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Abstract
One intriguing beyond-the-Standard-Model particle is the QCD axion, which could simulta-

neously provide a solution to the Strong CP problem and account for some, if not all, of the

dark matter density in the universe. This particle is a pseudo-Nambu–Goldstone boson of the

conjectured Peccei–Quinn (PQ) symmetry of the Standard Model. Its mass and interactions are

suppressed by a heavy symmetry breaking scale, fa, whose value is roughly greater than 109 GeV

(or, conversely, the axion mass, ma, is roughly less than 104 µeV). The density of axions in the

universe, which cannot exceed the relic dark matter density and is a quantity of great interest in

axion experiments like ADMX, is a result of the early-universe interplay between cosmological evo-

lution and the axion mass as a function of temperature. The latter quantity is proportional to the

second derivative of the temperature-dependent QCD free energy with respect to the CP-violating

phase, θ. However, this quantity is generically non-perturbative and previous calculations have

only employed instanton models at the high temperatures of interest (roughly 1 GeV). In this and

future works, we aim to calculate the temperature-dependent axion mass at small θ from first-

principle lattice calculations, with controlled statistical and systematic errors. Once calculated,

this temperature-dependent axion mass is input for the classical evolution equations of the axion

density of the universe, which is required to be less than or equal to the dark matter density.

Due to a variety of lattice systematic effects at the very high temperatures required, we perform a

calculation of the leading small-θ cumulant of the theta vacua on large volume lattices for SU(3)

Yang–Mills with high statistics as a first proof of concept, before attempting a full QCD calculation

in the future. From these pure glue results, the misalignment mechanism yields the axion mass

bound ma ≥ (14.6± 0.1) µeV when PQ-breaking occurs after inflation.

PACS numbers: 12.38.Gc, 14.80.Va
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I. INTRODUCTION

Despite overwhelming experimental and theoretical evidence that Quantum Chromody-
namics (QCD) is the underlying theory of interactions between quarks and gluons, one
puzzle has eluded explanation for over 30 years: the Strong CP problem [1–3]. QCD allows
for a O(1) combined charge-conjugation and parity (CP) violating phase θ and, yet, this
phase is found experimentally to be consistent with zero to within one part in ten billion [4].

Other than attributing this result to an appreciable fine-tuning, there have been three
proposed explanations explored at length: the possibility of a zero up-quark mass [5], spon-
taneous CP breaking [6–12], and an additional “hidden” chiral symmetry. After taking
into account the up-to-date Standard Model flavor-changing constraints [13] and lattice
QCD calculations [14], the most feasible proposal is the last. The additional chiral symme-
try proposed, also referred to as Peccei–Quinn (PQ) symmetry [15, 16], is such that upon
spontaneous symmetry breaking, the effective potential naturally gives a zero CP-violating
phase1. As with any spontaneous breaking of a continuous symmetry, one would expect a
resulting (pseudo-)Nambu–Goldstone particle to be present in the universe; this particle is
known as the axion2 [15, 16, 21, 22].

The original proposals focused on axions masses at or below the electroweak scale [15, 16],
but collider [23, 24] and astrophysical constraints [25–27] now require the axion to have a
mass below 104 µeV. A suitable class of axion models, named “invisible axions”, could
allow for light axions whose interactions are suppressed by very high energy scales [28–31].
In these models the large density of light axions could potentially account for some, if not all,
of the dark matter density in the universe [32–34]. For this reason, dedicated experiments
such as ADMX [35–37] search for the axion coupling to two photons directly. With the
next generation of axion experiments underway [37] along with increased constraints on
inflation [38], a great deal is expected to be learned about potential axion interactions in
the next few years.

There has been a wealth of research on axion cosmology and the related axion energy
density over the past 30 years [32–34, 39–56]. One particular constraint, the “overclosure
bound”, requires that the axion density today not be greater than the total observed present-
day dark matter abundance. This bound requires accounting for the evolution of the axion
mass through cosmological history and its consequences for axion production. Depending
on when PQ breaking occurs relative to inflation, the overclosure bound gives different
relations. If PQ breaking occurs during or before inflation, the bound is on a relation of
two variables, the initial value for the CP-violating phase inside our cosmic horizon and
the axion decay constant, fa. If PQ breaking occurs after inflation, the bound is solely on
fa. After inflation, there are three stages to this early universe, high-temperature evolution:
the post-inflation evolution to a time when the axion mass is comparable to the inverse
horizon of the universe (i.e. the Hubble constant), the subsequent evolution in the chirally
symmetric phase, and the time period before and after the chiral symmetry breaking phase
transition of QCD. In the first stage, the axion mass depends greatly on the QCD free energy
which is a function of the CP-violating phase, θ, and temperature, T . To date, the only
methods employed for estimating this QCD free energy dependence as related to the axion

1 Even this explanation for a small θ has limitations, since PQ-violating Plank-scale operators up to dimen-

sion 10 can reintroduce the Strong CP problem [17, 18].
2 For some general reviews on the subject of axions, see Refs. [19, 20].
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mass are the dilute instanton gas model (DIGM) [57] and the interacting instanton liquid
model (IILM) [58]. The DIGM is expected to be valid only for high temperatures, while the
IILM models strong interactions between instantons around the QCD phase transition. In
the context of axions, both of these scenarios have been explored in detail [54, 59]. While
the desired characteristic temperatures are indeed large (∼ 1 GeV), one open question is to
what extent the DIGM and IILM are valid (i.e. to what extent non-perturbative physics
plays a role at these temperatures and is modeled properly) and how accurate the overall
scale is (the free energy scales as the confinement scale, ΛQCD, to a large power). Another
related issue is that neither the DIGM nor the IILM yield controlled uncertainties from first
principles. The only known approach that can address these two quandaries3 quantitatively
is lattice gauge theory, which is what we apply in this work.

