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Abstract

An analysis is given of the chromoelectric dipole moment of quarks and of the neutron
in an MSSM extension where the matter sector contains an extra vectorlike generation of
quarks and mirror quarks. The analysis includes contributions to the CEDM from the ex-
change of the W and the Z bosons, from the exchange of charginos and neutralinos and the
gluino. Their contribution to the EDM of quarks is investigated. The interference between
the MSSM sector and the new sector with vectorlike quarks is investigated. It is shown that
inclusion of the vectorlike quarks can modify the quark EDMs in a significant way. Further,
this interference also provides a probe of the vectorlike quark sector. These results are of
interest as in the future measurements on the neutron EDM could see an improvement up
to two orders of magnitude over the current experimental limits and provide an instrument

for a further probe of new physics beyond the standard model.
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1 Introduction

New sources of CP violation beyond those that exist in the Standard Model are needed
to explain baryogenesis and are also worthy of study in their own right as possible probes
of beyond the standard model physics (for reviews see e.g., [1, 2, 3, 4]). Such sources can
also induce electric dipole moment in elementary particles which can be significantly larger
than those expected in the standard model [1, 2]. In this work we are specifically interested
in the electric dipole moment (EDM) of the quarks arising from the chromoelectric dipole
operator. Thus the electroweak sector of the standard model produces an EDM which is
1073% ecm [5, 6, 7] and it lies beyond the possibility of its observation in the foreseeable
future. As mentioned in particle physics models beyond the standard model it is possible
to generate much larger values for the EDM. In this work we focus on one such model - an
extension of the minimal supersymmetric standard model (MSSM) with a vectorlike multi-
plet [8]. Such an extension is anomaly free and thus the nice quantum properties of MSSM
are maintained. Further, vectorlike multiplets arise in a variety of settings such as in grand
unified models and in string and D brane models [8, 10, 11]. Vectorlike generations have
been considered by several authors since their discovery would constitute new physics (see,
e.g., [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]). Such models have new sources of CP
violation and thus can generate substantial size dipole operators. For that reason they are
interesting models to consider in the context of lepton and quark EDMs. In a recent work
we analyzed the electric dipole operator in such a setting [23] and in this work we analyze
the chromoelectric dipole operator in the extended MSSM model and its contribution to the

electric dipole moments.

Before discussing the EDM in the new class of models, it is relevant to recall the situation
regarding the lepton and quark EDMs in MSSM. Here it is well known that MSSM has a
SUSY CP problem, i.e., that the EDM predicted with SUSY phases O(1) are typically in
excess of the experimental upper limits. A number of remedies have been offered in the
past to remedy this problem. These include a fine tuning of the phases to be small [24],
suppression of the EDM by large sparticle masses [25], suppression of the EDM where various
contributions conspire to cancel, i.e., the cancellation mechanism [26, 27| as well as other
possible remedies (see, e.g., [28]). It has also been suggested that the EDM be used as
a probe of new physics beyond the standard model [29, 30, 31, 18, 32]. Specifically the



experimental limits on the EDMs can be used as vehicles to probe a new physics regime not
accessible otherwise to current and future detectors.

The outline of the rest of the paper is as follows: In section 2 we give a brief description
of the model and describe the nature of mixing between the vector generation and the
standard three generations of quarks. In section 3.1 we discuss the loop contributions to
the chromoelectric dipole moment of the up quark and the down quark that arise from the
exchange of the W boson in the loop. In section 3.2 we give an analysis similar to that of
section 3.1 for the exchange of the Z boson. In section 3.3 we compute the contribution from
the exchange of charginos in the loop and in section 3.4 a similar analysis for the exchange of
neutralinos in the loop is given. Finally in section 3.5 we give the analysis for the exchange
of the gluino in the loop. In section 4 we discuss the method for the computation of the
neutron dipole moment using the quark dipole moments. In section 5 we give a detailed
numerical analysis of the contributions to the quark CEDM and to the neutron CEDM for
a variety of parameter points in the extended MSSM model. Here we also discuss the use of
the neutron EDM as a probe of high mass scales. Conclusions are given in section 6. Further

details of the calculational aspects of the analysis are given in sections (7-9).

2 The Model

Here we briefly describe the model and further details are given in the appendix. The
model we consider is an extension of MSSM with an additional vectorlike multiplet. Like
MSSM the vectorlike extension is free of anomalies and as discussed in section 1 vectorlike
multiplets appear in a variety of settings which include grand unified models, string and D
brane models. Here we focus on the quark sector where the vectorlike multiplet consists of a
fourth generation of quarks and their mirror quarks. Thus the quark sector of the extended
MSSM model is given by Eq. (1) and Eq. (2) where,

_ [ tic 1 . c * 2 . c * 1 . S
qiL = < sz) ~ (37 27 6) ) iL ™ <3 7]-7 _§> ’ iL ™ (3 7]-7 5 ) 1= ]-7 27 374 (]')
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¢ = ~ (3,2, —):; Tpr~(3,1,=| ; B~ (3"1,—=]. 2
Q (TE) ( ) &y 6) ) L < ) 73) ) L ( y 4y 3) ( )

The numbers in the braces show the properties under SU(3)c x SU(2), x U(1)y where the
first two entries label the representations for SU(3)¢ and SU(2), and the last one gives
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the value of the hypercharge normalized so that @ = 75 + Y. We allow the mixing of
the vectorlike generation with the first three generations. Specifically we will focus on the
mixings of the mirrors in the vectorlike generation with the first three generations. Details
of these mixings are given in Eq. (43). Here we display some relevant features. In the up

quark sector we choose a basis as follows

Eh=(r Tr er ar tg), &=t To e up fap) . (3)

and we write the mass term so that

—L5, = Ep(Mu)éL +hec., (4)

The interaction of Eq. (43) lead to the up-quark mass matrix M, which is given by

Yive/V2  hs 0 0 0
—hs yﬂ)l/\/§ —hé —héf —hg
M, = 0 Wy yhe/V2 0 0 . (5)
0 hy 0 Yiva/ V2 0
0 hs 0 0 ygvg/\/?

This mass matrix is not hermitian and a bi-unitary transformation is needed to diagonalize

it. Thus one has
D;T(MU)DQIL/ = diag<mu17 MMy s Mgy My mu5)‘ (6)

Under the bi-unitary transformations the basis vectors transform so that

tr Ul p 133 Uiy,
Tr U2, 17, Ugp,
cr | =D% |us, | | e | =DF | us, | - (7)
UR Ugp ur, Uyq,,
tyr Us tar, Us,

A similar analysis can be carried out for the down quarks. Here we choose the basis set

as
Mg = (br Br sgr dr bsr), mi = (br By sp dp bi). (8)

In this basis the down quark mass terms are given by
—L, = Mp(Ma)n, + hec., 9)
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where using the interactions of Eq. (43), M, has the following form

not/V2 o hy 0 0 0
hs  yhve/V2 kY h hg
My = 0 Ry gz /V2 0 0 . (10)
0 h! 0 Y41 /2 0
0 he 0 0 Ysv1/v/2

In general hs, hy, hs, b, By, hi, b5, by, b, he, hr, hs can be complex and we define their phases
so that

k= |hile™*, h eXr = |n!|eXx .
hi = [h|e™, By = WL, RBY = |B!]eX 11

The squark sector of the model contains a variety of terms including F -type, D-type and
SUSY soft breaking terms. The details of these contributions to squark mass square matrices

are discussed in section 7.

