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We discuss the detection of gravitational-wave backgrounds in the context of Bayesian inference
and suggest a practical definition of what it means for a signal to be considered stochastic—namely,
that the Bayesian evidence favors a stochastic signal model over a deterministic signal model. A
signal can further be classified as Gaussian-stochastic if a Gaussian signal model is favored. In
our analysis we use Bayesian model selection to choose between several signal and noise models for
simulated data consisting of uncorrelated Gaussian detector noise plus a superposition of sinusoidal
signals from an astrophysical population of gravitational-wave sources. For simplicity, we consider
co-located and co-aligned detectors with white detector noise, but the method can be extended
to more realistic detector configurations and power spectra. The general trend we observe is that
a deterministic model is favored for small source numbers, a non-Gaussian stochastic model is
preferred for intermediate source numbers, and a Gaussian stochastic model is preferred for large
source numbers. However, there is very large variation between individual signal realizations, leading
to fuzzy boundaries between the three regimes. We find that a hybrid, trans-dimensional model
comprised of a deterministic signal model for individual bright sources and a Gaussian-stochastic
signal model for the remaining confusion background outperforms all other models in most instances.

PACS numbers: 04.80.Nn, 04.30.Db, 07.05.Kf, 95.55.Ym

I. INTRODUCTION

A stochastic background of gravitational radiation is
usually defined as a random gravitational-wave signal
produced by a large number of weak, independent, and
unresolved sources. It can be of either astrophysical or
cosmological origin. The signal is random in the sense
that it can be characterized only statistically, in terms of
expectation values of the Fourier components of a plane-
wave expansion of the metric perturbations. For a suf-
ficiently large number of independent sources, the back-
ground will be Gaussian by the central limit theorem.
Knowledge of the first two moments of the distribution
will then suffice to determine all higher-order moments,
meaning that the quadratic expectation values (or co-
variance matrix) of the Fourier components completely
define a Gaussian background of gravitational radiation.
For non-Gaussian backgrounds, the only difference is that
the probability distribution of the Fourier components is
no longer Gaussian. Thus, third and/or higher-order mo-
ments of the distribution are now required.

Although there is general agreement with the above
definition, there has been some confusion and/or dis-
agreement about some of the defining properties of a
stochastic background, in particular, related to the re-
solvability of a signal and its relationship to duty-cycle
[1–4]. In order to avoid such confusion in this paper, we
give operational definitions for these properties, framed
in the context of Bayesian inference. For instance, we
define a signal to be stochastic if it is more parsimonious
(in a Bayesian model selection sense) to search for that
signal using a stochastic signal model for the waveform

than using a deterministic signal model. We also define
a signal to be resolvable if it can be decomposed into sep-
arate (e.g. non-overlapping in either time or frequency)
and individually detectable signals, again in a Bayesian
model selection sense. Signals may be separable even
when overlapping in time and frequency if the detector
has good sky resolution, or the signals have additional
complexities due to effects such as orbital evolution and
precession.

This definition of resolvability is more restrictive than
that of Rosado [1], who defines a signal to be resolvable
if it is separable, independent of detectability. With our
definition, it is possible to have separable signals that
are not detectable (e.g., “subthreshold” low-duty cycle
bursts [5] or non-overlapping low-SNR sinusoids), and
signals that are detectable but not resolvable (e.g., a
Gaussian stochastic background integrated over a large
enough time or large enough frequency band).

In addition, for non-Gaussian backgrounds associated
with the superposition of signals from many astrophys-
ical sources, there will sometimes be cases where a few
bright signals standout above the lower-amplitude “con-
fusion” background. These resolvable deterministic sig-
nals should be ‘subtracted’ from the data, leaving a resid-
ual non-deterministic background whose statistical prop-
erties we would like to determine. In the context of
Bayesian inference, this ‘subtraction’ is done by allowing
hybrid signal models, which consist of both parametrized
deterministic signals and non-deterministic backgrounds.
By using such models we can investigate the statistical
properties of the residual background without the influ-
ence of the resolvable signals. This is ultimately the prop-
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erty of the stochastic background that we would like to
determine.

The closely related question of whether a population
of astrophysical signals is more likely to be first detected
via a stochastic cross-correlation analysis or a template-
based search for individual signals has recently been con-
sidered by Rosado et al. [6] in the context of pulsar tim-
ing detection of the low-frequency, slowly-evolving signals
from binary supermassive black holes, and by Mandel [7]
in the context of ground-based interferometer detections
of chirping neutron star binaries and continuous waves
from non-axisymmetric spinning neutron stars. Rosado
et al. found that pulsar timing arrays are most likely
to first detect a stochastic background, though in some
cases a bright and nearby source may be detected first.
Mandel concluded that individual signals will always be
detected first for non-overlapping, evolving signals, while
a stochastic background may be detected first for non-
evolving, overlapping signals, and gave conditions for
when this might occur. Our results are broadly in agree-
ment with these studies, though it is difficult to directly
compare our results since we frame the problem in differ-
ent ways and have different definitions for what it means
for a signal to be considered deterministic or stochastic.

In this paper, we apply Bayesian inference to non-
Gaussian gravitational-wave backgrounds, which are pro-
duced whenever the overlap of the gravitational-wave sig-
nals in time-frequency space is sufficiently low that the
central-limit theorem does not apply. Previous analy-
ses for non-Gaussian backgrounds have typically been
framed in the context of frequentist statistics, involving
modifications [5, 8–11] of the standard optimally-filtered
cross-correlation statistic [12] used to search for Gaussian
backgrounds. Here we use Bayesian inference to address
the same problem. We apply Bayesian model selection to
compare several signal+noise models for simulated data
consisting of uncorrelated Gaussian detector noise plus a
superposition of sinusoidal signals from an astrophysical
population of gravitational-wave sources. The analysis is
done in the frequency domain since the signals we con-
sider are well localized in frequency and spread out in
time, but our results apply equally well to signals that
are localized in time and spread out in frequency, such as
a population of burst signals occurring with some Pois-
son rate. For simplicity, we consider a pair of co-located
and co-aligned detectors with white detector noise, but
the method can be extended to more realistic detector
configurations and power spectra.

The general trend we observe from our simulations is
that a deterministic signal model is favored whenever
the number of sources contributing to the background
is sufficiently small; a non-Gaussian stochastic model is
preferred for an intermediate number of sources; and a
Gaussian stochastic model is preferred for a large number
of sources. However, due to large variations between in-
dividual signal realizations, the boundaries between the
three regimes are not sharply defined. We find that a
hybrid, trans-dimensional model comprised of a deter-

ministic signal model for individual bright sources and a
Gaussian-stochastic signal model for the remaining con-
fusion background outperforms all other models in most
instances.