There have been ample lattice studies of QCD vacuum properties at high temperature,
highlighted by recent work verifying the QCD critical temperature (Tc) with 2+1 quarks at
physical pion masses in a chiral discretization [60], and controlled continuum limits for the
QCD equation of state [61, 62] with temperatures as large as T ∼ 600 MeV. Unfortunately,
simulating higher temperatures becomes computationally more expensive due to unphysical
systematic finite-volume effects (for a fixed number of lattice sites, the physical volume
decreases as the temperature increases). However, simulations of pure Yang–Mills with
three colors is appreciably cheaper and high-temperature θ = 0 studies spanning T ∼
(5−1000)Tc suggest that non-perturbative effects can still be appreciable at T ∼ 1 GeV [63].
Appreciably more difficulty ensues when exploring θ 6= 0 quantities, as the topological term
in the Lagrangian has an associated sign problem that renders standard lattice Monte-
Carlo techniques intractable4. However, techniques do exist for extracting quantities at
small θ, such as the leading θ2 dependence of the free energy which is proportional to the
topological susceptibility5. While topological fluctuations are a topic of active focus for
lattice calculations at zero-temperature [67–70], there have only been a handful of studies at
finite temperature; first for Yang–Mills [71–74] and more recently in full QCD using chiral
discretizations [75].

In this work, we aim to extend and improve the finite-temperature results in Ref. [72] with
the express purpose of comparing with the DIGM and IILM and, within the capability of this
calculation, quote a first-principles bound for the axion mass with controlled uncertainties.
It is important to note that this work is only an initial step towards the full QCD problem
and it contains two primary inadequacies due to limited resources and lattice technology.

The first inadequacy is that our calculations are performed for a 3-color pure Yang–Mills
theory without the dynamical fermions of QCD. Ultimately, this may not prove to be too
far from the physical result, as effects of fermion loops are expected to be suppressed at
high temperatures [76]. For topological quantities, however, this may not be the case [77]
and full QCD calculations should be pursued in the future. The reasoning for studying a
purely gluonic theory at this stage is two-fold. First, Yang–Mills theories are over ten times
cheaper to simulate than full QCD due to the ability to employ the heatbath algorithm
for entirely bosonic theories. This extra gain in computational efficiency will allow us to
go to higher temperatures and larger volumes, and to directly estimate systematic effects
for topological quantities. The second advantage is that heatbath Monte-Carlo calculations

3 For these reasons, the use of lattice QCD was suggested in Ref. [54].
4 For progress in solving sign problem for actions with non-zero θ, see Ref. [64, 65].
5 For a review on lattice calculations of topological susceptibilities, see Ref. [66].
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have appreciably shorter autocorrelations in extracting topological quantities than the hybrid
Monte-Carlo algorithm used for dynamical fermions. This will allow us to extract the high
level of independent statistics required to address the problem at hand.

The second inadequacy in our present calculation is that reaching the large values of
T/Tc ∼ 5 with controlled volume systematics is still beyond our current computational re-
source limitations6. Summarizing our calculation, we aim to test the validity and overall
scale of the DIGM/IILM for a SU(3) Yang–Mills theory for T ∼ 372− 710 MeV (or, alter-
natively, T/Tc ∼ 1.31− 2.50, remembering that Tc for SU(3) Yang–Mills is ≈ 284 MeV [78])
with high statistics and controlled volume and discretization uncertainties. From these re-
sults, we extrapolate our results to extract the characteristic temperature when the axion
mass and Hubble constant are comparable and proceed to evaluate what this result would
imply for the axion mass in the present day universe with propagated uncertainties.

The next section is a brief review of the cosmological evolution of axions, while Sec. III
describes the free energy of QCD in the presence of a θ term and a finite temperature.
The paper then continues with a detailed description of the lattice simulations in Sec. IV,
lattice results in Sec. V and lattice error budget in Sec. VI. Based on first-principles lattice
results we derive a bound on the axion mass from the aforementioned overclosure argument
in Sec. VII and Sec. VIII before our concluding remarks.

II. BRIEF REVIEW OF AXION COSMOLOGY

The theory of quarks and gluons, Quantum Chromodynamics (QCD), supports a term in
its action SQCD which violates the combined charge-conjugation and parity symmetry (CP),

SQCD 3 θQ Q =

∫
d4x

g2

32π2
trFF̃ (1)

where Q is the topological charge, F (F̃ ) is the (dual) gauge field strength tensor, and g
the QCD gauge coupling constant. The Strong CP problem is the observation that the
parameter θ could in principle take any value between the maximally-CP-violating values
of −π and π, but is measured to be consistent with the CP-conserving value of zero to
one part in ten billion [4]. An elegant explanation of the small value of θ was proposed by
Peccei and Quinn: it is possible to promote θ to a dynamical variable in such a way that
it is controlled by a (pseudo-)Nambu–Goldstone boson called the axion. The Peccei–Quinn
(PQ) symmetry makes the axion naturally light and creates a potential for θ which favors
small θ. The QCD+axion Lagrangian is given by

L = −1

4
F a
µνF

aµν +
1

2
∂µa∂

µa+
∑
q

q̄(iD/−mq)q +
g2

32π2

(
θ +

a

fa

)
F a
µνF̃

aµν , (2)

where fa is proportional to the vacuum expectation value that breaks PQ symmetry. This
quantity is the one free parameter of standard QCD axion theories, and it is this scale which
ultimately determines the axion mass and its couplings to two photons that experiments are
actively searching for [35–37].

