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Cosmological α-attractors give a natural explanation for the spectral index ns of inflation as
measured by Planck while predicting a range for the tensor-to-scalar ratio r, consistent with all
observations, to be measured more precisely in future B-mode experiments. We highlight the crucial
role of the hyperbolic geometry of the Poincaré disk or half-plane in the supergravity construction.
These geometries are isometric under Möbius transformations, which include the shift symmetry of
the inflaton field. We introduce a new Kähler potential frame that explicitly preserves this symmetry,
enabling the inflaton to be light. Moreover, we include higher-order curvature deformations, which
can stabilize a direction orthogonal to the inflationary trajectory. We illustrate this new framework
by stabilizing the single superfield α-attractors.

Introduction. Inflationary theory provides a simple ex-
planation of the approximate homogeneity and isotropy
of our world. For a broad set of initial conditions, the
solutions of the equations of motion for the inflaton field
and the geometry of space rapidly approach an inflation-
ary attractor solution which describes an exponentially
expanding nearly uniform universe. Moreover, inflation
provides a physical mechanism to generate the deviations
from smoothness due to quantum fluctuations. CMB ob-
servations such as by Planck have tested and narrowed
down the possibilities [1, 2].

In this paper we will discuss cosmological α-attractors
[3–5], which provide an excellent fit to the latest obser-
vational results for α . O(10), see Fig. 1. Similar to
inflation itself, these attractors have the property that
almost independent of the choice of the inflaton poten-
tial in these models, an inflationary model comes out that
generates the right value of the spectral index ns and a
tensor-to-scalar ratio r determined by the geometry of
the moduli space.

Thus, observational predictions of these models are to
a large extent determined by geometry rather than by
the potential. For decades there was an expectation that
with more CMB data we will be able to reconstruct the
inflationary potential. There is an ongoing change in the
paradigm now: we attempt to reconstruct geometry of
the moduli space, not the potential.

In order to highlight the role of geometry, we formulate
these models in a way that makes the relevant symmetries
of the moduli space manifest. Concretely, we will use the
freedom in the choice of the Kähler frame in supergravity
to construct a Kähler potential that is invariant under
the subgroup of the Möbius group that is relevant for this
type of inflation. In this way, the shift of the inflaton is a
symmetry of the Kahler potential during inflation, only
slightly broken by the superpotential. This makes mani-

FIG. 1. The Planck/BICEP2/Keck 2015 constraints on ns

and r with the predictions of a number of models [1, 2]. The
yellow lines correspond to the simplest α-attractor models for
a full range 0 < α < ∞ and N = 50, 60 [4]. These predic-
tions nicely fit the latest cosmological data for the most natural
choice of α . O(10).

fest a crucial feature of α-attractor models: the inflaton
is light.

Möbius transformations. First we describe the nec-
essary mathematical background. The symmetry of the
moduli space metric corresponds to the Möbius group,
both in disk and in half-plane variables. The metric in
half-plane variables reads:

ds2 = 3α
dTdT

(T + T )2
= 3α

dτdτ

(2 Imτ)2
, (1)

where τ = iT . The full set of isometries of this geometry
can be generated by the following four transformations:

• Translation of the imaginary part: T → T − ib,
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• Dilatation of the entire plane: T → a2T ,

• Inversion : T → 1/T ,

• Reflection of the imaginary part: T → T .

The three holomorphic combination of these, i.e. trans-
lations, dilatations and inversions, generate the following
Möbius transformations:

τ → aτ + b

cτ + d
, ∆ ≡ ad− bc 6= 0 , (2)

and a, b, c, d are real numbers. The Möbius group there-
fore corresponds to a transformation associated with an
GL(2,R) matrix

M =

(
a b
c d

)
∈ GL(2,R) . (3)

The Poincaré line element above is invariant under any
non-singular transformation. However, when restricting
to a particular half-plane, this is only mapped onto itself
when one takes the determinant ∆ to be positive.

A general Möbius transformation can be conveniently
parametrized via the Iwasawa decomposition,

M = K ·A ·N ,

=

(
cos θ − sin θ
sin θ cos θ

)
·
(
r1 0
0 r2

)
·
(

1 x
0 1

)
, (4)

whose parameters are given by

r1 =
√
a2 + c2 , x =

ab+ cd

a2 + c2
,

r2 =
∆√

a2 + c2
, cos θ =

a√
a2 + c2

. (5)

Here the K · A · N subgroups parametrize the com-
pact, Abelian and nilpotent transformations of the
Möbius group, respectively. In the case that ∆ = 1 the
symmetry is reduced to SL(2,R).

