃ 0.01
(Beff,in ≃ 2 · 10−8 G) [54] for QCDPT model of Refs.
[60, 75].

IV. GRAVITATIONAL WAVES SIGNAL

AMPLITUDE AND POLARIZATION

In this section we compute the GW signal (stain ampli-
tude) and polarization degree from the hydro and MHD
turbulence generated during the first order cosmological
PTs. To determine the amplitude of GWs we proceed as
it is described in Ref. [36]. We derive the energy density
spectrum of the GWs at the end of PT (in our approx-
imation the end of turbulence). The energy density of
GWs is given through the ensemble average as

ρGW (x, t) =
1

32πG
〈∂thij(x, t)∂thij(x, t)〉, (12)

As we noted the rescaling of the GWs amplitude and
frequency given through Eq. (7) is irrelevant when com-
puting the polarization degree, while it is crucial for es-
timation of GWs energy density.

A. Gravitational Wave Signal

Assuming the homogeneous and isotropic turbulent
source lasting for τT , and using far field approximation,
see [34], the total energy density of GWs at a given spa-
tial point and a given time can be obtained by integrating
over all sources within a spherical shell centered at that
observer, with a shell thickness corresponding to the du-
ration of the turbulent source (in our case the duration of
PT), and a radius equal to the proper distance along any
light-like path from the observer to the source (causality
requirement), and then

ρGW (ω) =
dρGW

d lnω
= 16π3ω3Gw2τTHijij(ω, ω), (13)

where ω is the angular frequency measured at the mo-
ment of generation of GWs, and Hijij(ω, ω) is a compli-
cated function of ω (which is computed through using of
aero-acoustic approximation and Millionshchikov quasi-
normality [94]), given as

Hijij(k, ω) ≃ Hijij(0, ω) =
7C2

Kε

6π3/2

∫ kD

k0

dk

k6
×

exp

(

− ω2

ε2/3k4/3

)

erfc
(

− ω

ε1/3k2/3

)

(14)

Here, erfc(x) is the complementary error function defined
as erfc(x) = 1 − erf(x), where erf(x) =

∫ x

0
dy exp(−y2)

is the error function [99]. The integral in Eq. (14) is
dominated by the large scale (k ≃ k0) contribution so,
for direct-cascade turbulence during the first stage (direct
cascade, see Sec. III), the peak frequency is

ω(I)
max ≃ k0M. (15)

where M is Mach number. To compute the GWs sig-
nal arising from the inverse cascade stage we have con-
sider two models separately: Model A assumes that the
correlation length during the inverse cascade scales as
ξM ∝ t1/2 and Model B corresponds to the correlation
length scaling as ξM ∝ t2/3. We obtain that in both
models peak frequency during the second stage are equal
and are determined by the Hubble frequency as [36]:

ω(II)
max ≃ 2πH⋆ (16)

while the GW amplitude are slightly different in Model
A and B as

H
(A)
ijij(k, ω) ≃ Hijij(0, ω) =

7C2
1M

3ζ
3/2
⋆

12π3/2k0

∫ k0

kS

dk

k4

exp

(

− ω2k20
ζ⋆M2k4

)

erfc

(

− ωk0

ζ
1/2
⋆ Mk2

)

, (17)

and

Hijij(k, ω)
(A) ≃ Hijij(0, ω) =

7C2
1M

3ζ
3/2
⋆

6π3/2k
3/2
0

∫ k0

kS

dk

k7/2

exp

(

− ω2k0
ζ⋆M2k3

)

erfc

(

− ωk
1/2
0

ζ
1/2
⋆ Mk3/2

)

.(18)

Here ζ⋆ determines the amount of initial magnetic he-
licity and is equal to ζ⋆ = 〈a(x) · b(x)〉/(ξMEM ) (with
a(x) = A(x)/w normalized vector potential), and kS =
2π/lS is the typical scale at which the inverse cascade
stops: either because the cascade time τcas reaches the
expansion time scale H−1

⋆ or because the characteristic
length scale lS ≃ ξM reaches the Hubble radius H−1

⋆ .
The value of kS can be found by using above conditions,

being equal to kS = k0ζ
−1/4
⋆ (γ/M)1/2. Note that the

integrals in expressions Eqs. (17) - (18) are In this dom-
inated by the large scale k ≃ kS contributions and are

maximal at ω
(II)
max.

