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Partial-wave and helicity operators for the scattering of two hadrons in lattice QCD
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Partial-wave operators for lattice QCD are developed in order to facilitate the identification of the
spins of two-hadron scattering states corresponding to zero total momentum. Taking the periodic
boundary conditions for lattice states into account, orthogonal sets of partial-wave operators for
orbital angular momentum are identified. When combined with the intrinsic spins of the hadrons,
orthogonal sets of parent operators for total angular momentum J and projection M are obtained.
The parent operators are subduced to irreducible representations of the octahedral group in order
to obtain descendant operators for use in lattice calculations. The descendant operators retain
orthogonality with respect to J . The spin of a state can be identified by the spin of parent operators
that dominate creation of the state. For nonzero total momentum, operators are developed for a
range of helicities and they are subduced to irreducible representations corresponding to the different
directions of total momentum. Sets of operators that include a sufficient range of helicities allow
identification of spin J when a state couples to operators with helicities less than or equal to J , but
not to operators with higher helicities.

I. INTRODUCTION

Lattice operators subduced from irreducible represen-
tations (irreps) of group, SU(2), to irreps of the octahe-
dral group, Oh, have been used to determine the spins
as well as the energies of single-hadron states in lattice
QCD. Recent works used such operators at zero mo-
mentum to determine the excited-state spectroscopy of
mesons, based on two-quark operators [1], and baryons,
based on three-quark operators [2].
Subduction from SU(2) associates each lattice opera-

tor with values of J and M , where J is the total angular
momentum and M is its projection along the z-axis.
Using operators that are smeared as in Ref. [3], ro-

tational invariance is realized approximately for bound
states that fit within the lattice volume, i.e., there is
an approximate orthogonality between operators sub-
duced from different values of J and M . Using a differ-
ent method to smear operators over many lattice sites,
Ref. [4], finds that the leading rotational-symmetry vio-
lating contributions from the finite lattice spacing, a, are
suppressed by αsa

2 as a → 0, where αs = g2s/(4π) and
gs is the strong coupling constant.
The analyses of Refs. [1, 2] obtain lattice correlation

matrices that are approximately block-diagonal, with
each block corresponding to a group of operators sub-
duced from the same value of J . Lattice excited states
are found to be created predominantly by operators sub-
duced from a single value of J . That identifies the spins
of excited states created by single-hadron operators.
However, multiparticle operators must be considered in

view of the fact that excited states of hadrons show up as
resonances in the scattering of two hadrons. For example,
the ∆ baryon, is a wide resonance in πN scattering for
spin J = 3

2 and isospin I = 3
2 [5]. The quantum numbers
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match those of a three-quark state in the quark model,
or in lattice QCD.
In a well-known paper, Lüscher[6] has shown how

phase shifts for the scattering of two hadrons can be ex-
tracted from lattice QCD. The Lüscher method has been
extended to systems with nonzero total momentum, un-
equal masses, coupled channels and intrinsic spins [7–
13]. It has been applied to coupled-channel scattering in
Refs. [14–16].
In principle, the spins of scattering states can be iden-

tified by matching i), the pattern of approximately de-
generate states found in lattice irreps with ii), the pat-
tern of subductions of a given spin to the irreps of the
lattice symmetry group. However, the combination of
accidental degeneracies and statistical uncertainties can
give ambiguous patterns of lattice states, e.g., the assign-
ment of two or more values of J may be compatible with
them.
In this work, sets of lattice operators based on partial

waves are developed for the scattering of two hadrons
with zero total momentum, and operators based on he-
licity are developed for nonzero total momentum. The
operators are designed to facilitate the identification of
the spin in calculations of phase shifts.
Periodic partial waves and their orthogonality proper-

ties are discussed in Section II. Operators based on par-
tial waves are defined in Section III. Using the partial-
wave operators, intrinsic spins are included to obtain op-
erators that create lattice states at zero total momentum
corresponding to total spin J in Sec. IV. These are called
parent operators. They are subduced to irreps of Oh for
use in lattice QCD. The subduced operators are called
descendant operators. Sets of mutually orthogonal par-
ent operators are identified that correspond to a range of
different total spins.
Section IVC develops parent operators based on he-

licity for nonzero total momenta. These are subduced
to lattice irrep operators, the descendant operators, that
involve combinations of ±λ. [17] Sets of mutually orthog-



2

onal operators are identified that correspond to a range
of different helicities. Section V provides a brief summary
of the work.

II. PERIODIC PARTIAL WAVES

Periodic boundary conditions in spatial directions ap-
ply to quark propagators on a lattice. Thus, lattice states
created by quark-field operators generally are periodic
in spatial directions. In spectroscopy based on single-
hadron operators, the effects of the boundary conditions
are reduced if the operators create states that fit approx-
imately within the lattice volume. Scattering states are
affected strongly by periodic boundary conditions.
Generally, scattering calculations incorporate the peri-

odic boundary conditions by using operators that involve
combinations of plane-waves with momenta restricted to
k = 2πn

L , where L is dimension of the lattice in units of
the lattice spacing and n is a vector with integer compo-
nents along the axes of the lattice.
Partial waves, fℓ,m(x) = jℓ(k|x|)Yℓ,m(x̂), involving

momenta k = 2π|n|
L , no longer obey the same periodicity

as the plane waves. However, partial-wave operators cre-
ate lattice states that must obey the periodic boundary
conditions. Such lattice states can be discussed in terms
of periodic partial waves that are constructed from the
formula,

[

fℓ,m(x)
](per)

= C
∑

n

fℓ,m(x+ nL). (1)

The integer-valued components of n are limited by −N ≤
ni ≤ N for i = 1 to 3 and the factor, C = (2N+1)−3, pro-
vides a normalization. In the limit N → ∞, the function
[

fℓm(x)
](per)

is periodic,

[

fℓ,m(x+ nL)
](per)

=
[

fℓ,m(x)
](per)

, (2)

where n is any vector with integer components.
Periodic partial waves for orbital angular momentum,

ℓ, and projection along the z-direction, m, have restricted
orthogonality. Consider the overlap matrix,