A new Kähler frame. Now that we have phrased the
Iwasawa decomposition, we can turn to explicit realiza-
tions of this geometry in terms of Kähler potentials, and
a discussion of the physical significance as to which of
the isometries they preserve.

First let us address the expression of T in canonical
variables,

T = exp

(√
2

3α
ϕ

)
+ iχ , (6)

where the dilatonic field ϕ will be our inflaton, and χ our
axion. This physical realization is determined crucially

by the geometry we choose to employ. The SL(2,R) sym-
metry of the kinetic terms of the axion-dilaton pair was
first derived in the context of N = 4 supergravity in [10].
The nilpotent subgroup N of the Iwasawa decomposition,
relevant to the conventional Kähler potentials, acts as a
shift on the axionic field:

χ→ χ+ b . (7)

In contrast, the Abelian dilatation shift symmetry, A,
acts on both components,

χ→ a

d
χ , ϕ→ ϕ+

√
3α

2
log(a/d) . (8)

Note that this acts as a shift symmetry on the field ϕ,
which will play the role of the inflaton in our context.

The conventional formulation of the Kähler potential
in half-plane variables is

K = −3α log(T + T ) . (9)

While it is symmetric under the nilpotent subgroup, it is
not invariant under the Abelian subgroup A correspond-
ing to dilatations. The latter is particularly important
as it corresponds to the shift symmetry of the inflaton,
as we will show below. Therefore it would be valuable to
highlight this shift symmetry in a Kähler potential, and
only introduce a (small) shift symmetry breaking via the
superpotential.

To this end we introduce a new Kähler potential, which
in half-plane coordinate is defined by

KH = −3α log

(
T + T

2|T |

)
= −3α

2
log

((
T + T

)2
4T T

)
.

(10)
where |T | = (T T )1/2. It is related to the old Kähler po-
tential by means of a Kähler transformation

K(T, T̄ )→ K(T, T̄ ) + f(T ) + f̄(T̄ ) ,

W (T )→W (T )e−f(T ) , (11)

with parameter f(T ) = 3
2α log(T ). Such a transfor-

mation preserves the scalar potential but changes the
Kähler potential and superpotential. As a consequence,
the symmetries of both Kähler potentials are different:
the choices (9) and (10) are invariant under nilpotent
and Abelian transformations, respectively, of which the
latter correspond to the shift symmetry of the inflaton.

In detail, from the full set of Möbius transformations
(3), the new Kähler potential is preserved by the follow-
ing transformations :

M =

(
a 0
0 d

)
: T → aT

d
dilatation ,

M =

(
0 b
c 0

)
: T → − b

cT
inversion . (12)
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Note that in the Iwasawa decomposition the latter can be
seen as an arbitrary dilatation, r1 = c, r2 = −b, followed
by a discrete inversion with θ = 90° in (4).

The new Kähler potential has a symmetry under the
shift of the inflaton, accompanied by the rescaling of the
inflaton partner. This symmetry leads to the following
feature of the new Kähler potential: during inflation, in
these models the inflaton partner T − T vanishes and
K = 0, as will be explained in the ‘Universal Stabiliza-
tion’ section. This is obviously invariant under the infla-
ton shift. This inflaton shift symmetry is only slightly
broken by the superpotential, resulting in a naturally
light inflaton.

The difference between both Kähler potentials is rem-
iniscent of the mechanism of the inflaton shift symmetry
for a flat moduli space [7]. There the Kähler potential
does not depend on the inflaton direction, which one can
take as the real part of the chiral multiplet Φ, and de-
pends only on its partner: K = 1

2 (Φ−Φ)2 . While this is
related by a Kähler transformation to the canonical case
K = ΦΦ, only the former has a shift symmetry for the in-
flaton. Again, since only the superpotential breaks this
symmetry of the Kähler potential, the inflaton can be
naturally light during inflation in the supergravity model
of the quadratic chaotic inflation [7]. Moreover, this con-
struction can be generalized by including a generic func-
tion in the superpotential. This results in a broad class
of chaotic inflation model in supergravity with nearly ar-
bitrary inflaton potentials proposed in [8].