3 The analysis of Chromoelectric Dipole Moment Op-
erator

The chromoelectric dipole moment d€ is the coefficient of the effective dimension 5 operator
which is defined by

i~
L1 = —5d 0,757 G, (12)

where G** is the gluon field strength and 7 are the SU(3) generators. The quarks will
have five different contributions to the CEDM arising from the W, Z, gluino, chargino and
neutralino exchanges. We denote these contributions by dC(W), d(Z), d°(3), d°(x*) and

dg( 0). We discuss each of these contributions below.

3.1 W exchange contribution to quark CEDM

For the up quark the W- exchange contribution arises from the left diagram of Fig. (1) using
the interaction of Eq. (13), i.e

5 5
_ﬁqu— JZZ GWPL+GWPR]d —|—hC (13)
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Figure 1: W and Z exchange contributions to the CEDM of the up quark. Similar exchange
contributions exist for the CEDM of the down quark where u and d are interchanged and
W+ is replaced by W~ in the diagrams above.

where GY and GY are defined in section 8. The contribution of the W-exchange graph to

chf is given by

2 2
~ Js mg, " m ’ m,
dS(W) = Z S Im(G Gy T <_mg : > , (14)

2
w My

where I1(ry,m5) is a form factor given by

1 2
(4+7r —ry)z —4x
I = d : 15
l(rla TQ) /(] xl + (Tl — g — 1)1’ n TQZEZ ( )
In the limit when 75 is very small as the case here, this integral gives the closed form
2 1 1 37’1 In 1
I 0))=— 1+~ . 16
l(rla ) (1—7"1)2 |: —|—4T1+4T1+ 2(1—7’1):| ( )
The W contribution to the down quark CEDM is given by
~ g 5 m m2 m?l
df(W) = =5 —Im(GIGR )L | =5 —5 17
(W) 1672 - m%v m(G Ly Gris) ly m2, m, (17)

3.2 Z exchange contribution to quark CEDM

For the Z boson exchange the interactions that enter with the up type quarks are given by

5 5
—~Luuz = Z, » > u’[CE Py + Ci Prlu;, (18)



where the couplings C%Z and C%? are defined in section 8. Using this interaction the com-
putation of the Z exchange contributions to the up quarks is given by the loop diagram to

the right in Fig. (1). Its contribution is

2

1 My, U OYAS m m1214
&0(2) - Z (IO (g ) (19)

2
167T my my

For the Z boson exchange, the interactions that enter with the down type quarks are

given by

5 5
—~Laiz = Z Z ?[C{% Py + CF Prld;, (20)

where the couplings C%? and C% are as defined in section 8. A calculation similar to that

of the up quark CDEM gives a contribution to the d-quark moment so that

5 2 2
Js 2 : mg, * m m
dC(Z) 1671'2 m2 Im(C Ciljiz ) ( Z ) 6;4) ' <21)

— Mz my My

3.3 Chargino exchange contribution to CEDM

In this section we discuss the interactions in the mass diagonal basis involving squarks,

charginos and quarks. Thus we have

5 2 10
Lo g =3 D> (CiiP + CIPR)X"dy + hec., (22)
j=1 i=1 k=1
and
5 10
—Lyg gy = Z d;( ]szL +C szR)X 'y, + h.c., (23)
7j=1 =1 k=1

where the couplings C**, CFv, CL4 and CF? and are as defined in section 8. The loop
contributions to the up -quark CEDM arise from the right diagram of Fig. (2). Their
contribution to CEDM of quarks using Eq. (22) and Eq. (23) are given by

6
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Figure 2: Left diagram: Supersymmetric loop contributions to the CEDM of the up-quark
from the diagram involving the exchange of neutralinos and up-squarks. Right diagram:
Chargino and down-squark loop contribution to the CEDM of the up quark. Similar loop
contributions exist for the CEDM of the down quark, where v and d are interchanged, @ and
d are interchanged and x* is replaced by x~ in the diagrams above.

- 2 x mi+ m2
i Ru* _Xi U
du X 1671-2 Z Im 04216 )[ M2 ) M24 ) (24)
k

=1 k=1 k

dC

2 X mi+ m;
—51m 4zk ﬁlccl*)[i’» 3 ) 3 ) (25)
= T 2 Z M2 M2

i=1 k=1 “k

where I3(r1,72) is given by

1 T — o2
I3(ry,m0) = d . 26
3. m) /0 7 (ry — 1o — 1) + rox? (26)
In the limit when ry is very small as is the case here we have the closed form
1 2r1Inry
I 0))=—=11 . 27
3(71,0) 2(7"1—1)2( +71+ —7”1) (27)

3.4 Neutralino exchange contribution to CEDM

We now discuss the interactions in the mass diagonal basis involving up quarks, up squarks

and neutralinos. Thus we have,

10

5 4
- Z Z Z ral UUkPL + OuzngR)X?ﬁk + h-C-7 (28)

i=1 j=1 k=1



The interaction of the down quarks, down squarks and neutralinos is given by

4 10

4
_Ed—(i—xo - Z Z Z CZZ<C;Z]€PL + C;lngR);(gdk + h.C., (29)

i=1 j=1 k=1

where the couplings C'* and C'® as given in section 8. Using the interactions of Eq. (28)

the neutralino exchange contribution to the CEDM of the up-quark is given by

4 10 2 2

- s M0 , - Myo msy

dg(X[)) = 167T2 z : : : Mi; Im<CuilkCu{fzk>I3 (Mé ) M~24> : (30)
i=1 k=1~ Uk Uk Uk

Similarly using the interactions of Eq. (29) the CEDM of the down quark is given by

00 = 95 S S M etk o, (22, 7 31
d(X)_167r2;;M_§km( ik Caain) I3 M—in—i ) (31)

3.5 Gluino exchange contribution to CEDM

5
—Logg =V20:) Y > > T4 [Cu,, Pr + Cr,, Prldadl, + hoc., (32)

where the couplings Cp,, and Cg, are defined in section 8. Using Eq. (32) the gluino
exchange contribution to the up quark CEDM arising from the loop diagrams of Fig. 3 is
given by

10 2 2

e gs0s T . mg - mg

&) = 3575 Y. K K ) (7 1) (33)
m=1 Um Um Um

Similarly using Eq. (32) the gluino contribution to the down quark CEDM is given by

10 2 2
107 ~\ gsQlg mg * m§ U
G0 = 150 2y K K, )T (Mdg ST ) . (34)

m=1

Here Ki,,, and Kg,, are given by
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Figure 3: Left diagram: Supersymmetric loop contributions to the CEDM of the up-quark
arising from the exchange of gluino and up squarks with the gluon emission from the internal
up squark line. Right diagram: Same as left diagram except that the gluon emission is from
the internal gluino line. Similar loop contributions exist for the CEDM of the down quark,

where v and d are interchanged, u and d are interchanged.

Ky = (D§24D3m - Dg54[)(110m - D?%*44ng - D;]%*34ng - ngbgm)e_igg/z J
and
Ky, = (DD + DDl + DisuD, + DE DY, = DIy Dh,)e .
where I5(r1,72) is the loop function defined by

1 2

T+ 8z
I = d .
5(r1,72) /0 xl + (r1 — ro — 1)a + roa?

In the limit where ry is very small as is the case here we get the closed form

1
2(rp — 1)2

2r; 1 181
L (10, 0) = rylnr nrl) .

