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Abstract

An analysis is given of the chromoelectric dipole moment of quarks and of the neutron

in an MSSM extension where the matter sector contains an extra vectorlike generation of

quarks and mirror quarks. The analysis includes contributions to the CEDM from the ex-

change of the W and the Z bosons, from the exchange of charginos and neutralinos and the

gluino. Their contribution to the EDM of quarks is investigated. The interference between

the MSSM sector and the new sector with vectorlike quarks is investigated. It is shown that

inclusion of the vectorlike quarks can modify the quark EDMs in a significant way. Further,

this interference also provides a probe of the vectorlike quark sector. These results are of

interest as in the future measurements on the neutron EDM could see an improvement up

to two orders of magnitude over the current experimental limits and provide an instrument

for a further probe of new physics beyond the standard model.
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1 Introduction

New sources of CP violation beyond those that exist in the Standard Model are needed

to explain baryogenesis and are also worthy of study in their own right as possible probes

of beyond the standard model physics (for reviews see e.g., [1, 2, 3, 4]). Such sources can

also induce electric dipole moment in elementary particles which can be significantly larger

than those expected in the standard model [1, 2]. In this work we are specifically interested

in the electric dipole moment (EDM) of the quarks arising from the chromoelectric dipole

operator. Thus the electroweak sector of the standard model produces an EDM which is

10−30 ecm [5, 6, 7] and it lies beyond the possibility of its observation in the foreseeable

future. As mentioned in particle physics models beyond the standard model it is possible

to generate much larger values for the EDM. In this work we focus on one such model - an

extension of the minimal supersymmetric standard model (MSSM) with a vectorlike multi-

plet [8]. Such an extension is anomaly free and thus the nice quantum properties of MSSM

are maintained. Further, vectorlike multiplets arise in a variety of settings such as in grand

unified models and in string and D brane models [8, 10, 11]. Vectorlike generations have

been considered by several authors since their discovery would constitute new physics (see,

e.g., [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]). Such models have new sources of CP

violation and thus can generate substantial size dipole operators. For that reason they are

interesting models to consider in the context of lepton and quark EDMs. In a recent work

we analyzed the electric dipole operator in such a setting [23] and in this work we analyze

the chromoelectric dipole operator in the extended MSSM model and its contribution to the

electric dipole moments.

Before discussing the EDM in the new class of models, it is relevant to recall the situation

regarding the lepton and quark EDMs in MSSM. Here it is well known that MSSM has a

SUSY CP problem, i.e., that the EDM predicted with SUSY phases O(1) are typically in

excess of the experimental upper limits. A number of remedies have been offered in the

past to remedy this problem. These include a fine tuning of the phases to be small [24],

suppression of the EDM by large sparticle masses [25], suppression of the EDM where various

contributions conspire to cancel, i.e., the cancellation mechanism [26, 27] as well as other

possible remedies (see, e.g., [28]). It has also been suggested that the EDM be used as

a probe of new physics beyond the standard model [29, 30, 31, 18, 32]. Specifically the
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experimental limits on the EDMs can be used as vehicles to probe a new physics regime not

accessible otherwise to current and future detectors.

The outline of the rest of the paper is as follows: In section 2 we give a brief description

of the model and describe the nature of mixing between the vector generation and the

standard three generations of quarks. In section 3.1 we discuss the loop contributions to

the chromoelectric dipole moment of the up quark and the down quark that arise from the

exchange of the W boson in the loop. In section 3.2 we give an analysis similar to that of

section 3.1 for the exchange of the Z boson. In section 3.3 we compute the contribution from

the exchange of charginos in the loop and in section 3.4 a similar analysis for the exchange of

neutralinos in the loop is given. Finally in section 3.5 we give the analysis for the exchange

of the gluino in the loop. In section 4 we discuss the method for the computation of the

neutron dipole moment using the quark dipole moments. In section 5 we give a detailed

numerical analysis of the contributions to the quark CEDM and to the neutron CEDM for

a variety of parameter points in the extended MSSM model. Here we also discuss the use of

the neutron EDM as a probe of high mass scales. Conclusions are given in section 6. Further

details of the calculational aspects of the analysis are given in sections (7-9).

2 The Model

Here we briefly describe the model and further details are given in the appendix. The

model we consider is an extension of MSSM with an additional vectorlike multiplet. Like

MSSM the vectorlike extension is free of anomalies and as discussed in section 1 vectorlike

multiplets appear in a variety of settings which include grand unified models, string and D

brane models. Here we focus on the quark sector where the vectorlike multiplet consists of a

fourth generation of quarks and their mirror quarks. Thus the quark sector of the extended

MSSM model is given by Eq. (1) and Eq. (2) where,

qiL ≡
(
tiL
biL

)
∼
(

3, 2,
1

6

)
; tciL ∼

(
3∗, 1,−2

3

)
; bciL ∼

(
3∗, 1,

1

3

)
; i = 1, 2, 3, 4. (1)

Qc ≡
(
Bc
L

T cL

)
∼
(

3∗, 2,−1

6

)
; TL ∼

(
3, 1,

2

3

)
; BL ∼

(
3∗, 1,−1

3

)
. (2)

The numbers in the braces show the properties under SU(3)C × SU(2)L × U(1)Y where the

first two entries label the representations for SU(3)C and SU(2)L and the last one gives
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the value of the hypercharge normalized so that Q = T3 + Y . We allow the mixing of

the vectorlike generation with the first three generations. Specifically we will focus on the

mixings of the mirrors in the vectorlike generation with the first three generations. Details

of these mixings are given in Eq. (43). Here we display some relevant features. In the up

quark sector we choose a basis as follows

ξ̄TR =
(
t̄R T̄R c̄R ūR t̄4R

)
, ξTL =

(
tL TL cL uL t̄4L

)
. (3)

and we write the mass term so that

−Lum = ξ̄TR(Mu)ξL + h.c., (4)

The interaction of Eq. (43) lead to the up-quark mass matrix Mu which is given by

Mu =


y′1v2/

√
2 h5 0 0 0

−h3 y2v1/
√

2 −h′3 −h′′3 −h6
0 h′5 y′3v2/

√
2 0 0

0 h′′5 0 y′4v2/
√

2 0

0 h8 0 0 y′5v2/
√

2

 . (5)

This mass matrix is not hermitian and a bi-unitary transformation is needed to diagonalize

it. Thus one has

Du†
R (Mu)D

u
L = diag(mu1 ,mu2 ,mu3 ,mu4 ,mu5). (6)

Under the bi-unitary transformations the basis vectors transform so that
tR
TR
cR
uR
t4R

 = Du
R


u1R
u2R
u3R
u4R
u5R

 ,


tL
TL
cL
uL
t4L

 = Du
L


u1L
u2L
u3L
u4L
u5L

 . (7)

A similar analysis can be carried out for the down quarks. Here we choose the basis set

as

η̄TR =
(
b̄R B̄R s̄R d̄R b̄4R

)
, ηTL =

(
bL BL sL dL b4L

)
. (8)

In this basis the down quark mass terms are given by

−Ldm = η̄TR(Md)ηL + h.c., (9)
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where using the interactions of Eq. (43), Md has the following form

Md =


y1v1/

√
2 h4 0 0 0

h3 y′2v2/
√

2 h′3 h′′3 h6
0 h′4 y3v1/

√
2 0 0

0 h′′4 0 y4v1/
√

2 0

0 h7 0 0 y5v1/
√

2

 . (10)

In general h3, h4, h5, h
′
3, h
′
4, h
′
5, h
′′
3, h

′′
4, h

′′
5, h6, h7, h8 can be complex and we define their phases

so that

hk = |hk|eiχk , h′k = |h′k|eiχ
′
k , h′′k = |h′′k|eiχ

′′
k . (11)

The squark sector of the model contains a variety of terms including F -type, D-type and

SUSY soft breaking terms. The details of these contributions to squark mass square matrices

are discussed in section 7.

3 The analysis of Chromoelectric Dipole Moment Op-

erator

The chromoelectric dipole moment d̃C is the coefficient of the effective dimension 5 operator

which is defined by

LI = − i
2
d̃Cq q̄σµνγ5T

aqGµνa, (12)

where Gµνa is the gluon field strength and T a are the SU(3) generators. The quarks will

have five different contributions to the CEDM arising from the W, Z, gluino, chargino and

neutralino exchanges. We denote these contributions by d̃Cu (W ), d̃Cu (Z), d̃Cu (g̃), d̃Cu (χ+) and

d̃Cu (χ0). We discuss each of these contributions below.