B. Gravitational Wave Polarization

To compute the polarization degree of GWs we need to
estimate the tensor perturbations source two point corre-

lation function Fijlm(k, τ) ≡ 〈Π(T )⋆
ij (k, t)Π

(T )
lm (k′, t′+τ)〉,

which can be expressed through the forms Mijlm and
Aijlm (which are defined below Eq. (5)), as

Fijlm(k, τ) = (2π)3δ(3)(k− k′)

× [MijlmS(k, τ) + iAijlmQ(k, τ)] . (19)

As we discussed above for the non-stationary turbulence
S(k, τ) and A(k, τ) are complex functions of τ and k
(see Eqs. (10) - (11) for the time de-correlation func-
tion and the magnetic field spectrum). Following Ref.
[32] we split the spatial and temporal dependence as
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S(k, τ) = S(k)DS(τ) and A(k, τ) = A(k)DA(τ) which is
a valid approximation for k ≃ k0 (the range which mostly
contributes to the GWs signal). Generalizing the station-
ary case [69] through accounting for the time-dependent
functions DS(τ) and DA(τ) the forms for S(k, τ) and
Q(k, τ) are given as,

S(k, τ) =
w2

(2π)6

∫

d3p1

∫

d3p2δ
(3)(k− p1 − p2)

×
[

(1 + α2)(1 + β2)D2
S(τ)S(p1)S(p2)+

+ 4αβD2
A(τ)A(p1)A(p2)

]

, (20)

Q(k, τ) =
w2DS(τ)DA(τ)

128π6

∫

d3p1

∫

d3p2

× δ(3)(k− p1 − p2)
[

(1 + α2)βS(p1)S(p2)

+ (1 + β2)αA(p1)A(p2)
]

, (21)

where α = k̂ · p̂1 and β = k̂ · p̂2 with p̂1 = p1/p1
(p1 = |p1) and p̂2 = p2/p2 (p1 = |p1). The helical
source term Q(k, τ) vanishes for turbulence without he-
licity. Since in the helical Kolmogoroff model the time
de-correlation is mostly determined by the energy den-
sity dissipation, thus at first order approximation we can
assume that DS(τ) ≃ DA(τ) (both functions are mono-
tonically decreasing functions). By next we should con-
nect S and Q with the H(k, t) and H(k, t) functions,
which determine the GWs polarization degree, see. for
details Ref. [32].
Magnetic helicity generated via bubble wall collisions

during the first order PTs is determined by the corre-
sponding energy scales ΛPT (ΛPT ≃ 100 GeV and 0.15
GeV for EWPT and QCDPT respectively); and the PT
bubble lengths (lb). In addition, the bubble wall velocity
substantially affects the turbulent motions development
[82].
In the present paper we focus on magnetic helicity

generation mechanisms following Refs. [60, 75]. In the
framework of these magnetogenesis scenarios magnetic
helicity during PTs with the magnetic wall in the x − y
plane is given by

HM = AzBz or HM =
(Bz)

2

ΛPT
, (22)

We note that the EWPT energy (mass) scale is approx-
imately equal to Higgs mass, ΛEWPT ≃ MHiggs. The
model parameters such as bubble and wall sizes and wall
velocity depend on PT modeling, and are determined in
Refs. [60, 73, 74]. We quote also the physical values of

magnetic field amplitudes as B
(EW)
⋆ ≃ 6.45 × 104GeV2

[73, 74] and B
(QCD)
⋆ ≃ 1.5× 10−3GeV2 [60].

The fraction of initial magnetic helicity (ζ⋆) can be
expressed in terms of the magnetic field correlation length
(which can be taken to be equal to lb) and the maximal
allowed length scale H−1

⋆ , as ζ⋆ ≃ lb/H
−1
⋆ . Following

Refs. [73, 74] the normalized magnetic field generated
during the first order EWPT (at the time moment ≃

10−11 sec) is equal to vA ≃ 0.2, and assuming around
100 bubble within Hubble length scale, fractional helicity

is ζ
(EW)
⋆ ≃ 0.01. Comoving magnetic helicity itself is

expressed:

H(EW)
M,⋆ ≃ (B(EW))2

125GeV
, (23)

Assuming that the magnetic field (with vA ≃ 0.01) is
correlated over the wall thickness (the QCD momentum
0.15 Gev) [60], results in extremely small magnetic he-
licity generated during the first order QCDPT (at time
moment ≃ 10−5 sec),

H(QCD)
M (t⋆) ≃

(B(QCD))2

0.15GeV
, (24)

which corresponds ζ
(QCD)
⋆ ≪ 1. On the other hand, mak-

ing the field correlated over the bubble length scale, leads

to the fractional helicity ζ
(QCD)
⋆ ≃ 0.2

Using the approximation given above, the polarization
degree of GWs, PGW(k), for the Kolmogoroff helical tur-
bulence model can be estimated through (in our simpli-
fied description the time dependence is canceled because
of DS(τ) ≃ DA(τ)):