Our new Kähler frame can be seen as the curved analog
of the flat Kähler potential with a shift symmetry. In
the limit α → ∞ where the curvature tends to zero, the
new Kähler potential (10) goes to K = 1

2 (Φ − Φ)2 after

the identification T = exp(2Φ/
√

3α), as used in [9]. A
peculiar property of both is that K as well as KΦ vanish
on the inflationary trajectory Φ = Φ.

Disk variables. In disk variables, related to the half-
plane variables by the Cayley transform,

Z =
T − 1

T + 1
, T =

1 + Z

1− Z
, (13)

the conventional Kähler potential for is

K = −3α log(1− ZZ) , Z =
e
√

2
3αϕ + iχ− 1

e
√

2
3αϕ + iχ+ 1

. (14)

Note that an interesting and cosmologically important
feature of a disk variable is that at χ = 0

Z|χ=0 = tanh
( ϕ√

6α

)
(15)

This Kähler potential parametrizes the same geometry:
it is related to the half-plane Kähler potentials (9) and

(10) by a Cayley and a Kähler transformation. A con-
sequence of the latter is that the symmetries of the
Kähler potential change. As is clear from the formu-
lation in disk variables, this form of the Kähler potential
has a rotational symmetry, corresponding to the compact
group K.

The new Kähler potential reads

KD = −3α

2
log

[
(1− ZZ)2

(1− Z2)(1− Z2
)

]
, (16)

which is related to KH by means of a Cayley trans-
formation, without the need of any supplementing
Kähler transformations. Therefore it has the same ex-
plicit symmetries. In disk variables, the dilatation sym-
metry acts as

(1± Z)→ (1± Z)
β ± γ
β + Zγ

(17)

with real parameters β = (a + d) and γ = (a − d). In
addition, the inversion symmetry takes the form

(1± Z)→ (1∓ Z)
β̃ ∓ γ̃
β̃ + Zγ̃

(18)

again for real parameters β̃ = (b − c) and γ̃ = −(b + c).
A particular case of this is Z → −Z and corresponds to
a θ = 90°rotation in the Iwasawa decomposition.

Noting that dilatation takes

(ZZ − 1)→
(
ZZ − 1

) (β − γ)(β + γ)

(β + γZ)
(
γZ + β

) , (19)

it is apparent that the dilatation operation leaves invari-
ant the quantity:

I =
ZZ − 1

(1− Z)(1 + Z)
.

This object is also special under the inversion operation,
which simply takes the conjugation, swapping between
I ↔ I. As such, the disk Kähler potential makes these
symmetries manifest when the argument of the logarithm
is written as II.

Universal stabilization. The crucial issue of the sta-
bilization of the inflaton partner during inflation as well
as the stabilization of both the inflaton and its partner
at the minimum has been studied in detail over the years
[11], [12]. In particular, in the case of a single superfield,
the average mass of its two components reads [11, 13]
(see eqs. (2.20) and (A.1) in [13]):

m2 = KΦΦ∇Φ∇ΦV = 3(R+ 2
3 )m2

3/2 +RV , (20)

for a critical point with V ′ = 0, DW 6= 0, and where
R is the Ricci scalar, V = eK(|DW |2 − 3|W |2) and
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DW = ∂ΦW + KΦW . The above is only a condition
on the average of the two masses, of the inflaton and its
partner, and does not address stability in each of the two
directions separately. Moreover, this condition is derived
for V ′ = 0. However, during inflation the potential is
rather flat: the inflaton mass squared is much smaller
than V due to slow roll conditions. Therefore a positive
average m2 = O(V ) implies that the inflaton partner is
stable during inflation. Hence R > −2/3 is a necessary
and R ≥ 0 is a sufficient condition for stabilization during
inflation.

We will demonstrate that the crucial role played by
the Kähler curvature allows one to stabilize the infla-
ton partner in a universal way. To this end, we will
deform the maximally symmetric Kähler manifold by
adding quadratic and quartic terms:

K =
−3α

1 + 2c2
log
(T + T

2|T |

[
1+c2

(T − T
T + T

)2

+c4

(T − T
T + T

)4])
(21)

where we redefine the overall coefficient 3α to include
a set of α-attractor Kähler potentials which have been
studied in [5, 14]. Both of the new terms contribute to
the curvature and can be used to stabilize the imaginary
direction. Importantly, the higher-order terms preserve
all symmetries of this Kähler potential, both the dilata-
tions and the inversions. We therefore retain the crucial
inflaton shift symmetry, while breaking the axionic shift
symmetry even stronger.