The remainder of the paper is organized as follows:
In Sec. II we give a brief overview of Bayesian infer-
ence, and apply it to the specific case of non-Gaussian
gravitational-wave backgrounds in Sec. III. There we
define the relevant noise and signal probability distri-
butions, likelihood functions, prior and posterior prob-
ability distributions, etc. needed for our analysis. In
Sec. IV we define the various signal+noise models that
we use for the Bayesian model selection calculations, the
results of which, for simulated data, are described in de-
tail in Sec. V. Finally, in Sec. VI, we discuss the rele-
vance of the results in the context of current searches for
gravitational-wave backgrounds. Appendix A includes a
discussion of different approaches for calculating Bayes
factors.

II. BAYESIAN INFERENCE – OVERVIEW

Bayesian inference is a powerful tool for assessing the
plausibility of hypotheses, given a set of observations and
prior information [13]. It allows you to update your de-
gree of belief in a particular hypothesis, based on how
well the hypothesis (or model) fits the observed data.
It also implements a quantitative version of Occam’s ra-
zor [13], which says that given two models that fit the
data equally well, the simpler model should be preferred.
This result falls naturally out of a Bayesian model selec-
tion calculation, where one calculates the posterior odds
ratio of one model against another. If two models fit the
data equally well but have different parameter space vol-
umes, then the model with the larger parameter space
volume is penalized by the ratio of the larger parameter
space volume to the smaller volume.

Using Bayesian inference to analyze a particular prob-
lem is very simple in principle—one applies Bayes’ theo-
rem,

p(~θ|s) =
p(s|~θ)π(~θ)∫
d~θ′ p(s|~θ′)π(~θ′)

, (1)

to calculate posterior probability distributions given a

likelihood function p(s|~θ) (which specifies the probabilty
of the data given the model and the value of any param-
eters associated with it) and a prior probability distribu-

tion π(~θ) for the model and its parameters.
In practice, however, these calculations can be ex-

tremely computationally-intensive, especially for models
having a large number of parameters. But in recent years,
thanks to advances in high-speed computing and the de-
velopment of efficient sampling algorithms [14, 15], inte-
grations over model parameter spaces having hundreds
or even thousands of dimensions are now possible. Thus,
the use of Bayesian inference to solve diverse problems
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in the physical sciences has increased dramatically, given
the ability to do numerical calculations, which, in the
past, were not possible in practice.

In particular, in the field of gravitational-wave data
analysis, it is now common to see Bayesian inference
used for: (i) detector noise estimation and modeling [16,
17], (ii) sky-localization of signals from unmodeled
gravitational-wave bursts, and (iii) parameter estimation
for gravitational-wave signals associated with many dif-
ferent sources—binary inspiral events, continuous-wave
sources (e.g., non-axisymmetric rotating neutron stars),
and stochastic gravitational-wave backgrounds [18] of ei-
ther astrophysical or cosmological origin.

Although Bayesian inference and frequentist
optimally-filtered statistic methods give equivalent
results for sufficiently simple signal and noise models
and simple choices for the priors, the Bayesian formalism
allows one to more easily handle problems involving more
complicated models and/or non-trivial priors. This is
the case when the model contains so-called nuisance pa-
rameters (such as non-negligible correlated noise), which
are not of direct astrophysical interest, but nonetheless
affect statistical statements about the signal parameters.
For example, in the presence of correlated noise, the
standard optimally-filtered cross-correlation statistic [12]
for isotropic gravitational-wave backgrounds no longer
corresponds to the optimal combination of the data
from the two detectors. Calculating the maximum of
the likelihood function is more complicated for this case,
with no analytic closed-form solution in general. But a
Bayesian approach to this problem, which numerically
explores the likelihood function using e.g., Markov Chain
Monte Carlo (MCMC) methods, is a viable alternative.

For gravitational-wave backgrounds generated by a su-
perposition of signals from a population of astrophysi-
cal sources, Bayesian inference is particularly convenient
since it allows one to compare several viable signal+noise
models. Depending on the number of sources emitting
gravitational waves in a particular time-frequency vol-
ume, the measured signal could be either: (i) stochas-
tic and Gaussian distributed, (ii) stochastic but non-
Gaussian, (iii) a superposition of individually resolvable
signals, or (iv) some combination of both deterministic
resolvable signals and a non-deterministic (i.e., stochas-
tic) background. Using Bayesian model selection, we
can rank these various models, and thus characterize the
gravitational-wave component of the data. The following
sections describe this procedure for the case of simulated
data consisting of Gaussian white detector noise plus a
superposition of sinusoidal signals from an astrophysical
population of gravitational-wave sources.

III. BAYESIAN INFERENCE APPLIED TO
NON-GAUSSIAN BACKGROUNDS

In this section we specify the various probability dis-
tributions, likehood functions, prior and posterior distri-

butions, etc. that we will need in order to apply Bayesian
inference to searches for non-Gaussian gravitational-wave
backgrounds. Readers interested in more details regard-
ing some of the calculations performed in this section
should consult e.g., [19].

A. Noise and signal probability distributions

For simplicity, consider the simple case of N samples
of data in a pair of co-located and co-aligned detectors:

s1 = n1 + h , s2 = n2 + h , (2)

where s1 = [s11, s12, · · · s1N ]T , etc. We will assume that
the noise in each detector is Gaussian, white, and inde-
pendent of one another, with zero mean and variance σ2

1 ,
σ2
2 :

pn(n|~θn) =
1√

det(2πCn)
e−

1
2 nTC−1

n n , (3)

where

n =

[
n1

n2

]
, Cn =

[
σ2
1 1N×N 0N×N
0N×N σ2

2 1N×N

]
, (4)

and ~θn = {σ1, σ2}. The signal h, which is common to
both detectors, is assumed to come from a probability

distribution ph(h|~θh), which need not be Gaussian. The

probability distribution ph(h|~θh) is called a parame-

terized signal prior and ~θh are called hyperparameters
[20, 21]. Examples of parameterized signal priors include:

(i) Gaussian, white signal prior:

ph(h|~θh) =

N∏
i=1

1√
2πσ2

h

e−h
2
i /2σ

2
h , (5)

where ~θh = {σh}.