(10T1 — 26 + —

1—T1 1—7‘1

4 The neutron CEDM

(37)

As discussed in the previous section, the total contribution to CEDM of the quarks consists of

five contributions arising from the exchange of the W, the Z, the charginos, the neutralinos,

and the gluino, so that

dg = dG(W) +dS(Z) +dF (x) +df (X") + d5(9), a=u.d.

(39)



The contribution of the chromoelectric operator to the EDMs of quarks can be computed
using dimensional analysis [34]. The contribution to the quark EDM arising from chC is given

by
e
d¥ = —
q 47

where ¢ is approximately equal to 3.4. The factor n brings the electric dipole moment from

n°dg, (40)

the electroweak scale down to the hadronic scale where it can be compared with experiment.
To obtain the contribution to the neutron EDM from the quark EDM, we use the non-
relativistic SU(6) quark model which gives

1
4§ = 14dS —dS). (41)

5 Numerical analysis of neutron EDM
The current experimental limit on the EDM of the neutron is [35]
|d,| < 2.9 x107% ecm  (90% CL). (42)

It is expected that a higher sensitivity by as much as two orders of magnitude more sensitive

than the current limit may be achievable in the future [36].

We present now a numerical analysis of the neutron CEDM first for the case of MSSM and
next for the MSSM extension. The first analysis involves no mixing with the mirror genera-
tion and with the fourth sequential generation and the only CP phases that appear are those
from the MSSM sector. Thus in this case all the mixing parameters, given in Eq. (11), are
set to zero. The second analysis is for the MSSM extension where the mixings of the mirror
generation and of the fourth sequential generation with the three generations are switched
on. The results are given in Table 2 and Figs. 4-11. In the analysis, in the squark sector
we assume my = M2 = M2 = M? = M? and md = M? =M% = M = M2 =M, =
Mli = Mz, = MEZB. To simplify the numerical analysis further we assume my = md = my.
Additionally the trilinear couplings are chosen so that: Ay = A, = Ap = A, = A, = Ay
and Ag =A,=Ag = A, = Ay = Ayp. The input parameters are such that the sparticle
spectrum that enters the loop are consistent with the current experimental limits from the

LHC in each of the cases, i.e., with or without mixing.
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(1) (i1)

Contribution Up Down Up Down

Chargino, d" 249 x 1079  —120x 1072 216 x 1072 —2.08 x 10~ %
Neutralino, dX’ —249x 10732 475 x 1072  —2.90x 10732 547 x 1072
Gluino, ¢ 342 %1072 —424x 1078 749 x 10728 2.06 x 10726
Total, d, 590 x 1072 —1.32x 10726 7.71 x 10728 —1.42 x 10728
EDM, d¥ —2.70 x 10~ —6.83 x 10~

Chargino, dg(xi) —3.41x 107 —215x 1072 —2.89 x 1073 —3.40 x 10727
Neutralino, dgj(xo) —4.54x 10732 —1.73x 1072 —5.30 x 1073? —2.00 x 10728

Gluino, d¢'(g) 551 x 10720 1.37x107% 121 x 10727 —6.63 x 10726
Total, df 1.40 x 107 —258 x 1072 3.26 x 1072®  —1.89 x 10726
CEDM, d¢ —3.49 x 107 —2.53 x 10726

Table 1: An exhibition of the chargino, neutralino and gluino exchange contributions to the
quark and the neutron EDM, CEDM and their sum for the case when there is no mixing
of the vectorlike generation with the three generations. The analysis is for two benchmark
points (i) and (ii). Benchmark (i): 6, = 3.3 x 1073, & = 1 x 107, Benchmark (ii):
0, =4.7x 1073, & = 3.6. The common parameters are: tan 8 = 40, mg = my = mg = 3000,
Imy| = 185, |my| = 220, |AY] = 680, |AZ] = 600, |u| = 400, m, = 1000, |hs| = |k = |hy| =
[hal = |Ry| = || = |hs| = [h5| = |hg5| = |he| = |hr| = |hs| =0, & =2 x 1072, §& =2 x 107°,
Qay =2 X 1072, o Ad = 3. All masses are in GeV, all phases in rad and the electric dipole
moment in ecm.

We discuss now in further detail the cases without and with mixing with the vectorlike
generation. We begin with the case with no mixing. In table 1, we give the individual con-
tributions to the up and down quark EDM and CEDM, namely, the chargino, the neutralino
and the gluino contributions. The W and Z contributions are not shown since they are absent
in this case of no mixing with the vectorlike generation and the fourth sequential generation.
The different contributions are given for two benchmark points (i) and (ii), where in the
first, the neutron EDM dominates the neutron CEDM and in the second, the opposite is the
case. The chargino and gluino contributions are the main contributors, while the neutralino
contribution is suppressed. Note that the total neutron EDM, |d,|, obtained by adding dZ
and d¢ in the table satisfy Eq. (42). Another observation is the largeness of the down quark
contribution in comparison with its up quark counterpart. This is attributed to the large

value of tan 8 which tends to enhance the down quark couplings.
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(1) (i1)

Contribution Up Down Up Down

Chargino, dX~ 765x107%  —6.91x 107" 7.08x107%* 827 x 10"
Neutralino, dY’ 393x107%  6.90x107%  391x107%  7.32x107%
Gluino, d¢ —2.01 x 1072 —535x 10727 2.25x 1072 591 x 1077
W Boson, d;" 3.77x 10730 346 x 1072 3.77x 10730 3.46 x 10728
Z Boson, d? 8.02x 1071 3.05x 107  8.02x 1073  3.05x 107
Total, d, —1.88x 1073 —1.19x 10720 237 x 107%® —1.97 x 107
EDM, d” —2.41 x 1072 —4.13 x 1077

Chargino, dJ(x*) —7.66 x 10°7 —898x 10 ® —6.95x 10 % —1.07 x 10~
Neutralino, dJ(x%) 7.17x 107 —252x107% 7.14x 1073  —2.68 x 10°%

Gluino, d'(g) —457x 107%® 244 x107% 513 x 107  —2.70 x 1072
W Boson, d§(W)  —2.97x107%° 229 x10"% —297x107% 229 x107*®
Z Boson, dS(Z) 146 x 10730 —1.11x 1072 146 x 1073°  —1.11 x 10~*8
Total, d< —124 %107 638 x 107" 1.38x 107> —7.56 x 107>
CEDM, d¢ 8.54 x 107%7 —1.01 x 10726

Table 2: An exhibition of the chargino, neutralino, gluino, W and Z exchange contributions
to the quark and the neutron EDM, CEDM and their sum for the case when there is mixing
of the vectorlike generation with the three generations. The analysis is for two benchmark
points (i) and (ii). Benchmark (i): 6, = 4x1073, & = 1.12. Benchmark (ii): 6, = 4.6 x 1073,
£3 = 4.71. The common parameters are: tan 3 = 40, mg = m¥% = md = 5500, |m;| = 185,
Ima| = 220, |AY] = 680, |Ad| = 600, |u| = 400, m, = 1100, ms = 300, mp = 240, my, = 320,
myy, = 280, |hs| = 1.58, |hy] = 6.34 x 1072 |h}| = 1.97 x 1072, |hy| = 4.42, |h}| = 5.07,
|hfj| = 12.87, |hs| = 6.6, |ht| = 2.67, |hZ| = 1.86 x 1071, |hg| = 1000, |h7| = 1000, |hg| = 1000,
& =2x1072 & =2 x 1073, Qay = 2 X 1072, oge =3, x3 = 2 X 1072 x5 = 1 x 1073,
g =4x1073 x4 =7Tx1072 x, = x4l = 1x1073, x5 = 9x 1073, x5 = 5x 1073, x¥ = 2x 1073,
X6 = X7 = X3 = b x 1073, All masses are in GeV, all phases in rad and the electric dipole
moment in ecm.