6 Future explorations of extracting topological quantities on anisotropic lattices may alleviate some of the

computational burden on volume as long as discretization effects stay minimal.
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While fa is the primary parameter for both the axion mass and axion energy density
given the QCD Lagrangian, non-perturbative QCD effects lead to non-trivial cosmological
consequences, especially for the axion number density. At low temperatures, after chiral
symmetry has been broken, the axion mass ma and coupling obeys a relatively simple rela-
tion [21, 32–34]

mafa =

√
mumd

mu +md

fπmπ, (3)

where mπ and fπ are the pion mass and pion decay constant, respectively. The axion mass
at temperatures in the chirally-symmetric phase of QCD will be the primary focus of this
work.

One significant constraint on axions is that their present energy density does not exceed
the dark matter density of the universe (the “overclosure” bound). To determine the rel-
evant energy density today, one must explore the interplay between the axion mass and
cosmological evolution by solving the equations of motion. However, the initial question in
this evolution is to place the moment PQ symmetry breaks along the cosmic timeline. There
are two options:

1. PQ symmetry breaks before or during inflation.

2. PQ symmetry breaks after inflation.

While the final energy density comes down to one (or effectively two) free parameters,
there are many non-trivial calculations and subtleties that need to be understood from both
cosmology and non-perturbative field theory. It is useful to give a brief summary on how
the energy density arises in each of these PQ-breaking scenarios7:

1. For PQ symmetry breaking before or during inflation, the field θ = a/fa would be
homogenized over large distances. In other words, the causally disconnected regions of
spacetime that have different initial values of the field (angle) before inflation stretch
to cosmic scales, so that our universe has a uniform initial θ. Any excited axion
mode or topological defect (e.g. strings) will be diluted away, leaving only the zero-
mode contributions to the energy density. The resulting axion density arises from
this “misalignment mechanism” and has large dependence on this initial theta angle
(often referred to as the misalignment angle, θ1, which can take any value between
0 and 2π). Ultimately, the final energy density will be proportional to roughly θ21,
which is effectively a free parameter along with fa. Thus, the overclosure bound can
only bound fa as a function of θ1. Also, due to large fluctuations during inflation,
isocurvature density perturbation bounds from CMB observations can put important
constraints on θ1 as a function of the Hubble scale during inflation [56, 79–84].

2. For PQ symmetry breaking after inflation, the misalignment angle θ1 is (effectively)
averaged over, since all values ∈ [0, 2π] are equally probable in small regions of our
universe. Moreover, there are several additional effects that must be accounted for
in addition to the misalignment mechanism in this case. First, nonzero-momentum
modes can contribute and their effect is discussed in Refs. [45, 52]. Second, when
PQ symmetry is broken, global topological defects called axionic strings will form

7 For detailed reviews, axion cosmology, see Ref. [52, 54, 56]
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and decay to axions, introducing an efficient process for energy loss and effectively
increasing the total axion number density. It is currently debated as to how much
these decays will increase the total axion number, with some claiming between one and
two orders of magnitude more than the misalignment mechanism [40, 42, 47, 50, 85],
while other claim it is on the same order [41, 49, 86]. The third effect is the axion
strings can be connected to one or more domain walls [87] which correspond to different
minima of the axion potential. The decay of these domain walls also leads to additional
axions, but is believed to be subdominant to string decay [44–46, 55]. Overall, the
energy density can be calculated in terms of one free parameter, fa and, as a result,
an overclosure bound on fa can be derived.

Our goal in this and future work is to improve the non-perturbative QCD input that goes
into the axion density calculations. In particular, we aim to provide a controlled calculation
of the temperature-dependent axion mass from first-principle lattice calculations8. The axion
mass in the chirally symmetric phase is given by

m2
a(T )f 2

a =
∂2F (θ, T )

∂θ2

∣∣∣∣
θ=0

≡ χ(T ), (4)

where F (θ, T ) is the QCD free energy as a function of CP-violating phase and temperature,
while χ is the topological susceptibility. In each of the energy density scenarios discussed
above, the temperature-dependent axion mass ma(T ) plays a role, particularly when this
quantity is comparable to the Hubble scale in the early universe evolution. We will restrict
our discussion primarily to the analytic evaluations of the misalignment mechanism, as the
lattice calculations performed in this work could be appreciably different from QCD due the
computational and algorithmic limitations discussed in subsequent sections. While we will
not discuss it in detail, we will also point out how the axion mass enters into the relevant
calculations for axion strings and domain walls. Once the full QCD results are at a mature
stage, the lattice result for ma(T ) should be used as input for the numerical solutions to the
classical equations of motions and cosmology simulations.

A. Misalignment Mechanism

To keep the presentation self-consistent, we summarize the description of the misalign-
ment mechanism of Ref. [32] and subsequently summarized in Ref. [52, 54, 56]. We start
from from the Robertson–Walker metric of the universe,

− ds2 = dt2 −R(t)2dx · dx , (5)

and write down the axion equation of motion:(
∂2t + 3H∂t −

1

R2
∇2
x

)
a(x) +m2

a(t)fa sin

(
a(x)

fa

)
= 0 , (6)

8 Other non-perturbative QCD aspects include the number of theta-vacua/domain walls for θ changing by

2π [87] and whether or not axion number density is constant throughout the QCD phase transition [53, 88].