(ii) Two-component Gaussian, white signal prior:

ph(h|~θh) =

N∏
i=1

[
ξ

1√
2πα2

e−h
2
i /2α

2

+(1− ξ) 1√
2πβ2

e−h
2
i /2β

2

]
, (6)

where ~θh = {ξ, α, β}. The two-component Gaussian
signal prior reduces to the Gaussian signal prior in the
limit ξ → 1. It reduces to the Drasco and Flanagan
signal prior [8] in the limit β → 0. The Drasco and
Flanagan signal prior corresponds to Gaussian bursts
with root-mean-square (rms) amplitude α and probabil-
ity 0 ≤ ξ ≤ 1.
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(iii) Non-standardized Student’s t-distribution signal
prior:

ph(h|~θh) =

N∏
i=1

[
Γ
(
ν+1
2

)
αΓ

(
ν
2

)√
πν

(
1 +

1

ν

h2i
α2

)− ν+1
2

]
, (7)

where

Γ(ν) =

∫ ∞
0

dx xν−1e−x (8)

is the Gamma function and ~θh = {ν, α}. The above
distribution is an extension of the standard Student’s t-
distribution, which includes a scaling parameter α in ad-
dition to the number of degrees of freedom, ν > 0 (real).
(The t of Student’s t-distribution is given by hi/α.) The
scaling parameter α is related to the variance of each hi
by

σ2
h = α2 ν

ν − 2
, for ν > 2 . (9)

For ν → ∞, the non-standardized Student’s t-
distribution becomes a Gaussian distribution with the
above variance.

(iv) Multi-sinusoid signal prior:

ph(h|~θh) = δ
(
h− h(~θh)

)
, (10)

hi(~θh) =

M∑
I=1

AI cos(2πfIti − ϕI) , (11)

where i = 1, 2, · · · , N and ~θh = {AI , fI , ϕI |I =
1, 2, · · · ,M}. Here M can take on any value between
0 and Mmax, where Mmax is the maximum number of
allowed sinusoids (e.g., Mmax = 100). This is a deter-
ministic signal model corresponding to the superposition
of M individually resolvable sinusoids.

Although it is possible to write down more compli-
cated non-Gaussian signal priors (since there are an in-
finite number of ways for a signal to be non-Gaussian),
for the analysis considered in this paper, we will restrict
ourselves to those given above.

B. Likelihood functions

To construct the likelihood function, we first adopt a
waveform template h and form the residuals r1 = s1 −h
and r2 = s2 − h. We demand that the residuals be con-
sistent with the probability distribution for the noise (cf.
(3)), which gives rise to a multivariate Gaussian likeli-
hood function for the data:

p(s|~θn,h) ≡ pn(r|~θn) =
1√

det(2πCn)
e−

1
2 rTC−1

n r , (12)

where

s =

[
s1
s2

]
, r =

[
s1 − h
s2 − h

]
. (13)

But since h are random variables for stochastic signal

models or specified functions of the parameters ~θh for
deterministic signal models, we are not interested in the
particular values of h, but rather in the values of the

parameters ~θh that define the signal prior ph(h|~θh). We
thus marginalize over h by performing the integral:

p(s|~θ) ≡ p(s|~θn, ~θh) =

∫
dh p(s|~θn,h) ph(h|~θh) . (14)

Here ~θ ≡ {~θn, ~θh} denotes the combined set of noise and
signal parameters.

(i) For the Gaussian signal prior, we find:

p(s|~θ) =
1√

det(2πCs)
e−

1
2 sTC−1

s s , (15)

where

Cs = Cn + σ2
h

[
1N×N 1N×N
1N×N 1N×N

]
. (16)

The likelihood function given by (15) and (16) has
the standard form used as the starting point for
cross-correlation analyses for Gaussian stochastic back-
grounds [18, 22].

(ii) For the two-component Gaussian signal prior,
we obtain a two-component Gaussian distribution for
the marginalized likelihood, with covariance matrices
similar to (16), but with σ2

h replaced by α2 and by β2

for the two components, respectively:

p(s|~θ) = ξ
1√

det(2πCα)
e−

1
2 sTC−1

α s

+ (1− ξ) 1√
det(2πCβ)

e−
1
2 sTC−1

β s , (17)

where

Cα = Cn + α2

[
1N×N 1N×N
1N×N 1N×N

]
(18)

and similarly for Cβ .

(iii) For the non-standardized Student’s t-distribution,
the marginalization integrals are all of the form:∫ ∞
−∞

dhi e
− 1

2

(s1i−hi)
σ21 e

− 1
2

(s2i−hi)
σ22

(
1 +

1

ν

h2i
α2

)− ν+1
2

. (19)

Unfortunately, we do not know how to analytically
evaluate such an integral. It is possible to consider an
Edgeworth expansion of the Student t-distribution in
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terms of its non-zero cumulants, c2, c4, · · · . But then
truncating the expansion after a finite number of terms
would produce a different non-Gaussian distribution,
that would behave differently in model comparision tests
from the full Student’s t-distribution. Thus, if we want
to use this distribution as one of our non-Gaussian signal
models, we would need to evaluate the above integrals
numerically.

(iv) For the deterministic multi-sinusoid signal model,
the marginalized likelihood is simply

p(s|~θ) =
1√

det(2πCn)
e−

1
2 (s−h(~θh))TC−1

n (s−h(~θh)) . (20)

C. Posterior distributions and Bayesian model
selection

The posterior distribution for a subset of the noise and

signal parameters ~θ ≡ {~θn, ~θh} is obtained by marginal-
izing over the other noise and signal parameters. For
example, for the Gaussian signal model, the posterior
distribution for the signal parameter σh is obtained by
evaluating the following integral:

p(σh|s) =

∫
dσ1

∫
dσ2 p(σ1, σ2, σh|s) . (21)

Similar integrals will give the posterior distributions for
σ1 and σ2.

In a similar manner, we can calculate the posterior
probability distribution for a signal+noise model M us-
ing Bayes’ theorem in the form

p(M|s) =
p(s|M)π(M)∑
I p(s|MI)π(MI)

. (22)

The quantity p(s|M) is called the evidence for modelM.

It is just the likelihood function p(s|~θ,M) marginalized
over the parameter values

p(s|M) =

∫
d~θ p(s|~θ,M)π(~θ|M) , (23)

where we have explicitly indicated the model dependence
of both the prior and likelihood function.