Next we consider the case with mixings. The results are presented in table 2 for two
benchmark points (i) and (ii). Here in addition to the chargino, the neutralino and the
gluino exchanges one also has W and Z exchanges. The analysis shows the dominance of
the EDM over the CEDM for benchmark (i) while opposite is the case for benchmark (ii).
The total EDM for each benchmark point satisfies the experimental constraints of Eq. (42).
Here we note that the EDM and CEDM are constrained not only by the experimental limits
on the MSSM spectrum, but also by the limits on new quarks. Thus for the benchmarks

presented in Table 2, the vectorlike quarks have masses gotten by diagonalization of the
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matrices of Eq. (5) and Eq. (10) and are given in Table 3. The results of Eq. 3 are consistent
with [37]. More stringent constraints on these masses will be available at the LHC RUN-II.

Mirror Up Quark my = 1037 GeV
Mirror Down Quark my = 740 GeV
Fourth G Up Quark my’ = 1057 GeV
Fourth G Down Quark m{°"™ = 1260 GeV

Table 3: An exhibition of the masses of the heavy extra quarks corresponding to the param-
eter space of table 2.

x 10

—myg = 2.0 TeV]
---mg = 2.5 TeV

mg = 3.0 TeV
-=mg = 3.5 TeV

N

w
()]
T

w

Neutron CEDM, |d$| (ecm)
N
u

N
=T

151

Figure 4: Variation of neutron CEDM |dS| versus Mx (Mx = |hg| = |h7| = |hg|), for four
values of mg. From top to bottom at Mx = 4 TeV, my = my = md = 2.0, 2.5, 3.0, 3.5 TeV.
Other parameters have the values tan § = 14, |m4| = 185, |mq| = 220, |u| = 350, |Af| = 680,
|Ad] = 600, my = 300, mp = 260, my, = 1000, my = 320, my = 280, |hs| = 1.58,
hs| = |hs| = RMx, |hs| = 4.42, |Wy| = [h}] = RMx, |hs| = 6.6, |hs| = |h5| = RMx,
R=1x10", 6, =398, & = & = 4.52, & = 242, aqy = 50, ayy = L14, x5 = 2.38,
X5 = 4.92, x4 = 2.58, x4 = 4.86, xj = 1.6, x| = 1.37, x5 = 1.14, x5 = 4.39, xt = 2.38,
X6 = 4.92, x7 = 2.58, ys = 4.86. All masses are in GeV and phases in rad.

Next we give an analysis of the quark CEDMs dependence on the mass scales as well
as on the CP phases both in the MSSM sector as well as the new sector. Thus the CEDM
depends on the mass scale of the vectorlike sector and in the MSSM sector it depends on

the universal scalar mass myg, and on the gaugino mass scales. Further, it has dependence
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on several CP phases both from the MSSM sector as well as from the vectorlike sector. We
discuss the dependence of the CEDM on the mass scales first, and specifically on the mass
scales My (from the vectorlike sector) and on mg and on m.

Fig. 4 gives the dependence of the effect of the vectorlike generation on CEDM where
we exhibit CEDM vs My, where Mx = |hg| = |h7| = |hs| and that |hs| = |hY| = |h)| =
\R| = |hL| = |hY] = RMx while R = 1 x 1073, We note that the allowed range of values
for R is highly constrained. Thus smaller values of R will not produce interesting results
while larger values are likely to upset the quark masses for the first three generations. The
analysis shows that CEDM lower than the upper limit can be obtained and masses in the
TeV range may be probed using the constraint given by Eq. (42) which should undergo
further refinements in the future. The curve corresponding to my = 2 TeV is characterized
by a dip at Mx ~ 1.9 TeV. This dip quickly widens and is replaced by a shallow drop for
mo = 2.5 TeV and then disappears completely for larger values of mgy. The variation of the
CEDM eventually levels off for higher values of Mx and my. Further analysis shows that
the dip is caused by a sudden drop in the mass of the lightest up squark mass for My ~ 1.9
TeV in this region of the parameter space. The analysis of the dip is rather involved but
arises as a result of the competition among the different components of the chromoelectric
dipole moment operators, i.e, the W, Z, chargino, neutralino and gluino contributions. The
analysis of Fig. 4 makes clear the very sensitive dependence of the CEDM on the vectorlike

mass scale and exploration of this dependence is one of the primary motivations of this work.
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Figure 5: Variation of neutron CEDM |dS| versus the scalar mass mg (mo = mi = mg),
for five values of My, (Mx = |hg| = |h7| = |hs|). From top to bottom at mg = 5 TeV,
Mx = 1.5,2.0,2.5,3.0,5 TeV. Other parameters have the values tan 5 = 14, |m4| = 185,
Ima| = 220, |p1] = 350, |A¥| = 680, |A4| = 600, my = 300, mp = 260, m, = 1000, my, = 320,
my, = 280, |hg| = 1.58, |hs| = |h5| = RMx, |ha| = 4.42, |B}| = |} = RMx, |hs| = 6.6,
W] = B4 = RMyx, R=1x1073,0, = 3.8, & = & = 4.52, & = 242, gy = 5.0, a0 = 114,
X3 = 2.38, x5 = 4.92, x§ = 2.58, x4 = 4.86, ), = 1.6, x| = 1.37, x5 = 1.14, x; = 4.39,
Xe = 2.38, x¢ = 4.92, x7 = 2.58, ys = 4.86. All masses are in GeV and phases in rad.

Another way for looking at Fig. 4 is to plot the CEDM against m, for several values of
My while R is fixed at 1 x 1072 in the same region of parameter space. This is done in
Fig. 5. The plot shows peaks between 2 and 3 TeV and then the CEDM decreases gradu-
ally for increasing values of mg. The peak is more pronounced for small values of Mx and
disappears for larger values (for Mx = 5 TeV, here). The peaks occur in regions where my
and My are comparable in size as shown in this region. All values of the CEDM obtained

in this region of the parameter space lie below the current upper limit.