Oℓ′,m′;ℓ,m =

∫

d3x
[

jℓ′(k|x|)Y
†
ℓ′,m′(x̂

](per)

×
[

jℓ(k|x|)Yℓ,m(x̂)
](per)

. (3)

The integration symbol in Eq. (3) should be read as a
sum over (L+1)3 lattice points that are inside or on the
boundaries of the L3 lattice volume.
In order to make diagonal overlaps equal to unity, de-

fine normalization factors and construct the normalized
matrix of overlaps as follows,

Nℓ,m =
√

Oℓ,m;ℓ,m,

Zℓ′,m′;ℓ,m =
1

Nℓ′,m′Nℓ,m
Oℓ′,m′;ℓ,m. (4)

TABLE I: Pattern of even-parity matrix elements Zℓ′,m′;ℓ,m:
1 for diagonal elements, blank for zero elements and x for large
off-diagonal elements. The top row shows the ℓ,m indices and
the left column shows the ℓ′,m′ indices.

0,0 2,2 2,1 2,0 2,-1 2,-2 4,4 4,3 4,2 4,14,04,-14,-24,-34,-4

0,0 1 x x x

2,2 1 x x x

2,1 1 x x

2,0 1 x x x

2,-1 1 x x

2,-2 x 1 x x

4,4 x x 1 x x

4,3 x 1 x

4,2 x x 1 x

4,1 x 1 x

4,0 x x x 1 x

4,-1 x x 1

4,-2 x x x 1

4,-3 x x 1

4,-4 x x x x 1

Numerical calculations for finite lattice spacings show
that,

Zℓ′,m′;ℓ,m = 0,

if ℓ′ 6= ℓ (mod 2) and m′ 6= m (mod 4), (5)

holds to high precision. The pattern of zero elements in
Eq. (5) is the same as for Lüscher’s matrix, Mℓ′,m′;ℓ,m,
that is central to the method for determining phase shifts.
As shown in Ref. [6], the zeroes are exact because of
cubic symmetry for a finite box with no discretization.
For a discrete lattice spacing, the orthogonality is found
in Appendix A not to depend on the momentum in the
spherical Bessel functions, or on the difference between
scattering wave functions and spherical Bessel functions.
In a lattice QCD calculation, the orthogonality should be
realized approximately after averaging over gauge config-
urations.
There is one exception to themod 2 in Eq. (5): overlaps

of periodic partial waves involving ℓ′, ℓ = 0,2, or 2,0, are
zero. Thus, the ℓ = 0, 1 and 2 periodic partial waves are
orthogonal to one another, except for the m = ±2 values
that are affected by the mod 4 rule, i.e., the 〈ℓ′,m′|ℓ,m〉
= 〈2, 2|2,−2〉 and 〈2,−2|2, 2〉 overlaps are of order 1.
Periodic partial waves of opposite parities are orthog-

onal. Tables I and II show the patterns of orthogonality
of Zℓ′,m′;ℓ,m for partial waves of the same parity, using
a blank to indicate a matrix element that is zero, 1 to
indicate a diagonal element and x to indicate a large off-
diagonal element.
Periodic operators with ℓ = 0, 1 and 2 unavoidably cou-

ple to states of higher ℓ because of the cubic symmetry.
For example, a periodic operator for angular momentum
ℓ = 1 couples with ℓ = 3, 5, · · · states. Thus, assuming
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TABLE II: Pattern of odd-parity matrix elements Zℓ′,m′;ℓ,m.
Symbols are the same as in Table I. The top row shows the
ℓ,m indices and the left column shows the ℓ′,m′ indices.

1,1 1,0 1,-1 3,3 3,2 3,1 3,0 3,-1 3,-2 3,-3

1,1 1 x x

1,0 1 x

1,-1 1 x x

3,3 x 1 x

3,2 1 x

3,1 x 1 x

3,0 x 1

3,-1 x x 1

3,-2 x 1

3,-3 x x 1

that ℓ ≥ 5 can be neglected, there is a need to distinguish
which states are ℓ = 1 versus ℓ = 3. The blank elements
in Tables I and II show that it is possible to construct
periodic operators for ℓ = 3 that are orthogonal to those
for ℓ = 1. For example, ℓ,m = 3,2 is orthogonal to ℓ,m
= 1,1, 1,0 and 1,-1. Thus, including a tracer operator
that couples to states with ℓ ≥ 3 but does not couple
to ℓ = 1 states, provides a means to distinguish lattice
states involving ℓ = 3 from those involving ℓ = 1. Sim-
ilarly, states involving ℓ = 4 can be distinguished from
ones involving ℓ = 2 by use of suitable tracer operators.
That provides the motivation for the use of partial-wave
operators corresponding to distinct values of ℓ and m.

III. PLANE-WAVE, LATTICE IRREP AND

PARTIAL-WAVE OPERATORS

A. Plane-wave operators

Consider two point-like fields for distinct, scalar
mesons that are labeled by indices 1 and 2.
The field operator for a single scalar meson at t=0,

keeping only the creation part, is

m†
1(x, 0) =

1

(2π)3/2

∫

d3p
1

(2Ep)1/2
a†pe

−ip·x. (6)

Fourier transformation of the field gives the creation op-
erator for a plane-wave state,

m†
1(k, 0) =

1

(2π)3/2

∫

d3x eik·xm†
1(x, 0),

= a†k
1

(2Ek)1/2
. (7)

For total momentum and time both equal to 0, a two-
meson operator is,

m†
1(k, 0)m

†
2(−k, 0) = a†ka

†
−k

1

2Ek

. (8)

Acting on the vacuum, this operator creates a two-meson
state with equal and opposite momenta,

m†
1(k, 0)m

†
2(−k, 0)|0〉 = |k,−k〉

1

2Ek

. (9)

In a cubical volume of dimension L, the state is periodic
when the momentum is k = 2πn

L , where n is a vector
whose components are integers.
In the sink operator for two scalar mesons, destruction

operators, ak′ , are kept and in general the momentum
of the sink operator, k′, has a different direction but the
same magnitude as k,

m1(k
′, 0)m2(−k

′, 0) = ak′a−k′

1

2Ek

. (10)