To compare two models MI and MJ , we simply take
the ratio of the posterior probability distributions for
these two models:

p(MI |s)
p(MJ |s)

=
p(s|MI)π(MI)

p(s|MJ)π(MJ)
. (24)

Note that the the common factor
∑
I p(s|MI)π(MI) has

canceled out when forming the ratio. The left-hand side
of the above equation is the posterior odds ratio for model
MI relative to MJ ; we see from this equation that it

BIJ(s) 2 lnBIJ(s) Evidence for model MI relative to MJ

< 1 < 0 Negative (supports model MJ)
1–3 0–2 Not worth more than a bare mention
3–12 2–5 Positive

12–150 5–10 Strong
> 150 > 10 Very strong

TABLE I: Bayes factors and their interpretation in terms of
the evidence in favor of one model relative to the other.

equals the prior odds ratio times the ratio of the evi-
dences. This ratio of evidences is called the Bayes factor
and is denoted by

BIJ(s) ≡ p(s|MI)

p(s|MJ)
. (25)

In many circumstances there is no a priori reason to pre-
fer one model over another (i.e., the prior odds ratio is
unity), so for these cases the posterior odds ratio is just
the Bayes factor. If we fix some model, e.g., M0, and
calculate the Bayes factors of all the other models rela-
tive to M0, the model with the largest Bayes’ factor is
the preferred model given the data.

Table I gives a list of possible Bayes factor values and
their interpretation in terms of the evidence in favor of
one model relative to another. The interpretation is
based on betting odds, and the precise level at which
one considers the evidence for a model to be strong or
very strong is quiet subjective.

D. Comparison to maximum-likelihood analyses

It is interesting to compare the Bayesian model selec-
tion calculation discussed above to a maximum-likelihood
frequentist analysis, e.g., that presented in [8]. There
they construct a detection statistic by maximizing the
likelihood ratio for a signal+noise modelM1 to the noise-
only model M0:

ΛML(s) ≡
max~θn max~θh p(s|

~θn, ~θh,M1)

max~θ′n
p(s|~θ′n,M0)

. (26)

The Bayes factor calculation also involves a ratio of two
quantities, but instead of maximizing over the parame-
ters, we marginalize over the parameters:

B10(s) ≡ p(s|M1)

p(s|M0)
(27)

=

∫
d~θn

∫
d~θh p(s|~θn, ~θh,M1)π(~θn, ~θh|M1)∫
d~θ′n p(s|~θ′n,M0)π(~θ′n|M0)

.

(28)

These two expressions can be related to one another by
using the Laplace approximation to individually approx-
imate the evidences p(s|M1) and p(s|M0). As shown in
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App. A,

p(s|M) ' p(s|~θML)
∆VM
VM

, (29)

where ∆VM/VM is the fraction of the parameter space

volume for model M needed to fit the data, and ~θML

are the particular values of the model parameters that
maximize the likelihood. Thus,

B10(s) ' ΛML(s)
∆V1/V1
∆V0/V0

, (30)

which shows that the Bayes factor is proportional to the
frequentist maximum-likelihood ratio. The proportional-
ity constant is the Occam’s factor mentioned in Sec. II,
which penalizes a model if its parameter space volume is
larger than necessary to fit the data.

E. Signal-to-noise ratios

One of the parameters that we will use to describe
the simulations in Sec. V is the ratio of the power in
the injected signals to that of the detector noise. For
a stochastic gravitational-wave background described by
the one-sided strain power spectral density Sh(f), the
expected signal-to-noise ratio of the optimally-filtered
cross-correlation statistic in a pair of detectors I, J is
given by [23]

SNR2
∣∣
stoch

=
√

2T

[∫ ∞
0

df
Γ2
IJ(f)S2

h(f)

PnI (f)PnJ (f)

]1/2
, (31)

where ΓIJ(f) is the overlap function between detectors
I and J (see, e.g., [24, 25]). For a pair of identical,
co-located and co-aligned detectors the above expression
simplifies to

SNR2
∣∣
stoch

=
√

2T

[∫ ∞
0

df
P 2
h (f)

P 2
n(f)

]1/2
, (32)

where Ph(f) ≡ ΓII(f)Sh(f) is the gravitational-wave
power in a single detector. We are assuming here that the
signal power is weak relative to the noise, so that the total
power in detector I is given by PI(f) ≡ Ph(f)+PnI (f) ≈
PnI (f).

For a deterministic signal described by the strain re-
sponse h̃(f), it is often more convenient to work with the
matched-filter signal-to-noise ratio, which has expected
value

SNR2
∣∣
det

= 4

∫ ∞
0

df
|h̃(f)|2

Pn(f)
= 2T

∫ ∞
0

df
Ph(f)

Pn(f)
. (33)

For this case Ph(f) = 2
T |h̃(f)|2 is the one-sided power

spectral density for the signal. Note that for determin-
istic signals, the squared signal-to-noise ratio scales with
the number of frequency bins Nbins, while for stochastic
signals it scales like

√
Nbins.

IV. SIGNAL+NOISE MODELS AND PRIORS

We consider the following five models for describing
the signal and noise:

M0 - Noise-only model:

This is a noise-only model, which assumes uncor-
related, white Gaussian noise in the two detec-
tors. There are only two parameters for this model,
~θ = {σ1, σ2}. For our simulations, the prior on the
noise variances are flat between 0 and 10.

M1 - Noise plus Gaussian stochastic model:

White Gaussian detector noise plus a white Gaus-
sian gravitational-wave background. There is one
additional parameter corresponding to the variance

σ2
h of the background, so ~θ = {σ1, σ2, σh}. The

prior on σ2
h is also between 0 and 10, just like the

detector noise variances.

M2 - Noise plus non-Gaussian (two-component) stochas-
tic model:

White Gaussian detector noise plus a white two-
component Gaussian model for the gravitational-
wave background. There are three parameters for
the two-component Gaussian model: the variances
α2 and β2 for the two components, and the proba-
bility ξ of one of the components. (The probability
of the other component necessarily equals 1 − ξ.)
Thus, ~θ = {σ1, σ2, α, β, ξ}. The prior on ξ is flat
from 0 to 1. The prior on the variances are 0 to 10
for the wide component and 0 to 0.5 on the narrow,
delta-function-like component.

M3 - Noise plus deterministic multi-sinusoid signal
model:

White Gaussian detector noise plus up to 100 de-
terministic sinusoids. There are three parameters
{AI , fI , ϕI} corresponding to the amplitude, fre-
quency, and phase for each sinusoid. Thus, for M
sinusoids, there are 2+3M pameters for this partic-

ular model ~θ = {σ1, σ2, AI , fI , ϕI |I = 1, 2, · · ·M}.
The prior on the amplitudes is uniform in the range
A ∈ [0, 1000], and the prior on the frequencies is
uniform across the range spanned by the data. The
prior on the phases is uniform between 0 and 2π.