In Fig. 4 we investigated the dependence of CEDM on the vectorlike mass Mx and found
that there is a very significant dependence of the CEDM on My. It is of interest also to ex-
amine if the EDM shows a similar dependence on Mx. In Fig. 4 we exhibit this dependence
where |dZ| is plotted against My for the same set of my values as in Fig. 4. Again as in the
case of CEDM we find that EDM also has a sensitive dependence on My. We note here that
the analysis of this work for EDM is more general than the analysis of [23]. Thus in [23]
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Figure 6: Variation of neutron EDM |d”| versus Mx (Mx = |hg| = |hs| = |hs]|), for four
values of mg. From top to bottom at Mx =1 TeV, my = m§ = md = 2.0, 2.5, 3.0, 3.5 TeV.
Other parameters have the values tan 5 = 15, |mq| = 185, |ma| = 220, || = 350, |Af| = 680,
[AZ] = 600, my = 300, mp = 260, m, = 1000, my = 320, my = 280, |hs| = 1.58,
W) = 1) = RMx, hal = 442, K] = 1] = RMx, hs] = 66, || = |B2] = RMy,
R=1x10736,=5x103, & =2x 1072 & = 2x 1073, & = 4.0, agy = 2 x 1072,
aye =3.0,x3=2x107% x5 =1x107% x5 =4x107°, xa =7 x 107%, ), = x{ = 1 x 1079,
X5 =9x1073, xL =5x 1073, x¢ =2x 1073, x6 = x7 = xs = 5 x 1073, All masses are in
GeV and phases in rad.

we considered only the mixings of the three generations with the mirror generation so that
the quark matrices were 4 x 4 and the squark square matrices were 8 x 8 and the parameter
My did not appear in that work. On the other hand, in this work we are considering mixing
of the three generations with the full vectorlike generation consisting of the mirror and the
sequential fourth generation. As a consequence the quark mass matrices are 5 x 5 and the
squark mass squared matrices are 10 x 10 and this time we have also the dependence on the

vectorlike mass Mx. Thus the analysis of this work is more general than of the work of [23].
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Figure 7: Variation of neutron CEDM dS versus the gluino mass, m,, for four values of tan 3.
From bottom to top at my = 5 TeV, tan 8 = 10, 20, 30, 40. Other parameters have the values
Imy| = 170, |may| = 220, |u| = 450, |AY| = 680, |Ad| = 600, m¥ = md = 3700, mr = 300,
mp = 260, my = 320, my = 280, |hg| = 1.58, |hs| = 6.34 x 1072, |hY| = 1.97 x 1072,
\hg| = 4.42, |h}| = 5.07, |h]| = 2.87, |hs| = 6.6, |hL| = 2.67, |hZ| = 1.86 x 1071, |hg| =
|h7| = |hs| = 1000, 6, = 2.6 x 1073, & =2 x 1072, & =2 x 1073, & = 1.6, aqy =2 X 1072,
ae =30, x3=2x107% x5 =1x107% x5 =4 x 1077, xy =7 x 107, xj = x§ = 1 x 107?,

Xs =9 x1073, xL =5x 1073, x¢ =2x 1073, x6 = x7 = xs = 5 x 1073, All masses are in
GeV and phases in rad.
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Figure 8: Variation of up and down quark contributions to the neutron CEDM for tan 5 = 40.
Other parameters are the same as in Fig. 7.

Next we study the dependence of the CEDM on the gluino mass. This is given in Figs. 7
and 8. Thus in Fig. 7, the variation of the neutron CEDM, d<, is plotted against the gluino
mass, my. It is shown that CEDM values lower than the current experimental upper limit
can be obtained in the given parameter space. The neutron CEDM decreases for increasing
values of mgy, but eventually levels off at around zero for some values of tan 3. However, for
other values of tan 3, (e.g. tan = 40), the neutron CEDM levels off but turns negative.
This phenomenon can be understood by analyzing different contributions to the CEDM
as shown in Fig. 8. Specifically one finds that the negative contribution to the CEDM
arises from the chargino exchange loop contribution, d5(x*). Since we are not applying any
GUT constraints, the masses of the chargino and the gluino can be treated as independent
parameters and thus as we increase the gluino mass, the chargino contribution remains
unchanged and eventually dominates as the gluino mass gets large and makes the CEDM
negative for my > 20 TeV. We note here in passing that the W and 7 contributions in this

region of the parameter space are negligible compared to the other exchange contributions.
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Figure 9: Variation of neutron CEDM |dS| versus 6, for four values of tan 3. From bottom
to top at 0, = 1 rad, tan 8 = 10, 20, 30, 40. Other parameters have the values |m;| = 170,
Ima| = 220, |u| = 400, |A%| = 680, |Ad] = 600, m¥ = md = 8000, m, = 1000, my = 300,
mp = 260, my = 320, my, = 280, |hs| = 1.58, |B4| = 6.34 x 1072, |12 = 1.97 x 102,
ha| = 4.42, |B,| = 5.07, |h!| = 2.87, |hs| = 6.6, |IL| = 2.67, |h2] = 1.86 x 1071, |hg| = |he| =
[hs| = 1000, & = 2x 1072, & = 2x 1075, & = 2.6, gy = 2x 1072, aye = 3.0, x3 = 2x 1072,
X = 1x1073 x4 =4x1073, x4 = Tx 1073, x, = x4 = 1x1073, x5 = 9x 1073, xt = 5x 1073,
Xe=2x1073 x6 = x7 = xg = b x 1073, All masses are in GeV and phases in rad.

As discussed already, it is of interest to study the dependence of CEDM on the CP phases
in the MSSM sector as well as in the new sector. Fig. 9 shows the variation of the neutron
CEDM versus 8, the phase of u. The CP phases are the source of the CEDM and the sensi-
tivity that the CEDM shows in response to the variation of 8, is obvious. The parameter p
appears in the chargino and the neutralino mass matrices. It exists also in the squark mass
squared matrices, so one can see that the chargino, the neutralino and the gluino contribu-
tions are affected by this parameter and its phase. The electroweak contributions, i.e, W and
Z components are independent of the magnitude and the phase of u. Values of |d$| below
the current upper limit can be obtained for several values of tan 3, whereas values above the

limit appear for larger tan j.
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Figure 10: Variation of neutron CEDM [dY| versus g, for four values of |hg|. From bottom
to top at xg = 1 rad, |hg| = 1100, 1200, 1300, 1400 GeV. Other parameters have the values
tan 8 = 34, |my| = 185, |mo| = 220, |u| = 350, |AY| = 680, |Ad| = 600, m¥% = md = 3600,
my = 300, mp = 260, my, = 4000, my, = 320, mg, = 280, |hs| = 1.58, |h}] = 6.34 x 1072,
PG| = 1.97 x 1072, |hy| = 4.42, |B| = 5.07, |h]j| = 2.87, |hs| = 6.6, |hL| = 2.67, |hZ| =
1.86 x 107Y, |hg| = |hy] = 1100, 6, = 0.1, & = 2 x 1072, & = 2 x 1073, & = 3.6,
g =2 x 1072, aye = 3.0, x3 = 2 X 1072, x4 =1x107% x5 =4x 1073, x4 =7 x 1073,
Xa=X1=1x1073 x5 =9x 1073, xt =5 x 1073, x¥ =2 x 1073, xy = xg =5 x 1073, All
masses are in GeV and phases in rad.

Next we investigate the dependence of CEDM on x4 which explores a new sector of the
theory as it is the CP phase that arises in interactions involving the mirror quarks and the
fourth generation quarks. An analysis of the dependence of CEDM on yg is exhibited in
Fig. 10. Aside from hg, other mass parameters that arise because of the new sector are hy;
and hg. The dependence of the CEDM on |hg| is also exhibited in Fig. 10. Quite remarkably

CEDM is sensitive to both the mass scale and the phase that enters in the new sector.
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Figure 11: Variation of the neutron EDM, |dZ]| (solid curve), the neutron CEDM, |d¢]|
(dashed curve), and the total neutron EDM, |d%*!| (dotted curve), versus &3, the phase of
the gluino mass, for tan 5 = 40. Other parameters have the values |m;| = 185, |mq| = 220,
ml = ) = ) = y My = My = , M = y Mp = y Mg = )
400, | Ay 680, |Ad 600, mg d = 5000 300 260, my = 1500
ma = 320, may, = 280, |hy| = 1.58, || = 6.34 x 1072, |1%] = 1.97 x 1072, |hy| = 4.42,
|h}| = 5.07, |h]| = 2.87, |hs| = 6.6, |h| = 2.67, |hZ| = 1.86 x 107!, |hg| = |h7| = |hs| = 1000,
B, =4.7x 107, & =2x 1072 & =2 x 107, agy = 2 x 1072, ayg = 3.0, x5 = 2 x 1072,
Xe=1x1073 x4 =4x1073, x4 =Tx1073, x}, = x§ = 1x1073, x5 = 9x 1073, xL =5x 1073,
Xe=2x10"% xs = x7 = xg = 5 x 107%. All masses are in GeV and phases in rad.

