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We study supersymmetry constraints on higher derivative deformations of type IIB supergravity

by consideration of superamplitudes. Combining constraints of on-shell supervertices and basic

results from string perturbation theory, we give a simple argument for the non-renormalization

theorem of Green and Sethi, and some of its generalizations.

Supersymmetry constraints on higher derivative

couplings in maximal supergravity theories have

been investigated extensively in the past [1–7] and

have led to remarkable exact results on the quan-

tum effective action of string theory. The method of

[3, 8–10] in obtaining constraints on higher deriva-

tive terms in gauge and gravity theories with maxi-

mal supersymmetry was by explicitly analyzing su-

persymmetry variations of fields and the Lagrangian

and their deformations, starting from the purely

fermionic terms. In this note we present a simple ar-

gument for such non-renormalization theorems from

scattering amplitudes, in the context of ten dimen-

sional type IIB supergravity and its deformations,

largely inspired by work of [11–13] on the classifi-

cation of supergravity counter terms [14–16] using

amplitudes.

To begin with, we recall the spinor helicity formu-

lation of superamplitudes in type IIB supergravity

[17, 18]. A 10 dimensional null momentum pm and

the corresponding (constrained) spinor helicity vari-

ables λαA are related by

pmδAB = Γmαβλ
α
Aλ

β
B , (1)

where α is a chiral spinor index of SO(1, 9) and A is a

spinor index of the SO(8) little group. The 28 = 256

states in the supergraviton multiplet are built from

monomials in a set of Grassmann variables ηA. The

supermomentum is then defined as

qα = λαAη
A. (2)

A typical n-point superamplitude takes the form[19]

A = δ10(P )δ16(Q)F(λi, ηi), (3)

where P =
∑n
i=1 pi, and the 32 supercharges that

act on the n-particle asymptotic states can be ex-

pressed as

Qα =

n∑
i=1

qαi , Q̃α =

n∑
i=1

λαAi
∂

∂ηAi
. (4)

They obey {Qα, Q̃β} = 1
2Γαβm Pm. The nontrivial

supersymmetry Ward identities on A are

δ10 (P ) δ16(Q) Q̃α
[
F(λi, ηi)

]
= 0. (5)

We can write the CPT conjugate of the amplitude

A as

A = δ10(P )Q̃16F(λi, ∂/∂ηi)

n∏
i=1

η8
i . (6)

Evidently, if A obeys supersymmetry Ward identi-

ties, so does A.

Now let us focus on supervertices, namely super-

amplitudes with no poles in momenta. There are

three basic types of supervertices we can write down.

First, we can take F(λi, ηi) to be independent of ηi,

namely

F(λi, ηi) = f(sij), (7)

where sij = −(pi+pj)
2 = −2pi ·pj . The CPT conju-

gate of this construction gives another supervertex.

We refer to these as F-term vertices [20]. A third

type of supervertex (D-term) is given by

δ10(P )δ16(Q) Q̃16h(λi, ηi). (8)

Here h is an arbitrary function of the spinor helic-

ity variables. All supervertices we know of are of
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these three types. We conjecture that these are in

fact the only supervertices that obey supersymmetry

Ward identities, and will proceed with this assump-

tion [21].

Let us inspect a particularly simple set of n =

(4 + k)-point F-term vertices, with F(λi, ηi) = 1,

δ10(P )δ16(Q). (9)

In component fields, we will expand the axion-

dilaton field as τ = τ0 + ϕ, where τ0 is the back-

ground value. Such a vertex then corresponds to an

independent set of couplings in the Lagrangian of

the form[2, 4]

ϕkR4 + · · · . (10)

Similarly, the conjugate vertex

δ10(P )Q̃16
4+k∏
i=1

η8
i (11)

corresponds to the coupling ϕkR4 + · · · . Note that

in the k = 0 case, δ16(Q) = Q̃16
∏4
i=1 η

8
i is self-

conjugate, and corresponds to the R4 vertex [22].

In particular, we see that there are no independent

supervertex of the form ϕkϕ`R4 + · · · with k, ` ≥ 1.

In other words, the supersymmetry completion of

such couplings must be a superamplitude nonlocal

in momenta.

Note that in a superamplitude, two SO(8) little

group invariant monomials in ηAi , namely 1 and η8
i ,

correspond to the i-th external particle being ϕ and

ϕ respectively. The nonlinearly realized SL(2,R) of

type IIB supergravity is broken by the expectation

value of τ to a U(1) [23], which acts on the amplitude

by
∑
i

(
1
4ηi

∂
∂ηi
−1
)

and assign opposite charges to ϕ

and ϕ. This SL(2,R) is generally broken explicitly

by the higher derivative supervertices of considera-

tion here.

