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Motivated by the neutrino data, an extension of the Standard Model with three Higgs-boson
doublets has been proposed. Imposing an O(2) ⊗ Z2 family symmetry, a neutrino mixing matrix
with θ23 = π/4 and θ13 = 0 appears in a natural way. Even though these values for the mixing matrix
do not follow the recent experimental constraints, they are nevertheless a good approximation. We
study the Higgs potential of this model in detail. We apply recent methods which allow for the
study of any three-Higgs-boson doublet model. It turns out that for a variety of parameters the
potential is stable, has the correct electroweak symmetry-breaking, and gives the correct vacuum
expectation value.

1. THE O(2)⊗ Z2 MODEL

The experimental neutrino mixing data show that the
neutrino mixing is very different from the quark mix-
ing. In the usual parametrization of the neutrino mixing
matrix (see for instance [1]), experimental data suggests
that the angle θ13 is small (but nonzero), and θ23 close
to π/4 [2].

There is lot of effort spent on finding an organizing
principle for the flavor puzzle. A general approach is
to study finite subgroups of SU(3) which have a irre-
ducible triplet representation; see for instance [3] and
references therein. Examples of subgroups with triplet
representations are S4, the group of permutations of 4
elements, with two singlet, one doublet, and two triplet
representations (see for instance [4]), or A4, the group of
even permutations of 4 elements which has also a triplet
representation besides singlet representations (see for in-
stance [5, 6]), or ∆(27), with 27 elements and two triplet
representations (see for instance [7]).

In contrast, here we want to study in detail the Higgs
potential of a three Higgs-boson doublet model which
imposes a O(2)×Z2 symmetry - without any irreducible
triplet representation. Let us closely follow the motiva-
tion of [8]. The starting point is a neutrino mass matrix
which is symmetric in the generations two and three,

Mν =

x y y
y z w
y w z

 . (1.1)

This mass matrix may be diagonalized as usual, that is,
UTMνU = diag(mν1 ,mν2 ,mν3), where U is the neutrino
mixing matrix and mν1 , mν2 , mν3 the neutrino masses.
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Expressing the mixing matrix U in terms of the usual
parametrization [1], we get in particular, θ13 = 0 and
θ23 = π/4. Even though the experimental results are
not in exact agreement with these values, in particular
θ13 is nonzero, they at least appear to be approximately
fulfilled. We note that deviations from these approximate
values for the mixing angles could arise by soft symmetry
breaking terms or beyond leading order effects; see for
instance the study [9].

The mass matrix (1.1) may be generated by the in-
troduction of three Higgs-boson doublets ϕi, i = 1, 2, 3,
and a symmetry O(2) × Z2

∼= Z
′
2 × Z2 × U(1), where

all elementary particles are assigned to an appropriate
transformation behavior on this symmetry. The reflec-
tion symmetry Z

′
2 is responsible for the µ–τ symmetry

of (1.1):

Z
′
2 : DµL ↔ DτL, µR ↔ τR, νµR ↔ ντR, φ1 ↔ φ2

(1.2)

Here DµL and DτL denote the left-handed SU(2) lep-
ton doublets, νµR and ντR the right-handed neutrinos,
and all remaining fields transform trivially under the Z′2
symmetry. The Z2 symmetry is given by a sign change,

Z2 : νeR → −νeR, νµR → −νµR, ντR → −ντR,
eR → −eR, ϕ3 → −ϕ3, (1.3)

with νeR, νµR, ντR the right-handed neutrinos, eR the
right-handed electron, and all other fields unchanged un-
der this Z2 symmetry. Eventually the assignment with
respect to the phase symmetry U(1) is

U(1) :
X −→ eiθX DµL, τR, νµR DτL, µR, ντR ϕ1 ϕ2

θ 1 −1 2 −2

(1.4)

withX one of the fields on the right-hand side of the table
transforming as X −→ eiθX with corresponding phase θ
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given explicitly in the table. All other fields transform
trivially.