Finally, it is of interest to look at the total electric dipole moment obtained by adding the
electric and the chromoelectric dipole moments. Fig. 11 shows the variation of the EDM, the
CEDM and the total EDM against the gluino phase, 3. The analysis of Fig. 11 shows that
while the EDM may dominate the CEDM for some values of &3 the opposite may happen for
a different range of £3. The analysis also suggests constructive interference between EDM
and CEDM in some parts of the parameter space while there is destructive interferences in

other parts (i.e., for 0 < & < m) leading to the cancellations mechanism [26, 27].

6 Conclusion

In this work we have given an analysis of the chromoelectric dipole moment of quarks and
of the neutron arising in an extension of MSSM where there is an additional vectorlike

generation of quarks in the matter sector. Such an extension brings in new sources of CP
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violation which can contribute to the chromoelectric dipole moment of quarks. The work
presented here consists of analytical results on five different types of contributions to the
chromoelectric dipole moments of quarks which include both non-supersymmetric as well as
supersymmetric loop contributions. In the non-supersymmetric sector we have contributions
arising from the exchanges of the W and Z bosons in the loops, while in the supersymmetric
sector we have exchanges involving charginos, neutralinos and the gluino in the loop. We
have also carried out a detailed numerical analysis of their relative contributions. Specifically
it is found that there exists strong interference effects between the MSSM sector and the
vectorlike quark sector which can drastically change both the sign and the magnitude of
quark EDMs. We have also investigated the possibility that the neutron EDM can be used
as probe of the TeV scale physics. These results are of import as future experiment can
improve the current limits up to two orders of magnitude and thus the quark EDMs provide
an important window to new physics beyond the standard model.

Acknowledgments: PN’s research is supported in part by the NSF grant PHY-1314774.

7 Appendix A: Squark mass matrices

In this Appendix we give further details of the model discussed in section 2. As discussed
in section 2 we allow for mixing between the vector generation and specifically the mirrors
and the standard three generations of quarks. We also allow for mixing between the mirror
generation and the fourth sequential generation assuming R parity conservation (for a recent

review of R parity see [33]). The superpotential allowing such mixings is given by

AAAAAAAAAA

W = e[y Hig] 05, + v HG 05, + 0o HIQTL, + v, HIQV B,
+ysHLG3, 05, + v HYGh 05, + yaHL 63,05, + vi HLGh 05, + ys LG 05, + v HY i t5,)
+ haey 0%, + Wyeus OFd, + Wiey, O%dl, + halk, By, + hsfc, Ty + 105, By
+ hLES, Ty + RU0S, Br, + s, Tr + hee; Q' + habs, Bl + het$, Ty, — pei, HIHI | (43)

Here the couplings are in general complex. Thus, for example, p is the complex Higgs mixing
parameter so that u = |pu|e®®. The mass terms for the ups, mirror ups, downs and mirror
downs arise from the term

1 0*W

L=— zaAaAwlw]—l—hc (44)
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where 1 and A stand for generic two-component fermion and scalar fields. After spontaneous
breaking of the electroweak symmetry, ((Hl) = v,/v/2 and (H3) = vy/v/2), we have the

following set of mass terms written in the four-component spinor notation so that

= Ep(Mu)EL + Rp(Mg)nL + hec., (45)

where the basis vectors are defined in Eq. (3) and Eq. (8).

Next we consider the mixing of the down squarks and the charged mirror sdowns. The
mass squared matrix of the sdown - mirror sdown comes from three sources: the F term, the
D term of the potential and the soft SUSY breaking terms. Using the superpotential of the
mass terms arising from it after the breaking of the electroweak symmetry are given by the
Lagrangian

L=Lp+Lp~+ Lo , (46)

where L is deduced from F; = OW/0A;, and —Lp = Vr = F;F} while the Lp is given by

—ED = §m2Z COS2 ew COS 2B{£L£*L — [;LB*L + 5L62 - ngz + QNLL&E — CZLCi*L + E4LEZL - 54LBZL

~ o~k 4~ ~%
-CrCr, + gCRcR

- - 1 1. - 4. -
+ BrBj, — TRTh} + §m2z sin? Oy cos Qﬂ{—gt,;tz + - 3

Stnth -
1 4 . 1. -0 A - 1. - 2~ -,
guRuR + gTRTR - gTLTL — gbLbL — gbRbR
s 2, 1~~* 2””* 1~ -

il +

Wl W] —wl

1 .
37541%7543 3b4Lb4L_§b4Rb4R}' (47)

For L. we assume the following form

.z L

— Lot = qulfqufL + Mj LqﬁquL + M; qugzcng + Mj qu?fzg]:’fL + M%QCk*QCk + Mifi’zf&
+ M2 b5 b5, + M2 L2L+M2 b4L+M?t 1
+ M5, 3L+M2 51+ M2 b5 b5, + MEB; By + MAT; Ty,
+ e {y A HiE b5, y1AtH§Q1Lt1L +ys A Hi G 05, — vh A Ho @1, By, + ysAdHi @ b5,

— ysAe H%QZLtQL + y4AdH§€7§L — Ay H§Q3L 3 T y2ATH1Q ATy — yzABHéQc]BL +h.c}.
(48)

Here Mj;, M7, etc are the soft masses and A;, Ay, etc are the trilinear couplings. The trilinear

couplings are complex and we define their phases so that

Ay = | Ayl | A, = A - (49)

Y
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From these terms we construct the scalar mass squared matrices. Thus we define the scalar
mass squared matrix Mg in the basis (I;L, By, bg, Br, 31,3, dr, CZR,Z~74L7I~)4R). We label the
matrix elements of these as (M?);; = M;; which is a hermitian matrix. We can diagonalize

this hermitian mass squared matrix by the unitary transformation
dt 1 72 PHd 2 2 2 2 2 2 2 2 272 2
D M D dzag(Mcil’Mcig’Md}’MJ4’MJ5’MJG’MJ7’MJ8MJQ’MJ10) . (50)

Similarly we write the mass squared matrix in the up squark sector in the basis (fL,TL,
tr,Tr,¢r,Cr, L, iR, tar., tsr). Thus here we denote the up squark mass squared matrix in
the form (M7);; = m;; which is also a hermitian matrix. We can diagonalize this mass square

matrix by the unltary transformation

D"IMZD" = diag(M;,, M2, M2, M2, M2 M2 M2 M2 M2 Mz ). (51)
8 Appendix B: W, Z, 0, G couplings with quarks

