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We extend the formalisms developed in Gair et al. [1] and Cornish and van Haasteren [2] to create
maps of gravitational-wave backgrounds using a network of ground-based laser interferometers.
We show that in contrast to pulsar timing arrays, which are insensitive to the curl modes of the
background, a network of ground-based interferometers is sensitive to both the gradient and curl
components. The spatial separation of a network of interferometers, or of a single interferometer
at different times during its rotational and orbital motion around the Sun, allows for recovery of
both components. We derive expressions for the response functions of a laser interferometer in the
small-antenna limit, and use these expressions to calculate the overlap reduction function for a pair
of interferometers. We also construct maximum-likelihood estimates of the + and Xx-polarization
modes of the gravitational-wave sky in terms of the response matrix for a network of ground-based
interferometers, evaluated at discrete times during Earth’s rotational and orbital motion around
the Sun. We demonstrate the feasibility of this approach for some simple simulated backgrounds (a
single point source and two spatially-extended distributions having only grad or curl components),
calculating maximum-likelihood sky maps and uncertainty maps based on the (pseudo)inverse of
the response matrix. The distinction between this approach and standard methods for mapping

gravitational-wave power is also discussed.

PACS numbers: 04.80.Nn, 04.30.Db, 07.05.Kf, 95.55.Ym

I. INTRODUCTION

Searches for anisotropic gravitational-wave back-
grounds have typically been formulated in terms of
the distribution of gravitational-wave power on the sky
(see, e.g., [3-9]). The basic idea underlying these ap-
proaches is to use to cross-correlation measurements from
two or more detectors to estimate the power in the
gravitational-wave background as a function of sky po-
sition. For a network of ground-based laser interferome-
ters like LIGO [10], Virgo [11], etc., or space-based inter-
ferometers like LISA [12], eLISA [13, 14] or BBO [15],
the motion of the detectors modulates the correlated
gravitational-wave signal at harmonics of the Earth’s
daily rotational motion, or the spacecrafts’ yearly orbital

motion around the Sun. The time-varying signal carries
information about the multipole moments characterizing
the anisotropic distribution of power, which can be esti-
mated using, e.g., maximum-likelihood methods [6].

Recent papers by Gair et al. [1] and Cornish and
van Haasteren [2] describe an alternative approach
for mapping the gravitational-wave sky, which can be
used to recover both the amplitude and phase of the
gravitational-wave signal at each sky position. The anal-
ysis in [2] is cast in terms of the traditional plus and cross
polarization components {h(f, 123), hy (f, l;:)}, while in
[1] the metric perturbations are decomposed in terms of
spin-weighted or tensor (gradient and curl) spherical har-

monics {Y(?m)ab(l%), Y(lcm)ab(fc)}. This latter decomposi-

tion is similar to that used to characterize the polariza-



tion of the cosmic microwave background [16], taking into
account the symmetric, transverse-traceless nature of the
metric perturbations hap(f, k).

Although the formalisms introduced in [1, 2] are
general, they were applied specifically to the case of
gravitational-wave searches using pulsar timing arrays.
In contrast to the case of ground-based interferometers
on a rotating, orbiting Earth or the orbiting LISA /eLISA
spacecraft, a pulsar timing array operates effectively as
a static galactic-scale gravitational-wave detector [17],
with each Earth-pulsar line-of-sight being the equiva-
lent of a one-way, one-arm interferometer with a common
endpoint at the solar system barycentre (SSB). This is
because the frequency range for pulsar timing measure-
ments is such that the displacement of a radio receiver on
Earth from the SSB is much smaller than the wavelength
of the relevant gravitational waves (8 light-minutes to
1 light-year is ~1.5x 107%), and hence the detector effec-
tively resides at the SSB. In the limit that the timing mea-
surements are made precisely at the SSB, the response of
a pulsar timing array to curl modes is identically zero,
as the gravitational contribution of such modes to the
timing residual equals zero when integrated over the sky.
In reality, however, there is a small curl component in
the timing residuals due to the finite displacement of the
Earth away from the SSB. But this component is suffi-
ciently small relative to the gradient component that it
is not useful in reconstructing the background. Thus for
all practical purposes, a pulsar timing array is insensitive
to the curl modes of the background, regardless of how
many pulsars are included in the array [1].

In this paper, we extend the formalisms developed in
[1, 2] to the case of ground-based interferometers like
LIGO, Virgo, etc. For simplicity we work in the small-
antenna (or long-wavelength) limit, which is appropriate
for such detectors. We show that in contrast to pulsar
timing arrays, a network of ground-based interferometers
is sensitive to both the gradient and curl modes of the
background. The fact that the spatial separation of the
detectors is the same order or greater than the radiation
wavelength is sufficient to allow for recovery of both types
of mode. We demonstrate this by: (i) explicitly deriving
analytic expressions for the gradient and curl response
functions of a laser interferometer, and (ii) constructing
maximum-likelihood estimates of the gravitational-wave
sky for different types of simulated backgrounds. The re-
construction of the sky maps is based on singular value
decomposition (SVD) of the whitened response matrix
R = UZ VT, which maps the modes of the gravitational-
wave background to the response of the individual inter-
ferometers, evaluated at discrete times during Earth’s ro-
tational and orbital motion around the sun. The columns
of U and V corresponding to the non-zero singular val-
ues of 3 have the interpretation of response range vec-
tors and sky map basis vectors, in terms of which the
measured response and the maximum-likelihood sky map
can be written as linear combinations [2]. The recovered
sky maps can be calculated in terms of either a pixel-
based parametrisation, {hy(f, k), hx(f, kn)}, where n
labels the pixels on the sky, or in terms of the gradi-
ent and curl spherical harmonic components {a(Cl*'m)( ),

a((’;m) (f)}, where (Im) labels the various multipole modes,
up to some maximum value ;..

The organization of the rest of the paper is as follows:
In Sec. II, we summarize key formulae related to the
tensor spherical harmonic decomposition approach de-
scribed in [1]. We derive, in Sec. III, analytic expressions
for the gradient and curl response functions of a laser in-
terferometer in the small-antenna limit. (Details of the
derivation are given in Appendix A.) In Sec. IV, we show
that we can recover the standard overlap reduction func-
tions using the analytic expressions for the response func-
tions derived in Sec. III, and in Sec. V we compare the
effects of Earth’s rotational and orbital motion on the sky
reconstruction. We describe the map-making formalism
in Sec. VI and demonstrate that a network of ground-
based inteferometers can recover both the grad and curl
components of a gravitational-wave background, by con-
structing maximum-likelihood sky maps for some simple
simulations. We conclude in Sec. VII with a brief sum-
mary and discussion of the results, listing a few mod-
ifications that might be needed in order to apply this
formalism to real data.

II. BRIEF REVIEW OF TENSOR SPHERICAL
HARMONIC DECOMPOSITION

For completeness, we summarize in this section some
key formulae from the tensor spherical harmonic decom-
position method described in [1]. Interested readers are
referred to that paper for more details.