3.1 W exchange contribution to quark CEDM

For the up quark the W- exchange contribution arises from the left diagram of Fig. (1) using

the interaction of Eq. (13), i.e.,

−LdWu = W †
ρ

5∑
i=1

5∑
j=1

ūjγ
ρ[GW

Lji
PL +GW

Rji
PR]di + h.c., (13)
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Figure 1: W and Z exchange contributions to the CEDM of the up quark. Similar exchange
contributions exist for the CEDM of the down quark where u and d are interchanged and
W+ is replaced by W− in the diagrams above.

where GW
L and GW

R are defined in section 8. The contribution of the W-exchange graph to

d̃Cu is given by

d̃Cu (W ) =
gs

16π2

5∑
i=1

mdi

m2
W

Im(GW
L4iG

W∗
R4i)I1

(
m2
di

m2
W

,
m2
u4

m2
W

)
, (14)

where I1(r1, r2) is a form factor given by

I1(r1, r2) =

∫ 1

0

dx
(4 + r1 − r2)x− 4x2

1 + (r1 − r2 − 1)x+ r2x2
. (15)

In the limit when r2 is very small as the case here, this integral gives the closed form

I1(r1, 0) =
2

(1− r1)2
[
1 +

1

4
r1 +

1

4
r21 +

3r1 ln r1
2(1− r1)

]
. (16)

The W contribution to the down quark CEDM is given by

d̃Cd (W ) =
gs

16π2

5∑
i=1

mui

m2
W

Im(GW∗
Li4G

W
Ri4)I1

(
m2
ui

m2
W

,
m2
d4

m2
W

)
. (17)

3.2 Z exchange contribution to quark CEDM

For the Z boson exchange the interactions that enter with the up type quarks are given by

−LuuZ = Zρ

5∑
j=1

5∑
i=1

ūjγ
ρ[CuZ

Lji
PL + CuZ

Rji
PR]ui, (18)
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where the couplings CuZ
L and CuZ

R are defined in section 8. Using this interaction the com-

putation of the Z exchange contributions to the up quarks is given by the loop diagram to

the right in Fig. (1). Its contribution is

d̃Cu (Z) =
gs

16π2

5∑
i=1

mui

m2
Z

Im(CuZ
L4i
CuZ∗
R4i

)I1

(
m2
ui

m2
Z

,
m2
u4

m2
Z

)
. (19)

For the Z boson exchange, the interactions that enter with the down type quarks are

given by

−LddZ = Zρ

5∑
j=1

5∑
i=1

d̄jγ
ρ[CdZ

Lji
PL + CdZ

Rji
PR]di, (20)

where the couplings CdZ
L and CdZ

R are as defined in section 8. A calculation similar to that

of the up quark CDEM gives a contribution to the d-quark moment so that

d̃Cd (Z) =
gs

16π2

5∑
i=1

mdi

m2
Z

Im(CdZ
L4i
CdZ∗
R4i

)I1

(
m2
di

m2
Z

,
m2
d4

m2
Z

)
. (21)

3.3 Chargino exchange contribution to CEDM

In this section we discuss the interactions in the mass diagonal basis involving squarks,

charginos and quarks. Thus we have

−Lu−d̃−χ− =
5∑
j=1

2∑
i=1

10∑
k=1

ūj(C
Lu
jikPL + CRu

jikPR)χ̃cid̃k + h.c., (22)

and

−Ld−ũ−χ− =
5∑
j=1

2∑
i=1

10∑
k=1

d̄j(C
Ld
jikPL + CRd

jikPR)χ̃ciũk + h.c., (23)

where the couplings CLu, CRu, CLd and CRd and are as defined in section 8. The loop

contributions to the up -quark CEDM arise from the right diagram of Fig. (2). Their

contribution to CEDM of quarks using Eq. (22) and Eq. (23) are given by
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Figure 2: Left diagram: Supersymmetric loop contributions to the CEDM of the up-quark
from the diagram involving the exchange of neutralinos and up-squarks. Right diagram:
Chargino and down-squark loop contribution to the CEDM of the up quark. Similar loop
contributions exist for the CEDM of the down quark, where u and d are interchanged, ũ and
d̃ are interchanged and χ+ is replaced by χ− in the diagrams above.

d̃Cu (χ+) =
gs

16π2

2∑
i=1

10∑
k=1

mχ+
i

M2
d̃k

Im(CLu
4ikC

Ru∗
4ik )I3

(
m2
χ+
i

M2
d̃k

,
m2
u4

M2
d̃k

)
, (24)

d̃Cd (χ+) =
gs

16π2

2∑
i=1

10∑
k=1

mχ+
i

M2
ũk

Im(CLd
4ikC

Rd∗
4ik )I3

(
m2
χ+
i

M2
ũk

,
m2
d4

M2
ũk

)
, (25)

where I3(r1, r2) is given by

I3(r1, r2) =

∫ 1

0

dx
x− x2

1 + (r1 − r2 − 1)x+ r2x2
. (26)

In the limit when r2 is very small as is the case here we have the closed form

I3(r1, 0) =
1

2(r1 − 1)2

(
1 + r1 +

2r1 ln r1
1− r1

)
. (27)

3.4 Neutralino exchange contribution to CEDM

We now discuss the interactions in the mass diagonal basis involving up quarks, up squarks

and neutralinos. Thus we have,

−Lu−ũ−χ0 =
5∑
i=1

4∑
j=1

10∑
k=1

ūi(C
′L
uijkPL + C

′R
uijkPR)χ̃0

j ũk + h.c., (28)
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The interaction of the down quarks, down squarks and neutralinos is given by

−Ld−d̃−χ0 =
4∑
i=1

4∑
j=1

10∑
k=1

d̄i(C
′L
dijkPL + C

′R
dijkPR)χ̃0

j d̃k + h.c., (29)

where the couplings C
′L and C

′R as given in section 8. Using the interactions of Eq. (28)

the neutralino exchange contribution to the CEDM of the up-quark is given by

d̃Cu (χ0) =
gs

16π2

4∑
i=1

10∑
k=1

mχ0
i

M2
ũk

Im(C
′L
u4ikC

′R∗
u4ik)I3

(
m2
χ0
i

M2
ũk

,
m2
u4

M2
ũk

)
. (30)

Similarly using the interactions of Eq. (29) the CEDM of the down quark is given by

d̃Cd (χ0) =
gs

16π2

4∑
i=1

10∑
k=1

mχ0
i

M2
d̃k

Im(C
′L
d4ikC

′R∗
d4ik)I3

(
m2
χ0
i

M2
d̃k

,
m2
d4

M2
d̃k

)
, (31)

3.5 Gluino exchange contribution to CEDM

−Lqqg̃ =
√

2gs

3∑
j=1

3∑
k=1

8∑
a=1

5∑
l=1

10∑
m=1

T ajkq̄
j
l [CLlmPL + CRlmPR]g̃aq̃

k
m + h.c., (32)

where the couplings CLlm and CRlm are defined in section 8. Using Eq. (32) the gluino

exchange contribution to the up quark CEDM arising from the loop diagrams of Fig. 3 is

given by

d̃Cu (g̃) =
gsαs
12π2

10∑
m=1

mg̃

M2
ũm

Im(KLumK
∗
Rum)I5

(
m2
g̃

M2
ũm

,
m2
u4

M2
ũm

)
. (33)

Similarly using Eq. (32) the gluino contribution to the down quark CEDM is given by

d̃Cd (g̃) =
gsαs
12π2

10∑
m=1

mg̃

M2
d̃m

Im(KLdmK
∗
Rdm

)I5

(
m2
g̃

M2
d̃m

,
m2
d4

M2
d̃m

)
. (34)

Here KLqm and KRqm are given by

8



Figure 3: Left diagram: Supersymmetric loop contributions to the CEDM of the up-quark
arising from the exchange of gluino and up squarks with the gluon emission from the internal
up squark line. Right diagram: Same as left diagram except that the gluon emission is from
the internal gluino line. Similar loop contributions exist for the CEDM of the down quark,
where u and d are interchanged, ũ and d̃ are interchanged.

KLqm = (Dq∗
R24D̃

q
4m −Dq∗

R54D̃
q
10m −Dq∗

R44D̃
q
8m −Dq∗

R34D̃
q
6m −Dq∗

R14D̃
q
3m)e−iξ3/2 , (35)

and

KRqm = (Dq∗
L44D̃

q
7m +Dq∗

L54D̃
q
9m +Dq∗

L34D̃
q
5m +Dq∗

L14D̃
q
1m −Dq∗

L24D̃
q
2m)eiξ3/2 , (36)

where I5(r1, r2) is the loop function defined by

I5(r1, r2) =

∫ 1

0

dx
x+ 8x2

1 + (r1 − r2 − 1)x+ r2x2
. (37)

In the limit where r2 is very small as is the case here we get the closed form

I5(r1, 0) =
1

2(r1 − 1)2

(
10r1 − 26 +

2r1 ln r1
1− r1

− 18 ln r1
1− r1

)
. (38)

4 The neutron CEDM

As discussed in the previous section, the total contribution to CEDM of the quarks consists of

five contributions arising from the exchange of the W, the Z, the charginos, the neutralinos,

and the gluino, so that

d̃Cq = d̃Cq (W ) + d̃Cq (Z) + d̃Cq (χ+) + d̃Cq (χ0) + d̃Cq (g̃), q = u, d . (39)
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The contribution of the chromoelectric operator to the EDMs of quarks can be computed

using dimensional analysis [34]. The contribution to the quark EDM arising from d̃Cq is given

by

dCq =
e

4π
ηC d̃Cq , (40)

where ηC is approximately equal to 3.4. The factor ηC brings the electric dipole moment from

the electroweak scale down to the hadronic scale where it can be compared with experiment.