We do not discuss these further in this work.
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where H = Ṙ/R is the Hubble constant and the second term is given by the derivative of
the effective potential for the axion field, Va, given by,

Va = f 2
am

2
a(t)

[
1− cos

(
a

fa

)]
. (7)

Along with the axion equation of motion, the Hubble constant evolution is given by the
Einstein equation

H2 =
1

3M2
pl

{
π2

30
g∗,RT

4 + f 2
a

(
1

2

(
da

dt

)2

+m2
a(t)

[
1− cos

(
a

fa

)])}
, (8)

where Mpl is the reduced Planck mass
√
~c/8πG. For given ma(t), or equivalently ma(T ),

one can solve Eq. (6) and Eq. (8) numerically to arrive at the axion energy density:

ρa =
1

2

(
da

dt

)2

+
1

2
m2
a(t)a

2(x) . (9)

At this point, it is useful to discuss the qualitative consequences of these solutions (see
Fig. 4 in Ref. [54] for an illuminating plot). When considering early times, one notes that
the Hubble constant is much larger than the axion mass (3H � ma), meaning that the
axion wavelength is larger than the Hubble length. Thus, the axion does not feel a potential
and it is effectively massless. Moreover, the axion number density is zero and the axion
field has a constant value, θ1 (the misalignment angle). As time increases (and temperature
decreases), the axion mass increases while the Hubble constant decreases. The solutions
change drastically when the axion mass is of the same order as the Hubble constant (3H ≈
ma), at which point the axion mass “turns on” and the axion field rolls down the potential—
during this period the axion number density jumps to a nonzero value. From this point in
time onward, both the axion field and axion number density have decaying oscillations about
their eventual final values that we see today (the decay becomes adiabatic when 3H � ma).

Analytic progress can be made by making a few key observations9. First, let us quantify
the characteristic temperature and corresponding time, T1 and t1, respectively, when the
Hubble constant is comparable to the axion mass

ma(T1) = 3H(T1) ≡
1

t1
. (10)

When T & T1, Eq. (8) reduces to

H(T ) =
πg

1/2
∗ (T )T 2

√
90MPl

(11)

where g∗(T ) is the effective number of relativistic degrees of freedom at a given temperature.
In this work, we use the parameterization of g∗(T ) in Appendix A of Ref. [54]. We will
compare our lattice ma(T ) to H(T ) using Eq. (10) to extract T1. The second observation is

9 For simplicity, we look at just the zero-momentum mode, dropping the ∇2
x from Eq. (6). For a complete

calculation with the non-zero modes, see Ref. [45, 52].
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that the decaying oscillations when 3H � ma are adiabatic and the equation of motion can
be recast as

1

f 2
a

dρa
dt

= 2ma(t)
dma

dt

[
1− cos

(
a

fa

)]
− 3H

da

dt
. (12)

When ma � H and ma � dma/dt, this relation leads to the adiabatic invariant

ρaR
3

ma

= constant , (13)

and subsequently [54],

ρa(Tγ) = ρa(T1)
ma(Tγ)

ma(T1)

(
R(T1)

R(Tγ)

)3

' ρa(T1)

γ

ma(Tγ)

ma(T1)

g∗(Tγ)T
3
γ

g∗(T1)T 3
1

, (14)

where s is the entropy density, Tγ ' 2.73 K is the temperature of the cosmic microwave
background today and γ is the ratio of the entropy density today to the entropy density at
t1. From this relation, along with the fact that ρa(T1) ∼ 1

2
ma(T1)

2f 2
aθ

2
1 and Eq. (3), Eq. (10),

and Eq. (11), we arrive at the commonly used relation [53]

ρa(Tγ) =

[
3πg∗(Tγ)√

90g∗(T1)

√
mumd

mu +md

fπmπT
3
γ

MPl

](
fa
T1

)(
F1(θ1)

2γ

)
θ21 , (15)

where F1(θ1) accounts for the anharmonic corrections to Eq. (13). If it is also assumed
that the expansion of the universe is adiabatic for temperatures below T1, the quantity
F1(θ1)/2γ ≈ 1 for θ1 . 2 [53]. Using lattice QCD calculations, T1 can be extracted as a
function of fa and a confinement-scale observable (such as the QCD deconfinement tem-
perature Tc), and as a result, a bound on the free parameters fa and θ1 can be derived
to ensure that the axion density is below that of the dark matter density. If we are only
exploring axion theories where PQ-breaking occurs after inflation, the misalignment angles
are averaged over, and the θ1 dependence in Eq. (15) is replaced with the average value,
θ21 → 〈θ21〉 = π/

√
3.

B. Axion Strings

In the case where PQ breaking occurs before or during inflation, any resulting topological
defects, such as axion strings or domain walls, are diluted away and only the misalignment
mechanism contributes to the axion density with the fixed θ1 of our observed universe.
However, if PQ breaking occurs after inflation, these topological defects can decay into
axions and significantly alter the number density of axions in the universe today. Scenarios
with two or more decaying domain walls are highly constrained from neutron EDM bounds
on CP violation and would require an appreciable fine-tuning [56].

The current understanding is that the quantity of axions produced by domain wall decay
is below the number of axions produced from string decay, a number which is at least
comparable to the density produced from the misalignment mechanism and could even be
appreciably larger as debated in the literature [40–42, 47, 49, 50, 85, 86]. In the case of string
decay, this process occurs for string frequencies between the Hubble scale and the axion mass
(H < ω < ma), and thus begins to play a role at temperature T1. Similarly, domain walls
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also have a dependence on ma, which plays a role in the axion spectrum. While it is not
generally expected to be the primary source of uncertainty in these large scale cosmological
simulations [54, 85], accurate input for the axion mass as a function of temperature would
nonetheless be useful.

III. QCD FREE ENERGY AS A FUNCTION OF T AND θ

The free energy of QCD, F , as a function of temperature and theta is given in terms of
the path integral

ZQCD(θ, T ) =

∫
[dA][dψ][dψ̄] exp

(
−T

∑
t

d3x LQCD(θ)

)
= exp[−V F (θ, T )], (16)

where

LQCD(θ) = LQCD +
g2θ

32π2
εµνρσF a

µνF
a
ρσ. (17)

The free energy is periodic in θ and thus we can restrict to the range −π < θ < π and
parameterize the free energy in terms of a sum of cosine functions,

F (θ, T ) =
∑
n

Cn(T ) cos(nθ). (18)