Now, we would like to constrain the coupling

f(τ, τ̄)R4 + · · · (12)

by type IIB supersymmetry. In a vacuum in which

τ acquires constant expectation value τ0, expanding

τ = τ0 + ϕ, we obtain a series of operators,

f(τ0, τ̄0)R4 + ∂τf(τ0, τ̄0)ϕR4 + ∂τf(τ0, τ̄0)ϕR4

+ ∂τ∂τf(τ0, τ̄0)ϕϕR4 + · · · .
(13)

Since there are independent ϕR4 and ϕR4 super-

vertices, ∂τf and ∂τ̄f can take arbitrary value at

τ = τ0. This reflects a freedom in adjusting f(τ, τ̄)

by a holomorphic and an anti-holomorphic function

of τ . ∂τ∂τf at τ = τ0, on the other hand, is not in-

dependent, because there is no independent ϕϕR4

vertex. This 6-point coupling therefore must be

constrained in terms of the R4 coefficient, namely

f(τ0, τ̄0), by supersymmetry.

In principle, one can ask for the most general

6-point superamplitude that obeys supersymme-

try Ward identities and factorization through lower

point amplitudes by unitarity. By dimension anal-

ysis, the 6-point ϕ-ϕ-R4 superamplitude could only

factorize through a single R4 supervertex and su-

pergravity vertices (Figure 1). The ϕϕR4 coupling

itself can then be recovered by taking the soft limit

on a pair of ϕ and ϕ scalar lines [24].
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FIG. 1. Factorization of the 6-point amplitude through

one DnR4 vertex (shaded blob) and a pair of supergrav-

ity cubic vertices.

We do not know a systematic way of building

higher point superamplitudes with the R4 on-shell

supervertex [25]. However, from unitarity we know

that such a relation must exist, and is linear in this

case, namely

(Imτ0)2∂τ∂τf(τ0, τ̄0) ∝ f(τ0, τ̄0), (14)

where the (Imτ0)2 factor comes from the normaliza-

tion of the dilaton-axion kinetic term. To determine



3

the relative coefficient, it suffices to find any set of

such couplings that solve the supersymmetry and

unitarity constraints. String perturbation theory al-

ready gives such a solution. Since the tree level ef-

fective action of type IIB string theory contains R4

coupling at α′3 order, it suffices to examine this cou-

pling in Einstein frame, which takes the form

τ
3/2
2 R4, (15)

where τ2 is the imaginary part of τ .

Since ∂τ∂ττ
3/2
2 = 3

16τ
−1/2
2 , we immediately obtain

the relation

4(Imτ0)2∂τ∂τf(τ0, τ̄0) =
3

4
f(τ0, τ̄0), (16)

which must then hold for the general f(τ, τ̄) at all

values of τ0. This is the non-renormalization theo-

rem of Green and Sethi [3]. In below, we will write

fn(τ, τ̄) for the coefficient of DnR4, and so f(τ, τ̄)

will be denoted f0(τ, τ̄).

Note that there is no independent D2R4 super-

vertex, as the corresponding superamplitude must

be proportional to δ16(Q)(s + t + u) = 0. We next

apply the argument to f4(τ, τ̄)D4R4 coupling. Once

again, the holomorphic and anti-holomorphic parts

of f4(τ, τ̄) are unconstrained by supersymmetry, as

there are independent ϕkR4 and ϕkR4 supervertices.

∂τ∂τf4, on the other hand, must obey a linear re-

lation with τ−2
2 f4(τ, τ̄), due to the factorization of

6-point superamplitude. Note that the 6-point am-

plitude at this order in the momentum expansion

does not factorize through two R4 vertices (Figure

2), as the latter can only contribute to the 6-point

amplitude at D6R4 order [26].

Now taking the IIB string tree level effective ac-

tion, and expanding to α′5 order, we find in Einstein

frame the coupling

τ
5/2
2 (s2 + t2 + u2)R4. (17)

By comparison, we then immediately obtain the re-

lation

4τ2
2 ∂τ∂τf4(τ, τ̄) =

15

4
f4(τ, τ̄). (18)

At f6(τ, τ̄)D6R4 order, we encounter a novelty:

as already mentioned, the 6-point amplitude at this
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FIG. 2. Factorization of the 6-point amplitude though a

pair of R4 vertices.

order in the momentum expansion admits a factor-

ization into a pair of R4 supervertices. Thus, we

expect the coefficient f6(τ, τ̄) to obey a relation of

the form

τ2
2 ∂τ∂τf6 = af6(τ, τ̄) + bf0(τ, τ̄)2, (19)

where a, b are two constants. More precisely, we de-

fine f6(τ, τ̄) to be the coefficient of (s3+t3+u3)R4 =

3stuR4. Inspecting the well-known string tree level

massless 4-point amplitude,

δ16(Q)
Γ(−α

′s
4 )Γ(−α

′t
4 )Γ(−α

′u
4 )

Γ(1 + α′s
4 )Γ(1 + α′t

4 )Γ(1 + α′u
4 )

= δ16(Q)

[
− 64

α′3stu
− 2ζ(3)− ζ(5)

16
α′2(s2 + t2 + u2)

− ζ(3)2

96
α′3(s3 + t3 + u3) + · · ·

]
,

(20)

we can identify the following couplings in Einstein

frame [27],

− 2ζ(3)τ
3/2
2 α′3R4 − ζ(5)

16
α′5τ

5/2
2 (s2 + t2 + u2)R4

− ζ(3)2

96
α′6τ3

2 (s3 + t3 + u3)R4 + · · ·
(21)

Comparing to (19), with f0 ∝ τ
3/2
2 and f6 ∝ τ3

2 , we

immediately obtain a linear relation between a and b.