M4 - Noise plus deterministic multi-sinusoid plus Gaus-
sian background model:

White Gaussian detector noise plus a Gaussian
gravitational-wave background plus up to 100 sinu-
soids. As for M3, there are three parameters (am-
plitude, frequency, and phase) for each sinusoid.
Thus, for M sinusoids, there are 2+1+3M param-

eters for this model ~θ = {σ1, σ2, σh, AI , fI , ϕI |I =
1, 2, · · ·M}. The priors on the parameters are the
same as in the previous models. This hybrid model
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allows us to effectively ‘subtract out’ any suffi-
ciently bright sinusoidal signals in the data.

Note that we do not consider a hybrid “noise plus
deterministic multi-sinusoid plus non-Gaussian back-
ground” model in the above list, as we expect the
subtraction of the bright sinusoids to remove most of
the non-Gaussianity of the signal component. Also,
as we shall discuss further in Sec. V, we do not con-
sider a signal+noise model with a non-standardized
Student’s t-distribution for the non-Gaussian stochas-
tic gravitational-wave component. This is because of
the computational costs associated with the marginalized
likelihood evaluations (see Eq. (19)), which are needed for
the Bayesian model selection calculations.

V. SIMULATIONS

A. Astrophysical source populations

Simulated data is generated by co-adding sinusoidal
signals with amplitudes drawn from one of three astro-
physical models. The frequencies and phases of the sinu-
soids are drawn uniformly from the prior ranges defined
in the previous section. Gaussian-distributed noise with
a white power spectrum is then added to the signals.
The amplitude of the signals is scaled so as to produce
a pre-specified matched-filter signal-to-noise ratio (SNR)
per frequency bin, calculated as an average across all fre-
quency bins, using Eq. (33).

Figure 1 is a plot of the squared amplitude of the noise
and signal components for a typical simulation using two
detectors. For an SNR-per-bin of 1, the amplitudes of the
astrophysicals signals are of the same order-of-magnitude
as the noise in the two detectors, as can be seen in the
figure.

We considered three astrophysical source models:
Model S0 uniformly distributes standard sirens (sources
with the same intrinsic amplitude) in space out to some
cutoff radius r = R, after which the density falls-off ex-
ponential with an e-folding scale of 0.25R. Model S1
distributes standard sirens with a Gaussian distribution
in distance with density ρ ∝ e−r2/2R2

. For model S0 the
number of sources in a spherical shell of radius r is pro-
portional to r2 out to r = R. For model S1 the number of
sources in a spherical shell of radius r is proportional to

the product r2e−r
2/2R2

, and thus has a larger number of
sources at smaller r, as compared to the uniform distri-
bution case. Model S2 is based on a population synthesis
model for supermassive black hole binaries [26], where
the amplitude of the sources depends on both the mass
of the system and the distance. The usual frequency de-
pendence of the amplitude was artificially suppressed so
as to produce a white spectrum.

The amplitude distributions for the three models are
shown in Fig. 2. Models S0 and S1 have similar amplitude
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FIG. 1: The squared amplitude of the noise and signal compo-
nents for data in two coincident and coaligned detectors con-
sisting of white noise and a superposition of sinusoids drawn
from astrophysical source population S2, with a source den-
sity of 0.1/bin in 128 frequency bins and an average SNR-per-
bin of 1. The SNR is dominated here by the four brightest
sources.

distributions that are fairly tightly peaked, while model
S2 has a large tail extending to high amplitude.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6  7  8

Amplitude

model 0
model 1
model 2

FIG. 2: Amplitude distributions for the three astrophysical
source distributions considered in this study. The amplitude
scale is arbitrary since the signal-to-noise ratios are set when
producing simulated data sets drawn from these distributions.
Models S0 and S1 are for “standard sirens” (equal intrinsic
amplitude sources) with different spatial distributions, while
model S2 is based on a population synthesis model where some
sources have much higher intrinsic amplitudes than others.
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B. Markov Chain Monte Carlo methods

We performed two types of analyses, both of which em-
ployed trans-dimensional Reversible Jump Markov Chain
Monte Carlo (RJMCMC) algorithms. The first type of
analysis looked at the signal in a single detector with
no instrument noise. There the goal was to find which
of three statistical models best described the intrinsic
properties of the signal: a Gaussian distribution, a two-
component Gaussian distribution; or a non-standardized
Student’s t-distribution. A RJMCMC analysis extends
the usual MCMC exploration of the parameters of a sin-
gle model to the exploration of a range of models and
their parameters, thus allowing us to produce marginal-
ized posteriors for both the model parameters and pos-
terior distributions for the relative probability that each
model is consistent with the data and our prior knowl-
edge. In principle, a single RJMCMC routine could
explore all three probability distributions at once, but
we were able to achieve better mixing by performing
pair-wise comparisons between the Gaussian and two-
component Gaussian models and the Gaussian and the
non-standardized Student’s t model. The ratio of the
number of iterations the Markov chain spends in each
model yields Bayes factors between the Gaussian refer-
ence model and the two non-Gaussian alternatives.

The second type of analysis considered the detection
and characterization of the astrophysical signals in the
presence of detector noise in a two-detector network.
Here we considered the five models described in Sec. IV.
Once again, a single RJMCMC routine could simultane-
ously explore all five models, but achieving efficient mix-
ing between models with different parameterizations and
dimensionality is notoriously difficult. Instead, we again
opted for a pairwise approach, comparing the noise-only
model M0 to each of the four signal+noise models in
turn. This yields a collection of Bayes factors between
the reference noise model and the four signal models. It
is important to note that models M3 and M4 are both
complicated composite models that allow for a variable
number of sinusoids to be used in the model. ModelM4

further allows for, but does not require, a Gaussian sig-
nal component. ThusM4 contains modelsM3,M1 and
M0 as sub-cases. If we had included a two-component
Gaussian in M4, then we would have been able to ex-
plore all four signal models at once. We did check that
the relative probabilities for the sub-models included in
M4 were consistent with the relative probabilities found
in the pair-wise comparisons, though the larger model
space did lead to larger uncertainties on the Bayes fac-
tors. The uncertainties were computed from the variance
of the running Bayes factors, and compared to analytic
estimates based on the number of transitions between
the models [17]. Both methods yielded consistent error
estimates. We further checked that the error estimates
were consistent with the spread seen when repeating the
analysis dozens of times with different random number
seeds.