8.1 W-quark -quark couplings

The couplings that enter in the W -quark -squark interactions of Eq. (13) are defined so that
GKZ ﬁ[DL5]DL5z + DL4]DL41 + Dng‘DL?)Z + DLI]DLl'L] (52)

Gy = -=[D%. D%, 53

Ry = \/5[ kg Dol (53)

8.2 Z-quark -quark couplings

The couplings that enter in the Z -up-quark interactions of Eq. (18) are defined so that

u g U* u u u u U* u
CLjZZ- = ———[11(D75;Dysi + D7y D1y + D11 Diyy + Dia;Disi) + i Dis; Diol,  (54)

cos By,
and
U g wk
CRJ{ = os O (1 (Digs; Dis; + Dy Dias + DDy + DigsDisi) + 21 D55, Doy],  (55)
where
1 2 2
T, = 5= §sin2 Ow, y1 = ~3 sin® Oy . (56)
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The couplings that enter in the Z-down-quark interactions of Eq. (20) are defined so that

9 x
CgJZZ = CoS GW [‘r2<D%5JDg52 + DL4]D%4Z + DLlj D%lz + DL33D%31) + y2DL2JD%21] (57)

and

9
C’f{i = os Oy [92(DR5JDR5Z + DR4]DR47, + DRI]DRlz + DR3JDR3Z) + xQDR2]DR22] (58)

where

1 1 1
Ty = —5 + g Sin2 Qw, Yo = g sin2 9W (59)

8.3 Chargino-quark-squark couplings

The couplings that enter in the chargino-up-quark-down-squark interactions of Eq. (23) are

given by

Cﬂk 9(—Fu R4]D R3JD
*D}‘{‘UD — Kyt *D}%’EJD %BVQD%]D% + *D}‘%*QJD ) (60)
ngk =g(— "dezDZngng “sUizngngk "“JbU2DZLD§k
’14bU12DL5JD10k krUss L2]D4k
+ UllDL4]D7k + Uy L33D5k + Uy Ll_]‘le + UZIDL5]‘D k) (61)
The couplings that enter in the chargino-down-quark-up-squark interactions of Eq. (22)

are given by

* MU * U
C]zk - ( Kd Z2DR4] Tk T ZQDR3]
— kUi Dy DYy, — “4bU2DR5] 9k — DRQ]D + leRQJ 1) (62)

Cﬂk =g(— ’fuvizDCLle 8k — ’fcvizD%gj 6k — “tvizDCLl*lg S "€4tV2D%Eg 10k
’iBszDszDZk + ‘/leL4]D17Lk + Vz1DL3Jng + VlengDiLk + VleLE)Jng)v (63)

where
(mT7 mp, Mg, My, m4b>

\/§mW cos 3

(FGT, Ry, Rs, Rd, /‘64b) = ) (64)

(mBJ My, My My, m4t>

ﬁmw sin 3

(KB, Kty Key K, Kag) = (65)
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and
U*McV = diag(my-, my- ). (66)
8.4 Neutralino-quark-squark couplings

We first give the discuss the couplings that enter the the interactions in the mass diagonal

basis involving up quarks, up squarks and neutralinos of Eq. (28). Here we have,

Cuzgk _\/_(aU]D%ZzD’?k Yuj D%ZZD&’c + O‘/C]D%gzng ’YC]D%?)ZDF)]C + OétJD}?iqullk
— ;D53 DYy, + s Digs Dy, — e D Dioy, + By Dy Diy, — 07, Digs, DY), (67)

Cuzgk \/_(ﬁUJDLMD?k 6UJDL4ngk + ﬁC]DLS'Lng 5CJDz§zng + ﬂtJDlequk
= 84 D3 D3 + Bug Dy Dy — 845 D Dl + oy Dty Dy, — v D5 Diy) o (68)

where
ngXékj 2 ! g ’ 1 2 2
=T T = —oeX + ———Xo, | -5+ 0 69
AT 2myy cos 3 bry 36 1yt cos Oy 2 + 3 S ow (69)
2 2 gsin® Oy gmpXs;
— _Cexr 2T Wk 5 = 2T 70
T 3¢ 1]—i_3 cosfy ~H T 2myy cos 3 (70)
and
Xy Xy Xy WX
Quyj = Ao I o IRy o I gy
2myy sin 8 2myy sin 8 2myy sin 8 2myy sin 8
My X5 me X5 meX ) My X
Oat; = _u S _gt—%ﬂ L Oy = _g—ﬁ L Oy = _g—flﬂ (72)
2myy sin 8 2myy sin 3 2myy sin 3 2myy sin 8
and where
2 ’* g ! 1 : 2
Busj = Prg = Pes = Bus = 3¢ Xy cos Oy~ (5 3o HW) (73)
2 2 gsin® Oy
.= = Yei = u-:—X’.—— /. 74
Vatj Vtj Vej Vg 36 15 3 cos GW 27 ( )
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Similarly for the couplings that enter the the interactions in the mass diagonal basis

involving down quarks, down squarks and neutralinos of Eq. (29) we have

! dx 1vd dx 1vd dx 17vd dx 1vd dx 1vd dx 17vd
Cdzij =V2(gi Dy D — 74 D Dy + g D D&y, — 455 D Dig + ey D Dy — vy D D,
* T dx 17vd dx 17d dx 17d
+ o D Dy — Yan D Diog, + B Do Dy — 05 Do DS ), (75)

and

C&Zk :\/iwdeﬂiD?k - 5deﬁiD§lk + ﬁst%Eing - 5SjDi§ing + BbjD%;ink - 5bjD%;iD§lk

+ Bany DE5 Dy, — 0an D5, Doy, + s Do, Dy — v D5, D3y ), (76)
where
gmBXZ] 1 / g / 1 1 .92
R et N = —eX 4+ —L X' === 0 7
5] 2myy sin Fei 3EM * cosby P\2 3 S w (77)
1 ’ 1 g sin2 HW ’ gTTLBX4'
T8I = 350 T 3 0 Oy ~ X B 2myy sin 8 (78)
and
X3 X3, s X3 X3,
s = gmypX3; : ;= gmpAs3; oy = gmsXs; g = gmgqAg; 79)
2myy cos 3 2myy cos 3 2myy cos 3 2myy cos 3
gmapX3; gmpX3; gms X3, gmaXs;
Ogpj = —5—————7; Opj=—5——=; 0j=—5———=; 0 =—5——— (30)
2myy cos 3 2myy cos 3 2myy cos 3 2myy cos 3
and where
1 . g /e 1 1.
ﬁ4bj = Bbj = 5‘9]' = ﬁdj = —§€X1j —+ mXQj (—5 + § SIH2 ew) (81)
1 1 gsin? Oy
et . = 57 = L = — — X/. _ /. 82
Yabj = Voj = Vsj = Vdj 36 1t 3 cosly Y (82)
Here X’ are defined by
X1, = Xy, cos Oy + Xo; sin Oy (83)
X3, = —Xy; sin Oy + Xo; cos Oy, (84)
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where X diagonalizes the neutralino mass matrix and is defined by
XTMyo X = diag (mg, myg, myg, myg ) (85)

8.5 Gluino-quark-squark-couplings

The couplings that enter in the gluino-quark-squark interactions of Eq. (32) are given by

Cle = (D(II%ZIDZWL - D%EJID(IJOm - Dglllbgm - D?Slbgm - D%*llﬁgm)e_i£3/27 (86>
and
Cle = (D%tllb%n + D%Eljjgm + D%Engm + D%kllblllm - D%*QZng)eigg/Qa (87>

where &3 is the phase of the gluino mass.