Since QCD is a non-perturbative problem for generic T and θ, the values of Cn(T ) are not
readily accessible; even in first-principle lattice QCD calculations, non-zero θ introduces a
computationally intractable sign problem. However, at high enough temperatures, QCD
interactions are perturbative and their parametric dependence on T and θ should be given
by the dilute instanton gas model (DIGM) [57]. In this model, where the QCD background
is approximated by non-interacting instantons, only C1 contributes to the free energy (all
n > 1 coefficients are zero). The DIGM also predicts the value of the coefficient (whose
mass dimension is 4) as a function of ΛQCD,

FDIGM(θ, T ) = −C(T ) cos(θ), (19)

where C(T ) can be well-approximated by [53, 59]

C(T ) ' CΛ4

(T/Λ)n
, (20)

where C is a dimensionless constant in temperature and the fermion masses and n is a
power that is a function of number of flavors and colors10. The Λ in this equation essentially
represents the scale setting of QCD, which will be key topic of discussion later in this paper.
For three flavors, the latest value found is C ∼ 1.274 × 10−11 for Λ = 440 MeV [53, 54].
However, this value can vary by almost an order of magnitude if Λ is varied by 15%.

The interacting instanton liquid model (IILM) is a more sophisticated model that ac-
counts for instanton-instanton interactions and was applied to the problem at hand in

10 The actual expression derived from DIGM contains a more involved integral over the logarithmic running

of the coupling. For a complete expression see Appendix A of Ref. [59]
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Ref. [58]. To solve for the free energy in this model, grand canonical Monte-Carlo simu-
lations of the partition function are required. The results can be fit to the form

FIILM(θ, T ) = −D(T ) cos(θ), (21)

with

D(T ) ' ed0Λ4

(T/Λ)−d1
exp

[
d2

(
ln
T

Λ

)2

+ d3

(
ln
T

Λ

)3

+ · · ·

]
, (22)

where the values for di are given in Ref. [54] as a piecewise function of temperatures at the
flavor mass thresholds (coincidentally, values for d0 and d1 do not differ from the analogous
terms calculated in Ref. [53]). The authors point out that the largest uncertainties arise
from the scale setting of using Λ = 400 MeV and emphasize at various stages that the IILM
should be compared with lattice QCD results.

Since lattice QCD calculations are numerical and ultimately yield dimensionless numbers,
lattice scale setting is of vital importance to relate to lattice results to reality. The way this
is typically done is to choose an observable (preferably one that can be calculated to high
precision with little to no unphysical lattice artifacts from volume or finite lattice spacing)
and match it onto some measured/derived quantity from experiment. This is often done with
matching onto heavy-quark potentials [89–91], but this can also be done for spectroscopy of
confinement scale masses, such as the omega baryon [92]. For our pure-glue calculation, the
most reliable scale setting is to use the string tension, σ, which can be used to define the
critical temperature Tc in physical units. Once this is done, all scales can be expressed in
units of the critical temperature Tc which makes it natural to fit to the forms

CT 4
c

(T/Tc)n
,

ed0T 4
c

(T/Tc)−d1
exp

[
d2

(
ln
T

Tc

)2

+ d3

(
ln
T

Tc

)3
]
. (23)

It should be noted that when using the string tension (or any other heavy-quark scale) for
setting the scale, the critical temperature in Yang–Mills [78] is roughly twice that of full
QCD [60, 93, 94]. This is to be expected, as the dynamical quarks play a non-trivial role in
the phase transition.

IV. LATTICE SIMULATIONS AND SCALE SETTING

We perform the lattice calculation of the free energy and its expansion in the θ angle
using the Wilson plaquette action to discretize the SU(3) Yang–Mills continuum theory:

SW = β
∑
P

(
1− 1

3
Re tr[UP ]

)
, (24)

where UP is the ordered product of gauge links along the plaquette and β is the lattice
gauge coupling. This lattice action is well known and, in particular, a great deal of data
exists in the literature regarding the scale setting procedure of the corresponding lattice
system. We will make use of this information when setting the temperature scale of our
lattice simulations. The lattice action in Eq. (24) contains only one free parameter, β,
which sets the lattice spacing through dimensional transmutation. Once the lattice spacing
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is fixed, one can give it physical units by measuring a physical observable and relating it to
an experimental value.

We are interested in spanning a large interval of temperatures with our simulations. In
order to accomplish that we fix the number of lattice sites in the temporal direction Nτ to
6 and set the physical temperature

T (β,Nτ ) =
1

a(β)Nτ

(25)

by tuning a value for the lattice coupling constant β. In Eq. (25) we explicitly show the
dependence of the lattice spacing a on β. Working at a fixed Nτ , the lattice spacing alone
determines the temperature. This approach is widely used in the literature [63]. To check
for possible lattice discretization effects in our results and establish a continuum limit,
we simulate the same temperature at a smaller lattice spacing by simply increasing the
temporal lattice sites (we use Nτ = 8). Once the lattice spacing is fixed, the physical spatial
volume is determined by the number of lattice points Nσ in the three spacial dimensions:
L3 = (aNσ)3. One complication of our approach is that the lattice spacing gets smaller at
higher temperatures, implying smaller spacial volumes at fixed aspect ratio Nσ/Nτ . As a
consequence it is of paramount importance to check for possible finite-volume effects at high
temperatures.

Following Eq. (25), setting the physical temperature scale has been traded for deducing
the lattice spacing as a function of the bare lattice parameters. In order to do so, one can
follow a variety of approaches that usually involve measuring a physical quantity with the
dimensions of a mass or a length in a zero–temperature setup. We adopt the strategy of
using the string tension σ, which is well understood for a Yang–Mills theory:

T

Tc
=

a
√
σ(βc)Nτ c

a
√
σ(β)Nτ

(26)

where βc gives the critical temperature Tc in a box of thermal extent Nτ c from the temporal
Polyakov loop susceptibility. In particular we choose the most continuum-like point at which
the thermal phase transition has been studied for SU(3) with Wilson plaquette action [95]
(βc = 6.338, Nτ c = 12) and we interpolate numerical results for a

√
σ as a function of β from

Ref. [95]. The interpolation uses the same function described in Ref. [78] and later refined
in Ref. [96]. In Fig. 1 we show T/Tc(β) for two temporal extents Nτ = 6, 8.