PGW(k) =
H(k)

H(k)
=

IA(K)

IS(K)
(25)

where K ≡ k/k0 is a normalized wavenumber, and

IS(K) ≃
∫

dP1 P1

∫

dP2 P2Θ̄
[

(1 + α2
p)(1 + β2

p)P
nS

1 PnS

2

+4h2αpβpP
nA

1 PnA

2

]

, (26)

IA(K) ≃ 2h

∫

dP1 P1

∫

dP2 P2Θ̄
[

(1 + α2
p)βpP

nS

1 PnA

2

+(1 + β2
p)αpP

nA

1 PnS

2

]

. (27)

Here h is the model parameter (which is related to the
helicity fraction, see below, and we assume it to be equal
to 1, 0.5, 0.1. P1 = p1/k0, P2 = p2/k0, αp = (K2 +
P 2
1 − P 2

2 )/(2KP1), βp = (P 2 + P 2
2 − P 2

1 )/(2KP2), Θ̄ ≡
θ(P1+P2−K)θ(P1+K−P2)θ(P2+K−P1), and θ is the
Heaviside step function which is zero (unity) for negative
(positive) argument. The integration limits ranges from
1 (we discard the source existence for the wavenumbers
below k0) to kD/k0.
We emphasize that the fractional helicity parameter

ζ⋆ discussed above is defined through normalized mag-
netic helicity (the integral quantity), while the parameter
h ≡ σ/(k0ε) is defined through the normalized magnetic
energy density and normalized magnetic helicity (e.g. it
is determined by the power spectra for magnetic energy
density and helicity at small length scales). Under the
model adopted here (the Kolmogoroff helical turbulence
with nS = −11/3 and nA = −14//3) these both quanti-
ties coincide ζ⋆ ≃ h.
To keep our description as general as possible we

present our results for the GWs polarization degree
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FIG. 1: The GW polarization degree P
GW(K) (K = k/k0) in terms of the model parameter h = 1.0, 0.5, 0.1

PGW(k) in terms of the normalized wavenumber K. As
we discussed above the typical wavenumber k0 is deter-
mined by the turbulent eddy length scale l0 (k0 = 2π/l0)
and is significantly different for EWPT and QCDPT. The
model parameter h, which determines the helicity frac-
tion, varies depending on the magnetogenesis model. The
results for PGW(k) with h = 0.1, 0.5, and 1 are shown in
Figure 1.

V. CONCLUSIONS

We computed the GWs signal produced during first
order cosmological PTs through hydro and MHD turbu-
lence. We also derive the polarization degree of GWs
assuming the validity of the helical Kolmogoroff model,
shown in Figure 1. The GWs polarization is present at
the background level, and for maximally helical sources
the polarization degree approaches unity at its maxi-
mum, around k ∼ 2k0, and decreases fast at small scales
k ≫ k0. The formalism presented in this paper might be
used to estimate the polarization degree of GWs from he-
lical hydro and MHD turbulence in the differential rotat-
ing neutron stars [100] or stellar convection [101]. Note
from Figure 1 that the detectability of the polarization
degree is determined by the helicity fraction parameter
h. We plan in our future research to make estimates
of h values depending on magnetogenesis models during
cosmological PTs.
Previously we have estimated the GWs amplitude,

hC(f), from the first order EWPT and QCDPT [38],
through assumptions of non-helical magnetic fields [60,
73, 74]. We have shown that EWPT generated GWs are

potentially detectable through LISA-like missions [48] in
the case for strong enough EWPT [44] (for QCDPT gen-
erated GWs detection prospects see ReF. [46]). In the
present paper we expand our previous results by consid-
ering GWs from helical magnetic and hydro turbulence.
Probing the circular polarization of GWs background is
a challenging task [66], and it is quite difficult at the
monopole mode. To detect the circular polarization at
the dipole or/and the octopule mode requires at least
the system of two unaligned detectors, and LISA was
designed ideally to provide detection of these anisotropic
components whose magnitudes are small as 1% of the de-
tector noise [61–63]. The similar detection prospects are
expected from eLISA data. The planned eLISA mission
[49] is originally design to detect un-polarized GWs back-
grounds (including GWs from cosmological PTs) [102]
with the sensitivity given on Fig. 1 of Ref. [51] (see also
comparison with LISA’s sensitivity). Although the GWs
polarization detection is beyond the currently discussed
eLISA science, our study should help further develop-
ments.
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