By virtue of these symmetries – besides the electroweak
SU(2)L × U(1)Y symmetry – there appear in particular
the invariant Yukawa couplings

LY = −y4
(
D̄µLϕ1µR + D̄τLϕ2τR

)
+ h.c. (1.5)

The most general potential for the three Higgs-boson
doublets ϕ1, ϕ2, ϕ3 reads

VO(2)×Z2
= µ0ϕ

†
3ϕ3 + µ12

(
ϕ†1ϕ1 + ϕ†2ϕ2

)
+ µm

(
ϕ†1ϕ2 + ϕ†2ϕ1

)
+ a1(ϕ†3ϕ3)2

+ a2ϕ
†
3ϕ3

(
ϕ†1ϕ1 + ϕ†2ϕ2

)
+ a3

(
ϕ†3ϕ1 · ϕ†1ϕ3 + ϕ†3ϕ2 · ϕ†2ϕ3

)
+ a4ϕ

†
3ϕ1 · ϕ†3ϕ2 + a∗4ϕ

†
1ϕ3 · ϕ†2ϕ3

+ a5

(
(ϕ†1ϕ1)2 + (ϕ†2ϕ2)2

)
+ a6ϕ

†
1ϕ1 · ϕ†2ϕ2 + a7ϕ

†
1ϕ2 · ϕ†2ϕ1, (1.6)

where the term µm(ϕ†1ϕ2 + ϕ†2ϕ1) breaks the U(1) sym-
metry (1.4) explicitly but softly, since this is a quadratic
term. For a non-vanishing parameter µm in this way ad-
ditional Goldstone bosons are avoided, which otherwise
would appear by spontaneous symmetry breaking of the
U(1) symmetry. This potential has nine real parameters
and one complex parameter a4, corresponding to eleven
real parameters in total.

Now we want to discuss stability, stationarity, and elec-
troweak symmetry breaking of this model. Of course
only a model with a stable potential, having the cor-
rect electroweak symmetry breaking behavior and the
correct vacuum-expectation values is physically accept-
able. These obvious constrains restrict the parameter
space of the potential. Here, we focus on the Higgs po-
tential and not on any further experimental limits. For
instance, the expressions for the oblique parameters S, T ,
U are available for any nHDM [10] and may be compared
to the electroweak precision data.

Since the O(2)⊗Z2 model is a 3HDM we encounter in
this model 4 charged Higgs bosons and in total 5 neutral
Higgs bosons. We expect a changed phenomenology of
this model compared to the Standard Model. Of course,
the detection of any further Higgs boson would be a clear
signal for a model beyond the Standard Model. Depend-
ing on the Yukawa coupling strength in (1.5) we have

for instance the signature of the production of a charged
Higgs boson with subsequent decay into a muon and a
muon–neutrino. The potential itself is in principle de-
tectable via its trilinear and quartic Higgs self-couplings.
We leave this investigation for future work and focus here
on the study of the Higgs potential with respect to stabil-
ity, electroweak symmetry breaking and the global mini-
mum.

Even though the potential (1.6) appears to be rather
involved we will see that it is indeed accessible in the bi-
linear approach [11–13]. In this approach gauge degrees
of freedom are avoided systematically. Moreover, the cor-
responding equations for stability and stationarity sim-
plify, in particular the degree of systems of equations is
lowered. Recently, the bilinear approach for the study of
stability, stationarity, and electroweak symmetry break-
ing has been extended to the study of any 3HDM [14],
which we now briefly review.

The scalar products of the type ϕ†iϕj , i, j ∈ {1, 2, 3},
in the potential (1.6) may be arranged in a 3×3 matrix

K =

ϕ†1ϕ1 ϕ†2ϕ1 ϕ†3ϕ1

ϕ†1ϕ2 ϕ†2ϕ2 ϕ†3ϕ2

ϕ†1ϕ3 ϕ†2ϕ3 ϕ†3ϕ3

 . (1.7)

By the introduction of the bilinears,

Kα = K∗α = tr(Kλα), α = 0, ..., 8 (1.8)

with λα the 3×3 Gell-Mann matrices, the following re-
placements can be made in the potential,

ϕ†1ϕ1 =
K0√

6
+
K3

2
+

K8

2
√

3
, ϕ†1ϕ2 =

1

2
(K1 + iK2) ,

ϕ†1ϕ3 =
1

2
(K4 + iK5) , ϕ†2ϕ2 =

K0√
6
− K3

2
+

K8

2
√

3
,

(1.9)

ϕ†2ϕ3 =
1

2
(K6 + iK7) , ϕ†3ϕ3 =

K0√
6
− K8√

3
.