C. Classifying the signals

We begin looking at the statistical properties of the
signals themselves. While this is not something we can
do with actual observations where the signals must be ex-
tracted from noisy data, it is interesting to compare the
observed properties of the signals to the intrinsic proper-
ties of the signals.
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FIG. 3: Histogram of signal samples and the correspond-
ing best fit single-Gaussian, double-Gaussian, and non-
standardized Student’s t-distribution for a signal consisting
of a superposition of sinusoids drawn from an astrophysical
population with a source density of 0.1/bin in 256 frequency
bins and an SNR-per-bin of 1.

Figure 3 is a histogram of signal samples as well as the
best fit Gaussian (“single gauss”), two-component Gaus-
sian (“double gauss”), and non-standardized Student’s
t-distribution for a simulated signal with an average den-
sity of one source per ten frequency bins. As expected
for such a sparse population, the single-Gaussian fit is ex-
tremely poor compared to the two-component Gaussian
or non-standardized Student’s t-distibution fit.

Figure 4 is a plot of Bayes factor quantile intervals as a
function of the total number of frequency bins, compar-
ing the two-component Gaussian and non-standardized
Student’s t-distribution models to the reference Gaus-
sian model. The source density was set to 10/bin for
these simulations. The two panels correspond to astro-
physical source models S0 and S1. In the upper panel
the astrophysical sources were drawn from source model
S0. In the lower panel, the astrophysical sources were
drawn from source model S1. There was no detector
noise in these simulations. Note that the Bayes factors
in the lower panel are shifted slightly higher relative to
those in the upper panel, consistent with the expectation
that the Gaussian-distributed astrophysical source popu-
lation will tend to produce closer—and hence more-easily
resolvable—sources. We see that at this relatively high
source density, we need a large amount of data (many fre-
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FIG. 4: Bayes factor 80% quantile intervals for the two-
component Gaussian and non-standardized Student’s t-
distribution signal models as a function of the total number
of frequency bins. The source density was set to 10/bin for all
the simulations. In the upper panel the astrophysical sources
were drawn from the source model S0. In the lower panel the
astrophysical sources were drawn from source model S1.

quency bins) to detect the subtle departure from Gaus-
sianity.

We should emphasize that the quantile intervals shown
in Fig. 4 (and in several other figures to follow) define the
probability distribution for the Bayes factor values as es-
timated from 256 independent realizations of the simu-
lated signal and noise for each set of parameter values:
these are not error bars on the individual Bayes factors.
For a single realization of the simulated signal and noise,
the uncertainty in the value of the Bayes factor as esti-
mated from 128 independent Monte Carlo simulations is
. 10%, which we can ignore in the quantile plots.

Figure 5 is a similar plot of Bayes factor quantile
intervals as a function of the number of sources per
bin, comparing the two-component Gaussian and non-
standardized Student’s t-distribution. The total number
of bins was set to 128 and the signals were drawn from
astrophysical source model S0. As expected from the
central limit theorem, the simulated data is consistent

with a Gaussian probability distribution when the aver-
age number of signals per frequency bin is large. It is
interesting to note the large spread in the Bayes factors
in the transition region between 1 and 10 sources per bin.
This tells us that some realizations look Gaussian, while
others look highly non-Gaussian.
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FIG. 5: Bayes factor 80% quantile intervals for the two-
component Gaussian and non-standardized Student’s t-
distribution signal models as a function of the total number
of sources per bin. The total number of bins was set to 128
and the astrophysical sources were drawn from source model
S0.

Similar to the results shown in Fig. 4, the non-
standardized Student’s t-distribution model has consis-
tently higher Bayes factors than the two-component
Gaussian model. This suggests using it over the
two-component Gaussian model when modeling non-
Gaussian stochastic signals. However, the fact that
we are not able to find an analytic expression for
the corresponding marginalized likelihood function (see
Eq. (19)) means that the Student’s t-distribution model
has a much higher computational cost than the two-
component Gaussian model. As such, for all subse-
quent model comparison simulations that we do—which
include simulated noise in a two-detector network—we
use the two-component Gaussian stochastic model in-
stead of the more expensive non-standardized Student’s
t-distribution model.

D. Detecting and characterizing signals in noisy
detector data

Next we turn our attention to the observed properties
of the signals in a more realistic setup that includes in-
strument noise and a network with two co-aligned and
co-located detectors. A multi-detector analysis is needed
to distinguish signals from noise. In this study we need
to consider the dependence on SNR, in addition to the
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dependence on source density and data volume (number
of frequency bins). In the infinite SNR limit we recover
the pure signal analysis described in the previous section.
For more realistic SNRs, a signal that is best described
as deterministic or non-Gaussian in the absence of noise
may favor a stochastic or Gaussian description in the
presence of noise when model simplicity wins out over
model fidelity.

In addition to the Gaussian and two-component Gaus-
sian signal models (M1 and M2), we additionally con-
sider a deterministic model made up of the sum of si-
nusoids (M3), and a hybrid model with a Gaussian-
stochastic component and a collection of sinusoids (M4).
Figure 6 compares the cross-correlated data in two detec-
tors to a marginalized posterior distribution for the fre-
quencies used by the multi-component sinusoid model. In
this instance, the brightest sinusoid in the data was con-
fidently detected, as indicated by the large peak in the
posterior distribution. The second and third brightest
signals in the data were marginally detected, as indicated
by the secondary peaks in the posterior distribution.
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FIG. 6: The cross-correlated signal+noise in the two detec-
tors for the simulated data shown in Fig. 1 is compared to
the scaled posterior density for the frequencies of the sinu-
soids found by a trans-dimensional MCMC analysis of the
data. The three brightest signals in the data had amplitudes
and frequencies (A = 4.46, f = 22.45 Hz), (A = 4.41, f =
110.66 Hz) and (A = 3.73, f = 39.23 Hz). Only the bright-
est of these was a clear detection, though the analysis did
occasionally lock onto the other signals.

The question of whether the data is best described by
a deterministic model, a non-Gaussian stochastic model
or a Gaussian-stochastic model depends on many factors,
including the source density, the noise level, the number
of frequency bins and the SNR-per-bin. In what follows
we explore the impact of each of these factors.