Any transverse-traceless tensor field on the sky can be
decomposed as a superposition of gradients and curls of
spherical harmonics:

o o 1 A
Y(lm ab(k) N |:Y(lm);ab(k) - 7gabYlm ic (k):l

Iy (1)

Yv(lm)ab(];) Yv(lm) ac(k)Gcb + Yv(lm);bc(];?)eca} s

where semi-colon denotes covariant derivative, g, is the

metric tensor on the sphere, €, is the Levi-Civita anti-
symmetric tensor
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and NN is a normalization constant
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In terms of the standard polarization tensors on the sky

. (4)

we have
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and are related to spin-2 spherical harmonics [18, 19] through the equation

S

oYy (k) = [W(zm)( )i%X(zm)(lAf)] . (8)
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In terms of the grad and curl spherical harmonics, a general gravitational-wave background can be decomposed as

hap(t, ) :/ df / d*Q; hab(f,];)ei%f(tfk'i/c)» 9)
oo S2
where
) l R R
ab f’ Z |:a(lm) lm)ab(k) + agm) (f)Yv(lCm)ab(k) . (10)
=2 m=-1

The mode functions agm)(f), a(clm)(f) are related to III. RESPONSE FUNCTION CALCULATIONS
the more traditional + and x polarisation components

hy(f, l;:), hy (f, l%) defined by The frequency-domain response of a laser interferome-
ter to a gravitational-wave background is given by
hav (fo k) =Dy (f,k)el, (k) + hu(f ke (k) (11) F(f)= [ 42> RAfkha(f k),  (14)
via where A = {+, x} and
RAS R) = el () (utul —veoh)e /R mle (1)

2 €ab
Here @, v are unit vectors along the arms of the inter-
N ferometer and Z; is the position vector of the vertex of
A A e 7 c ) the interferometer at the time ¢ when the measurement
hx(f k) = Z 2 [a(lm)(f)X(lm)(k) 4 m) (f)W(lm)(k)} " is made. The above expression for R*(f, l%) is valid in
(12) the small-antenna limit, which is appropriate for ground-
based interferometers like LIGO, Virgo, etc. (see e.g.,
[20] for this discussion in the pulsar timing context). The
length of the interferometer arms do not enter the expres-
G _ 209, 7 * sions for the response functions in this limit.
a(lm)(f)_Nl Szd 2 [h+(f’ k)W(lm)( )L, )X(lm( )] ’ Alternatively, if we expand the metric pertur-
c 5 PO P bations in terms of the gradient and curl modes
aGm(f)=Ni Szd L {hX(f’ F)W (k) = k)X(hn)(k)} » {af, (f),af,, ()}, the response can be written as
(13)
where we use the shorthand 37, = P 2Zm__l F(f) = ZZRgm)(f)agm)(f)’ (16)
Note that all the summations over [ start at [ = 2. (lm) P



where P = {G,C} and

N, R . .
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(17)
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These integrals were evaluated in Appendix D of [1] for the case of a reference frame which has Zy = 0:
4 /1
G _ . .
R(lm)(f)|50:5 = 012 V3 [Yom (@) = Yo ()] (18)

Ry ()l 5 = 0-

Note that the curl response is identically zero in this frame, while the gradient response is independent of frequency
and is non-zero only for the quadrupole components, [ = 2. These results are qualitatively similar to those for a
pulsar timing array, which also have zero curl response, and a frequency-independent grad response proportional to
Yim (@), where @ points in the direction to the pulsar. In what follows, we will use the notation

Fyu(,0) = 45”@ Yo (@) — Yo (0)] (19)

to denote the particular combination of spherical harmonics that appear in Eq. (18). Since only the quadrupole
response is non-zero, the index m on Fj, is restricted to have values m = 0,+1, £2.

For a single static interferometer, there is no loss in generality in choosing a reference frame with the vertex of the
interferometer located at the origin, with the response functions given as above. But for a network of interferometers
attached to a rotating and orbiting Earth, such a coordinate choice is no longer possible. If an interferometer is
displaced from the origin by Z(, one can show that

2 +2 L
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where oo = 27 f|%y| /c and jr () are spherical Bessel func- IV. RECOVERY OF STANDARD OVERLAP

tions of order L. These expressions are derived in Ap- REDUCTION FUNCTIONS
pendix A. The two expressions in parentheses ( ) for
each response function are Wigner 3-j symbols (see for
example [21], [22]). Note that, in general, the curl re-
sponse is now non-zero, in contrast to the static single
interferometer case. In addition, both response functions

depend on frequency via the quantity a, which has the ing some assumed statistical properties. For example, for

phg/.&tc'al 1nterp1r eta‘alonboft belngtiﬂ t1.m.e S thg ?Embert of a statistically isotropic background with CF¢ = C¢C =
radiation wavelengths between the origin and the vertex " g CFC = 0 = CC, it was shown in [ ] that

of the interferometer. Since the coordinate system for

the response functions in (18) was not chosen in any par-

ticular orientation relative to the unit vectors u and 7,

Egs. (20) are valid in an arbitrary translated and rotated

coordinate system, provided we use the angles for 4, 0, T _ oT 21
N . 12(J) = tl12,0(7),

and 2 as calculated in the rotated frame. () Z () 1)

Given the above expressions for Rﬁm)( f) one can cal-

culate the overlap reduction function I'15(f) for a pair of
interferometers to a gravitational-wave background hav-



where

I
Tiou(f) = Z R{ () (P RS Gy () -

m=—1

(22)

This is most-easily evaluated in a reference frame in
which the vertex of one interferometer is located at
the origin, and the vertex of the second interferome-
ter is located along the z-axis of this frame. This so-
called computational frame is related to the cosmic ref-
erence frame located at the solar system barycentre via
a translation by the position vector #; and a rotation
R = Ry(8o)R:(¢o) such that AZ = &y — & is directed
along the z-axis. (Here (6p,¢o) are the polar and az-
imuthal angles of AZ with respect to the cosmic frame.)
In the computational frame

Rﬁlm) (f) = 5PG512 Fr, (R’[Ll, Rr&l) s (23)

J

R2G(2m)(f) = Fn(Rilg, R2) | jo(a) + (=)™ (2.2 4+ 1)2 (

where the arguments of F},, are the polar and azimuthal
angles of 4; and v; with respect to the computational
frame. This form for Rf(lm)( f) implies

2
Tiou(f) =62 Y F(Rin, Ro1)RSS, (f),  (24)

m=—2

which in turn implies

F12(f) = CZ F12,2(f)

2
=Cy Y Fu(Rin, Rin)RSS,, (f)- (%)

m=—2

Thus, the only non-zero contribution to the overlap re-
duction function comes from the quadrupole gradient
terms. Using Eq. (20), it follows that

2 2 2 222.)
-m m 0 2—2032((1

m 2 24\ (2 2 4\ .
+(-1) (2-2+1)(2-4+1)<_mm0)<2_2())]4(04)], (26)
where o = 27 f|AZ|/c. Thus,
Lia(f) = C2 [Ajo() + Bja(a) + Cja(a)] , (27)
where
2
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2
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Here we have used the definition of the Wigner 3-j symbol
to simplify the expressions for B and C.

For an unpolarised, isotropic and uncorrelated back-
ground, the above expression for I'12(f) in terms of spher-
ical Bessel functions is similar in form to expressions for
the overlap reduction function in Refs. [23] and [24]. The
difference is that in those papers the expansion is in terms

(

of jo(a), j1(a)/a, and ja(a)/a?, while the above expan-
sion is in terms of jo(a), ja(), and js(c). These two
expansions can be related using the recurrence relation

204+1 .
jila) = jiea(a),

Jir1(a) =
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FIG. 1: Overlap reduction function I'i2(f) for an unpolar-
ized statistically isotropic background for the LIGO Hanford-
LIGO Livingston detector pair, plotted on a logarithmic fre-
quency axis.

for which

Fia(f) = Co [(A C B4 C)olo)

+ (3B —100)? 1((10‘) +35C jQOE,?) (30)

A plot of the corresponding overlap reduction function
for an unpolarised statistically isotropic background is
shown in Fig. 1 for the LIGO Hanford-LIGO Livingston
detector pair.