We can compare this approach with scale setting methods that use a different physical
quantity, like the Sommer radius r0, and quantify a systematic error for our procedure.
We have verified that setting the scale via both the static quark potential quantity r0, as
described in Ref. [97], and the continuum-extrapolated ratio of the critical temperature and
the string tension Tc/

√
σ as described in Ref. [95] give T/Tc values which agree with our

method up to 1% – 1.5% corrections in the temperature range explored in the paper. Across
the rest of the paper we report either results in units of the lattice spacing or results in
units of the critical temperature. This is to avoid giving physical units to a or Tc; for a
SU(3) Yang–Mills theory like the one we simulate, the systematic error associated to giving
physical units to the lattice quantities is of the 4% – 7% level [69].

Our gauge configurations are generated using the Chroma software system [98] with GPU
acceleration supplied by QDP-JIT/PTX [99]. The update algorithm is a standard Cabibbo–
Marinari heatbath [100] for SU(3), alternated with 8 steps of standard over-relaxation to
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FIG. 1: Temperature as a function of β, given βc = 6.338 and Nτ = 12.

reduce correlations among subsequent configurations. For each temperature T/Tc we sim-
ulate two complementary streams of configurations: one starts from a random gauge con-
figuration, while the other is initialized to a configuration where each link is a unit matrix.
On both streams we discard the first 10000 updates and monitor basic local observables like
the spatial and temporal plaquettes and the Polyakov loops in the four dimensions. For all
temperatures the two streams thermalize to a common value of plaquette and Polyakov loop;
this allows us to effectively double our statistics. More details on the topological charge and
topological susceptibility analysis are given in the next section. Our full set of ensembles
and measurements is shown in Table I.

V. TOPOLOGICAL SUSCEPTIBILITY ON THE LATTICE

We measure the topological charge on the lattice using the bosonic field-theoretical defi-
nition that is built upon discretizing the continuum formula on the right of Eq. (1):

QL ≡
1

32π2

∑
x

εµνρσTr[Uµν(x)Uρσ(x)] , (27)

where Uµν(x) is the µν-plane plaquette at the lattice point x. The above definition of lattice
topological charge converges to the continuum definition when the lattice spacing is sent to
zero, but it relies on the fact that the gauge fields are smooth. The ultraviolet fluctuations
of the gauge configurations are smoothed out via the cooling method [101] before QL is
measured. The cooling method is well tested and understood in the context of topological
charge measurements on the lattice and it is equivalent to a smearing procedure or a gradient
flow smoothing [102]. Empirically it was noted that this smoothing procedure is such that
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T/Tc β a
√
σ Nτ Nσ Nmeas central value χ1/4/Tc ± δχ1/4/Tc statistical error for

χR χZ χa χf

1.2 6.001 0.2161 6 64 14000 0.3880 0.0012 0.3814 0.0012 0.3871 0.0012 0.4192 0.0013

1.31 6.053 0.1979 6 48 15600 0.3495 0.0009 0.3130 0.0009 0.3392 0.0010 0.3691 0.0011

64 36000 0.3424 0.0006 0.3358 0.0006 0.3402 0.0007 0.3703 0.0007

80 14000 0.3426 0.0010 0.3389 0.0010 0.3416 0.0010 0.3735 0.0011

6.242 0.1484 8 64 33998 0.3634 0.0010 0.3493 0.0010 0.3520 0.0010 0.3687 0.0010

96 14000 0.3556 0.0015 0.3533 0.0014 0.3537 0.0015 0.3703 0.0015

1.4 6.095 0.1852 6 64 54000 0.3153 0.0005 0.3077 0.0005 0.3095 0.0005 0.3370 0.0005

1.5 6.139 0.1729 6 64 54000 0.2928 0.0005 0.2833 0.0005 0.2814 0.0005 0.3068 0.0005

1.6 6.182 0.1621 6 64 53998 0.2721 0.0005 0.2587 0.0005 0.2568 0.0005 0.2799 0.0005

1.7 6.223 0.1525 6 64 24000 0.2536 0.0008 0.2330 0.0008 0.2369 0.0008 0.2585 0.0008

1.8 6.263 0.1441 6 64 24000 0.2343 0.0008 0.2005 0.0009 0.2178 0.0008 0.2368 0.0008

80 32000 0.2320 0.0006 0.2262 0.0006 0.2185 0.0006 0.2368 0.0006

6.471 0.1080 8 96 14000 0.2306 0.0016 0.2170 0.0017 0.2236 0.0015 0.2312 0.0016

1.9 6.301 0.1365 6 64 24000 0.2175 0.0009 0.1672 0.0011 0.2019 0.0008 0.2190 0.0009

80 34000 0.2164 0.0006 0.2095 0.0006 0.2026 0.0006 0.2189 0.0006

1.99 6.550 0.0973 8 64 14795 0.2013 0.0034 0.1800 0.0036 0.1986 0.0029 0.2013 0.0034

2.0 6.338 0.1297 6 48 15600 0.2040 0.0018 0.1292 0.0027 0.1898 0.0016 0.2042 0.0018

64 25598 0.2032 0.0010 0.1390 0.0014 0.1893 0.0009 0.2041 0.0010

80 26000 0.2014 0.0008 0.1920 0.0008 0.1888 0.0007 0.2030 0.0008

96 14000 0.2004 0.0008 0.1961 0.0008 0.1900 0.0008 0.2038 0.0009

2.1 6.373 0.1235 6 80 24000 0.1880 0.0009 0.1749 0.0009 0.1774 0.0008 0.1889 0.0009