Correlation functions involve the operators at t = 0
and the Euclidean-time propagator, which is written as
a sum over a complete set of eigenstates, |n〉, of the lattice
Hamiltonian, as follows,

C(t) =
∑

n

〈0|m1(k
′, 0)m2(−k

′, 0)|n〉e−Ent

×〈n|m†
1(k, 0)m

†
2(−k, 0)|0〉,

yielding a correlation function for plane-wave states of
two mesons,

C(t) =
∑

n

〈k′,−k
′|n〉e−Ent〈n|k,−k〉

1

4E2
k

. (11)

B. Lattice irrep operators

Lattice irrep operators involve sums of plane-wave op-
erators over sets of momenta that are related to one an-
other by rotations that leave the lattice invariant. In
general, the use of lattice irrep operators leads to mix-
ings of various partial waves.
An illustrative case is row 2 of the T1 lattice irrep, for

which the source operator is a sum of two terms,

1

2
m†

1(k, 0)m
†
2(−k, 0)−

1

2
m†

1(−k, 0)m†
2(k, 0), (12)

where k is along the z direction. The sink operator has
a similar form except with annihilation operators. The
correlator can be written as,

CT1,2(t) =
1

4E2
k

∑

n

1

2

(

〈k′,−k
′| − 〈−k

′,k′|
)

|n〉

×e−Ent〈n|
1

2

(

|k,−k〉 − | − k,k〉
)

. (13)

Inserting complete sets of states, |x1,x2〉, and using x =
x1−x2, X = 1

2

(

x1+x2

)

( similarly for x′ and X
′), leads
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to

CT1,2(t) =
1

4E2
k

∑

n

e−Ent

×

∫

d3x′
1d

3x′
2

1

2

(

eik
′·x′

− e−ik′·x′
)†

Ψn(x
′,X′)

×

∫

d3x1d
3x2Ψ

†
n(x,X)

1

2

(

eik·x − e−ik·x
)

, (14)

where Ψn(x,X) = 〈x1,x2|n〉 is the wave function of state
|n〉. For this example, partial-wave expansion of the fac-
tors involving plane-waves contain odd ℓ values,

1

2

(

eik·x − e−ik·x
)

=
∑

odd ℓ

4πiℓjℓ(k|x|)Y
†
ℓ,0(k̂)Yℓ,0(x̂).

(15)
Thus, the correlator becomes,

CT1,2(t) =
∑

n

e−Ent
1

4E2
k

(

∑

odd ℓ′

4πiℓ
′

Yℓ′,0(k̂
′)Φn,ℓ′,0(k)

)

×
(

∑

odd ℓ

4πiℓΦ†
n,ℓ,0(k)Y

†
ℓ,0(k̂)

)

, (16)

where

Φn,ℓ,m(k) =

∫

d3x jℓ(k|x|)Y
†
ℓ,m(x̂)Φn(x), (17)

and

Φn(x) =

∫

d3XΨn(x,X). (18)

The matrix elements, Φn,ℓ,m(k), show that the coupling

of operators to lattice states involves the jℓ(k|x|)Y
†
ℓ,m(x̂)

part of the operator.
When the mesons do not interact, the wave function,

Φn(x), corresponds to two mesons with the same mo-
menta as in the operator that creates the state. The wave
function can be expanded in partial waves as follows,

Φn(x) =
∑

L,M

aL,M jL(k|x|) YL,M(x̂). (19)

Substituting this expansion into Eq. (17) and taking into
account the periodic boundary conditions leads to sums
over the the overlaps of Eq. (3).
When the two mesons interact, the scattering wave

function generally differs from jL(k|x|). Appendix A de-
scribes numerical tests that show that the interactions
do not have a significant effect on the orthogonality.

C. Lattice partial-wave operators

In the analysis above, the two-meson operator at t = 0
contains the plane-wave factor, eik·x, and can be written
as,

m†(k, 0)m†(−k, 0) =

1

(2π)3

∫

d3x1

∫

d3x2 eik·x m†(x1, 0)m
†(x2, 0).(20)

This is a form that is useful for lattice QCD. In order
to restrict the source or sink operator to a single partial
wave, the plane-wave factor is replaced by a partial-wave
factor, defined as follows,

[

eik·x
]

ℓ,m
≡ jℓ(k|x|)Yℓ,m(x̂), (21)

where a factor 4πiℓYℓ,m(k̂) is omitted. The partial-wave
operator is based on the factors that occur in the ma-
trix elements between operators and lattice states, as
in Eq. (17). The result is equivalent to projecting the
plane-wave factor ek·x in Eq. (20) to a partial wave using

Yℓ,m(k̂).
The partial-wave operator is defined by,

[

m†(k, 0)m†(−k, 0)
]

ℓ,m
=

1

(2π)3

∫

d3x1

∫

d3x2

[

eik·x
]

ℓ,m
m†(x1)m

†(x2). (22)

When used in a lattice QCD calculation, a partial-wave
operator creates periodic states.
The quantization of momentum for noninteracting

plane-waves that obey periodic boundary conditions im-
plies that q = kL

2π = |n|, where n is a vector with in-
teger components. Interactions modify the wave func-
tions but they should remain close to the noninteracting
waves with momenta corresponding to n2 = 1, 2, 3, 4 · · · .
While there is no restriction that limits the momentum
values, the noninteracting momenta provide a reasonable
choice for the momenta in the partial-wave operators.
The jℓ(k|x|) factor can also be viewed as simply provid-
ing a spatial smearing with a smearing parameter, k, that
may be chosen to maximize the coupling of the operator
to states of interest.
A matrix of correlation functions could be obtained

by using partial-wave operators with orbital angular mo-
mentum indices ℓ′ and m′ at the sink point together with
indices ℓ and m at the source point, which gives,

Cℓ′,m′;ℓ,m(t) =
∑

n

e−EntΦn,ℓ′,m′(k)Φ†
n,ℓ,m(k), (23)

where Φn,ℓ,m(k) is defined by Eq. (17). In this case, one
can select operators corresponding to an orthogonal set of
states, including tracer operators to indicate the presence
of higher spins, in order to facilitate the identification of
spins. However, the partial-wave operators are not used
directly. They serve as parent operators that are sub-
duced to lattice irreps before use in lattice calculations.