V. ROTATIONAL AND ORBITAL MOTION

As mentioned in Sec. I, previous analyses for
anisotropic stochastic backgrounds using ground-based
interferometers have been formulated in terms of the
distribution of gravitational-wave power on the sky [3—
9]. In addition, these approaches typically use cross-
correlation measurements between pairs of detectors as
the input data. As such, these analyses are insensitive to
the phase of the gravitational-wave background at differ-
ent spatial locations. Recall that the position-dependent
phase information appears explicitly in the Fourier com-
ponents of the metric perturbations, ha(f, I%)e*iz”f’“'”z/C
(cf. Eq. (9)). It also appears in the response functions
RA(f, k) and Rﬁm)(f), cf. Egs. (15) and (20), where Zy
is the location of the detector at the time t at which
the measurement is made. For cross-correlation mea-
surements between a pair of detectors, the correlated re-
sponse depends on the location of the detectors ¥; and

3

2o only via their difference AZ = ¥ — &1, which is inde-
pendent of choice of origin. Thus, the correlated response
repeats after one sidereal day of observation. This means
that the orbital motion of the Earth is effectively irrel-
evant for such analyses—i.e., it does not provide addi-
tional independent information about the background.
In fact, one can fold several days of observed data to a
single sidereal day, and perform the analysis on the folded
data [25]. This has obvious benefits in regards to the re-
duction of data volume and the computational cost of the
analysis.

In contrast, the goal of our analysis is to recover both
the amplitude and phase of the gravitational-wave back-
ground at each point on the sky, based on a likelihood
function that is not tied to cross-correlated data. As we
shall see below, for such an analysis, the spatial loca-
tions of the detectors are as important as their relative
orientations. Since our detectors are ground-based inter-
ferometers that orbit the Sun with the Earth, it is natural
to reference our response functions and reconstructed sky
maps back to the SSB. As such, we will take the origin
of coordinates for our calculations to be the SSB. The
detector locations are thus referenced from there.

Due to the Earth’s rotational and orbital motion
around the Sun, a single interferometer actually defines
a set of wvirtual interferometers located along a quasi-
circular ring 1 AU from the SSB. The Doppler shift in the
observed frequency due to Earth’s velocity with respect
to the SSB is not important for searches for broad-band
gravitational-wave backgrounds, since v/c ~ 10™* intro-
duces frequency shifts of at most §f ~ few x 107! Hz
in the frequency band relevant for ground-based interfer-
ometers. Thus, the rotational and orbital motion of the
Earth synthesizes a set of static virtual interferometers,
each observing the gravitational-wave background from a
different spatial location and with a different orientation.

To compare the effects of rotational and orbital mo-
tion, we calculate the time-scale over which measure-
ments made by different virtual interferometers are cor-
related. The relevant quantity is o = 27 f|AZ] /¢, which
appears in expressions for the overlap reduction func-
tion T'12(f), e.g. (27). But here AZ = Zy(t2) — Zo(t1)
is the spatial separation between the vertices of two vir-
tual interferometers, defined by the vertex of a single
(real) interferometer at times t; and to; and f is the
frequency of a gravitational wave. The above relation
can be turned into a correlation time-scale by writing
|AZ| = vAt, where v is the average speed of the inter-
ferometer (due to Earth’s rotational or orbital motion)
over the time interval At = t; —t;, and then finding that
value of At for which a = :

c
f
This corresponds to a spatial separation |AZ| = A\/2,
where A = ¢/f is the wavelength of the gravitational
wave. For durations At < tcor, measurements taken by
the two virtual interferometers are correlated; for dura-
tions At 2 tcorr, the measurements are uncorrelated with

(31)

teorr =



one another. This is justified by noting that two detec-
tors will (on-average) be driven in coincidence by a grav-
itational wave propagating along their separation vector
whenever its wavelength is more than twice the separa-
tion between the detectors. This argument [24] provides
a rough lower bound on the decorrelation timescale of
the detectors, which will actually be slightly larger since
we must average over all propagation directions of the
gravitational waves when considering a stochastic back-
ground.

For a gravitational wave with frequency f = 100 Hz
(A = 3x 105 m) and v = 27Rg/(1 day) ~ 500 m/s,
which is relevant for Earth’s daily rotational motion, we
find

teorr & 3000 s (rotational motion) . (32)

For v = 27 Rps/(1 yr) =~ 3 x 10* m/s, which is relevant
for Earth’s yearly orbital motion, we find

teorr = 508 (orbital motion) . (33)

Figure 2 is the overlap reduction function T'15(f) for
an unpolarized isotropic background, evaluated at f =
100 Hz, for two virtual interferometers as a function of
time. The left panel is for a set of virtual interferometers
synthesized by the daily rotation of a detector positioned
at the Earth’s equator, with no orbital motion. One can
see that the detector decorrelates on a timescale of ~ 1
hour, and recorrelates after 24 hours whenever it returns
to its starting position. If we switch off daily rotation
and synthesize a set of virtual interferometers from the
orbital motion of the Earth around the Sun, then we get
the overlap reduction function in the right panel. Since
the orbital velocity of the Earth around the Sun is much
larger than the velocity of a detector on the surface of the
Earth, the virtual interferometers build up a larger sepa-
ration baseline on a shorter timescale. Hence the overlap
reduction function goes to zero much more rapidly in this
case and will only recorrelate after 1 year.

We investigate this decorrelation timescale by numeri-
cally computing the overlap reduction functions for daily
rotation and orbital motion at a variety of gravitational-
wave frequencies. The times at which the detectors first
decorrelate are shown in Fig. 3, with the lower bounds
given by Eq. (31). The decorrelation timescale does
indeed obey a simple 1/f scaling, and at 100 Hz the
timescale for daily rotation and orbital motion are actu-
ally ~ 67 min (= 4020 s) and 60 s, respectively. There-
fore orbital motion of the Earth around the Sun will
rapidly synthesize a large network of independent vir-
tual interferometers from the motion of a single detector,
with a resolving power that increases on a relatively short
timescale.

VI. MAP MAKING

In this section, we extend the map-making formalism
of [1, 2] to data taken by a network of ground-based

interferometers. The key observation is that the time-
dependent ground-based interferometer analysis can be
mapped to a static PTA-like analysis, for a set of static
virtual interferometers in a quasi-circular ring 1 AU from
the SSB. Unlike the static PTA analysis [1, 2], the vir-
tual interferometers are not all centered at the same lo-
cation, but see the sky from different locations due to
the Earth’s rotational and orbital motion. This allows
for recovery of both the grad and curl components of the
background, as discussed in Sec. III in terms of the re-
sponse functions. We shall demonstrate this explicitly
via maximum-likelihood recovered sky maps in Sec. VIE
below.

A. Response vector

As described in Sec. III, the Fourier-domain response
of detector I to a gravitational-wave background is

Fr(f) = SQdQQEZR}“(f,l%)hA(f,I%) or
A

Fr(f) = Z Z Ry (F)a(imy (f) 5

(Im) P

(34)

where the response functions R{(f, k), A = {+, x} and
Rl (f), P ={G,C} are given by Egs. (15) and (20).
We write this response abstractly as

r = Rh, (35)

where h denotes the components of the gravitational-
wave background in either the pixel or spherical harmonic
basis, and R denotes the corresponding response function
in that basis. The response function R acts on h via a
sum over polarizations and an integration over the sky,
or a sum over polarizations and a sum over spherical
harmonic components.