2.5 6.502 0.1037 6 128 14000 0.1497 0.0010 0.1479 0.0010 0.1494 0.0008 0.1492 0.0010

144 15797 0.1525 0.0008 0.1513 0.0008 0.1495 0.0006 0.1518 0.0008

TABLE I: A summary of our lattice parameters and lattice results for the topological susceptibility

in units of the critical temperature. The temperature in units of the critical temperature and the

corresponding lattice coupling β are related by Eq. (26). We also report the corresponding value

of the interpolated string tension. The combined number of measurements Nmeas on two different

streams of configurations, one from a random start and one from a unit start. Our representative

values at each temperature are emphasized. They are all chosen from the globally-fit definition

of Q as given in Eq (28d) because it leads to smaller discretization and finite-volume effects. These

values are going to be used in all following analysis. The different definitions of the topological

charge Q from which the susceptibility is estimated are described in the text in Eq. (28).

the multiplicative and an additive renormalization constants to QL are close to one and
zero, respectively. This was understood theoretically in Ref. [102]. Our use of the cooling
method should be viewed as a cheaper alternative to the gradient flow method which will
be employed in our analysis when going beyond the Yang–Mills case.

Although UV fluctuations are removed by the cooling procedure while keeping topological
properties largely unchanged, lattice artifacts affectQL. Since we are interested in continuum
physics, we use four different definitions of the topological charge based on QL. The following
definitions should all agree in the continuum limit and their behavior as a function of a will
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FIG. 2: The topological charge as a function of Monte Carlo time for the 803×6 β = 6.301

(T/Tc = 1.90) ensemble. In the left panel, the yellow points are the measurements of QR and the

purple points are the globally-fit values Qf . In both panels, the brown dotted lines indicate the

local maxima for the distribution of QR. The right panel shows a histogram of those points with

a bin width of 0.05. The dashed purple line is a gaussian distribution with a standard deviation

given by the second moment of the Qf distribution.

help us characterize lattice discretization effects on our final results:

QR = QL (28a)

QZ = round(QL) (28b)

Qa = round(QL)− “narrow instantons” (28c)

Qf = round(αQL) α = min
〈
[αQL − round(αQL)]2

〉
(28d)

where the R, Z, a, and f subscripts indicate the real-valued lattice definition of Eq. (27), the
rounded definition, a lattice-artifact corrected definition that subtracts contributions from
narrow instantons [101], and a globally-fit definition that redefines the charge based on the
properties of the whole distribution [68, 69]. We measure QL every 10 Monte-Carlo updates
and this gives us an autocorrelation time of 1 measurement or smaller for all Nτ = 6 lattices
and between 2 and 3 measurements for all Nτ = 8 ensembles. In Fig. 2 we compare QR and
Qf for T/Tc = 1.90 (β = 6.301).

We define the lattice topological susceptibility from each of the definitions above:

χi ≡ lim
V→∞

〈Q2
i 〉
V

, (29)

where the index i runs over the definitions in Eq. (28a)-(28d) and V = a4(Nσ)3Nτ . We
define our infinite volume susceptibility by measuring χ on different spatial volumes and by
choosing the value on the largest volume that does not show signs of change. In practice
we find that the definition χa has the largest discretization effects while χf has negligible
effects due to finite lattice spacing. In the following section we estimate finite-volume and
discretization effects for all value of T/Tc explored. This will allow us to choose a final value
of χ at each T/Tc that is free of artifacts and can be fitted to models in Sec. VII. All results
are summarized in Table I.
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FIG. 3: A study of finite-volume effects at three different temperatures. All lattices have a

temporal extent Nτ = 6. Each ensemble is slightly offset from its temperature for ease of visibility.

The statistical errors are smaller than the markers shown.

VI. DISCRETIZATION AND FINITE-VOLUME ERRORS

In this section we study the systematic errors associated with having a discretized finite
volume and a finite lattice spacing. We start by looking at the various definitions χi at fixed
T/Tc and for increasingly larger boxes. When the physical volume is large enough, we expect
to obtain a constant topological susceptibility corresponding to Eq. (29). For the simple
rounded definition χZ (shown in red in Fig. 3), the smaller volumes have a consistently
higher topological susceptibility. In contrast, the artifact-corrected integer definition χa
(shown in blue), has consistently smaller topological susceptibilities for smaller volumes.
The unrounded χR (yellow) and globally-fit rounded χf (purple) definitions have essentially
no finite-volume corrections, but the unrounded measure is systematically lower than the
globally-fit definition. At high temperature (small lattice spacing), χf matches χZ whereas
χR does not. For this reason we choose χf as our most reliable definition. This comports
with the findings of Ref. [69]. Because of the concordance between the different volumes it
seems as though many of the ensembles are all in the infinite-volume limit. It is apparent
from Fig. 3 that χf has hardly any finite-volume effects.

In Fig. 4 we show discretization effects at two different temperatures. At T/Tc=1.31
we show the topological susceptibility for the same physical volume at two different lattice
spacings. At T/Tc=1.8 we show the topological susceptibility for physical spatial extents
that differ by roughly 13%. However, since we know from our finite-volume study shown
in Fig. 3 that the volume makes essentially no difference at high temperatures (except for
the artifact-corrected definition χa), we can assume the difference in physical volume to
be negligible compared to the discretization errors. For both temperatures, χf does not
change when the lattice spacing is decreased by ∼ 30%. For the higher temperature, which
corresponds to an overall smaller lattice spacing, a similar effect is observed for χZ. Because
the globally-fit definition of the topological susceptibility is essentially independent of the
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FIG. 4: A study of lattice spacing effects at two different temperatures. At T/Tc=1.31 the lattices

shown are 483 × 6 and 643 × 8 which have exactly the same physical volume, while at T/Tc=1.8

the lattice shown are 643 × 6 and 963 × 8, which have physical spacial extents that differ by only

13%. Each ensemble is slightly offset from its temperature for ease of visibility. The statistical

errors are smaller than the markers shown.

volume and lattice spacing, we use that definition for our final “curated” data set, shown
in bold in Table I. In the following we only consider a statistical uncertainty on the data
points since the systematics effects discussed above are negligible.