IV. OPERATORS FOR TWO HADRONS WITH

INTRINSIC SPINS 0 OR 1

2

It is interesting to consider operators for hadrons with
the simplest intrinsic spins, namely, s = 0 and s = 1

2
The total intrinsic spin of the two-hadron system can be
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S = 0 (for example, ππ or NN), S = 1
2 (πN) or S = 1

(NN).
The representations of the intrinsic spins of hadrons

with s ≤ 3
2 are orthogonal, like the spin states in quantum

mechanics,

〈s,ms|s
′,m′

s〉 = δs,s′δms,m′
s
, (24)

where s is the spin and ms is its projection along the
z-azis. This orthogonality follows on the lattice because
each irreducible representation of the double-cover oc-
tahedral group, |Λ, r〉, is equivalent to a set of quantum
states, |s,ms〉, for a single value of s. Spin s = 0 is equiv-
alent to Λ = A1, s = 1

2 to G1, s = 1 to T1 and s = 3
2 to

H . With the convention used, the spin projection, ms,
is equivalent to a unique row index, r, of the irrep.
Parent operators for the scattering of two hadrons with

zero total momentum are constructed in Sec. IVA by
coupling the intrinsic spin angular momenta with a par-
tial wave of orbital angular momentum to make total spin
J and projection M . The final step, outlined in Sec. IVB
is to produce descendant operators by subducing the par-
ent operators from J and M to lattice irreps of Oh.
When total momentum is nonzero, operators are con-

structed based on total helicity in Sec. IVC. Lattice irrep
operators are constructed in Sec. IVE.

A. Parent operators for total momentum P = 0

Consider zero total momentum: P = k1 + k2 = 0.
The relative momentum is k = 1

2 (k1 − k2) and it follows
that k1 = k and k2 = −k. The masses of the hadrons
are m1 and m2, and the energies are E1 =

√

k2 +m2
1

and E2 =
√

k2 +m2
2. For fixed energies of the hadrons,

relative momentum, k, is a vector of fixed magnitude, k.
Two equivalent ways of writing the lattice coordinates

of the operators are,

x1 = X+
1

2
x, x2 = X−

1

2
x, (25)

and

X =
1

2

(

x1 + x2

)

, x = x1 − x2. (26)

We switch between them without further comment.
Consider a product of hadron operator, As1,ms1

(x1, t),
and hadron operator, Bs2,ms2

(x2, t), where s1 and s2 are
intrinsic-spin labels, and ms1 and ms2 are labels for the
z-components of intrinsic spins. The desired parent oper-
ator involves coupling intrinsic spins and relative orbital
angular momentum to total angular momentum, J , and
projection, M , as follows,

(AB)JPM (P = 0, k, t) =

∫

d3x1

∫

d3x2

∑

s1,s2
ms1

,ms2

ℓ,m

CJM

×
[

eik·x
]

ℓ,m
As1,ms1

(x1, t)Bs2,ms2
(x2, t),

(27)

where CJM denotes the following product of the usual
Clebsch-Gordan coefficients for coupling the spins and
orbital angular momenta,

CJM = 〈s1ms1s2ms2 |SmS〉〈SmSℓm|JM〉, (28)

and the partial wave of relative momentum is given by
Eq. (21).
A matrix of correlation functions for the hadron-

hadron system based on parent operators is,

CJ′M ′:JM (P = 0, k, t) =
〈

0
∣

∣ (AB)J′,M ′ (P = 0, k, t)

×(AB)JM (P = 0, k, 0)
∣

∣0
〉

. (29)

Sets of mutually-orthogonal parent operators for two-
hadron scattering states are given in Table III for total in-
trinsic spin S = 0, in Table IV for S = 1

2 and Table V for
S = 1. The tables provide the quantum numbers corre-
sponding to nonzero Clebsch-Gordan coefficients for the
coupling of intrinsic spins with orbital angular momenta
ℓ = 0, 1, 2, 3 and 4. Some of the listed operators are or-
thogonal to others because their couplings involve pairs
of ℓ,m values that are orthogonal, or pairs of ms values

that are orthogonal. Other operators, for example 3
2

+
, 3
2

and 5
2

+
, 32 , involve combinations of Clebsch-Gordan coeffi-

cients that give orthogonality. Note that each ℓ,m com-
ponent involved must be normalized to the same value
in order to realize the orthogonality due to the Clebsch-
Gordan coefficients.[1]

It is straightforward to add operators for other mo-
menta in order to build a variational basis of operators
with respect to energy within each set of J , M values.
For each additional momentum included, all operators of
Table III ( or Table IV or Table V) can be used. Orthog-
onality is then between subsets of operators that have
different J , M values.
Isospin and the Pauli Principle provide limits on the

partial wave operators that should be used. For exam-
ple, the ππ system can occur in states of isospin 0, 1 or
2 and the system must be symmetric with regard to the
exchange of the pions. Similarly, the NN system can
occur in states of isospin 0 or 1 and the system must be
antisymmetric with regard to exchange of the two nucle-
ons. Operators that do not obey the correct symmetry
should be omitted.

B. Descendant operators in lattice irreps for P = 0

When the total momentum of a two-hadron operator is
zero, the lattice is invariant with respect to the elements
of the octahedral group. The parent operators given

[1] It is straightforward to use the orthogonality properties of C-G
coefficients to project out the ℓ,m components corresponding to
a given ms.
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TABLE III: Mutually-orthogonal parent operators for the
scattering of two hadrons with total intrinsic spin S = 0, for
example, ππ or NN . The final column provides conventional
labels of the form 2S+1LJ for the NN system with S = 0.

Operator JP ,M ℓ,m 2S+1LJ

1 0+, 0 0,0 1S0

2 1−, 1 1,1 1P1

3 1−, 0 1,0 1P1

4 2+, 2 2,2 1D2

5 2+, 1 2,1 1D2

6 2+, 0 2,0 1D2

7 3−, 3 3,3 1F3

8 3−, 2 3,2 1F3

9 4−, 3 4,3 1G4

TABLE IV: Mutually-orthogonal parent operators for the
scattering of two hadrons with total intrinsic spin S = 1

2
,

for example, πN . Each row of the table gives the combi-
nations of ℓ,m and ms quantum numbers that occur in the
Clebsch-Gordan expansion to form JP and M .