When performing the data analysis to produce maps
of the gravitational-wave sky, we need to discretize both
the map (in terms of pixels or spherical harmonic com-
ponents) and the observed data. This leads to a time-
frequency decomposition where the data are broken up
into segments of duration 7, which should be short com-
pared to the timescale over which the orientation of the
detectors changes appreciably. Since the peak sensitivity
of the advanced ground-based interferometers is ~ 100
Hz, we take the minimum segment duration to be the
time required for a detector to decorrelate from itself
under orbital motion, thus synthesizing an independent
virtual detector (e.g., 7 & 60 s). The longest segment du-
ration is the time beyond which the Earth’s rotation will
have appreciably changed the antenna response pattern
orientation (e.g., 7 &~ 2048 s). Each segment of data is
then discrete Fourier transformed, yielding a finite num-
ber of components for the vectors r and h. In the follow-
ing, we will denote the discrete (positive) frequencies by

fj, where j = 1,2,---, Ny; the sky pixels by lAcn, where
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FIG. 2: Overlap reduction function at f = 100 Hz for two virtual interferometers as a function of time. The left-hand plot
is for a set of virtual interferometers located on Earth’s equator, associated with Earth’s daily rotational motion. The virtual
interferometers have one arm pointing North and the other pointing East. There is no orbital motion for this case, as the center
of the Earth is fixed at the SSB. The right-hand plot is for a set of virtual interferometers at 1 AU from the SSB, associated
with Earth’s yearly orbital motion. There is no rotational motion for this case, as the interferometers are located at the center
of the Earth in its orbit around the Sun, with the orientation of the interferometer arms unchanged by the orbital motion.

eenern 10%
Numerical K

== =teorr = 6/27)f ]

Numerical ]
== =teorr = 6/27)f 1

2102k

tCOI’I‘

10'

A i R A
10! 102 10° 10!

f [He] f [H7]

FIG. 3: Analysis of Fig. 2 repeated for 10 < f < 1000 Hz. The plots show the first time the overlap reduction function between
virtual interferometers goes to zero for daily rotation (left panel) and orbital motion (right panel). The solid line in the left
panel does not extend fully to 10 Hz since the overlap reduction function does not go to zero at low frequencies. A rough
indication of when the overlap reduction function should go to zero is given by considering that a pair of detectors should
be driven in coincidence by a passing gravitational wave when the wavelength is more than twice the separation between the
detectors. This defines a lower bound on the decorrelation timescale of the virtual interferometers, shown by a dashed line.

n = 1,2,---, Npix; and the spherical harmonic compo- Combining the responses from all detectors, we have
nents of the sky by (Im), where I = 0,1, | lhax, and

—l <'m <. The detectors (interferometers) are labelled r ={7(f;)},

by the index I = 1,2,---, Ny, and the time segments B . N G c
recorded by detector I as tj;, where ¢ = 1,2,---  Nj. h ={h. (fj,kn), hs(fj: kn)} or {a(lm)(fj)»a(lm)(fj)}v

R ={R};(fj, kn), R (fj kn)}
or {RT 1y (f5) REim (F1)} -
(36)
Written this way, the time-dependent ground-based in-
terferometer analysis is mapped to a static PTA-like anal-
ysis, for a set of virtual interferometers synthesized by the



Earth’s rotational and orbital motion around the Sun.
The response vector r has N = Ny ), Ny complex com-
ponents. In contrast to a cross-correlation analysis, we
do not require that all the detectors have data for the
same time periods. When the number of time segments
Ny is the same for all Ny detectors, then N = Ny NgNy.
Similarly, h is a complex-valued vector of dimension
M = 2NNy (pixel basis) or M = 2N,, Ny (spherical
harmonic basis), where N, = (Iax +1)? — 4 is the num-
ber of spherical harmonic (Im) modes out t0 lyax. (The
—4 in the last expression is because summations over [
start at [ = 2). The response function R is thus repre-
sented by a complex-valued matrix of dimension N x M.
Since the frequency components of r and h are identi-
cal, the frequency transformation part of R is simply the
identity matrix 1y, xn;,-

To simplify the discussion for the remainder of this
section, we will work in the pixel basis. The subsequent
calculations are formally identical in both bases, and the
resulting sky maps are effectively the same, provided l;ax
is chosen so the the total number of modes INV,, in the
spherical harmonic basis is of the same order as the num-
ber of pixels Npix.

B. Maximume-likelihood estimation

Using the above notation, the measured data can be
represented by an N-dimensional complex vector d =
{dri(f;)}, with contributions, in general, from both the
gravitational-wave signal r and detector noise n:

d=r+n=Rh+n. (37)

If we assume that the noise is Gaussian-stationary, then
we can represent it by an N x N (Hermitian, positive def-
inite) covariance matrix C, whose components are given
by
~ - 1
Crijrrivg = (nn(f3) g (f50)) = ﬁ%@jjfcuf(fj)v
(38)
where §f is the frequency resolution. (Past analyses for
stochastic backgrounds using ground-based interferome-
ters have typically used §f = 0.25 Hz, which is much
greater than the 1/7 ~ 0.001 Hz frequency resolution
associated with the duration of the short-term Fourier
transform, see e.g., [6, 26]. This amounts to working
with a coarse-grained frequency series, obtained by av-
eraging over neighboring frequency bins.) If we further
assume that the noise is uncorrelated between different
detectors, then

Cr(f) =01 S1(f), (39)

where Sy(f) is the (one-sided) power spectral density of
the noise in detector I. In terms of these quantities, the
likelihood function for the data is

p(d|C,h) x exp [-(d — Rh)'C™'(d - Rh)] , (40)

which is a multivariate Gaussian distribution for the
noise. Note that there is no factor of 1/2 in the expo-
nential as the matrix sum is over only positive-frequency
components. Given the likelihood function, we can now
use either Bayesian inference or frequentist maximum-
likehood statistics to estimate the model parameters.
The latter is relatively simple to do if we fix the noise,
since the signal parameters enter linearly in the likelihood
in Eq. (40).
Maximizing the likelihood with respect to h leads to

hy, = (RTC7'R)"'RfC~1d (41)

for the recovered map. This is only a formal expression,
however, since the Fisher matriz,

F=R/C 'R, (42)

is not invertible in general, since R may have not have full
column rank. This occurs if the number of data points N
is less than the number of modes M that we are trying
to recover, or if the response matrix has null (or nearly
null) directions—i.e., particular gravitational-wave skies
have hy,); to which the network of detectors is effectively
blind. This is discussed further in Sec. VIC. Thus,
calculating hyy, will, in general, require some form of
regularization [27].

To do the regularization, it is simplest to work with the
whitened data d = Lfd and whitened response matrix
R = L'R, where L is a lower triangular matrix defined
by the Cholesky decomposition of the inverse covariance
matrix, C™! = LL'. (An alternative approach, based
on the unwhitened response matrix R, is described in
App. B.) In terms of the whitened quantities, we have
F =R/R and

hyr = (RTR)'Rid = R*d, (43)
where
Rt = (R'R)"'Rf (44)

is the so-called pseudo-inverse of R. As before, this is
just a formal expression as the M x M matrix RR is
not invertible in general. However, it is always possible
to define the pseudo-inverse R* in terms of the singular
value decomposition (SVD) of R:

R— UV, (45)

where U and V are N x N and M x M unitary matri-
ces, and ¥ is an N x M rectangular matrix with (real,
non-negative) singular values G along the diagonal, and
zeros everywhere else. (Without loss of generality, we
can assume that the singular values are arranged from
largest to smallest along the diagonal.) Then

R = VSO, (46)

where 37 is defined by taking the reciprocal of each non-
zero singular value of X, leaving the zeros in place, and



then transposing the matrix. In terms of the SVD of R,
the maximum-likelihood estimator can be written as

hyy = RYd = VETO'4. (47)
The expected value and variance of hy, are given by

(hyr) = R*Rh,

var(hy) = (hawhfy) = (haw) (b)) = RT(R)!
(48)
where the expression for the variance assumes that the
gravitational-wave signal is weak compared to the detec-
tor noise. Although not explicit in the last expression,
the variance of hy, does depend on the noise C, since
R =L'R and C~! = LLT.