To obtain the contribution to the neutron EDM from the quark EDM, we use the non-

relativistic SU(6) quark model which gives

dCn =
1

3
[4dCd − dCu ] . (41)

5 Numerical analysis of neutron EDM

The current experimental limit on the EDM of the neutron is [35]

|dn| < 2.9× 10−26 ecm (90% CL). (42)

It is expected that a higher sensitivity by as much as two orders of magnitude more sensitive

than the current limit may be achievable in the future [36].

We present now a numerical analysis of the neutron CEDM first for the case of MSSM and

next for the MSSM extension. The first analysis involves no mixing with the mirror genera-

tion and with the fourth sequential generation and the only CP phases that appear are those

from the MSSM sector. Thus in this case all the mixing parameters, given in Eq. (11), are

set to zero. The second analysis is for the MSSM extension where the mixings of the mirror

generation and of the fourth sequential generation with the three generations are switched

on. The results are given in Table 2 and Figs. 4-11. In the analysis, in the squark sector

we assume mu2

0 = M2
T̃

= M2
t̃1

= M2
t̃2

= M2
t̃3

and md2

0 = M2
1̃L

= M2
B̃

= M2
b̃1

= M2
Q̃

= M2
2̃L

=

M2
b̃2

= M2
3̃L

= M2
b̃3

. To simplify the numerical analysis further we assume mu
0 = md

0 = m0.

Additionally the trilinear couplings are chosen so that: Au0 = At = AT = Ac = Au = A4t

and Ad0 = Ab = AB = As = Ad = A4b. The input parameters are such that the sparticle

spectrum that enters the loop are consistent with the current experimental limits from the

LHC in each of the cases, i.e., with or without mixing.
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(i) (ii)
Contribution Up Down Up Down

Chargino, dχ
±
q 2.49× 10−29 −1.29× 10−26 2.16× 10−29 −2.08× 10−26

Neutralino, dχ
0

q −2.49× 10−32 4.75× 10−29 −2.90× 10−32 5.47× 10−29

Gluino, dgq 3.42× 10−29 −4.24× 10−28 7.49× 10−28 2.06× 10−26

Total, dq 5.90× 10−29 −1.32× 10−26 7.71× 10−28 −1.42× 10−28

EDM, dEn −2.70× 10−26 −6.83× 10−28

Chargino, dCq (χ±) −3.41× 10−30 −2.15× 10−27 −2.89× 10−30 −3.40× 10−27

Neutralino, dCq (χ0) −4.54× 10−32 −1.73× 10−28 −5.30× 10−32 −2.00× 10−28

Gluino, dCq (g̃) 5.51× 10−29 1.37× 10−27 1.21× 10−27 −6.63× 10−26

Total, dCq 1.40× 10−29 −2.58× 10−28 3.26× 10−28 −1.89× 10−26

CEDM, dCn −3.49× 10−28 −2.53× 10−26

Table 1: An exhibition of the chargino, neutralino and gluino exchange contributions to the
quark and the neutron EDM, CEDM and their sum for the case when there is no mixing
of the vectorlike generation with the three generations. The analysis is for two benchmark
points (i) and (ii). Benchmark (i): θµ = 3.3 × 10−3, ξ3 = 1 × 10−3. Benchmark (ii):
θµ = 4.7× 10−3, ξ3 = 3.6. The common parameters are: tan β = 40, m0 = mu

0 = md
0 = 3000,

|m1| = 185, |m2| = 220, |Au0 | = 680, |Ad0| = 600, |µ| = 400, mg = 1000, |h3| = |h′3| = |h′′3| =
|h4| = |h′4| = |h′′4| = |h5| = |h′5| = |h′′5| = |h6| = |h7| = |h8| = 0, ξ1 = 2× 10−2, ξ2 = 2× 10−3,
αAu0 = 2 × 10−2, αAd0 = 3. All masses are in GeV, all phases in rad and the electric dipole
moment in ecm.

We discuss now in further detail the cases without and with mixing with the vectorlike

generation. We begin with the case with no mixing. In table 1, we give the individual con-

tributions to the up and down quark EDM and CEDM, namely, the chargino, the neutralino

and the gluino contributions. The W and Z contributions are not shown since they are absent

in this case of no mixing with the vectorlike generation and the fourth sequential generation.

The different contributions are given for two benchmark points (i) and (ii), where in the

first, the neutron EDM dominates the neutron CEDM and in the second, the opposite is the

case. The chargino and gluino contributions are the main contributors, while the neutralino

contribution is suppressed. Note that the total neutron EDM, |dn|, obtained by adding dEn

and dCn in the table satisfy Eq. (42). Another observation is the largeness of the down quark

contribution in comparison with its up quark counterpart. This is attributed to the large

value of tan β which tends to enhance the down quark couplings.
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(i) (ii)
Contribution Up Down Up Down

Chargino, dχ
±
q 7.65× 10−30 −6.91× 10−27 7.08× 10−30 −8.27× 10−27

Neutralino, dχ
0

q 3.93× 10−32 6.90× 10−30 3.91× 10−32 7.32× 10−30

Gluino, dgq −2.01× 10−28 −5.35× 10−27 2.25× 10−28 5.91× 10−27

W Boson, dWq 3.77× 10−30 3.46× 10−28 3.77× 10−30 3.46× 10−28

Z Boson, dZq 8.02× 10−31 3.05× 10−29 8.02× 10−31 3.05× 10−29

Total, dq −1.88× 10−28 −1.19× 10−26 2.37× 10−28 −1.97× 10−27

EDM, dEn −2.41× 10−26 −4.13× 10−27

Chargino, dCq (χ±) −7.66× 10−31 −8.98× 10−28 −6.95× 10−31 −1.07× 10−27

Neutralino, dCq (χ0) 7.17× 10−32 −2.52× 10−29 7.14× 10−32 −2.68× 10−29

Gluino, dCq (g̃) −4.57× 10−28 2.44× 10−26 5.13× 10−28 −2.70× 10−26

W Boson, dCq (W ) −2.97× 10−30 2.29× 10−28 −2.97× 10−30 2.29× 10−28

Z Boson, dCq (Z) 1.46× 10−30 −1.11× 10−28 1.46× 10−30 −1.11× 10−28

Total, dCq −1.24× 10−28 6.38× 10−27 1.38× 10−28 −7.56× 10−27

CEDM, dCn 8.54× 10−27 −1.01× 10−26

Table 2: An exhibition of the chargino, neutralino, gluino, W and Z exchange contributions
to the quark and the neutron EDM, CEDM and their sum for the case when there is mixing
of the vectorlike generation with the three generations. The analysis is for two benchmark
points (i) and (ii). Benchmark (i): θµ = 4×10−3, ξ3 = 1.12. Benchmark (ii): θµ = 4.6×10−3,
ξ3 = 4.71. The common parameters are: tan β = 40, m0 = mu

0 = md
0 = 5500, |m1| = 185,

|m2| = 220, |Au0 | = 680, |Ad0| = 600, |µ| = 400, mg = 1100, mT = 300, mB = 240, m4t = 320,
m4b = 280, |h3| = 1.58, |h′3| = 6.34 × 10−2, |h′′3| = 1.97 × 10−2, |h4| = 4.42, |h′4| = 5.07,
|h′′4| = 12.87, |h5| = 6.6, |h′5| = 2.67, |h′′5| = 1.86×10−1, |h6| = 1000, |h7| = 1000, |h8| = 1000,
ξ1 = 2 × 10−2, ξ2 = 2 × 10−3, αAu0 = 2 × 10−2, αAd0 = 3, χ3 = 2 × 10−2, χ′3 = 1 × 10−3,

χ′′3 = 4×10−3, χ4 = 7×10−3, χ′4 = χ′′4 = 1×10−3, χ5 = 9×10−3, χ′5 = 5×10−3, χ′′5 = 2×10−3,
χ6 = χ7 = χ8 = 5 × 10−3. All masses are in GeV, all phases in rad and the electric dipole
moment in ecm.

Next we consider the case with mixings. The results are presented in table 2 for two

benchmark points (i) and (ii). Here in addition to the chargino, the neutralino and the

gluino exchanges one also has W and Z exchanges. The analysis shows the dominance of

the EDM over the CEDM for benchmark (i) while opposite is the case for benchmark (ii).

The total EDM for each benchmark point satisfies the experimental constraints of Eq. (42).

Here we note that the EDM and CEDM are constrained not only by the experimental limits

on the MSSM spectrum, but also by the limits on new quarks. Thus for the benchmarks

presented in Table 2, the vectorlike quarks have masses gotten by diagonalization of the
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matrices of Eq. (5) and Eq. (10) and are given in Table 3. The results of Eq. 3 are consistent

with [37]. More stringent constraints on these masses will be available at the LHC RUN-II.

Mirror Up Quark mt′ = 1037 GeV
Mirror Down Quark mb′ = 740 GeV
Fourth G Up Quark mup

4 = 1057 GeV
Fourth G Down Quark mdown

4 = 1260 GeV

Table 3: An exhibition of the masses of the heavy extra quarks corresponding to the param-
eter space of table 2.
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Figure 4: Variation of neutron CEDM |dCn | versus MX (MX = |h6| = |h7| = |h8|), for four
values of m0. From top to bottom at MX = 4 TeV, m0 = mu

0 = md
0 = 2.0, 2.5, 3.0, 3.5 TeV.