Operator JP M ℓ,m ms ℓ,m ms

1 1

2

+ 1

2
0,0 1

2

2 1

2

− 1

2
1,0 1

2
1,1 - 1

2

3 1

2

−

- 1
2

1,-1 1

2
1,0 - 1

2

4 3

2

− 3

2
1,1 1

2

5 3

2

− 1

2
1,0 1

2
1,1 - 1

2

6 3

2

+ 3

2
2,1 1

2
2,2 - 1

2

7 3

2

+ 1

2
2,0 1

2
2,1 - 1

2

8 5

2

+ 5

2
2,2 1

2

9 5

2

+ 3

2
2,1 1

2
2,2 - 1

2

10 5

2

+ 1

2
2,0 1

2
2,1 - 1

2

11 5

2

− 5

2
3,2 1

2
3,3 - 1

2

12 7

2

− 5

2
3,2 1

2
3,3 - 1

2

13 7

2

+ 7

2
4,3 1

2
4,4 - 1

2

above are subduced to irreps of the octahedral group,
which produces descendant operators that can be used
in lattice calculations.
The subduction coefficients, SJ,M

Λ,r , are given in Ref. [1]

for integer spins and in Ref. [2] for half-integer spins.
They should be applied as follows to the operators of
Eq. (27) that are labeled by J,M to obtain operators
that are labeled by the octahedral group irrep Λ and row
r,

(AB)Λ,r (k1,k2, t) =
∑

M

SJ,M
Λ,r (AB)JM (k1,k2, t). (30)

As shown in appendix B of Ref. [2], the subduction
coefficients are real and they obey,

∑

M

SJ,M
Λ′,r′S

J,M
Λ,r = δΛ′,Λδr′,r. (31)

TABLE V: Mutually-orthogonal parent operators for the scat-
tering of two hadrons with total intrinsic spin S = 1, for ex-
ample, NN . Each row of the table gives the combinations of
ℓ,m and ms quantum numbers that have nonzero coefficients
in the Clebsch-Gordan expansion to form J and M . The final
column provides conventional labels of the form 2S+1LJ for
the NN system with S = 1.

Operator J M ℓ,m ms ℓ,m ms ℓ,m ms
2S+1LJ

1 0 1 0,0 1 3S1

2 0 0 0,0 0 3S1

3 0 -1 0,0 -1 3S1

4 0 0 1,1 -1 1,0 0 1,-1 1 3P0

5 1 1 1,1 0 1,0 1 3P1

6 1 0 1,1 -1 1,-1 1 3P1

7 2 2 1,1 1 3P2

8 2 1 1,1 0 1,0 1 3P2

9 2 0 1,1 -1 1,0 0 1,-1 1 3P2

10 1 1 2,2 -1 2,1 0 2,0 1 3D1

11 1 0 2,1 -1 2,-1 1 3D1

12 2 2 2,2 0 2,1 1 3D2

13 2 1 2,2 -1 2,1 0 2,0 1 3D2

14 2 0 2,1 -1 2,-1 1 3D2

15 3 3 2,2 1 3D3

16 3 2 2,2 0 2,1 1 3D3

17 3 1 2,2 -1 2,0 1 2,0 1 3D3

This property causes descendant states to be orthogonal
with respect to J when they are obtained by subducing a
set of mutually orthogonal parent states. This is shown
for quantum states of angular momentum, |J,M〉, and
their descendant states, labelled by lattice irreps, that
are subduced from a single value of J , i.e., |Λ[J ], r〉 =
∑

M SJ,M
Λ,r |J,M〉, as follows,

〈Λ′[J ′], r′|Λ[J ], r〉 =
∑

M,M ′

SJ′,M ′

Λ′,r′ SJ,M
Λ,r 〈J ′,M ′|J,M〉,

=
∑

M,M ′

SJ′,M ′

Λ′,r′ SJ,M
Λ,r δJ′,JδM ′,M

= δΛ′,Λδr′,rδJ′,J . (32)

Spin identification is based on an orthogonal set of
parent operators. A matrix of correlation functions is
calculated based on the descendant, irreducible opera-
tors. Because of the orthogonality of Eq. (32), the ma-
trices are approximately block-diagonal with respect to
the values of the parent spin, J , from which the irre-
ducible operators are subduced. Use of the variational
method[18, 19] to extract the energies of states, and op-
erator overlaps [1, 2], Znm = 〈n|Om|0〉, to identify the
couplings of operators to the states, then identifies which
parent spins, J , are predominant in the creation of a lat-
tice state. Generally, when a spin-J operator couples to
a state, that identifies J as a lower bound of the spin.
If two or more operators couple to a state, the highest
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value of J identifies the lower bound of the spin.

The phase shift can be calculated using the Luscher
method, which is based on the deviation of the energy
of a scattering state from the energy when there is zero
interaction. The latter energy may be calculated from
the masses of the hadrons and the quantized momenta
that obey periodic boundary conditions.

C. Two-hadron operators with total momentum

P 6= 0

Nonzero total momentum is of considerable interest
because it provides a way to increase the number of c.m.
energies that can be obtained using a given lattice.

The helicity, λ, is the eigenvalue of Jz in the c.m.
frame. Invariance with respect to boosts along the di-
rection of the total momentum shows that helicity takes
the same value in the c.m. frame and the lattice frame,
where it can be determined.

Because J ≥ |λ|, the use of operators for a range of
helicity values provides the following signature. A state
with spin J couples to the operators with λ ≤ J , and not
to the operators for higher helicity.

It is useful to decompose coordinates and momenta
into parts that are perpendicular and parallel to P, which
are denoted by subscripts, ⊥ and ‖, respectively. Rota-
tions that keep P invariant also leave the parallel com-
ponents of other vectors invariant, e.g., k1‖, k2‖ and

k‖ = 1
2

(

k1‖ − k2‖

)

. Vectors that are perpendicular to

the total momentum, e.g., k1⊥ = −k2⊥ = k⊥, are in-
variant with respect to boosts along the direction of the

total momentum. Energies are E1 =
√

m2
1 + k2⊥ + k21‖

and E2 =
√

m2
2 + k2⊥ + k22‖, where k⊥ = |k⊥| is invari-

ant with respect to rotations that keep P invariant.