If the non-zero singular values of ¥ vary over several
orders of magnitude, it is usually necessary to set to zero
(by hand) all non-zero singular values less than or equal
to some minimum value &y, (e.g., 10~ times the largest
non-zero singular value). This reduces the noise in the
maximume-likelihood reconstruction, which is dominated
by those modes that we are least sensitive to. So in what
follows, when we speak of non-zero singular values of X,
we will actually mean the singular values & satisfying
Ok 2 Omin-

C. Sky map basis vectors

Expression (47) for the maximum-likelihood estimate
has several nice geometrical properties [2]. In particu-
lar, the columns of U and V corresponding to the non-
zero singular values of ¥ have the interpretation of re-
sponse range vectors and sky map basis vectors respec-
tively, in terms of which the measured response Rh and
the maximum-likelihood estimate hys, can be written as
linear combinations. To see this, let Gy and vy denote
the kth columns of U and V, and let r < min(N, M)
be the number of non-zero singular values of . Then it
follows from Egs. (45) and (47) that

T
Rh =) 6(vV() - h)ug,),
k=1

. (49)
hye =Y 6, (G - d) v
k=1

where dot product of two vectors a and b is defined by
a-b =a'b. If we expand d = Rh + n, then we can also
write

T

hy, = Z(V(k) . h)V(k) +R'n. (50)
k=1

Note that this last expression for hyy, involves the projec-
tions of h onto v(;, for only the non-zero singular values
of 3.
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It is important to discuss in some detail those cases
where there are fewer data points than modes we are try-
ing to recover (i.e., N < M), or if there are certain modes
of the gravitational-wave background that our response
matrix is insensitive to. For either of these two cases,
the system of equations d = Rh is under-determined,
which implies that there exist multiple solutions for the
recovered gravitational-wave background:

h - R+a + (]lMx]y[ - RJrR)harb ) (51)

where h,,;, represents an arbitrary gravitational-wave
background. The particular solution that we have chosen
for hyr, (given by Eq. (47) or (50)) ignores the term pro-
portional to h,,,, setting to zero those modes that we are
insensitive to. Our solution also sets to zero the variance
of these modes, as can be seen from the expression for
var(hyr) given in Eq. (48):

var(hae) = RY(RD)T = VEHEHIVE,  (52)

which can be diagonalized by a similarity transformation
involving VT. This yields X% (X%)", which has M — r
zeros along its diagonal.

In a Bayesian formulation of the problem, things will
be different, however, as one must also specify prior prob-
ability distributions for the signal parameters, in addition
to the likelihood function (40). For a signal parameter
(or a combination of signal parameters) corresponding to
a mode of the background that the detectors are insen-
sitive to, the marginalized posterior will simply recover
the prior distribution on this parameter (or combination
of parameters), since the data are completely uniforma-
tive about this mode. This is more in line with what we
would expect for a mode that is unconstrained by the
data, but such an analysis requires the specification of
prior probability distributions which frequentist estima-
tors, like hyr,, do not provide. We therefore choose to
construct our maximum-likelihood estimator such that it
sets the modes that we are insensitive to equal to zero,
and acknowledge the fact that we cannot say anything
about them with our experiment.

D. Sky maps, uncertainty maps, and SNRs

To construct sky maps from the maximum-likelihood
estimator hyg,, we need to either restrict attention to
a particular discrete frequency f; or perform an aver-
age over the different frequency components. In either
case, the dimensionality of hym, reduces to 2/Npiy, corre-
sponding to the + and X components of the estimated
gravitational-wave background at each pixel on the sky.
Uncertainty maps for these estimates are given by the
square-root of the diagonal elements of the variance esti-
mate given in (48),

o, =/ diag [var (hy)] . (53)



Similarly, we can construct signal-to-noise ratio (SNR)
maps by simply dividing the estimates of hy and hy at
each pixel on the sky by the corresponding values of oy, -
Examples of such maps are given in Sec. VIE.

E. Simulations

We now illustrate the mapping procedure described
above by constructing maximum-likelihood estimates of
the real and imaginary parts of hy(f, lAc) and hx(f,l;)
for three different simulated gravitational-wave back-
grounds: a point source and two spatially-extended back-
grounds having only gradient or curl modes. For simplic-
ity, we consider only a single frequency component f =
100 Hz, and we pixelize the sky using a HEALPix [32]
grid containing Npi, = 768 pixels. (The sky map vectors
hyir, and hyy,; thus have dimension M = 2N, = 1536.)
We will work primarily with a network of Ny = 6 de-
tectors, comprising both the existing and planned large-
scale, ground-based laser interferometers LIGO-Hanford,
LIGO-Livingston, Virgo, KAGRA, INDIGO, and AIGO.
(Relevant information for each interferometer is given
in Table I, which is adapted from [28].) For compari-
son, we will also consider a reduced network having just
N4 = 3 detectors (LIGO-Hanford, LIGO-Livingston, and
Virgo), which is more realistic for the near future. The
measured data will be given in the frequency domain,
corresponding to short-term Fourier transforms of time
segments of duration 7 = (1 sidereal day)/60 ~ 1436 s.
The simulations for the 6-detector network will have a
total of IV; = 400 samples for each interferometer, corre-
sponding to 6.67 days of simulated data. The simulations
for the 3-detector network will have either N; = 400 or
N; = 800 samples for each interferometer, corresponding
to either 6.67 days or 13.33 days of simulated data. The
data and response vectors d and r will thus have dimen-
sions N = NgN; = 2400 for the 6-detector network, and
N = 1200 or 2400 for the two 3-detector networks.

The detector noise will be described by an N x N
block-diagonal covariance matrix, whose N4 blocks (cor-
responding to the Ny detectors in the network) are each
proportional to the unit matrix 1y,xn,. The propor-
tionality constants are the values of the one-sided power
spectral densities S7(f), I = 1,2,---, Ny evaluated at
f =100 Hz (see the last column of Table I) divided by
40 f, where 0 f is the size of the frequency bins. The
factor of 4 is due to the use of one-sided power spec-
tral densities (one factor of 2) and the summation over
only positive-frequency bins (the other factor of 2). For
our simulations, we take §f = 0.25 Hz, as is common
for stochastic background searches using ground-based
interferometers [26]. The real and imaginary parts of
the noise vector n are generated by randomly drawing
independent samples from a multivariate Gaussian dis-
tribution defined by this block-diagonal matrix.

The simulated gravitational-wave backgrounds will
consist of a point source and two spatially-extended
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distributions. The point source is not an ideal point
source, but more of a Gaussian ‘blob’, since we gen-
erate it out to only lpnax = 10 (see the first row of
maps in Fig. 4). Nonetheless, it serves its purpose as
being a simple yet extreme example of an anisotropic
background for both hy and hy. (We also considered
single-pixel point sources and found similar results, but
the corresponding sky maps are not very clear.) The
two spatially-extended backgrounds are a grad-only sta-
tistically isotropic background with equal contributions
for multipoles 2 < [ < 10, and a curl-only statistically
isotropic background with equal contributions for multi-
poles 2 <1 <5 (see the second and third rows of Fig. 4).
These last two backgrounds were also considered in [1]
in the context of pulsar timing arrays. It is interest-
ing to compare the recovered sky maps for the ground-
based and pulsar timing analyses, especially for the curl-
only background, which cannot be recovered using timing
residual data from a pulsar timing array. The amplitudes
of the injected gravitational-wave backgrounds were cho-
sen to give reasonable recoveries after just a few days of
simulated data. For the values of the noise spectral den-
sities S7(f) given in Table I, we found that an amplitude
A =4 x 107?° was sufficient for the three different back-
grounds. (If we used a smaller value of A, we would have
had to integrate for a longer period of time.) The faithful-
ness of the recovery is measured by calculating the match
between the injected and maximum-likelihood-recovered
sky maps,

2 (hiyj - hr, + by, - higj)
V/Binj - hinjvhy -y,

This is just the coherence between the two maps. We
will also construct uncertainty maps and SNR maps to
evaluate how well we can recover the injections.

Figure 5 is a plot of the match as a function of the num-
ber of days of observation for the 6-detector network and
a noiseless point-source injection. The match increases
as the total observation time increases as expected. Note
we get perfect match after 5 days of observation. This
follows from the fact that the total number of data points
taken by the 6-detector network over 5 days is given by
N =5 days x 60 samples/day x 6 = 1800, which is greater
than the number of modes M = 2N, = 1536 we are
trying to recover. Thus, in the absence of noise we have
(more than) enough information to completely recover
the injected background after 5 days of observation. We
would have complete recovery for the two other simulated
backgrounds as well.