Comparing the potential, written in terms of bilinears

V = ξαKα +KαẼαβKβ , α, β = (0, . . . , 8) (1.10)

with the general form of the potential, we find the new
parameters
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(ξα) =

(
µ0 + 2µ12√

6
, µm, 0, 0, 0, 0, 0, 0,

µ12 − µ0√
3

)T

,

(
Ẽαβ

)
=

1

4
·



2
3 (a1 + 2a2 + 2a5 + a6) 0 0 0 0 0 0 0

√
8
3 (−a1 − a2

2 + a5 + a6
2 )

0 a7 0 0 0 0 0 0 0

0 0 a7 0 0 0 0 0 0

0 0 0 2a5 − a6 0 0 0 0 0

0 0 0 0 a3 0 Rea4 Ima4 0

0 0 0 0 0 a3 Ima4 −Rea4 0

0 0 0 0 Rea4 Ima4 a3 0 0

0 0 0 0 Ima4 −Rea4 0 a3 0√
8
3 (−a1 − a2

2 + a5 + a6
2 ) 0 0 0 0 0 0 0 4

3a1 −
4
3a2 + 2

3a5 + 1
3a6


.

(1.11)

Obviously, all parameters are real in terms of bilinears.
We note that there is a one-to-one correcpondance be-
tween the Higgs-boson doublets and the bilinear matrix
K = 1/2Kαλα with rank smaller or equal to two - except
for irrelevant gauge degrees of freedom; see [12].

Supposed the potential is bounded from below, at the
global minimum, or the degenerate minima, the gradient
of the potential has to vanish. The corresponding equa-
tions may be used to fix some of the parameters. In order
to obtain these equations we start with the parametriza-
tion of the three Higgs-boson doublets with the same
hypercharge y = +1/2, in a particular gauge,

ϕ1/2(x) =

(
φ+1/2(x)

1√
2
(v1/2 +H0

1/2(x) + iA0
1/2(x))

)
,

ϕ3(x) =

(
0

1√
2
(v3 + h0(x))

)
.

(1.12)

The derivatives of the potential (1.6), inserting (1.12)
with respect to the fields at the vacuum, that is, for van-
ishing fields give the non-trivial conditions

µ0 = −1

2
(a2 + a3)(v21 + v22)− a1v23 − Re(a4)v1v2,

µ12 = −1

2
(a2 + a3)v23 − a5(v21 + v22),

µm =
1

2

(
(2a5 − a6 − a7)v1v2 − Re(a4)v23

)
,

Im(a4) · v2v23 = 0,

Im(a4) · v1v23 = 0.

(1.13)

For non-vanishing vacuum-expectation values, the last
two equations immediately dictate that a4 has to be
real. Eventually, by means of the equations (1.13)
the quadratic parameters µ0, µ12, µm may be ex-
pressed by the quartic parameters and the three vacuum-
expectation values v1, v2, v3. Further, the vacuum-
expectation values are restricted with view on the

Yukawa couplings (1.5), that is, the ratio of the vacuum-
expectation values v1 and v2 has to be v1/v2 = mµ/mτ at
tree level accuracy. In addition, the vacuum-expectation
value

v0 =
√
v21 + v22 + v23 ≈ 246 GeV (1.14)

is given by the electroweak precision data. Therefore, all
quadratic parameters follow from the quartic parameters
and one free vacuum-expectation value, say v3. There-
fore, it appears reasonable to start with the following set
of parameters,

a1, a2, a3,Re(a4), a5, a6, a7, v3,

v0 ≈ 246 GeV, v1/v2 = mµ/mτ .
(1.15)

Note that the tadpole conditions (1.13) only ensure that
there is at least one stationary solution. By no means this
guarantees that the corresponding potential is stable and
has a global minimum with the correct partially broken
electroweak symmetry.