Other parameters have the values tan β = 14, |m1| = 185, |m2| = 220, |µ| = 350, |Au0 | = 680,
|Ad0| = 600, mT = 300, mB = 260, mg = 1000, m4t = 320, m4b = 280, |h3| = 1.58,
|h′3| = |h′′3| = RMX , |h4| = 4.42, |h′4| = |h′′4| = RMX , |h5| = 6.6, |h′5| = |h′′5| = RMX ,
R = 1 × 10−3, θµ = 3.98, ξ1 = ξ2 = 4.52, ξ3 = 2.42, αAu0 = 5.0, αAd0 = 1.14, χ3 = 2.38,
χ′3 = 4.92, χ′′3 = 2.58, χ4 = 4.86, χ′4 = 1.6, χ′′4 = 1.37, χ5 = 1.14, χ′5 = 4.39, χ′′5 = 2.38,
χ6 = 4.92, χ7 = 2.58, χ8 = 4.86. All masses are in GeV and phases in rad.

Next we give an analysis of the quark CEDMs dependence on the mass scales as well

as on the CP phases both in the MSSM sector as well as the new sector. Thus the CEDM

depends on the mass scale of the vectorlike sector and in the MSSM sector it depends on

the universal scalar mass m0, and on the gaugino mass scales. Further, it has dependence

13



on several CP phases both from the MSSM sector as well as from the vectorlike sector. We

discuss the dependence of the CEDM on the mass scales first, and specifically on the mass

scales MX (from the vectorlike sector) and on m0 and on mg.

Fig. 4 gives the dependence of the effect of the vectorlike generation on CEDM where

we exhibit CEDM vs MX , where MX = |h6| = |h7| = |h8| and that |h′3| = |h′′3| = |h′4| =

|h′′4| = |h′5| = |h′′5| = RMX while R = 1 × 10−3. We note that the allowed range of values

for R is highly constrained. Thus smaller values of R will not produce interesting results

while larger values are likely to upset the quark masses for the first three generations. The

analysis shows that CEDM lower than the upper limit can be obtained and masses in the

TeV range may be probed using the constraint given by Eq. (42) which should undergo

further refinements in the future. The curve corresponding to m0 = 2 TeV is characterized

by a dip at MX ∼ 1.9 TeV. This dip quickly widens and is replaced by a shallow drop for

m0 = 2.5 TeV and then disappears completely for larger values of m0. The variation of the

CEDM eventually levels off for higher values of MX and m0. Further analysis shows that

the dip is caused by a sudden drop in the mass of the lightest up squark mass for MX ∼ 1.9

TeV in this region of the parameter space. The analysis of the dip is rather involved but

arises as a result of the competition among the different components of the chromoelectric

dipole moment operators, i.e, the W, Z, chargino, neutralino and gluino contributions. The

analysis of Fig. 4 makes clear the very sensitive dependence of the CEDM on the vectorlike

mass scale and exploration of this dependence is one of the primary motivations of this work.
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Figure 5: Variation of neutron CEDM |dCn | versus the scalar mass m0 (m0 = mu
0 = md

0),
for five values of MX , (MX = |h6| = |h7| = |h8|). From top to bottom at m0 = 5 TeV,
MX = 1.5, 2.0, 2.5, 3.0, 5 TeV. Other parameters have the values tan β = 14, |m1| = 185,
|m2| = 220, |µ| = 350, |Au0 | = 680, |Ad0| = 600, mT = 300, mB = 260, mg = 1000, m4t = 320,
m4b = 280, |h3| = 1.58, |h′3| = |h′′3| = RMX , |h4| = 4.42, |h′4| = |h′′4| = RMX , |h5| = 6.6,
|h′5| = |h′′5| = RMX , R = 1×10−3, θµ = 3.8, ξ1 = ξ2 = 4.52, ξ3 = 2.42, αAu0 = 5.0, αAd0 = 1.14,
χ3 = 2.38, χ′3 = 4.92, χ′′3 = 2.58, χ4 = 4.86, χ′4 = 1.6, χ′′4 = 1.37, χ5 = 1.14, χ′5 = 4.39,
χ′′5 = 2.38, χ6 = 4.92, χ7 = 2.58, χ8 = 4.86. All masses are in GeV and phases in rad.

Another way for looking at Fig. 4 is to plot the CEDM against m0 for several values of

MX while R is fixed at 1 × 10−3 in the same region of parameter space. This is done in

Fig. 5. The plot shows peaks between 2 and 3 TeV and then the CEDM decreases gradu-

ally for increasing values of m0. The peak is more pronounced for small values of MX and

disappears for larger values (for MX = 5 TeV, here). The peaks occur in regions where m0

and MX are comparable in size as shown in this region. All values of the CEDM obtained

in this region of the parameter space lie below the current upper limit.

In Fig. 4 we investigated the dependence of CEDM on the vectorlike mass MX and found

that there is a very significant dependence of the CEDM on MX . It is of interest also to ex-

amine if the EDM shows a similar dependence on MX . In Fig. 4 we exhibit this dependence

where |dEn | is plotted against MX for the same set of m0 values as in Fig. 4. Again as in the

case of CEDM we find that EDM also has a sensitive dependence on MX . We note here that

the analysis of this work for EDM is more general than the analysis of [23]. Thus in [23]
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Figure 6: Variation of neutron EDM |dEn | versus MX (MX = |h6| = |h7| = |h8|), for four
values of m0. From top to bottom at MX = 1 TeV, m0 = mu

0 = md
0 = 2.0, 2.5, 3.0, 3.5 TeV.

Other parameters have the values tan β = 15, |m1| = 185, |m2| = 220, |µ| = 350, |Au0 | = 680,
|Ad0| = 600, mT = 300, mB = 260, mg = 1000, m4t = 320, m4b = 280, |h3| = 1.58,
|h′3| = |h′′3| = RMX , |h4| = 4.42, |h′4| = |h′′4| = RMX , |h5| = 6.6, |h′5| = |h′′5| = RMX ,
R = 1 × 10−3, θµ = 5 × 10−3, ξ1 = 2 × 10−2, ξ2 = 2 × 10−3, ξ3 = 4.0, αAu0 = 2 × 10−2,
αAd0 = 3.0, χ3 = 2× 10−2, χ′3 = 1× 10−3, χ′′3 = 4× 10−3, χ4 = 7× 10−3, χ′4 = χ′′4 = 1× 10−3,

χ5 = 9 × 10−3, χ′5 = 5 × 10−3, χ′′5 = 2 × 10−3, χ6 = χ7 = χ8 = 5 × 10−3. All masses are in
GeV and phases in rad.

we considered only the mixings of the three generations with the mirror generation so that

the quark matrices were 4× 4 and the squark square matrices were 8× 8 and the parameter

MX did not appear in that work. On the other hand, in this work we are considering mixing

of the three generations with the full vectorlike generation consisting of the mirror and the

sequential fourth generation. As a consequence the quark mass matrices are 5 × 5 and the

squark mass squared matrices are 10× 10 and this time we have also the dependence on the

vectorlike mass MX . Thus the analysis of this work is more general than of the work of [23].
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Figure 7: Variation of neutron CEDM dCn versus the gluino mass, mg, for four values of tan β.
From bottom to top at mg = 5 TeV, tan β = 10, 20, 30, 40. Other parameters have the values
|m1| = 170, |m2| = 220, |µ| = 450, |Au0 | = 680, |Ad0| = 600, mu

0 = md
0 = 3700, mT = 300,

mB = 260, m4t = 320, m4b = 280, |h3| = 1.58, |h′3| = 6.34 × 10−2, |h′′3| = 1.97 × 10−2,
|h4| = 4.42, |h′4| = 5.07, |h′′4| = 2.87, |h5| = 6.6, |h′5| = 2.67, |h′′5| = 1.86 × 10−1, |h6| =
|h7| = |h8| = 1000, θµ = 2.6× 10−3, ξ1 = 2× 10−2, ξ2 = 2× 10−3, ξ3 = 1.6, αAu0 = 2× 10−2,
αAd0 = 3.0, χ3 = 2× 10−2, χ′3 = 1× 10−3, χ′′3 = 4× 10−3, χ4 = 7× 10−3, χ′4 = χ′′4 = 1× 10−3,

χ5 = 9 × 10−3, χ′5 = 5 × 10−3, χ′′5 = 2 × 10−3, χ6 = χ7 = χ8 = 5 × 10−3. All masses are in
GeV and phases in rad.
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Figure 8: Variation of up and down quark contributions to the neutron CEDM for tan β = 40.
Other parameters are the same as in Fig. 7.

Next we study the dependence of the CEDM on the gluino mass. This is given in Figs. 7

and 8. Thus in Fig. 7, the variation of the neutron CEDM, dCn , is plotted against the gluino

mass, mg. It is shown that CEDM values lower than the current experimental upper limit

can be obtained in the given parameter space. The neutron CEDM decreases for increasing

values of mg, but eventually levels off at around zero for some values of tan β. However, for

other values of tan β, (e.g. tan β = 40), the neutron CEDM levels off but turns negative.