Another relation between a and b may be extracted

from the string 1-loop effective action. The pertur-

bative contribution to f0 and f6 can be expanded in

the form [6]

fn(τ, τ̄) = f treen + f1−loop
n + f2−loop

n + f3−loop
n + · · · .

(22)
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In particular, at 1-loop order, we expect

τ2
2 ∂τ∂τf

1−loop
6

=af1−loop
6 (τ, τ̄) + 2bf tree0 (τ, τ̄)f1−loop

0 (τ, τ̄).
(23)

The 4-point massless genus one string amplitude has

analytic as well as non-analytic terms in the mo-

mentum expansion. The R4 term, with coefficient

f1−loop
0 ∝ τ

−1/2
2 , and the D6R4 term, with coeffi-

cient f1−loop
6 ∝ τ2, are analytic, and were computed

in [28]. They give an independent linear relation

which then fixes a and b, as in (5.39) of [6]. In the

end, one finds

4τ2
2 ∂τ∂τf6 = 12f6(τ, τ̄)− 6f0(τ, τ̄)2. (24)

As was pointed out in [6], the string 3-loop contribu-

tion f3−loop
6 [6, 29–32], proportional to τ−3

2 , is what

solves the homogeneous version of the constraining

equation (namely, it is annihilated by 4τ2
2 ∂τ∂τ̄−12).

Now let us consider D8R4 terms. There is again

one independent 4-point supervertex one can write

down,[33]

δ16(Q)(s4 + t4 + u4). (25)

This is in fact proportional to the D-term vertex

δ16(Q) Q̃16

 4∑
i<j

η8
i η

8
j

 . (26)

To understand the constraints on f8(τ, τ̄), let us in-

spect (n = 4 + k)-point supervertices of the form

δ16(Q) Q̃16F (η8
i ), (27)

where F (η8
i ) is a polynomial in the little group in-

variants η8
i , of total degree 8m in the η’s, for some

integer m ≥ 2. This then corresponds to a coupling

of the form ϕk−m+2ϕm−2D8R4. Since these D-term

vertices by construction obey supersymmetry Ward

identities, there are no constraint on the coefficients

of ϕk−m+2ϕm−2D8R4, thus no constraint on f8(τ, τ̄)

from supersymmetry alone.

At order D10R4, there is again just one in-

dependent 4-point supervertex δ16(Q)(s5 + t5 +

u5). This is proportional to the D-term vertex

δ16(Q) Q̃16
[∑n

i<j sijη
8
i η

8
j

]
[34]. As in the D8R4

case, there are no supersymmetry constraints on the

coefficient f10(τ, τ̄). In other words, the differential

constraint proposed in [35] should be a consequence

of additional properties of IIB string theory.

In conclusion, the formulation of higher derivative

couplings in maximally supersymmetric gravity the-

ories in terms of on-shell supervertices gives a simple

classification of independent couplings allowed by

supersymmetry. When combined with solutions to

supersymmetry Ward identities provided by string

perturbation theory, the consideration of superver-

tices then leads to a derivation of type IIB super-

symmetry constraints on the F-term f(τ, τ̄)DnR4

coupling (n = 0, 4, 6). The result is nonetheless a

consequence of maximal supersymmetry on higher

derivative supergravity theories, and no longer de-

pend on string theory. Clearly, this strategy gen-

eralizes straightforwardly to maximal supergravity

theories in other dimensions as well [36]. We shall

leave this to a future publication.

Finally, let us comment on the role of SL(2,R)

symmetry of type IIB supergravity which, as al-

ready mentioned, is explicitly broken by these

higher derivative terms. A coupling of the form

fn(τ, τ̄)DnR4 violates SL(2,R) unless fn is a con-

stant, but the latter is incompatible with the super-

symmetry constraints (a nontrivial second order dif-

ferential equation in τ, τ̄) for F-term vertices. From

this perspective, a role of the nonlinearly realized

SL(2,R) symmetry of type IIB supergravity is to

rule out F-terms as potential counter terms. In-

deed, the UV divergence in type IIB supergravity

first arises at two-loop order, corresponding to an

SL(2,R)-invariant D-term counter term of the form

D10R4. One may expect that the E7(7) symmetry of

four dimensional maximal supergravity plays a simi-

lar role in that it rules out F-terms as counter terms,

but there appear to be plenty of D-term superver-

tices that are compatible with E7(7) that could serve

as counter terms [37–45].
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