2. STABILITY AND ELECTROWEAK
SYMMETRY BREAKING IN THE O(2)⊗ Z2

MODEL

In this section we analyze the potential of the O(2)⊗Z2

model while varying two of its parameters. Starting with
the parameters (1.15) we fix the quadratic parameters µ0,
µ12, µm by (1.13). Quantitatively, we choose the quartic
parameters motivated by the central point given in [8]
with a variation of the two parameters a1 ∈ [0, 5] and
a2 ∈ [−3, 3] in steps of 0.2:

a1 ∈ [0, 5], a2 ∈ [−3, 3], a3 = −5, a4 = −0.0474,

a5 = 1.5, a6 = 2, a7 = 3,

v1/v2 = 105.66/1776.82, v3 = v0/
√

2,

(2.1)
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with the masses of muon, mµ, and tau, mτ , given in [1].
The central point in particular passes the electroweak
precision observables – for details see [8].

Firstly, we study stability of the potential. Therefore
we separate the potential into the quadratic and quartic
parts, V = K0J2 +K2

0J4, with J2 and J4 given by

J2(ka) =
µ0 + 2µ12√

6
+

(
µ12 − µ0√

3

)
k8 + µmk1,

J4(ka) =
1

6
(a1 + 2a2 + 2a5 + a6)

+
1

3
√

2
(−2a1 − a2 + 2a5 + a6)k8 +

a7
4

(k21 + k22)

+
1

4
(2a5 − a6)k23 +

a3
4

(k24 + k25 + k26 + k27)

+
Re(a4)

2
(k4k6 − k5k7) +

Im(a4)

2
(k4k7 + k5k6)

+
1

12
(4a1 − 4a2 + 2a5 + a6)k28,

(2.2)

with the vector components ka = Ka/K0, a = 1, . . . , 8
defined for K0 6= 0. For K0 = 0 the potential vanishes.
The stationary points of J4(ka) corresponding to a matrix
K with rank 2 are obtained from

∇k1,...,k8
[
J4(ka)− u

(
det(

√
2/313 + kaλa)

)]
= 0,

det(
√

2/313 + kaλa) = 0,

2− kaka > 0,

(2.3)

and the stationary points corresponding to a matrix K
with rank 1 are obtained from

∇w†

[
J4(ka(w†,w)− u

(
w†w − 1

) ]
= 0,

w†w − 1 = 0

(2.4)

where we express the vector components ka by

ka(w†,w) =

√
3

2
w†λαw (2.5)

and w, w† are 3-component complex vectors. If we have
for all real solutions ka of the systems of polynomial equa-
tions (2.3) and (2.4) J4(ka) > 0 or at least J4(ka) = 0
but then in addition J2(ka) ≥ 0, the potential is stable.
In other words, if there is for a given initial parameter
set one solution with J4(ka) < 0 or J4(ka) = 0 but in ad-
dition J2(ka) < 0 the potential is unstable. The unstable
cases for the variation of parameters (2.1) are denoted by
the larger full disks (blue) in Fig. 1. For all other values
of parameters the potential is stable.

Let us note that the quartic parameters a1 and a2 ap-

pear as coefficients of (ϕ†3ϕ3)2 and ϕ†3ϕ3

(
ϕ†1ϕ1 + ϕ†2ϕ2),

respectively, in the potential (1.6). Therefore it is

evident that the potential is unstable for small valued of
a1 and too negative values for a2.

Having determined parameter sets giving a stable po-
tential we proceed with the study of the stationary points
in these cases. We systematically look for all stationary
points of the potential. To this end we have to solve the
following systems of polynomial equations, corresponding
to solutions which break electroweak symmetry partially
(conserving the elecromagnetic U(1)em symmetry), and
solutions which break the electroweak symmetry com-
pletely.