This phenomenon can be understood by analyzing different contributions to the CEDM

as shown in Fig. 8. Specifically one finds that the negative contribution to the CEDM

arises from the chargino exchange loop contribution, dcd(χ
±). Since we are not applying any

GUT constraints, the masses of the chargino and the gluino can be treated as independent

parameters and thus as we increase the gluino mass, the chargino contribution remains

unchanged and eventually dominates as the gluino mass gets large and makes the CEDM

negative for mg > 20 TeV. We note here in passing that the W and Z contributions in this

region of the parameter space are negligible compared to the other exchange contributions.
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Figure 9: Variation of neutron CEDM |dCn | versus θµ for four values of tan β. From bottom
to top at θµ = 1 rad, tan β = 10, 20, 30, 40. Other parameters have the values |m1| = 170,
|m2| = 220, |µ| = 400, |Au0 | = 680, |Ad0| = 600, mu

0 = md
0 = 8000, mg = 1000, mT = 300,

mB = 260, m4t = 320, m4b = 280, |h3| = 1.58, |h′3| = 6.34 × 10−2, |h′′3| = 1.97 × 10−2,
|h4| = 4.42, |h′4| = 5.07, |h′′4| = 2.87, |h5| = 6.6, |h′5| = 2.67, |h′′5| = 1.86× 10−1, |h6| = |h7| =
|h8| = 1000, ξ1 = 2×10−2, ξ2 = 2×10−3, ξ3 = 2.6, αAu0 = 2×10−2, αAd0 = 3.0, χ3 = 2×10−2,

χ′3 = 1×10−3, χ′′3 = 4×10−3, χ4 = 7×10−3, χ′4 = χ′′4 = 1×10−3, χ5 = 9×10−3, χ′5 = 5×10−3,
χ′′5 = 2× 10−3, χ6 = χ7 = χ8 = 5× 10−3. All masses are in GeV and phases in rad.

As discussed already, it is of interest to study the dependence of CEDM on the CP phases

in the MSSM sector as well as in the new sector. Fig. 9 shows the variation of the neutron

CEDM versus θµ, the phase of µ. The CP phases are the source of the CEDM and the sensi-

tivity that the CEDM shows in response to the variation of θµ is obvious. The parameter µ

appears in the chargino and the neutralino mass matrices. It exists also in the squark mass

squared matrices, so one can see that the chargino, the neutralino and the gluino contribu-

tions are affected by this parameter and its phase. The electroweak contributions, i.e, W and

Z components are independent of the magnitude and the phase of µ. Values of |dCn | below

the current upper limit can be obtained for several values of tan β, whereas values above the

limit appear for larger tan β.
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Figure 10: Variation of neutron CEDM |dCn | versus χ6, for four values of |h8|. From bottom
to top at χ6 = 1 rad, |h8| = 1100, 1200, 1300, 1400 GeV. Other parameters have the values
tan β = 34, |m1| = 185, |m2| = 220, |µ| = 350, |Au0 | = 680, |Ad0| = 600, mu

0 = md
0 = 3600,

mT = 300, mB = 260, mg = 4000, m4t = 320, m4b = 280, |h3| = 1.58, |h′3| = 6.34 × 10−2,
|h′′3| = 1.97 × 10−2, |h4| = 4.42, |h′4| = 5.07, |h′′4| = 2.87, |h5| = 6.6, |h′5| = 2.67, |h′′5| =
1.86 × 10−1, |h6| = |h7| = 1100, θµ = 0.1, ξ1 = 2 × 10−2, ξ2 = 2 × 10−3, ξ3 = 3.6,
αAu0 = 2 × 10−2, αAd0 = 3.0, χ3 = 2 × 10−2, χ′3 = 1 × 10−3, χ′′3 = 4 × 10−3, χ4 = 7 × 10−3,

χ′4 = χ′′4 = 1× 10−3, χ5 = 9× 10−3, χ′5 = 5× 10−3, χ′′5 = 2× 10−3, χ7 = χ8 = 5× 10−3. All
masses are in GeV and phases in rad.

Next we investigate the dependence of CEDM on χ6 which explores a new sector of the

theory as it is the CP phase that arises in interactions involving the mirror quarks and the

fourth generation quarks. An analysis of the dependence of CEDM on χ6 is exhibited in

Fig. 10. Aside from h6, other mass parameters that arise because of the new sector are h7

and h8. The dependence of the CEDM on |h8| is also exhibited in Fig. 10. Quite remarkably

CEDM is sensitive to both the mass scale and the phase that enters in the new sector.
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Figure 11: Variation of the neutron EDM, |dEn | (solid curve), the neutron CEDM, |dCn |
(dashed curve), and the total neutron EDM, |dtotaln | (dotted curve), versus ξ3, the phase of
the gluino mass, for tan β = 40. Other parameters have the values |m1| = 185, |m2| = 220,
|µ| = 400, |Au0 | = 680, |Ad0| = 600, mu

0 = md
0 = 5000, mT = 300, mB = 260, mg = 1500,

m4t = 320, m4b = 280, |h3| = 1.58, |h′3| = 6.34 × 10−2, |h′′3| = 1.97 × 10−2, |h4| = 4.42,
|h′4| = 5.07, |h′′4| = 2.87, |h5| = 6.6, |h′5| = 2.67, |h′′5| = 1.86× 10−1, |h6| = |h7| = |h8| = 1000,
θµ = 4.7 × 10−3, ξ1 = 2 × 10−2, ξ2 = 2 × 10−3, αAu0 = 2 × 10−2, αAd0 = 3.0, χ3 = 2 × 10−2,

χ′3 = 1×10−3, χ′′3 = 4×10−3, χ4 = 7×10−3, χ′4 = χ′′4 = 1×10−3, χ5 = 9×10−3, χ′5 = 5×10−3,
χ′′5 = 2× 10−3, χ6 = χ7 = χ8 = 5× 10−3. All masses are in GeV and phases in rad.

Finally, it is of interest to look at the total electric dipole moment obtained by adding the

electric and the chromoelectric dipole moments. Fig. 11 shows the variation of the EDM, the

CEDM and the total EDM against the gluino phase, ξ3. The analysis of Fig. 11 shows that

while the EDM may dominate the CEDM for some values of ξ3 the opposite may happen for

a different range of ξ3. The analysis also suggests constructive interference between EDM

and CEDM in some parts of the parameter space while there is destructive interferences in

other parts (i.e., for 0 < ξ3 < π) leading to the cancellations mechanism [26, 27].

6 Conclusion

In this work we have given an analysis of the chromoelectric dipole moment of quarks and

of the neutron arising in an extension of MSSM where there is an additional vectorlike

generation of quarks in the matter sector. Such an extension brings in new sources of CP
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violation which can contribute to the chromoelectric dipole moment of quarks. The work

presented here consists of analytical results on five different types of contributions to the

chromoelectric dipole moments of quarks which include both non-supersymmetric as well as

supersymmetric loop contributions. In the non-supersymmetric sector we have contributions

arising from the exchanges of the W and Z bosons in the loops, while in the supersymmetric

sector we have exchanges involving charginos, neutralinos and the gluino in the loop. We

have also carried out a detailed numerical analysis of their relative contributions. Specifically

it is found that there exists strong interference effects between the MSSM sector and the

vectorlike quark sector which can drastically change both the sign and the magnitude of

quark EDMs. We have also investigated the possibility that the neutron EDM can be used

as probe of the TeV scale physics. These results are of import as future experiment can

improve the current limits up to two orders of magnitude and thus the quark EDMs provide

an important window to new physics beyond the standard model.
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7 Appendix A: Squark mass matrices

In this Appendix we give further details of the model discussed in section 2. As discussed

in section 2 we allow for mixing between the vector generation and specifically the mirrors

and the standard three generations of quarks. We also allow for mixing between the mirror

generation and the fourth sequential generation assuming R parity conservation (for a recent

review of R parity see [33]). The superpotential allowing such mixings is given by

W = εij[y1Ĥ
i
1q̂
j
1Lb̂

c
1L + y′1Ĥ

j
2 q̂
i
1Lt̂

c
1L + y2Ĥ

i
1Q̂

cjT̂L + y′2Ĥ
j
2Q̂

ciB̂L

+ y3Ĥ
i
1q̂
j
2Lb̂

c
2L + y′3Ĥ

j
2 q̂
i
2Lt̂

c
2L + y4Ĥ

i
1q̂
j
3Lb̂

c
3L + y′4Ĥ

j
2 q̂
i
3Lt̂

c
3L + y5Ĥ

i
1q̂
j
4Lb̂

c
4L + y′5Ĥ

j
2 q̂
i
4Lt̂

c
4L]

+ h3εijQ̂
ciq̂j1L + h′3εijQ̂

ciq̂j2L + h′′3εijQ̂
ciq̂j3L + h4b̂

c
1LB̂L + h5t̂

c
1LT̂L + h′4b̂

c
2LB̂L

+ h′5t̂
c
2LT̂L + h′′4 b̂

c
3LB̂L + h′′5 t̂

c
3LT̂L + h6εijQ

iqj4L + h7b̂
c
4LB̂L + h8t̂

c
4LT̂L − µεijĤ i

1Ĥ
j
2 , (43)

Here the couplings are in general complex. Thus, for example, µ is the complex Higgs mixing

parameter so that µ = |µ|eiθµ . The mass terms for the ups, mirror ups, downs and mirror

downs arise from the term

L = −1

2

∂2W

∂Ai∂Aj
ψiψj + h.c., (44)
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where ψ and A stand for generic two-component fermion and scalar fields. After spontaneous

breaking of the electroweak symmetry, (〈H1
1 〉 = v1/

√
2 and 〈H2

2 〉 = v2/
√

2), we have the

following set of mass terms written in the four-component spinor notation so that

−Lm = ξ̄TR(Mu)ξL + η̄TR(Md)ηL + h.c., (45)

where the basis vectors are defined in Eq. (3) and Eq. (8).