D. Parent helicity operators for P 6= 0

Two-hadron operators are labelled by the total helic-
ity when P 6= 0. For two spin-zero hadrons, the helicity
values are constructed in the lattice frame using a cylin-
drical function in place of the spherical harmonic that
appears in Eq. (21), as follows,

[

eik⊥·x⊥

]

m
= Jm(k⊥x⊥)e

imφx , (33)

where φx is the azimuthal angle of x⊥ and Jm is a Bessel
function. An overall factor ime−imφk is omitted, where
φk is the azimuthal angle of k⊥, because it plays no role
in the final analysis.

A two-hadron parent operator incorporates intrinsic

spins of the hadrons as follows,

(AB)λ (P, k‖, k⊥, t) =

∫

d3x1

∫

d3x2e
iP·Xeik‖x‖

∑

s1,s2
ms1

,ms2
,m

Cλ

[

eik⊥·x⊥

]

m
As1,ms1

(x1, t)Bs2,ms2
(x2, t), (34)

where Cλ denotes the following product of a Clebsch-
Gordan coefficient for spin and a delta function,

Cλ = 〈s1ms1s2ms2 |SmS〉 δmS+m, λ. (35)

This operator is constructed to create a state with helic-
ity, λ, that is the sum of the orbital helicity, m, and spin
helicity, mS.
The matrix of correlation functions for the two-hadron

system based on parent operators is,

Cλ′ ;λ(P, k‖, k⊥, t) =
〈

0
∣

∣ (AB)λ′ (P, k‖, k⊥, t)

×(AB)λ(P, k‖, k⊥, 0)
∣

∣0
〉

. (36)

E. Descendant operators in lattice irreps for P 6= 0

When the total momentum of the two-hadron system
is nonzero, the lattice symmetry group is Cnv (alterna-
tively known as Dicn for the double group), for n =4, 3,
or 2. For C4v, the total momentum is directed along one
of the axes of the cube; for C3v, it is along a body diag-
onal; for C2v it is parallel to a face diagonal. For each
of these cases, we label the direction of total momentum
as the z-axis. Altmann and Herzig [20] have developed
the subductions from SU(2) to irreps of the point groups
Cnv; their notation is followed in this work. Equivalent
results are given in Refs. [17, 21, 22].
The Cnv group applies for integer spins and the Cnv

double group applies for half-integer spins. The group
elements are n rotations about the z direction, Rz(θ),
with equally spaced θ values in the range 0 ≤ θ < 2π
(or 2n rotations in the range 0 ≤ θ < 4π for the double
group). In addition, there is an equal number of reflec-
tions, Rz(θ)Πyz , that involve the same rotations and a
reference reflection, which is chosen to be Πyz, the re-
flection in the yz-plane. The group elements transform
helicity states as follows,

Rz(θ)
∣

∣λ
〉

= e−iλθ
∣

∣λ
〉

,

Πyz

∣

∣λ
〉

= η
∣

∣ − λ
〉

, (37)

where η = (−1)JP and P is the parity. The phase factor,
η, is equal to η̃ in the analysis of Ref. [17], where it is
shown to follow from the choice of Πyz as the reference
reflection,
Representations of Cnv involve a linear combination

of helicity states,
∣

∣λ
〉

and
∣

∣ − λ
〉

. In this work, they
are chosen to diagonalize the reference reflection and are
labeled by the positive helicity, λ > 0, and a sign, ±,
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which serves as the row index of the representation, as
follows,

∣

∣λ,±
〉

≡

√

1

2

(

∣

∣λ
〉

± η
∣

∣− λ
〉

)

. (38)

The action of group elements is to transform the
∣

∣λ,±
〉

representations into linear combinations of one another,

Rz(θ)
∣

∣λ,+
〉

= cos(λθ)
∣

∣λ,+
〉

− isin(λθ)
∣

∣λ,−
〉

,

Rz(θ)
∣

∣λ,−
〉

= −isin(λθ)
∣

∣λ,+
〉

+ cos(λθ)
∣

∣λ,−
〉

,

Πyz

∣

∣λ,±
〉

= ±(−1)J
∣

∣λ,±
〉

, (39)

where the eigenvalue of the reference reflection is seen to
be ±(−1)J . Note that a two-dimensional representation
is reducible to two one-dimensional irreps when sin(λθ)
vanishes for each group rotation angle, θ. Otherwise
∣

∣λ,+
〉

and
∣

∣λ,−
〉

provide the rows of a two-dimensional
irrep.
Descendant operators for P 6= 0 transform as irreps of

Cnv. They involve the positive helicity, λ > 0, and the
row index, ±, and have a composition similar to Eq. (38),

(AB)λ,±(P, k‖, k⊥, t) =

√

1

2

(

(AB)λ(P, k‖, k⊥, t)

±η(AB)−λ(P, k‖, k⊥, t)
)

. (40)

The rows of a two-dimensional irrep are orthogonal
and they produce the same correlation function as the
average over rows, which is the same as the average over
± signs. Using the descendant operators of Eq. (40), the
average over rows is,

Cλ =
1

2
(Cλ,+;λ,+ + Cλ,−;λ,−) . (41)

A little algebra shows that this is equal to the aver-
age over the helicities, λ and −λ, that appear when the
expression above is expanded in terms of the correlation
functions Cλ′,λ of Eq. (36). Using η∗η = 1, the row av-
erage is evaluated as follows,

Cλ =
1

4
(Cλ,λ + η∗C−λ,λ + ηCλ,−λ + η∗ηC−λ,−λ)

+
1

4
(Cλ,λ, − η∗C−λ,λ − ηCλ,−λ + η∗ηC−λ,−λ) ,

=
1

2
(Cλ,λ + C−λ,−λ) . (42)

The parity-dependent phase factor, η, cancels out of the
average over rows.
Each one-dimensional irrep also involves both λ and

−λ, as in Eq. (38). For most purposes, it is adequate
to average the two one-dimensional irreps for a given
helicity, λ, in the same manner as the rows of a two-
dimensional irrep. When this is done, the result is the
same as in Eq. (42), i.e., the parity-dependent phase fac-
tor, η, cancels out. Thus, correlation functions can be

TABLE VI: Pattern of matrix elements Zm′m for group C4v .
For group C3v , the x’s shift to horizontal positions that are a
multiple of three units away from the diagonal and for group
C2v the x’s move to positions that are a multiple of 2 units
away from the diagonal. Symbols have the same meaning as
in Table I. The top row shows the m indices and the left
column shows the m′ indices.