The stationary solutions with full electroweak sym-
metry breaking, corresponding to stationarity matrices
K = Kαλα/2 of rank 2 are obtained from

∇K0,...,K8

[
V (K0, . . . ,K8)− u det(K)

]
= 0,

2K2
0 −KaKa > 0,

det(K) = 0,

K0 > 0.

(2.6)

The stationary solutions with partial electroweak sym-
metry breaking, corresponding to stationarity matrices
K = Kαλα/2 of rank 1 are obtained from

∇w†,K0

[
V (Kα(K0,w

†,w))− u(w†w − 1)
]

= 0,

w†w − 1 = 0,

K0 > 0

(2.7)

where we express the bilinars Kα in terms of K0 and the
three component complex vectors w and w†,

Kα(K0,w
†,w) =

√
3

2
K0w

†λαw, α = 0, . . . , 8. (2.8)

In (2.6) and (2.7) u is a Lagrange multiplier, respectively.
In addition there is always a solution for a vanish-

ing potential, corresponding to an unbroken electroweak
symmetry.

The global minimum, that is, the vacuum, is given by
the stationary point or points with the deepest potential
value. In case this solution originates from the set (2.7),
that is, when we do have electroweak symmetry break-
ing SU(2)L × U(1)Y → U(1)em , we can directly cal-
culate the vacuum-expectation value of this minimum,
v20 =

√
6K0, and verify that it coincides with (1.14).

Depending on the variation of the parameters a1 and
a2 we detect the viable global minima. These cases are
marked by little (green) dots in Fig. 1. In case the deep-
est potential value does not correspond to the correct
electroweak symmetry breaking or does not give the cor-
rect vacuum expectation value, these parameter points
are denoted by a circle (red) in Fig. 1.

As we can see by the scattering of points, we typically
find valid parameters for a1 and a2 not too small. How-
ever, the pattern of valid points appears very sensitive to
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FIG. 1: Stability and stationarity solutions of the 3HDM Higgs potential, varying the two quartic parameters a1 and a2 of the
potential (1.6). The other quartic parameters are set to a3 = −5, a4 = −0.0474, a5 = 1.5, a6 = 2, a7 = 3. The quadratic
parameters are fixed by the stationarity equations (2.7), the vacuum expectation value v0, the ratio v1/v2 = mµ/mτ as well as
v3 = v0/

√
2. The larger full circles (blue) show points where the potential is unstable. The open circles (red) show parameters

where no correct electroweak symmetry breaking appears or the vacuum expectation value v0 is unequal to 246 GeV. Finally,
the small dots (green) have a viable global minimum corresponding to the correct vacuum-expectation value.

the parameter values. This of course is a consequence of
the rather involved potential (1.6).

Eventually, let us remark on the technical aspects to
solve the rather involved systems of equations - on the
one hand for the study of stability (2.3), (2.4), and on
the other hand for the study of stationarity (2.6), (2.7).
We apply for all the polynomial systems of equations the
homotopy continuation approach as implemented in the
PHCpack package [15]. For a brief introduction to the
homotopy continuation method see for instance [16].

In case of the systems of equations (2.4), (2.7), we
decompose the three component complex vectors w†, w
into real and imaginary parts. In turn we split every
equation in the sets into real and imaginary parts. In
this way, all indeterminants in all systems of equations
have to be real and we discard all non-real solutions.
Practically, we treat any solution as real if the imaginary
part of any of the inderminants has an amount smaller
than 0.001.

Let us study some details of the potential in case
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it has the correct electroweak symmetry breaking
SU(2)L × U(1)Y → U(1)em. This is conveniently done
in a new basis

ϕ′i(x) = Uijϕj(x), i, j ∈ {1, 2, 3} (2.9)

in which only the field ϕ′3(x) gets a non-vanishing vac-

uum expectation value v0/
√

2. The unitary matrix U is
determined by two rotation angles, which have to fulfill

v1 = sin(β2) sin(β1)v0,

v2 = sin(β2) cos(β1)v0,

v3 = cos(β2)v0

(2.10)

with β1 ∈ [0, 2π[, β2 ∈ [0, π] and we have in particular
v21+v22+v23 = v20 . In the new basis, the bilinear parameter
vector (ξα) from (1.11) becomes