Next we consider the mixing of the down squarks and the charged mirror sdowns. The

mass squared matrix of the sdown - mirror sdown comes from three sources: the F term, the

D term of the potential and the soft SUSY breaking terms. Using the superpotential of the

mass terms arising from it after the breaking of the electroweak symmetry are given by the

Lagrangian

L = LF + LD + Lsoft , (46)

where LF is deduced from Fi = ∂W/∂Ai, and −LF = VF = FiF
∗
i while the LD is given by

−LD =
1

2
m2
Z cos2 θW cos 2β{t̃Lt̃∗L − b̃Lb̃∗L + c̃Lc̃

∗
L − s̃Ls̃∗L + ũLũ

∗
L − d̃Ld̃∗L + t̃4Lt̃

∗
4L − b̃4Lb̃∗4L

+ B̃RB̃
∗
R − T̃RT̃ ∗R}+

1

2
m2
Z sin2 θW cos 2β{−1

3
t̃Lt̃
∗
L +

4

3
t̃Rt̃
∗
R −

1

3
c̃Lc̃
∗
L +

4

3
c̃Rc̃

∗
R

− 1

3
ũLũ

∗
L +

4

3
ũRũ

∗
R +

1

3
T̃RT̃

∗
R −

4

3
T̃LT̃

∗
L −

1

3
b̃Lb̃
∗
L −

2

3
b̃Rb̃
∗
R

− 1

3
s̃Ls̃

∗
L −

2

3
s̃Rs̃

∗
R −

1

3
d̃Ld̃

∗
L −

2

3
d̃Rd̃

∗
R +

1

3
B̃RB̃

∗
R

+
2

3
B̃LB̃

∗
L −

1

3
t̃4Lt̃

∗
4L +

4

3
t̃4Rt̃

∗
4R −

1

3
b̃4Lb̃

∗
4L −

2

3
b̃4Rb̃

∗
4R}. (47)

For Lsoft we assume the following form

−Lsoft = M2
1̃L
q̃k∗1Lq̃

k
1L +M2

4̃L
q̃k∗4Lq̃

k
4L +M2

2̃L
q̃k∗2Lq̃

k
2L +M2

3̃L
q̃k∗3Lq̃

k
3L +M2

Q̃
Q̃ck∗Q̃ck +M2

t̃1
t̃c∗1Lt̃

c
1L

+M2
b̃1
b̃c∗1Lb̃

c
1L +M2

t̃2
t̃c∗2Lt̃

c
2L +M2

b̃4
b̃c∗4Lb̃

c
4L +M2

t̃4
t̃c∗4Lt̃

c
4L

+M2
t̃3
t̃c∗3Lt̃

c
3L +M2

b̃2
b̃c∗2Lb̃

c
2L +M2

b̃3
b̃c∗3Lb̃

c
3L +M2

B̃
B̃∗LB̃L +M2

T̃
T̃ ∗LT̃L

+ εij{y1AbH i
1q̃
j
1Lb̃

c
1L − y′1AtH i

2q̃
j
1Lt̃

c
1L + y5A4bH

i
1q̃
j
4Lb̃

c
4L − y′5A4tH

i
2q̃
j
4Lt̃

c
4L + y3AsH

i
1q̃
j
2Lb̃

c
2L

− y′3AcH i
2q̃
j
2Lt̃

c
2L + y4AdH

i
1q̃
j
3Lb̃

c
3L − y′4AuH i

2q̃
j
3Lt̃

c
3L + y2ATH

i
1Q̃

cjT̃L − y′2ABH i
2Q̃

cjB̃L + h.c.} .
(48)

Here M1̃L,MT̃ , etc are the soft masses and At, Ab, etc are the trilinear couplings. The trilinear

couplings are complex and we define their phases so that

Ab = |Ab|eiαAb , At = |At|eiαAt , · · · . (49)
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From these terms we construct the scalar mass squared matrices. Thus we define the scalar

mass squared matrix M2
d̃

in the basis (b̃L, B̃L, b̃R, B̃R, s̃L, s̃R, d̃L, d̃R, b̃4L, b̃4R). We label the

matrix elements of these as (M2
d̃
)ij = M2

ij which is a hermitian matrix. We can diagonalize

this hermitian mass squared matrix by the unitary transformation

D̃d†M2
d̃
D̃d = diag(M2

d̃1
,M2

d̃2
,M2

d̃3
,M2

d̃4
,M2

d̃5
,M2

d̃6
,M2

d̃7
,M2

d̃8
M2

d̃9
,M2

d̃10
) . (50)

Similarly we write the mass squared matrix in the up squark sector in the basis (t̃L, T̃L,

t̃R, T̃R, c̃L, c̃R, ũL, ũR, t̃4L, t̃4R). Thus here we denote the up squark mass squared matrix in

the form (M2
ũ)ij = m2

ij which is also a hermitian matrix. We can diagonalize this mass square

matrix by the unitary transformation

D̃u†M2
ũD̃

u = diag(M2
ũ1
,M2

ũ2
,M2

ũ3
,M2

ũ4
,M2

ũ5
,M2

ũ6
,M2

ũ7
,M2

ũ8
,M2

ũ9
,M2

ũ10
) . (51)

8 Appendix B: W , Z, χ̃±, χ̃0, g̃ couplings with quarks

8.1 W-quark -quark couplings

The couplings that enter in the W -quark -squark interactions of Eq. (13) are defined so that

GW
Lji

=
g√
2

[Du∗
L5jD

d
L5i +Du∗

L4jD
d
L4i +Du∗

L3jD
d
L3i +Du∗

L1jD
d
L1i], (52)

GW
Rji

=
g√
2

[Du∗
R2jD

d
R2i]. (53)

8.2 Z-quark -quark couplings

The couplings that enter in the Z -up-quark interactions of Eq. (18) are defined so that

CuZ
Lji

=
g

cos θW
[x1(D

u∗
L5jD

u
L5i +Du∗

L4jD
u
L4i +Du∗

L1jD
u
L1i +Du∗

L3jD
u
L3i) + y1D

u∗
L2jD

u
L2i], (54)

and

CuZ
Rji

=
g

cos θW
[y1(D

u∗
R5jD

u
R5i +Du∗

R4jD
u
R4i +Du∗

R1jD
u
R1i +Du∗

R3jD
u
R3i) + x1D

u∗
R2jD

u
R2i], (55)

where

x1 =
1

2
− 2

3
sin2 θW , y1 = −2

3
sin2 θW . (56)
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The couplings that enter in the Z-down-quark interactions of Eq. (20) are defined so that

CdZ
Lji

=
g

cos θW
[x2(D

d∗
L5jD

d
L5i +Dd∗

L4jD
d
L4i +Dd∗

L1jD
d
L1i +Dd∗

L3jD
d
L3i) + y2D

d∗
L2jD

d
L2i], (57)

and

CdZ
Rji

=
g

cos θW
[y2(D

d∗
R5jD

d
R5i +Dd∗

R4jD
d
R4i +Dd∗

R1jD
d
R1i +Dd∗

R3jD
d
R3i) + x2D

d∗
R2jD

d
R2i], (58)

where

x2 = −1

2
+

1

3
sin2 θW , y2 =

1

3
sin2 θW . (59)

8.3 Chargino-quark-squark couplings

The couplings that enter in the chargino-up-quark-down-squark interactions of Eq. (23) are

given by

CLu
jik =g(−κuV ∗i2Du∗

R4jD̃
d
7k − κcV ∗i2Du∗

R3jD̃
d
5k

− κtV ∗i2Du∗
R1jD̃

d
1k − κ4tV ∗i2Du∗

R5jD̃
d
9k − κBV ∗i2Du∗

R2jD̃
d
2k + V ∗i1D

u∗
R2jD̃

d
4k), (60)

CRu
jik =g(−κdUi2Du∗

L4jD̃
d
8k − κsUi2Du∗

L3jD̃
d
6k − κbUi2Du∗

L1jD̃
d
3k

− κ4bUi2Du∗
L5jD̃

d
10k − κTUi2Du∗

L2jD̃
d
4k

+ Ui1D
u∗
L4jD̃

d
7k + Ui1D

u∗
L3jD̃

d
5k + Ui1D

u∗
L1jD̃

d
1k + Ui1D

u∗
L5jD̃

d
9k), (61)