-4 -3 -2 -1 0 1 2 3 4

-4 1 x x

-3 1 x

-2 1 x

-1 1 x

0 x 1 x

1 x 1

2 x 1

3 x 1

4 x x 1

calculated directly from parent operators, as in Eq. (36),
and then averaged over the ±λ values in order to obtain
the same result as would be obtained from averaging over
the rows of correlation functions based on the irrep op-
erators of Eq. (40).
Although the average over helicities provides a sim-

ple and straightforward analysis, the irrep operators are
given in Appendix B for completeness.
The orthogonality of periodic orbital-helicity functions

involves the following matrix of overlaps,

Zm′m =

∫

d3x
[

Jm(k⊥x⊥)e
imφx

](per)†
×

[

Jm′(k⊥x⊥)e
im′φx

](per)
. (43)

This matrix is normalized as in Eq. (4) in order to make
diagonal elements equal to one. Then the zero elements
depend on index n of group Cnv as follows,

Zm′,m = 0 if m′ 6= m (mod n). (44)

Table VI shows the pattern of matrix elements based on
Eq. (43).
The best case for spin identification is group C4v be-

cause it has the largest range of orbital helicities that
can be included in an orthogonal set. The orbital-helicity
states that are orthogonal are limited tom= 0 and±1 for
both C3v and C2v. For each of these groups, the result-
ing sets of mutually-orthogonal operators for two-hadron
scattering states are given in Table VII for total intrinsic
spin S = 0, in Table VIII for S = 1

2 and Table IX for
S = 1. As each irrep operator includes helicity values,
λ and −λ, quantum numbers m and −m are included
for the cylindrical harmonics. Orthogonality for S = 0 is
limited because each m-component must be orthogonal
to all the other m-components in the table. For example,
m = ±3 cannot be included because m = ±1 is included.
When intrinsic spin states are included, orthogonality

depends on each m,ms pair being orthogonal to each
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TABLE VII: Mutually orthogonal helicity operators for group
C4v and total intrinsic spin S = 0. Each row lists the irrep
label, λ, and the m values included in the operator. For
groups C3v and C2v , only rows 1 and 2 involving m = 0 and
±1 are orthogonal.

No. λ m -m

1 0 0 0

2 1 1 -1

3 2 2 -2

TABLE VIII: Mutually orthogonal helicity operators for
group C4v and total intrinsic spin S = 1

2
. Each row lists

the irrep label, λ, and the m,ms values included in the oper-
ator. For groups C3v and C2v , only the rows involving m =
0 and ±1 are orthogonal.

No. λ m,ms -m,-ms

1 1

2
0 , 1

2
0 , - 1

2

2 1

2
1 , - 1

2
-1 , 1

2

3 3

2
1 , 1

2
-1 , - 1

2

4 5

2
2 , 1

2
-2 , - 1

2

other pair. The orthogonality of spins allows more oper-
ators to be included.

V. SUMMARY

Operators are developed to facilitate the identification
of spins in lattice QCD calculations of the scattering of
two hadrons. In the case that the total momentum of
the hadrons is P = 0, partial-wave operators are used to
create periodic partial waves of orbital angular momen-
tum, ℓ, and projection, m. The operators are based on

momenta of magnitude k = 2π|n
L , where is n is a vec-

tor with integer components. These are the momenta
for noninteracting plane waves on the cubic lattice, how-
ever, other values of k could be used to provide a differ-
ent radial smearing of the operators. Phase shifts may

TABLE IX: Mutually orthogonal helicity operators for group
C4v and total intrinsic S = 1. Each row lists the irrep label,
λ, and the m,ms values included in the operator. For groups
C3v and C2v, only the rows involving m = 0 and ±1 are
orthogonal.

No. λ m,ms -m,−ms

1 0 0,0 0,0

2 0 1,-1 -1,1

3 1 0,1 0,-1

4 1 1,0 -1,0

5 1 2,-1 -2,1

6 2 1,1 -1,-1

7 2 2,0 -2,0

be obtained using the Lüscher method and its extensions.
The periodic partial waves are orthogonal with respect to
ℓ and m, subject to restrictions imposed by the cubical
lattice. The partial waves provide an advantage relative
to the use of combinations of plane waves in that there is
freedom to select sets of orthogonal operators based on
specific ℓ and m values.
The essential point of this work is to differentiate be-

tween lattice irreps that are subduced from different con-
tinuum spins. For example, the use of mutually orthog-
onal ℓ = 1 and ℓ = 3 parent operators based on par-
tial waves provides orthogonal descendant operators af-
ter subduction to the T1 lattice irrep. Strong coupling of
a lattice state to one of these operators but not the other
provides a signal for the spin of the state. While contri-
butions of ℓ ≥ 5 can occur in the subduced operators, the
short range of hadronic interactions and the centrifugal
barrier at high ℓ suggest that the role of higher spins is
suppressed.
Parent operators for total spin, J ≤ 4, and projec-

tion, M , are obtained by coupling the intrinsic spins of
the hadrons and the partial waves of orbital angular mo-
mentum. Sets of mutually-orthogonal parent operators
corresponding to different values of J and M are given
for total intrinsic spin S = 0, 1

2 and 1 based on omitting
operators that are not orthogonal because of the cubic
symmetry. When these parent operators are subduced to
lattice irreps, their descendants retain orthogonality and
lead to matrices of correlation functions that are block
diagonal with respect to the different values of J . That
allows the spin of a scattering state to be identified as the
spin of the parent operators that dominate the creation
of the state.
In the case that the total momentum is P 6= 0, parent

operators are designed to create states of total helicity
by combining spin helicities and orbital helicity based
on cylindrical harmonics. Mutually-orthogonal sets of
parent operators for a sufficient range of total helicity
values can be used to facilitate the identification of the
spin, J , of a state. The signature is that a state of spin
J couples to operators for all total helicity values λ ≤ J ,
and not to operators for λ > J . However, there is a
limitation owing to cubic symmetry. Total momenta that
are parallel to an axis of the cubical lattice (symmetry
group C4v) allow the widest range of helicity values and,
thus, provide the best case for spin identification based
on helicity.
For either the partial-wave operators or the helicity

operators, a variational basis can be constructed by us-
ing additional copies of the sets of mutually-orthogonal
operators based on different momentum values.