Sky maps of the recovered point-source background in-
jected into noisy data are shown in Fig. 6. These maps
are for the 6-detector network with IV = 2400 total data
points, corresponding to 6.67 days of total observation.
The first row shows the injected background. The second
row shows the maximum-likelihood sky map estimates,
which are the real and imaginary parts of the hy, hy
components of hyr,. The third row shows the uncertainty
maps, as specified by oy, and the fourth row shows the

’ (54)
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Interferometer Longitude Latitude Orientation Spectral density

LIGO, Hanford 119° 24" 27.6” W 46° 277 18.5" N 279.0° 1.591 x 10~ % Hz !
LIGO, Livingston 90° 46’ 27.3” W 30° 33’ 46.4” N 208.0° 1.591 x 10747 Hz ™!
Virgo, Italy 10° 30" 16" E  43° 37/ 53" N 333.5° 2.063 x 10747 Hz ™!
KAGRA, Japan  137° 10’ 48” E  36° 15’ 00" N 20.0°  9.320 x 10748 Hz !
INDIGO, India 74° 02 59" B 19° 05’ 47 N 270.0°  1.591 x 107%7 Hz ™!
AIGO, Australia 115° 42’ 51” E 31° 21’ 29” S 45.0°  1.591 x 107%7 Hz~*

TABLE I: Geographic information for ground-based interferometers used in our simulations, adapted from [28]. Orientation is
the angle that the bisector of the two interferometer arms makes with geographic North (positive for directions pointing East
of North). All interferometers are assumed to have 90° opening angle between the two arms. Spectral density is the value of
the one-sided noise power spectrum Sy (f) for the corresponding interferometer, evaluated at f = 100 Hz. The values of Sy (f)
for LIGO, Virgo, and KAGRA are taken from design sensitivity documents and publicly accessible data [29-31]; the values for
INDIGO and AIGO are taken to be the same as those for the LIGO interferometers, as they are in the initial planning stages.
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FIG. 4: Simulated maps (at a single fixed frequency) for three different anisotropic gravitational-wave backgrounds: (i) point
source located at 40° latitude, 60° longitude having Imax = 10 (first row); (ii) grad-only statistically-isotropic background with
C; = const for 2 <1 < 10 (second row); (iii) curl-only statistically-isotropic background with C; = const for 2 < I < 5. The
four columns correspond to the real and imaginary parts of h4 and hx.

SNR maps. The max SNR at the location of the point
source is approximately 10. The match is y = 0.64 for
this particular simulation.

Note that the uncertainty maps for the real and imag-
inary parts of hy (or hy) are the same. The uncertainty
values are also fairly constant over the sky, with val-
ues around 3 x 1072°. Thus, the SNR maps look very
similar to the maximum-likehood maps but, of course,
have different values since they represent different quan-
tities. It is also the case that the uncertainty maps for
the other simulated backgrounds (grad-only and curl-
only background) will be identical to that for the point
source background, since Eq. (53) for oy, depends only
on the response matrix R and noise covariance matrix C

via (48)—i.e., it is independent of the background that
one is trying to recover, at least in the weak-signal limit,
which we have assumed in our analyses. So for the other
two simulated backgrounds, we will show only the in-
jected and maximum-likelihood recovered sky maps, and
not the uncertainty and SNR maps.

Figure 7 is identical to Fig. 6, but for the 3-detector
network having the same number of total data points
(N = 2400) as the 6-detector network. The total obser-
vation time is thus twice as long, in order to compensate
for the reduction in the number of interferometers. Note
that the uncertainty maps have values that are slightly
larger than for the 6-detector network. Also, the match
is p = 0.59, which is slightly smaller than that for the 6-
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FIG. 5: Match as a function of number of days of observa-
tion for the 6-detector network and a noiseless point-source
injection. A match value equal to 1 corresponds to perfect
TeCcovery.

detector network. Thus, we see from this simulation that,
lacking 6 detectors, we can get nearly the same perfor-
mance from a 3-detector network, provided we integrate
twice as long in order to acquire the same number of total
data points. The performance of the 3-detector network
is much worse than the 6-detector network if we integrate
for the same observation time, since then the total num-
ber of data points for the 3-detector network is only half
as large (see the fourth rows of Figs. 8 and 9 below).

Maximum-likelihood recovered maps for the grad-only
and curl-only backgrounds using the 6-detector and two
3-detector networks mentioned above (one having the
same number of total data points as the 6-detector net-
work; the other having half as many data points) are
shown in Figs. 8 and 9. The corresponding match val-
ues for the grad and curl recoveries are p = 0.81 and
0.85 for the 6-detector network. For the two 3-detector
networks, the match values are p = 0.80 and 0.84 when
the total number of data points is the same as for the 6-
detector network, and p = 0.55 and 0.60 when the total
number of data points is half as many. The SNR values
as a function of sky location for the different recoveries
range from about —b to 5 for the strong recoveries and
—4 to 4 for the weaker recoveries. As can be seen from
the fourth row of these two figures, when the 3-detector
network has only half as many total data points as the
other two networks, the structure in the grad-only and
curl-only sky maps is not nearly as clearly recovered as
for the other detector networks.

The most important take-home message is that the
grad-only and curl-only backgrounds can both be recov-
ered with a network of ground-based interferometers.
This is in contrast to the case for a pulsar timing array,
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which is completely insensitive to a curl-only background
(see [1], and in particular Fig. 11 from that paper). As
mentioned earlier, the rotational and orbital motion of
the Earth synthesizes a set of virtual interferometers that
sample the gravitational-wave field from many different
spatial locations. This allows for the reconstruction of
both grad and curl modes of the background, unlike the
case for pulsar timing arrays.

F. Minimum duration between data segments for
independent measurements

Having shown our map recovery techniques to be suc-
cessful in the context of noisy simulated injections, we
now return to an issue discussed at the end of Sec. V—
namely, the minimum time increment between observa-
tions required to synthesize a network of independent vir-
tual interferometers, and thus avoid degeneracies in the
information content of our measured strain signal. We
consider two cases: (i) a single AdvLIGO Livingston de-
tector, and (ii) the full 6-detector advanced network pre-
viously discussed. In both cases we assume a total of
1200 strain measurements of the gravitational-wave sky
have been recorded. As previously, the hy, hy compo-
nents of the sky are decomposed into 768 pixels for a
total of 1536 unknown parameters to be determined by
our search. We compute maximum likelihood maps from
the 1200 observations, which are carried out over various
total timespans to investigate how the match of the re-
covered map with the injected map scales with At, the
time between observations.

Our results are summarized in Fig. 10. For all cases,
we find that the match of the recovered maps with the in-
jected map is poor for small time increments between ob-
servations, since the detector(s) will not have moved far
enough to establish independence from its previous posi-
tion. With only orbital motion of a single detector, the
match values are only able to plateau at ~0.5. Adding in
the influence of daily Earth rotation seems to ameliorate
this poor match behaviour. The origin of this effect can
be deduced from the singular values of the response ma-
trix in both cases. This is shown in Fig. 11 for a single
LIGO Livingston detector, where the addition of Earth
rotation acts to break degeneracies in the response matrix
and conditions it to have a much smaller dynamic range
of singular values. Rotating the Earth acts to sweep the
antenna beam pattern of the detector across the sky and
provides additional information with which to measure
the gravitational-wave background. With only orbital
motion the arms of the detector remain in fixed orien-
tations, and hence so does the detector’s antenna beam
pattern. We also show in Fig. 10 the match behaviour for
a full 6-detector advanced network. In this case we al-
ready have information from multiple orientations of the
antenna beam patterns by virtue of the different global
placements of the detectors. Hence, the inclusion of daily
Earth rotation makes little impact on the match value,
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FIG. 6: Recovery of the simulated point source in noise for the 6-detector network. Injected maps (first row); maximum-
likehood recovered maps (second row); uncertainty map (third row); SNR map (last row). Note that the uncertainties maps

for the real and imaginary parts of h4 (or hy) are the same.

which plateaus at ~0.9 even with orbital-only motion.