The curvature of the geometry based on (21) is only
constant in the case with c2 = c4 = 0. However, the
curvature corrections are constant along the inflationary
trajectory T = T , leading to

R = −2(1 + 8c2 + 6c2
2 − 12c4)

3α(1 + 2c2)
. (22)

Note that the mass of the inflaton partner χ can be made
large, for example by taking c2 small and c4 � 1. In this
case R ≈ 8c4

α and the total mass of the inflaton and its

partner in eq. (12) is m2 ≈ 8c4
α (3m2

3/2 +V )+2m2
3/2. The

inflaton being light, we see that the inflaton partner near
χ = 0 is heavy and tends to reach the minimum quickly.
We perform a more detailed study of the likelihood of the
configuration with χ = 0 in the case of the two-superfield
model in [22]. There we find that the configuration with
χ = 0 naturally emerges as a result of the cosmological
evolution, and it is stable. Thus the above conditions on
stability during inflation, either the necessary one R >
−2/3 or the sufficient one R ≥ 0, can always be achieved,
for any α, by tuning c2 and c4.

Single-superfield models have seen a lot of progress re-
cently; general potentials were constructed in [15, 16],
one of the first inflationary models in supergravity was
unearthed again [17, 18] and the first examples of α-

attractors were constructed [9, 19]. The difference be-
tween the latter two resides in the choice of Kähler po-
tential. The first used the case c2 = c4 = 0 leading to
the following curvature and necessary stability condition
[9]:

R = − 2

3α
> −2

3
⇔ α > 1 . (23)

Instead, the second used the Kähler potential introduced
in [5] with 2c2 = 1− α and c4 = 0, leading to

R = − 2

3α
− 1 +

1

α2
> −2

3
⇔ α < 1 . (24)

As a consequence, their regimes of stability turn out to
be complementary. From the above it follows that these
stability constraints are mere consequences of the partic-
ular choice of higher-order terms. With the results of this
letter, however, one can achieve stability for any config-
uration of α by including general quadratic and quartic
terms [21].

A similar analysis of the stability cosmological attrac-
tors based on two superfields, in case the second super-
field is nilpotent [20], has the following features. We con-
sider models of the kind

K = K(Φ,Φ, SS) , W = Sf(Φ) , (25)

where Φ can be either half-plane or disk coordinates. Due
to the nilpotency of S, we are only interested in stabi-
lizing the inflaton partner during inflation. The average
mass formula is, again up to slow-roll corrections [8]:

m2 =(1 +Rbs)V, Rbs = KΦΦKSSRΦΦSS . (26)

In this case it is therefore the bisectional curvature that
determines stability. An example of this is provided by
the Kähler potential

K = −3α log

(
T + T

2|T |
− SS

2|T |

[
1− cbs

(T − T
T + T

)2])
, (27)

which leads to a bisectional curvature given by Rbs =
−(1 + 2cbs)/(3α). Without the stabilization term this
model is therefore unstable for α < 1/3 [4]. However, it
follows from this general discussion of the cosmological
attractor models based on two superfields (where the sec-
ond superfield is nilpotent) that there is a universal geo-
metric mechanism of stabilization of the inflaton partner
during inflation, based on the bisectional curvature. The
details will be described separately in [22].

Conclusions. We have proposed a new Kähler po-
tential for the hyperbolic geometry which preserves the
shift symmetry of the inflaton ϕ. In terms of the Iwa-
sawa decomposition into K · A · N subgroups, the new
Kähler frame exactly picks out the relevant Abelian sub-
group A of the full Möbius group. Higher-order correc-
tions can be used to stabilize the orthogonal directions
while retaining the inflaton shift symmetry.
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This improvement of the Kähler potential is especially
suitable for the investigation of cosmological attractors,
which make cosmological predictions determined almost
solely by the geometry of the moduli space rather than
by the details of the inflaton potential. Our construction
explains the naturally flat inflaton potential by having
a shift symmetry in the Kähler potential that is only
weakly broken by the superpotential; moreover, due to
the robustness of the cosmological attractors, the details
of this breaking do not affect the cosmological predic-
tions.
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