Acknowledgments

I thank Christopher Thomas for helpful comments
based on a careful reading of the manuscript. This ma-
terial is based upon work supported by the U.S. De-



10

partment of Energy Office of Science, Office of Nuclear
Physics, under Award Number DE-FG02-93ER-40762.

Appendix A: Lattice orthogonality of periodic

partial waves.

A generalization of Eqs. (3) and (4) is considered in
which the lattice state is assumed to be a scattering state
described by the Lüscher formalism for various values of
the phase shift,

Zℓ′,m′;ℓ,m =
1

Nℓ′,m′Nℓ,m

×

∫

d3x
[

jℓ′(k|x|)Y
†
ℓ′,m′(x̂

](per)[
Ψℓ(|x|)Yℓ,m(x̂)

](per)
,

(A1)

where Ψℓ(|x|) is the radial wave function of the scattering
state. When the phase shift, δℓ is zero, Ψℓ(|x|) reduces
to a spherical Bessel function, jℓ(k|x|).
According to the Lüscher formalism, a scattering state

for angular momentum ℓ and phase shift δℓ involves a
momentum value, kext, in the exterior region, r > R,
where R is the range of interaction. Momentum kext
is related to the energy of the scattering state through
W =

√

m2
1 + k2ext+

√

m2
2 + k2ext, as shown by Lüscher [6].

The value of kext also is related to the phase shift as
follows,

δℓ = jπ − φ(q), q =
kextL

2π
, (A2)

where the function φ(q) is obtained from

cot(φ) = −
Z00(1; q

2)

π3/2q
= −

1

2π2q

∑

n∈Z3

1

(n2 − q2)
. (A3)

The integer j is chosen so that φ(q) is a continuous func-
tion of q and obeys the boundary condition φ(0) = 0.
These formulas neglect contributions from ℓ = 4 or higher
partial waves.
Since the interaction is not known, it is necessary to

use a model to approximate the scattering wave function
in the interior region, 0 < r < R. A square-well potential
gives a momentum, kint, in the interior region and the
scattering wave function is,

Ψℓ(r) = jℓ(kintr), 0 < r < R,

Ψℓ(r) = A
[

cosδℓjℓ(kextr)− sinδℓnℓ(kextr)
]

, R < r < L/2,

(A4)

where jℓ and nℓ are spherical Bessel functions.
The scattering wave function is then obtained by

choosing a phase shift, finding kext from Eq. (A2) and
matching the interior and exterior wave functions in
Eq. (A4), and their derivatives, at r = R to obtain mo-
mentum kint and coefficient A.

Calculations have used R = L/4 as the range of the
interaction and δℓ/π = [0.0, 0.1, 0.25, 0.5, 0.75, 0.9]. The
lowest values of kext are used. The cubical volumes con-
sidered are 163 and 323. The construction of periodic
partial waves was done using N = 5, 7, 9 and 11 for the
sum in Eq.(1). For all cases, the results confirm that ma-
trix elements shown by blank entries in Tables I and II
have numerical values less than 10−15 in magnitude for
each considered value of the phase shift.

Appendix B: Irreducible representations for helicity

states

As noted in the text, the two-dimensional representa-
tion of Eq. (38) is reducible when sin(λθ) vanishes for all
group rotations. Then, the

∣

∣λ,±
〉

states are not mixed
by the group rotations, as may be seen from Eq. (39).
The reduction occurs when λ = 0, n/2, n, · · · , where

n is the index of group Cnv. Following the Mulliken
convention[23] for labelling irreps, the helicity states
∣

∣λ,±
〉

provide irreps as listed in Table X. For λ = 0

or n, the
∣

∣λ,+
〉

state transforms as the A1 irrep and the
∣

∣λ,−
〉

state transforms as the A2 irrep. For λ = n/2

or 3n/2,
∣

∣λ,+
〉

transforms as the B1 irrep and
∣

∣λ,−
〉

transforms as the B2 irrep.
For λ = 1, the

∣

∣λ,±
〉

are mixed by the action of group
rotations for groups C4v and C3v, but not for C2v. For λ
= 3, the rotations mix the

∣

∣λ,±
〉

for group C4v, providing
two rows of the E2 two-dimensional irrep. For groups C3v

and C2v, there is no mixig and the
∣

∣λ,±
〉

provide one-
dimensional irreps A1 and A2 for C3v and B1 and B2 for
C2v.
For half-integer spins and helicities, the irreps are two-

dimensional and are given labels E 1

2

, E 3

2

and E, as shown

in Table X. An equivalent table may be found in Ref. [22].
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TABLE X: Helicity irreps for Cnv groups. Π = ±(−1)J is the
eigenvalue of the reference reflection and Π/(−1)J is the row
index, namely, ±.

λ Π/(−1)J C4v C3v C2v

0 + A1 A1 A1

0 - A2 A2 A2

1

2
± E 1

2

E 1

2

E

1 + E2 E2 B1

1 - E2 E2 B2

3

2
± E 3

2

B1 ⊕B2 E

2 + B1 E2 A1

2 - B2 E2 A2

5

2
± E 1

2

A1 ⊕B1 E

3 + E2 A1 B1

3 - E2 A2 B2

7

2
± E 1

2

E 1

2

E

4 + A1 E2 A1

4 - A2 E2 A2
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