The key lessons here are that Earth’s daily rotation is
an important influence on top of the orbital motion of the
Earth around the Sun, since it sweeps the detector an-
tenna beam patterns across the sky to gather additional
information about any gravitational-wave signal of inter-
est. Furthermore, from Fig. 10 we can clearly see that the
first peak of the match value occurs at ~ 50 — 60 s, when
the detectors decorrelate from themselves for the first
time (see Fig. 3) and are no longer driven in coincidence
by a passing gravitational wave. With this time incre-
ment the detector’s strain measurements are effectively
independent from their preceding or subsequent measure-
ments, thereby allowing us to synthesize a large network
of virtual interferometers from the daily and orbital mo-
tion of the Earth. The small dip after the first peak may
be due to the detectors being driven in anti-coincidence,
thereby losing some of their independence. However, the
match value recovers in the limit of large At, since the de-
tectors are then separated by several gravitational-wave
wavelengths and this behaviour is averaged out.

VII. DISCUSSION

We have presented a new method for mapping the
gravitational-wave sky using a network of ground-based
laser interferometers. This method extends the for-
malisms developed in [1, 2], which were originally applied
to the case of pulsar timing arrays. We have shown that
we can recover both the gradient and curl components
of a gravitational-wave background, as a consequence of
the spatial separation of the individual interferometers
in the network, or of a single interferometer at different
times during its rotational and orbital motion around
the Sun. This is in contrast to the case for a pulsar
timing array, which is completely insensitive to the curl
modes. Also, by mapping both the amplitude and phase
of hy (f, k) and hy (f, k) as functions of direction on the
sky (as referenced from the SSB), our method extends
previous approaches [3-9] for anisotropic backgrounds,
which map the distribution of gravitational-wave power,
|hy|? + |hx|?. Our formalism can be cast in terms of ei-
ther the traditional + and x polarization modes of the
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FIG. 7: Same as Fig. 6, but for the 3-detector network having the same number of total data points (N = 2400) as the
6-detector network. Injected maps (first row); maximum-likehood recovered maps (second row); uncertainty map (third row);
SNR map (last row). The maps are more-or-less the same as for the 6-detector network shown in Fig. 6.

background {h (f, k), hy (f, k)}, or the gradient and curl
modes {a(cfm)(f)7 agm) (f)}, with respect to a decomposi-
tion of the metric perturbations in terms of spin-weighted
or tensor (gradient and curl) spherical harmonics [1].

The results of the simulations presented in Sec. VIE
can be thought as a proof-of-principle demonstration of
the general map-making formalism described in the rest
of the paper. The actual analysis of real data from a net-
work of advanced interferometers will most likely differ
from this simplified scenario in several ways:

(i) The amplitudes of the simulated backgrounds were
chosen to be sufficently large, so as to allow for fairly de-
cent recovery after only a few days of observation. Much
weaker backgrounds will require an increased observation
time, of order months or years, noting that the (power)
signal-to-noise ratio scales like A2y/T, where A is the am-
plitude of the background and T is the total observation
time.

(ii) While we found that it is possible to recover the
simulated backgrounds with a 3-detector network, hav-
ing a 6-detector network halves the observation time (i.e.,

the total number of data points) needed for the back-
ground recovery. This estimate is based on our simu-
lated data, and may change slightly with real detector
noise. A 6-detector network would also be beneficial for
other searches, e.g., unmodelled burst searches, due to
improved sky localization [28].

(iii) For initial analyses, it might be easier to work
in the tensor spherical harmonic basis, and estimate the
grad and curl components of the background {a(cfm)( ),

a((’;m)(f)} out to some relatively small value of l;ax, €.,
Imax = 10. This would reduce the number of modes that
we would need to recover from 2Ny (= 1536 for exam-
ple) to 2Npodes = 234 at each discrete frequency. The
estimates of the grad and curl components can then be
converted to sky maps of hy (f, k), hx(f, k) using (12).

(iv) Varying noise levels in the detectors (on a time
scale 2 the segment duration 7 of our short-term Fourier
transforms) will complicate somewhat the expression for
the noise covaraince matrix C. The N; block ma-
trices that enter the expression for C will no longer
be proportional to the unit matrix 1y,xy,, but rather
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FIG. 8: Recovery of the grad-only background in noise. Injected maps (first row); recovered maps for the 6-detector network
(second row); recovered maps for the 3-detector network having the same number of total data points (N = 2400) as the
6-detector network (third row); recovered maps for the 3-detector network having half as many total data points (N = 1200)

as the 6-detector network (fourth row).

will have diagonal elements proportional to Sr(f;tr;),
i =1,2,---, Ny, reflecting the time-varying noise levels
in detector 1.

(v) As ground-based interferometers are broad-band
detectors, we will have measurements at a set of discrete
frequencies f;, j =1,2,---, N¢, where Ny ~ several hun-
dred to a few thousand depending on the frequency bin
size § f. For initial analyses, it will probably be simplest
to average the estimates of hy (f;, k), hx(f;, k) over the
different frequency components.

(vi) If one would like to compare the consistency of dif-
ferent models of a stochastic background with the mea-
sured data—e.g., is the measured data consistent with an
unpolarized, isotropic background or with a background
having a non-zero dipole component or with correlated
emission on the sky, etc.—a Bayesian formulation of the
problem would be more appropriate. The different mod-
els would be defined by the appropriate choice of vari-
ables for the stochastic background and prior probably
distributions for these variables. Bayesian model selec-
tion would then be used to select between the competing

models.

Perhaps the most compelling reason for using the for-
malism presented here is that it provides a completely
generic approach to mapping the gravitational-wave sky.
It allows us to construct a map of the background that
extracts all of the information that is possible to extract
from the measured data. With the advanced ground-
based interferometers coming on-line at the end of this
year, and with the first detection of gravitational waves
expected to follow shortly thereafter, it seems appropri-
ate to utilize approaches such as this that attempt to
maximize the science return of the data.
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Appendix A: Derivation of gradient and curl
response functions

Here we derive the gradient and curl response func-
tions for an interferometer in the small-antenna limit,
allowing for a non-zero displacement Zy of the vertex of
the interferometer from the origin of coordinates.

Expressions for the response functions evaluated in a
reference frame whose origin is located at the vertex of
the interferometer were derived in Appendix D of [1]:

R(Cim) (f) = b1z 4% 1 Yo (@) — Yo (0)]

3

where @, © are unit vectors in the directions of the two
arms of the interferometer. We have put bars on the

(A1)
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FIG. 10: Match values for various noisy map injections (averaged over 500 noise realizations) as a function of the time increment
between 1200 observations, for a single detector and a 6-detector network. For a single detector, orbital-only motion is only able
to achieve a match value of ~ 0.5 at large At. Daily rotation provides additional information by sweeping the antenna beam
pattern across the sky, thus giving excellent plateau match values of ~ 0.9. The global placement of a network of detectors
(and their differing antenna beam pattern orientations) gives excellent match values even for orbital-only motion, and daily
rotation does not significantly improve this match. We see that the first peak in the match value occurs at ~ 50 — 60 seconds
(shown as a grey strip), when the detectors first decorrelate from themselves and are no longer driven in coincidence by a
passing gravitational wave. The small dip after the first peak is due to the virtual detectors being driven in anti-coincidence
by the gravitational wave, thereby losing some of their independence and diminishing the match. However at larger At this
behavior is averaged out over several gravitational-wave wavelengths, allowing the match value to recover.
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FIG. 11: Singular values of the response matrix for a single LIGO-Livingston interferometer, for 1200 total observations with
At = (1 sidereal day)/60 ~ 1436 s. (The singular values are normalized by the largest singular value, corresponding to the first
diagonal element.) The dashed blue line shows the singular values when the detector is affixed to an Earth undergoing orbital
motion only, whilst the solid blue line shows the singular values when the Earth is both rotating and orbiting. This indicates
that in the orbiting-only case, regularization of the response matrix at machine-level precision (¢ ~ 107'%) will not remove
the very small singular values after diagonal element 768, requiring a more stringent cutoff level. In contrast, when the extra
influence of the Earth’s rotation is introduced, the additional information provided by the changing detector arm orientations
(which sweep the antenna beam pattern across the sky) acts to drastically improve the conditioning of the response matrix.
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above expressions to distinguish them from similar un- sions in the two frames are given by
barred quantities that we will calculate in a reference
frame whose orlgm is at the solar system barycentre