(ξ′α) =



ξ0

cos(2β1) cos(β2)ξ1

0

sin(β1) cos(β1)(1 + cos2(β2))ξ1 +
√

3/2 sin2(β2)ξ8

− cos(2β1) sin(β2)ξ1

0

sin(β2) cos(β2)(sin(2β1)ξ1 −
√

3ξ8)

0√
3 cos(β1) sin(β1) sin2(β2)ξ1 + 1

4
(1 + 3 cos(2β2))ξ8


(2.11)

The correct global minimum has, in terms of this pa-
rameter components, the potential value

〈V 〉 =
v20

2
√

6

(
ξ′0 −

√
2ξ′8

)
. (2.12)

This result serves as a good cross check of the numerical
study. In particular, the potential value at the vacuum
has to be non-positive in order to lie not above the unbro-
ken minimum, which is given by a vanishing potential.

The physical Higgs bosons follow from the diagonal-
ization of the charged and neutral squared Higgs mass
matrices. The neutral field of the third Higgs boson ϕ3,
that is, h0(x), is a mass eigenstate if the parameters fulfill

ξ′4 = ξ′5 = ξ′6 = ξ′7 = 0. (2.13)

Therefore with view on (2.11), we find the explicit condi-
tions for the O(2)⊗Z2 model, where the neutral compo-
nent h0(x) is aligned with the vacuum expectation value.
The mass squared of the neutral component is in this
case

m2
h0 =

4√
3

(
ξ′8 −

1√
2
ξ′0
)
. (2.14)

Alignment thus requires that either v1 = v2 or µm = 0
what is not the case since the ratio of the two vacuum
expectation values v1 and v2 is fixed by the ratio of the
muon and tau masses and a non-vanishing parameter µm
is required in order to break the O(2) ⊗ Z2 symmetry
softly.

Let us comment on the neutrino mxing angles θ13 = 0,
respectively, θ23 = π/4. Since these values seem not to
be exactly fulfilled experimentally, we mention that de-
viations may be achieved by imposing further soft break-
ing terms in the potential (1.6). We have seen that the
value and the nature of the global minimum is rather
sensitive to small changes of the potential. Therefore,
we expect that definite results would require a separate
study of the changed potential. However, since addi-
tional soft-breaking terms do not affect the quartic part
of the potential, and, in particular, we have found that
for large parts of parameter space stability follows from
the quartic terms alone, we expect stability also in the
respective cases of a potential imposing additional soft
breaking terms.

We would like to mention that the parameters a2, a3,
and a4 couple the neutral boson h0(x) with the other
two generations of doublets. In general this may lead to
changed phenomenology in Higgs boson production and
decay of the h0(x) field. For some investigation of this we
refer to [8]. A further detailed study, for instance with
respect to a possible enhancement of the h0(x) decay rate
into a pair of photons is left for future work.

3. CONCLUSIONS

The O(2)⊗Z2 model [8] introduces three Higgs-boson
doublets accompanied by an appropriate assignment of
the elementary particles to irreducible representations
of the group. In this way a neutrino mass matrix is
generated which corresponds to mixing angles which are
close to the experimental measurements. However, even
though the symmetry restricts the model, the Higgs po-
tential appears to be rather involved. Nevertheless, the
recently introduced methods to study any three-Higgs
doublet model [14] were applied to study the potential
in detail. We have investigated stability, the station-
ary points, and electroweak symmetry breaking of the
Higgs potential by solving the corresponding station-
ary equations, employing polynomial homotopy contin-
uation. The method numerically finds all the isolated
complex solutions out of which we have extracted the
physical real solutions. We have scanned over a range
of values of the potential parameters. As expected, for
too low values of the quartic parameters typically an un-
stable potential is encountered. For parameter values,
corresponding to a stable potential, the global minimum
was detected. Our study reveals that in this model there
are viable parameters corresponding to a stable global
minimum with correct electroweak symmetry breaking.
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