A major challenge that we face is that the outcomes
vary greatly from one simulation to the next, especially
in the limit that there are few sources and/or few fre-
quency bins. To counter this we performed a large num-
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FIG. 7: The fraction of times a non-Gaussian model has
higher evidence than the Gaussian model as a function of the
source density for the three source models. For these simula-
tions the number of bins was fixed at 32 and the average SNR-
per-bin was fixed at 2. Upper panel: The fraction of times
the deterministic, multi-sinusoid model M3 had higher evi-
dence than the Gaussian-stochastic model M1. Lower panel:
The fraction of times the stochastic two-component Gaussian
model M2 had higher evidence than the Gaussian-stochastic
model M1.

ber of simulations and aggregated the results. When
showing Bayes factors between the various signal models
and the noise model, we display the mean values along
with the 80% quantile intervals derived from the ensem-
ble of simulations. More directly, we also report the frac-
tion of times each model had the highest Bayesian ev-
idence on a realization-by-realization basis. While the
general trend is that the Gaussian model is more likely
to be favored as the number of sources per bin increases,
the deterministic model can sometimes be preferred at
high source density, and the Gaussian-stochastic model
can sometimes be preferred at low source density. Note
that while ground and space-based interferometric de-
tectors and pulsar timing arrays nominally cover much
larger frequency bands than we consider here, their “V”
shaped sensitivity curves limit the effective number of
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frequency bins to 100’s for interferometers and 10’s for
pulsar timing arrays.

Figure 7 shows the fraction of times that a non-
Gaussian model has higher evidence than the Gaussian
model as a function of the source density for the three
source models. Here the number of bins was fixed at 32
and the average SNR-per-bin was fixed at 2. The general
trend is as expected from the central limit theorem—as
the number of signals per frequency bin grows the data
looks less deterministic and more Gaussian. The more
realistic source model S2, which has a variety of intrinsic
source luminosities, was consistently less Gaussian than
source models S0 and S1, which assumed equal luminos-
ity sources. Even at high source densities, model S2 could
appear deterministic or non-Gaussian.
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FIG. 8: Upper panel: Bayes factor 80% quantile intervals for
the four different signal+noise models relative to the noise-
only model as a function of the number of sources per bin. The
total number of bins was set to 32 for these simulations, and
the astrophysical sources were drawn from source model S2.
The SNR-per-bin was fixed at 2, with different realizations of
noise used for the different simulations. Lower panel: Fraction
of time that the different models had the largest Bayes factor
for the different simulations.

Figure 8 extends the study of the dependence on the
source density to include the full set of signal models,

and in addition to showing the fraction of time that each
model is favored, also shows the Bayes factor quantile
intervals for the four signal models. The total number of
bins was set to 32 for these simulations, which included
simulated noise in addition to the simulated astrophysical
signals from source model S2. For these simulation the
SNR-per-bin was fixed at 2, with different realizations of
the noise used for the different simulations. Note that
for low source densities, the models that include deter-
ministic sinusoid signals are the preferred models. The
effectiveness of models having Gaussian or non-Gaussian
stochastic signal components improve as the source den-
sity increases. As expected, the hybrid model performs
best for all source densities.

-10

-5

 0

 5

 10

 15

 20

 25

 30

 10  100

2
 l
n

(b
a

y
e

s
 f

a
c
to

r)

number of frequency bins

gauss plus noise
nongauss plus noise
sinusoids plus noise

sinusoids plus gauss plus noise

]

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100

F
ra

c
ti
o

n
 o

f 
ti
m

e
s
 w

it
h

 l
a

rg
e

s
t 

B
F

number of frequency bins

noise-only
gauss plus noise

nongauss plus noise
sinusoids plus noise

sinusoids plus gauss plus noise

FIG. 9: Upper panel: Bayes factor 80% quantile intervals for
the four different signal+noise models relative to the noise-
only model as a function of the total number of frequency bins.
The source density was set to 1/bin for all the simulations, and
the astrophysical sources were drawn from source model S2.
The SNR-per-bin was fixed at 2, with different realizations of
noise used for the different simulations. Lower panel: Fraction
of time that the different models had the largest Bayes factor
for the different simulations.

Figure 9 shows how the model selection results are
affected by the number of frequency bins, keeping the
source density fixed at one-per-bin and the SNR-per-bin
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fixed at 2. As the number of frequency bins increases, the
chances of having one or two loud sources dominate the
total signal increases, and consequently, the determinis-
tic multi-sinudoid model and the two-component Gaus-
sian stochastic models are more likely to outperform the
Gaussian model.
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FIG. 10: Upper panel: Bayes factor 80% quantile intervals for
the four different signal+noise models relative to the noise-
only model as a function of SNR-per-bin. The total number
of bins was set to 32 and the source density to 1/bin for all
the simulations. The astrophysical sources were drawn from
source model S2. Lower panel: Fraction of time that the
different models had the largest Bayes factor for the different
simulations.

Finally, Figure 10 shows how the model selection is
affected by the SNR-per-bin, keeping the source density
fixed at one-per-bin and the number of bins fixed at 32.
The Bayes factors for all the signal+noise models increase
quadratically with increasing SNR-per-bin, which is to be
expected when compared to the noise-only model. For
sufficiently large SNR-per-bin (so that the signal is de-
tected by all the models), the relative performance of the
various signal models is independent of the SNR-per-bin.

VI. DISCUSSION

We presented a Bayesian search for non-Gaussian
gravitational-wave backgrounds. We found that a
gravitational-wave signal comprised of the sum of discrete
sources drawn from some astrophysical population may
be best described as either deterministic, non-Gaussian
stochastic, or Gaussian-stochastic depending on the num-
ber of sources, and the size of the data set. In our stud-
ies the simulated data were produced by adding together
multiple sinusoids with amplitudes drawn from one of
three astrophysical source distributions, to which was
added an independent white noise realization in each de-
tector. While the deterministic signal model M3, made
up of a variable number of sinusoids, is able to precisely
match the simulated data, the simpler GaussianM1 and
non-GaussianM2 stochastic signal models are often pre-
ferred. The general trend follows our expectation that
the signals appear increasingly stochastic and Gaussian
as the number of sources per frequency bin increases. We
found that departures from Gaussianity are more likely
to be detected in large data sets (in our case, for large
numbers of frequency bins), but that the ability to distin-
guish between the various signal models was independent
of the SNR (once the signal became detectable). In all
cases, a hybrid model, M4, that combines variable con-
tributions from deterministic and stochastic signals that
are determined by the data, outperformed each of the sin-
gle element models most of the time. This finding may be
of particular relevance to the detection of low frequency
gravitational waves by pulsar timing arrays.