The couplings that enter in the chargino-down-quark-up-squark interactions of Eq. (22)

are given by

CLd
jik =g(−κdU∗i2Dd∗

R4jD̃
u
7k − κsU∗i2Dd∗

R3jD̃
u
5k

− κbU∗i2Dd∗
R1jD̃

u
1k − κ4bU∗i2Dd∗

R5jD̃
u
9k − κTU∗i2Dd∗

R2jD̃
u
2k + U∗i1D

d∗
R2jD̃

u
4k), (62)

CRd
jik =g(−κuVi2Dd∗

L4jD̃
u
8k − κcVi2Dd∗

L3jD̃
u
6k − κtVi2Dd∗

L1jD̃
u
3k − κ4tVi2Dd∗

L5jD̃
u
10k

− κBVi2Dd∗
L2jD̃

u
4k + Vi1D

d∗
L4jD̃

u
7k + Vi1D

d∗
L3jD̃

u
5k + Vi1D

d∗
L1jD̃

u
1k + Vi1D

d∗
L5jD̃

u
9k), (63)

where

(κT , κb, κs, κd, κ4b) =
(mT ,mb,ms,md,m4b)√

2mW cos β
, (64)

(κB, κt, κc, κu, κ4t) =
(mB,mt,mc,mu,m4t)√

2mW sin β
. (65)
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and

U∗MCV = diag(mχ̃−1
,mχ̃−2

). (66)

8.4 Neutralino-quark-squark couplings

We first give the discuss the couplings that enter the the interactions in the mass diagonal

basis involving up quarks, up squarks and neutralinos of Eq. (28). Here we have,

C
′L
uijk =

√
2(αujD

u∗
R4iD̃

u
7k − γujDu∗

R4iD̃
u
8k + αcjD

u∗
R3iD̃

u
5k − γcjDu∗

R3iD̃
u
6k + αtjD

u∗
R1iD̃

u
1k

− γtjDu∗
R1iD̃

u
3k + α4tjD

u∗
R5iD̃

u
9k − γ4tjDu∗

R5iD̃
u
10k + βTjD

u∗
R2iD̃

u
4k − δTjDu∗

R2iD̃
u
2k), (67)

C
′R
uijk =

√
2(βujD

u∗
L4iD̃

u
7k − δujDu∗

L4iD̃
u
8k + βcjD

u∗
L3iD̃

u
5k − δcjDu∗

L3iD̃
u
6k + βtjD

u∗
L1iD̃

u
1k

− δtjDu∗
L1iD̃

u
3k + β4tjD

u∗
L5iD̃

u
9k − δ4tjDu∗

L5iD̃
u
10k + αTjD

u∗
L2iD̃

u
4k − γTjDu∗

L2iD̃
u
2k) , (68)

where

αTj =
gmTX

∗
3j

2mW cos β
; βTj = −2

3
eX ′1j +

g

cos θW
X ′2j

(
−1

2
+

2

3
sin2 θW

)
(69)

γTj = −2

3
eX

′∗
1j +

2

3

g sin2 θW
cos θW

X
′∗
2j ; δTj = − gmTX3j

2mW cos β
(70)

and

α4tj =
gm4tX4j

2mW sin β
; αtj =

gmtX4j

2mW sin β
; αcj =

gmcX4j

2mW sin β
; αuj =

gmuX4j

2mW sin β
(71)

δ4tj = − gm4tX
∗
4j

2mW sin β
; δtj = − gmtX

∗
4j

2mW sin β
; δcj = − gmcX

∗
4j

2mW sin β
; δuj = − gmuX

∗
4j

2mW sin β
(72)

and where

β4tj = βtj = βcj = βuj =
2

3
eX

′∗
1j +

g

cos θW
X
′∗
2j

(
1

2
− 2

3
sin2 θW

)
(73)

γ4tj = γtj = γcj = γuj =
2

3
eX ′1j −

2

3

g sin2 θW
cos θW

X ′2j (74)
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Similarly for the couplings that enter the the interactions in the mass diagonal basis

involving down quarks, down squarks and neutralinos of Eq. (29) we have

C
′L
dijk =

√
2(αdjD

d∗
R4iD̃

d
7k − γdjDd∗

R4iD̃
d
8k + αsjD

d∗
R3iD̃

d
5k − γsjDd∗

R3iD̃
d
6k + αbjD

d∗
R1iD̃

d
1k − γbjDd∗

R1iD̃
d
3k

+ α4bjD
d∗
R5iD̃

d
9k − γ4bjDd∗

R5iD̃
d
10k + βBjD

d∗
R2iD̃

d
4k − δBjDd∗

R2iD̃
d
2k), (75)

and

C
′R
dijk =

√
2(βdjD

d∗
L4iD̃

d
7k − δdjDd∗

L4iD̃
d
8k + βsjD

d∗
L3iD̃

d
5k − δsjDd∗

L3iD̃
d
6k + βbjD

d∗
L1iD̃

d
1k − δbjDd∗

L1iD̃
d
3k

+ β4bjD
d∗
L5iD̃

d
9k − δ4bjDd∗

L5iD̃
d
10k + αBjD

d∗
L2iD̃

d
4k − γBjDd∗

L2iD̃
d
2k), (76)

where

αBj =
gmBX

∗
4j

2mW sin β
; βBj =

1

3
eX ′1j +

g

cos θW
X ′2j

(
1

2
− 1

3
sin2 θW

)
(77)

γBj =
1

3
eX

′∗
1j −

1

3

g sin2 θW
cos θW

X
′∗
2j ; δBj = − gmBX4j

2mW sin β
(78)

and

α4bj =
gm4bX3j

2mW cos β
; αbj =

gmbX3j

2mW cos β
; αsj =

gmsX3j

2mW cos β
; αdj =

gmdX3j

2mW cos β
(79)

δ4bj = − gm4bX
∗
3j

2mW cos β
; δbj = − gmbX

∗
3j

2mW cos β
; δsj = − gmsX

∗
3j

2mW cos β
; δdj = − gmdX

∗
3j

2mW cos β
(80)

and where

β4bj = βbj = βsj = βdj = −1

3
eX

′∗
1j +

g

cos θW
X
′∗
2j

(
−1

2
+

1

3
sin2 θW

)
(81)

γ4bj = γbj = γsj = γdj = −1

3
eX ′1j +

1

3

g sin2 θW
cos θW

X ′2j (82)

Here X ′ are defined by

X ′1i = X1i cos θW +X2i sin θW (83)

X ′2i = −X1i sin θW +X2i cos θW , (84)
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where X diagonalizes the neutralino mass matrix and is defined by

XTMχ0X = diag
(
mχ̃0

1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4

)
. (85)

8.5 Gluino-quark-squark-couplings

The couplings that enter in the gluino-quark-squark interactions of Eq. (32) are given by

CLlm = (Dq∗
R2lD̃

q
4m −Dq∗

R5lD̃
q
10m −Dq∗

R4lD̃
q
8m −Dq∗

R3lD̃
q
6m −Dq∗

R1lD̃
q
3m)e−iξ3/2, (86)

and

CRlm = (Dq∗
L4lD̃

q
7m +Dq∗

L5lD̃
q
9m +Dq∗

L3lD̃
q
5m +Dq∗

L1lD̃
q
1m −Dq∗

L2lD̃
q
2m)eiξ3/2, (87)

where ξ3 is the phase of the gluino mass.

9 Appendix: Mass squared matrices for the scalars

We define the scalar mass squared matrixM2
d̃

in the basis (b̃L, B̃L, b̃R, B̃R, s̃L, s̃R, d̃L, d̃R, b̃4L, b̃4R).

We label the matrix elements of these as (M2
d̃
)ij = M2

ij where the elements of the matrix are

given by

M2
11 = M2

1̃L
+
v21|y1|2

2
+ |h3|2 −m2

Z cos 2β

(
1

2
− 1

3
sin2 θW

)
,

M2
22 = M2

B̃
+
v22|y′2|2

2
+ |h4|2 + |h′4|2 + |h′′4|2 + |h7|2 +

1

3
m2
Z cos 2β sin2 θW ,

M2
33 = M2

b̃1
+
v21|y1|2

2
+ |h4|2 −

1

3
m2
Z cos 2β sin2 θW ,

M2
44 = M2

Q̃
+
v22|y′2|2

2
+ |h3|2 + |h′3|2 + |h′′3|2 + |h6|2 +m2

Z cos 2β

(
1

2
− 1

3
sin2 θW

)
,
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M2
55 = M2

2̃L
+
v21|y3|2

2
+ |h′3|2 −m2

Z cos 2β

(
1

2
− 1

3
sin2 θW

)
,

M2
66 = M2

b̃2
+
v21|y3|2

2
+ |h′4|2 −

1

3
m2
Z cos 2β sin2 θW ,

M2
77 = M2

3̃L
+
v21|y4|2

2
+ |h′′3|2 −m2

Z cos 2β

(
1

2
− 1

3
sin2 θW

)
,

M2
88 = M2

b̃3
+
v21|y4|2

2
+ |h′′4|2 −

1

3
m2
Z cos 2β sin2 θW .