(SSB). Note that R(lm) is independent of frequency and hav(f, k) = Z Za(lm) lm)ab(/;)
is non-zero only for the quadrupole modes, [ = 2. (lm) P
Under a translation of reference frames from the SSB I N (A3)
to the vertex of the interferometer located at Ty, the hab fv Z Za(lm) Y(lm)ab(k)'
Fourier components hqp(f, k) of the metric perturbations (tm) P
hap(t, Z) in the “cosmic” (or SSB) frame transform to
Bab(f, ff) = ha(f, ];;)e—i%rffc‘fo/c (A2) 'E?is last. equation forpﬁab(f7 l%) can be inverted to find
a(lm)(f) in terms of a(lm)(f) using (A2) and the orthog-
in the detector frame. The correponding mode expan- onality of the gradient and curl spherical harmonics:
J
Al (1) = |, % Paa (£ RV ()
/ dQQ hab(fa ) —i2n fk-Zo/c YV(P ab*(];_) (A4)
— dQQ Z Za . /) Y(l’m’)ab(k) 7127rfk Zo/c Y(P ab*(k)
(l/ P/
Using the identity:
. T e L ~
eIk Tole —4x N (—i)Ejp(e) D Yia(@o)Yim(k), o= 2rfliol/c, (A5)
= M=—L

we obtain

Wy ()= D> alin(f Z Z Am(—i)Ejp (@)Y (o) / A2 Y e (B)Y ) ()Y (k) (A6)

('m’) P’ L=0M=

relating the mode coefficients in the two frames.

To make the connection between the mode coefficients and the corresponding response functions, we note that the
detector response 7(f) (or r(t)) to the gravitational-wave background will have the same value regardless of which
frame we choose to evaluate it in. Thus,

=D > Rl (f

(Im) P
2
m=—2
0o L R R R
= Z R (2m) Z Za(l’m’) Z Z dm(— )YLM(xO)/ d2Q Y(z/mqab(k)y(zm)ab*(k)YLM(k)
m=—2 U'm L=0M=—-L
= ZZR(M) )a{ymn (£)
I /) Pl
(A7)
where
2 0o L R ) )
Bln£)= 3 30 3 Rputrl=)* (i (io [ YWYy Cins(h). (A8)
m/'=—2 L=0 M=
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We can write this last expression explicitly in terms of Wigner-3;j symbols if we replace the grad and curl spherical
harmonics in the integral by spin-2 spherical harmonics using:

Vs B¥ Gy (B) = 5 [ 2¥im (B) Y5 (B) + 2¥im (B)2Y 50 (B)] o)
Vs B¥ Gy (B) = 52 [2Yim (0) 2¥0 (B) — 2¥im (£)2¥5,0 )]
This leads to
RG,.,(H= > Z Z —i) i (@)Y} (%0)
m/=—2L=0 M=—L
(~)™ 224+ 1)Q+1)2L+1) [ 2 1 L 2 | L 2 1 L
2 \/ ir (m'mM>K220)+(22 oﬂv A0

2

RO, (£ = > Z Z —i)E L ()Y (&0)

m/'=—2L=0M=—L

(‘;?m'W'“”(QZ”@“” (v mar)[(220)-(3%0))

These expressions can be further simplified using the symmetry property

ll l2 l — (_1)l1+l2+l ll l2 l (All)
mip Mo m —my1 —Mg —M

to eliminate one the Wigner 3-j symbols in terms of the other, and the triangle inequality

|l1—lz|§l§l1+lg = [—2<L<Il+2 (A12)

to collapse the infinite sums over L to sums over just 5 terms. The final expressions are

2 I+2

Z Z Z R(2m’)47T ) £(@)YLa(20)

m'=—2L=l-2 M=

(1) ¢(2-2+1><2l+1>(2L+1>(_2 L) (5 ) e

2 4 m' m M 2 20
) Lo (A13)
=y > Z Ry dm (—0)" () Yy (20)
m'=—2 L=1-2 M=
(=)™ \/(2-2+1)(2l+1)(2L+1) 2 1 L I L [(—1)+E — 1]
2i Amr —-m' m M 2 -2 0 '
The Wigner 3-5 symbol selection rule
—-m'+m+M=0 (A14)

implies that the sum over M collapses to only those values satisfying M = m’ — m and |M| < L. Note also that in a
reference frame with the z-axis chosen along Zg,

2L +1
ar

Yo (@0) =Y (0,0) = 0o (A15)

so for this case the sum over M reduces to just the M = 0 value. The selection rule —m/ +m = 0 and |m’| < 2 then
imply non-zero values for only |m| < 2 in this special frame.

(



Appendix B: Equivalence of whitened and
non-whitened analyses

As discussed in Sec. VIB, we are interested in find-
ing the maximume-likelihood value hyy, of the likelihood
function

p(d|C,h) x exp [-(d — Rh)'C™'(d - Rh)] , (B1)
when the Fisher matrix F = RTC~!R is not invertible.
One approach, described in [1], is to work with the SVD
of the response matrix R:

R=UZVT, (B2)
In general we can write U = [U,U,], where U, is an
N x r matrix denoting the range of the response matrix
R, where r equals the number of non-zero singular values
in 3. We then replace Rh in the likelihood by U,b,
where b is a vector of dimension r, and then proceed
as for a non-singular response. The maximum-likelihood
value for b is then
by, = (UlC™'U,)"'UlC™!d, (B3)
and the corresponding maximume-likelihood estimate of
the gravitational-wave sky is
hyr, = VE by, (B4)
where 3, is the r x M dimensional matrix obtained by
crossing out the last N — r rows of ¥, and X is the
pseudo-inverse of X,., obtained by taking the reciprocal of
each non-zero singular value of X,., and then transposing
the resulting matrix.

An alternative approach, which we described in
Sec. VIB, is to work with the the whitened data d = Ltd
and whitened response matrix R = LR, where L is a
lower triangular matrix defined by the Cholesky decom-

position of the inverse covariance matrix, Cc-! = LL.
Working with the SVD of R:

R=UXV', (B5)
we have

hy, = VETUTd. (B6)
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Now the SVD of a product cannot be simply written in
terms of the SVDs of the individual matrices. However,
we can show the equivalence of these two approaches for
maximizing the likelihood, by working with the equiva-
lent likelihood that was introduced in the first approach,
ie.,

p(d|C,h) e exp [-(d — U,b)IC™'(d - U,b)] , (B7)

and obtaining hy, from by, using Eq. (B4). The first
approach requires no modification, but for the second ap-
proach we now need the SVD of the whitened U, matrix,
LiU,:
LiU, =UZVT, (BS)

for which

by, = VU, (B9)
Since we are now working only with the range of R and
the noise covariance matrix C is positive definite, the
rank of LTUT. must equal the rank of U,. As before, we
can write U = [U,U,], where U, is an N x r matrix,
which gives the range of LT U,.. Thus, we can equivalently
write Eq. (B8) as

LU, =0, %, Vi, (B10)
where 3, is an invertible, square r X r matrix obtained,
as before, by crossing out the last N —r rows of 3. From
this last equation we now see that

U, =L'U, vt (B11)
and
by = VESIUIA
=V e WiuiLd (B12)

= (Ulc'u,)tuicid,

where the final equality follows from the observation that
UIC~'U, = UILL'U, = VX2VT (which is a conse-
quence of Eq. (B10)). We have thus recovered the result
given in Eq. (B3), which was obtained without whitening
the data.
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