Although for simplicity we considered co-located
and co-aligned detectors and white power spectra, the
method can easily be extended to handle more realis-
tic detector geometry (i.e., separated and misaligned
detectors) as well as colored noise and signal spectra.
For example, a black hole population typically has more
bright signals at low frequencies. There are also many
other signal and noise models that can be considered.
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Appendix A: Bayes factor calculation

Suppose we have two models that we would like to

compare, denoted M1 and M0, with parameters ~θ1 and
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~θ0, respectively. As described in Sec. III C, the Bayes
factor B10(s) for model M1 relative to model M0 given
observed data s is defined by

B10(s) =
p(s|M1)

p(s|M0)
, (A1)

where

p(s|M) =

∫
d~θ p(s|~θ,M)π(~θ|M) (A2)

for either model (i.e., M = M0 or M1). The quantity
p(s|M) is called the evidence for model M. The Bayes
factor is the ratio of the evidences for the two models; it
equals the posterior odds ratio for the two models if they
have equal a priori probabilities.

Since analytic or direct calculations of the evidence
integrals is usually not possible, we need to estimate the
Bayes factor numerically. In this appendix, we describe
a few of the methods used for the study described in
this paper. Readers interested in more details should see
Sec. II of [27].

1. Laplace approximation

If we assume that the data is informative, so that the
likelihood function is peaked relative to the prior proba-
bility distribution, then we can use the Laplace approxi-
mation to estimate the evidence integral (A2):

p(s|M) ' p(s|~θML,M)
∆VM
VM

, (A3)

where ~θML ≡ ~θML(s) maximizes the likelihood p(s|~θ,M)

with respect to variations of ~θ; ∆VM is the characteristic
width of the likehood function around its maximum; and
VM is the total parameter space volume for the model
parameters. The ratio ∆VM/VM can be thought of as an
Occam’s factor, which penalizes a model if its parameter
space volume is larger than needed to fit the data. Doing
this calculation for both M0 and M1, and then taking
the ratio of the two results, we find

B10(s) ' p(s|~θ1,ML,M1)

p(s|~θ0,ML,M0)

∆V1/V1
∆V0/V0

(A4)

= ΛML(s)
∆V1/V1
∆V0/V0

, (A5)

where ΛML(s) is the maximum-likelihood ratio.
As a very simple example, consider the case of N sam-

ples of data s, consisting of a unknown constant signal
in additive white Gaussian-stationary noise with known
variance σ2. Let M0 denote the noise-only model with
likelihood function

p(s|M0) =

N∏
i=1

1√
2πσ2

e−s
2
i /2σ

2

, (A6)

and let M1 be the signal+noise model defined by the
likelihood function

p(s|θ,M1) =

N∏
i=1

1√
2πσ2

e−(si−θ)
2/2σ2

, (A7)

and prior π(θ) = 1/θmax, where θ ∈ [0, θmax] is the un-
known signal amplitude. Then one can easily show that
the maximum-likelihood parameter value is the sample
mean

θML(s) =
1

N

N∑
i=1

si ≡ s̄ , (A8)

and the Bayes factor for the signal+noise modelM1 rel-
ative to the noise-only model M0 is:

B10(s) ' σ/
√
N

θmax
exp

[
1

2

s̄2

σ2/N

]
. (A9)

It has logarithm

2 lnB10(s) ' 2 ln

(
σ/
√
N

θmax

)
+

s̄2

σ2/N
. (A10)

Since σ̄2 ≡ σ2/N is the variance of the sample mean s̄
(or, equivalently, it is the characteristic width of the like-
lihood function around its maximum value), we see that
twice the log of the Bayes factor is effectively the squared
SNR of the maximum-likelihood estimator θML(s). The
first term on the right-hand side of Eq. (A10) is the Oc-
cam’s penalty factor associated with the size of the pa-
rameter space volume θmax. This term is negative and
reduces the value of the log of the Bayes factors if in-
creases N while θmax and σ are held fixed.

2. Savage-Dicke density ratio

The Savage-Dicke density ratio can be defined when-
ever model M0 is a subset of model M1, and the prior
probabilities factorize. Both of these conditions hold, for

example, if ~θ1 = {~θ0, ~θextra}, with

π(~θ1|M1) = π(~θ0|M0)π(~θextra|M1) (A11)

and

p(s|~θ0,M0) = p(s|~θ1,M1)
∣∣
~θextra=~θextra,0

(A12)

for some fixed set of parameter values ~θextra,0. The
Savage-Dicke density ratio r10(s) is then defined as

r10(s) ≡ π(~θextra,0|M1)

p(~θextra,0|s,M1)
, (A13)

where p(~θextra,0|s,M1) is the marginalized probability
density function

p(~θextra|s,M1) =

∫
d~θ0 p(~θ0, ~θextra|s,M1) (A14)
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evaluated at ~θextra = ~θextra,0. Using Bayes’ theorem in
the form

p(~θ0, ~θextra|s,M1) =
p(s|~θ0, ~θextra,M1)π(~θ0, ~θextra|M1)

p(s|M1)
(A15)

and Eqs. (A11) and (A12), one can show that

r10(s) = B10(s) (A16)

exactly. The advantage of using the expression for the
Savage-Dicke density ratio to estimate the Bayes factor
is that it only requires exploration of the posterior dis-
tribution for model M1.

3. Reversible jump MCMC

Reversible jump, or trans-dimensional MCMC algo-
rithms, explore the space of models in addition to the
parameters of each model. The Bayes factor between
two models M0 and M1 is simply estimated from the
ratio of the number of iterations that the chain spends
in each model:

B10(s) =
number of interations in model M1

number of interations in model M0
. (A17)

The accuracy of the estimate depends on the number
of transitions between the two models—the more tran-

sitions, the more accurate the estimate. The problem
with this simple approach is that it becomes difficult to
compute Bayes factors smaller than 10−3 or larger than
103, since the chains spend very little time in the dis-
favoured model, and hence the exploration of that model
can fail to converge to the stationary state. Ideally, we
would like the chain to spend an equal amount of time in
each model, so that all models are explored equally well
(that is, assuming each model has a comparable dimen-
sionality; if the model dimensions are significantly differ-
ent, more time should be spent exploring in the higher-
dimensional model).

To achieve good mixing within each model and be-
tween models, we introduce an artificial prior weighting
on the models that compensates for the difference in the
Bayes factors. For example, if the Bayes factor between
two models is 1000, we introduce a prior that favors the
low probability model by a factor of 1000, so the chains
spend an equal number iterations in each model [28].
Since the appropriate weighting is not known in advance,
an iterative scheme is used that adjusts the artificial prior
weighting on the models until balance is achieved. The
true Bayes factors are then found from the iteration ratio
divided by the artificial prior odds ratio.
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