M2
99 = M2

4̃L
+
v21|y5|2

2
+ |h6|2 −m2

Z cos 2β

(
1

2
− 1

3
sin2 θW

)
M2

1010 = M2
b̃4

+
v21|y5|2

2
+ |h7|2 −

1

3
m2
Z cos 2β sin2 θW .

(88)
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M2
12 = M2∗

21 =
v2y
′
2h
∗
3√

2
+
v1h4y

∗
1√

2
,M2

13 = M2∗
31 =

y∗1√
2

(v1A
∗
b − µv2),M2

14 = M2∗
41 = 0,

M2
15 = M2∗

51 = h′3h
∗
3,M

2
16 = M2∗

61 = 0,M2
17 = M2∗

71 = h′′3h
∗
3,M

2∗
18 = M2∗

81 = 0,M2
19 = M2∗

91 = h∗3h6,

M2
110 = M2∗

101 = 0,M2
23 = M2∗

32 = 0,M2
24 = M2∗

42 =
y′∗2√

2
(v2A

∗
B − µv1),M2

25 = M2∗
52 =

v2h
′
3y
′∗
2√

2
+
v1y3h

∗
4√

2
,

M2
26 = M2∗

62 = 0,M2
27 = M2∗

72 =
v2h

′′
3y
′∗
2√

2
+
v1y4h

′′∗
4√

2
,M2

28 = M2∗
82 = 0,

M2
29 = M2∗

92 =
v1h

∗
7y5√
2

+
v2y
′∗
2 h6√
2

,M2
210 = M2∗

102 = 0,

M2
34 = M2∗

43 =
v2h4y

′∗
2√

2
+
v1y1h

∗
3√

2
,M2

35 = M2∗
53 = 0,M2

36 = M2∗
63 = h4h

′∗
4 ,

M2
37 = M2∗

73 = 0,M2
38 = M2∗

83 = h4h
′′∗
4 ,

M2
39 = M2∗

93 = 0,M2
310 = M2∗

103 = h4h
∗
7,

M2
45 = M2∗

54 = 0,M2
46 = M2∗

64 =
v2y
′
2h
′∗
4√

2
+
v1h

′
3y
∗
3√

2
,

M2
47 = M2∗

74 = 0,M2
48 = M2∗

84 =
v2y
′
2h
′′∗
4√

2
+
v1h

′′
3y
∗
4√

2
,

M2
49 = M2∗

94 = 0,M2
410 = M2∗

104 =
v2y
′
2h
∗
7√

2
+
v1h6y

∗
5√

2
,

M2
56 = M2∗

65 =
y∗3√

2
(v1A

∗
s − µv2),M2

57 = M2∗
75 = h′′3h

′∗
3 ,

M2
58 = M2∗

85 = 0,M2
59 = M2∗

95 = h′∗3 h6,M
2
510 = M2∗

105 = 0,M2
67 = M2∗

76 = 0,

M2
68 = M2∗

86 = h′4h
′′∗
4 ,M

2
69 = M2∗

96 = 0,M2
610 = M2∗

106 = h′4h
∗
7,M

2
78 = M2∗

87 =
y∗4√

2
(v1A

∗
d − µv2) .

M2
79 = M2∗

97 = h′′∗3 h6,M
2
710 = M2∗

107 = 0

M2
89 = M2∗

98 = 0,M2
810 = M2∗

108 = h′′4h
∗
7,M

2
910 = M2∗

109 =
y∗5√

2
(v1A

∗
4b − µv2) .

We can diagonalize this hermitian mass squared matrix by the unitary transformation

D̃d†M2
d̃
D̃d = diag(M2

d̃1
,M2

d̃2
,M2

d̃3
,M2

d̃4
,M2

d̃5
,M2

d̃6
,M2

d̃7
,M2

d̃8
,M2

d̃9
,M2

d̃10
) . (89)

Next we write the mass2 matrix in the sups sector the basis (t̃L, T̃L, t̃R, T̃R, c̃L, c̃R, ũL, ũR, t̃4L, t̃4R).

Thus here we denote the sups mass2 matrix in the form (M2
ũ)ij = m2

ij where
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m2
11 = M2

1̃L
+
v22|y′1|2

2
+ |h3|2 +m2

Z cos 2β

(
1

2
− 2

3
sin2 θW

)
,

m2
22 = M2

T̃
+
v21|y2|2

2
+ |h5|2 + |h′5|2 + |h′′5|2 + |h8|2 −

2

3
m2
Z cos 2β sin2 θW ,

m2
33 = M2

t̃1
+
v22|y′1|2

2
+ |h5|2 +

2

3
m2
Z cos 2β sin2 θW ,

m2
44 = M2

Q̃
+
v21|y2|2

2
+ |h3|2 + |h′3|2 + |h′′3|2 + |h6|2 −m2

Z cos 2β

(
1

2
− 2

3
sin2 θW

)
,

m2
55 = M2

2̃L
+
v22|y′3|2

2
+ |h′3|2 +m2

Z cos 2β

(
1

2
− 2

3
sin2 θW

)
,

m2
66 = M2

t̃2
+
v22|y′3|2

2
+ |h′5|2 +

2

3
m2
Z cos 2β sin2 θW ,

m2
77 = M2

3̃L
+
v22|y′4|2

2
+ |h′′3|2 +m2

Z cos 2β

(
1

2
− 2

3
sin2 θW

)
,

m2
88 = M2

t̃3
+
v22|y′4|2

2
+ |h′′5|2 +

2

3
m2
Z cos 2β sin2 θW ,

m2
99 = M2

4̃L
+
v22|y′5|2

2
+ |h6|2 +m2

Z cos 2β

(
1

2
− 2

3
sin2 θW

)
,

m2
1010 = M2

t̃4
+
v22|y′5|2

2
+ |h8|2 +

2

3
m2
Z cos 2β sin2 θW .
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m2
12 = m2∗

21 = −v1y2h
∗
3√

2
+
v2h5y

′∗
1√

2
,m2

13 = m2∗
31 =

y′∗1√
2

(v2A
∗
t − µv1),m2

14 = m2∗
41 = 0,

m2
15 = m2∗

51 = h′3h
∗
3,m

2∗
16 = m2∗

61 = 0,m2∗
17 = m2∗

71 = h′′3h
∗
3,m

2∗
18 = m2∗

81 = 0,

m2
23 = m2∗

32 = 0,m2
24 = m2∗

42 =
y∗2√

2
(v1A

∗
T − µv2),m2

25 = m2∗
52 = −v1h

′
3y
∗
2√

2
+
v2y
′
3h
′∗
5√

2
,

m2
26 = m2∗

62 = 0,m2
27 = m2∗

72 = −v1h
′′
3y
∗
2√

2
+
v2y
′
4h
′′∗
5√

2
,m2

28 = m2∗
82 = 0,

m2
34 = m2∗

43 =
v1h5y

∗
2√

2
− v2y

′
1h
∗
3√

2
,m2

35 = m2∗
53 = 0,m2

36 = m2∗
63 = h5h

′∗
5 ,

m2
37 = m2∗

73 = 0,m2
38 = m2∗

83 = h5h
′′∗
5 ,

m2
45 = m2∗

54 = 0,m2
46 = m2∗

64 = −y
′∗
3 v2h

′
3√

2
+
v1y2h

′∗
5√

2
,

m2
47 = m2∗

74 = 0,m2
48 = m2∗

84 =
v1y2h

′′∗
5√

2
− v2y

′∗
4 h
′′
3√

2
,

m2
56 = m2∗

65 =
y′∗3√

2
(v2A

∗
c − µv1),

m2
57 = m2∗

75 = h′′3h
′∗
3 ,m

2
58 = m2∗

85 = 0,

m2
67 = m2∗

76 = 0,m2
68 = m2∗

86 = h′5h
′′∗
5 ,

m2
78 = m2∗

87 =
y′∗4√

2
(v2A

∗
u − µv1),

m2
19 = m2∗

91 = h6h
∗
3,m

2
110 = m2∗

101 = 0,

m2
29 = m2∗

92 = −y
∗
2v1h6√

2
+
v2y
∗
5h8√
2

,

m2
210 = m2∗

102 = 0,m2
39 = m2∗

93 = 0,

m2
310 = m2∗

103 = h5h
∗
8,

m2
49 = m2∗

94 = 0,m2
410 = m2∗

104 = −y
′∗
5 v2h6√

2
+
v1y2h

∗
8√

2
,

m2
59 = m2∗

95 = h6h
′∗
3 ,m

2
510 = m2∗

105 = 0

m2
69 = m2∗

96 = 0,m2
610 = m2∗

106 = h′5h
∗
8

m2
79 = m2∗

97 = h6h
′′∗
3 ,m

2
710 = m2∗

107 = 0,

m2
89 = m2∗

98 = 0,m2
810 = m2∗

108 = h′′5h
∗
8,

m2
910 = m2∗

109 =
y′∗5√

2
(v2A

∗
4t − µv1) (90)
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We can diagonalize the sneutrino mass square matrix by the unitary transformation

D̃u†M2
ũD̃

u = diag(M2
ũ1
,M2

ũ2
,M2

ũ3
,M2

ũ4
,M2

ũ5
,M2

ũ6
,M2

ũ7
,M2

ũ8
M2

ũ9
,M2

ũ10
) . (91)
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