9 Appendix: Mass squared matrices for the scalars

We define the scalar mass squared matrix ]\4d2 in the basis (l;L, BL, Z;R, BR, S, SR, CZL, d~R, l~)4L, 541%)-
We label the matrix elements of these as (M2);; = M, where the elements of the matrix are

given by

2 2 1 1
M} = Mz, Ul|51| + |hs|* — m% cos 23 (5 — gsin2 9W> ,

20,17 |2
1
M3, = M% + v2|32\ + | hal® + B+ RSP 4 R+ §m2z cos 23 sin? Oy,
1
Mz, = M2 Ul|31’ + |ha|? — 3m2Z cos 23 sin® Oy,
2 2 2]y2|2 2 112 "2 2 11
My, = Mg+ 5 + |ha|? + |R5]* + | R4 ] + |he|* + m% cos 28 ——gsm > O
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ME?S = MézL +
Mz = M2
Mz, = M??L +
Mg = .M2
Mgy = M2

M12010 = M{i +

U%|y3|2
2
%|y3|2
2
U%|y4|2
2
%|?J4|2
2
U%|y5|2
2

U%|y5|2

2

1 1
+ |hg]* — m% cos 28 <§ —3 sin® Oy
1
+ |12 — gm% cos 23 sin® Oy,
+ |hg|? — m7 cos 23 (1 — 1sir129
3 Z 2 3 w

1
+ |2 — §m2Z cos 23 sin® Oy .

1 1
+ |he|* — m7 cos 23 <§ —3 sin® Oy

1
+ |he? - §m2Z cos 23 sin® Oy .
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/
V2Ys h§

(A

2 2%

V2

U1 h4yi‘ M2

\/§ 13 — M??l* = - :LWQ)v M124 = M421* = 07

/2 (v1 45

M = M = hyhg, Mig = Mgt = 0, M7, = M2 = hihi, Mg = Mg = 0, My = Mgy = hhe,
* * * y2 * 2 2 U2héyé* UI?JShZ
M1210 = M1201 =0, M223 = M??Q =0, M224 = Mfz = —=(vAp — pv1), Mss = Msy = )
V2 V2 V2
2 24 2 on _ V2hBYs  v1yshl)” 2 %%
M26:M62:07M27:M72: \/5 \/5 M28 M2—0
hbys — vayshe
M2 :MQ*:Ul 7 2 7]\42 :M2* :07
29 92 V2 NG 210 102
hays vy Ry
M2 :M2*2U2 2 3,M2 :M2*:O,M2 :M2*:hh/*,
34 43 2 NG 35 53 36 63 41y
M§7 M723* =0, M328 Msz?f hy Z*v
M??g M92§k =0 M??m M12§3 = h4h;,
! hl* ol s
M2:M2*:0,M2:M2*:U2y24 133’
45 54 46 64 \/5 \/5
h//* v h//y*
M2 = M2 =0, M2, = M2 = 2920 DltsYs
47 74 48 84 V2 /2
M2 = M2 =0, M2y, = M%, = =227 | 106
49 94 410 104 V2 /2
M2 = ME = Lo (0, A7 — o), M2 = MZ = Wy,

V2

Mgs - Mszg =0, ME?Q - M92§ - hghﬁa M5210 - M1255 =0, M627 - M76 =0,

2 2% I N/E] 2 2% 2 2% 1/ 1% 2 2%
Mg = Mgs = hyhy, Mgy = My = 0, Mg o = My = hyhs, Mzg = Mgy =

2 2% 2 oaAg2%x _ pMyix 2 Ar2%
M89 - M98 - 07 M810 - M108 - h4 7 M910 - M109

Yi
V2
M729 = Ms?; = hg*hﬁa M7210 = M1257 =0
vs

V2

(v1Ag — pv2) -

(v1 A%, — pva)

We can diagonalize this hermitian mass squared matrix by the unitary transformation

DUA2D

= diag(M3 , M3 , M3 , M3 , M3, M3 M3, M3, M3,

o) (89)

Next we write the mass? matrix in the sups sector the basis (1, To.tr, Tr,¢p,Cp.ar, iR, tar, tir).

Thus here we denote the sups mass?

matrix in the form (MZ);; = m;; where
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w2y [? , 12,
mfl = MfL + 2|21| + |h3\2 + m7y cos 23 3~ §s1n Ow | .
vilyo|* "2 s 2 4 .2
miy = M+ “EE ol |15+ (B2 + [hs|? = Smi3 cos 28sin? O,
2 /12 2 )
ma, = Mt21 - 1}2|32h| + |hs|?® + gm% cos 23 sin? Oy,
20, |2 2,
mj, = Mc% 4 a2l |32| + |hs|? + |h5|* + |hg)? + |he|® — m% cos 23 (5 — 3 sin QW) ,
20, 12 19
mis :M§L+U2|g3| + |hs|* 4+ m% cos 23 (5—581112«9”/) ,
20, 12
m%ﬁ = Mtz + Ug\gg| + |h@,|2 + %mQZ cos 23 sin? Oy,
2
2,0 |2 1 9
mi, = Mz, + "U2132/4‘ + |h4 12 + m% cos 23 (5 —3 sin? QW) ,
20, 12
mgg = MZ + valvil + [hE? + %mQZ cos 2[3 sin? Oy,
g 2
20, 12 12,
mgg = MZfL + 02’32/5‘ + |h6|2 _|_mZZ cos 23 (5 — §SH1 QW) ,
,U2 y/ 2 2 y .
m%OlO = Mi + 2‘25| + |h8|2 + gmz COS 25 Sin QW
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m%é?
m103
mg;
m§5
mgg =

2%
Mgy =

2%
Mgg =

2%

109 —

a2k
_m41_07

/NS
v2y3h5

. i
_Ul\y/%hg UQ}\L/%% , My = m3; = ?/15(”214* pvy ), mi,

= hyhs, mis = mg; = 0,my; = m7] = hyhs, mis = mg; =0,
- o,m§4 =ty = (w1 y — )y = ity =
=0,mj; =m7; = —vl\/%y; Uﬂﬁ;g* ,m3s = mgy =0,

. /s
— DO P s i = 0,y = il = ol
— 0,md, = s = hsh,
_ 07m4216 _ m%z _ _ygk\l/&_h/g + Ul?/Qh?,

2 V2
= 0,y = iy = s P,
= %(WAz — pvy),
= hyhy',m3s = mg = 0,
R
"

= L (0,47 — ),

V2

_ * 2
= hghy, miy = m101 =0,

?J5 vahg U1Y2 h§

_y§U1h6 U23/5h8
V2 V2
= O,m%9 = mgfé) =0,
hshg
=0, m42110 =

m%gzl = \/§ \/§ )

_ 2% __
hehsy 3 7m510 migs =0

2
0, mgyo =

! %
mige = hihy

_ 1% 2%
hehg ,m710 migr = 0,

2
0, mg10

/%

V2

y_5(v2 A

_ 2%« __ N
= mips = s

¢ — pv1)

32

Vol

(90)



We can diagonalize the sneutrino mass square matrix by the unitary transformation

D"MZD" = diag(MZ,, M2, M2, M2, M2 M2 M2 M2 MZ M ). (91)

uy? u? u3)’ Ugq? us? ug’ ur? ug?’ u10
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