VII. COMPARISON BETWEEN LATTICE RESULTS AND MODELS

We fit our best data points, those in bold in Table I and shown in Fig. 5, to the forms
shown in (23). Since the lattice calculations naturally yield χ/T 4

c and our temperatures are
naturally in units of Tc we actually fit

χDIGM

T 4
c

=
C

(T/Tc)n
,

χIILM

T 4
c

=
ed0

(T/Tc)−d1
exp

[
d2

(
ln
T

Tc

)2

+ d3

(
ln
T

Tc

)3
]

(30)

as functions of T/Tc rather than T itself. This allows us to postpone consideration of the
systematic error arising from setting the scale in physical units with an uncertain critical
temperature.

The central values shown in Fig. 6 and 7 are the results from fitting all the data points.
The fit parameters are shown in Table II, with a statistical uncertainty of one standard
deviation (1σ).

For the systematic fitting error on the DIGM we fit the same form to every subset of the
best points with cardinality 3 or greater and take the outer envelope of all such fits’ statistical
1σ error bands. This procedure is extremely conservative. The resulting systematic fitting
error is shown as a light purple band in Fig. 6, where the statistical error band is entirely
covered by the width of the line.
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DIGM

χ2/d.o.f. = 1.2

C 0.0869 ± 0.0015

n 5.64 ± 0.04

IILM

χ2/d.o.f. = 1.7

ed0 0.079 ± 0.006

d1 -4.9 ± 0.5

d2 -1.7 ± 1.0

d3 1.2 ± 0.7

TABLE II: Fit parameters for the DIGM and IILM fit to all of our best data points.

The DIGM is not reliable at low temperatures, and so that region is not shown in Fig. 6.
The systematic errors at high temperature decrease—all the fits grow closer to the central
value.

In the pure-glue case it is known [57] that the DIGM exhibits, at high temperatures, the
leading behavior χ ∼ T−n where

n =
11

3
Nc − 4 = 7 (31)

for SU(3), compared to our numerical result n = 5.64±0.04. This suggests the temperatures
we studied are not high enough to trust the high-temperature DIGM parameters.

The IILM is more reliable at low temperatures and unreliable at high temperatures.
Indeed, our best-fit IILM curve has a turning point at T/Tc ≈ 5.8, beyond which it exhibits
an unphysical increase of the topological susceptibility with temperature.

Because the IILM is not designed to capture high-temperature dynamics and has
markedly more free parameters, the enveloping approach we used for estimating the sys-
tematic error bands for the DIGM is far too conservative and gets dominated by fits to
a few high-temperature points. Instead, we follow a jackknife-inspired procedure: for the
central value we fit to all the best points, and for the systematic fitting error we fit to all
subsets where one data point is omitted. The outer envelope of all those fits’ 1σ statistical
error bands is shown as the systematic fitting error in Fig. 7. The inner, darker error band
shown there is the statistical error band on the best fit of all of our data points.

VIII. ILLUSTRATIVE EXAMPLE USING LATTICE DATA TO EXTRACT AX-

ION MASS BOUNDS

As discussed in previous sections, the topological susceptibility χ for QCD as a function
of temperature is required as input for the cosmological evolution of axions in the early
universe. In this section, we will take our lattice results for χ and carry out this procedure to
calculate axion mass bounds with a significant disclaimer: our lattice calculation is affected
by the absence of fermionic degrees of freedom. This approach means that our numerical
calculation was significantly cheaper than it would have been if we had calculated with full
QCD, but can lead to a host of uncontrolled systematics. Most obvious is the difference
in critical temperatures between Yang–Mills and QCD11. The critical temperature Tc is the

11 There is roughly a factor of two difference between QCD (Tc ∼ 154 MeV [60, 93, 94]) and Yang–Mills

(Tc ∼ 284 MeV [78]).
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FIG. 5: The largest volumes from Gattringer et al. [72] and our best Nτ = 6 data points at each

temperature. The statistical errors on our points are smaller than the markers shown.
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FIG. 6: A fit of our best points to the dilute instanton gas model (DIGM).

primary scale where the theory deconfines. It also indicates the onset of the fall of χ as
temperature grows. In each of the individual steps to this point, this has not been a issue,
as all quantities discussed in the result sections have been dimensionless ratios that do not
depend on scale setting. However, in the final steps required to extract a bound, the relative
size of Tc to the present day temperature of the cosmic microwave background, Tγ, plays
a role. It should be noted that this systematic will not be an issue for future calculations
with physical QCD parameters. For now, it prevents bounds relevant to reality from being
extracted.
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FIG. 7: A fit of our best points to the interacting instanton liquid model (IILM).

Let us describe the overall effect of setting the absolute scale Tc. As discussed in Sec. II A,
the axion begins rolling down the potential at the temperature where ma ≈ 3H. With simple
algebra this may be rewritten

χ(T1) ≈ 9f 2
aH

2(T1) . (32)

The fortuitous form of H in Eq. (11),

H2(T ) =
π2

90M2
Pl

g∗(T ) T 4 (33)

makes it particularly nice to write the relation (32) in terms of T/Tc, the temperature ratio
that shows up in our lattice calculations. One may show that the relation ma ≈ 3H can be
rewritten

χ

T 4
c

(T1/Tc) ≈
π2f 2

a

10M2
Pl

g∗(T1/Tc · Tc) ·
(
T1
Tc

)4

(34)

which allows us to put all of the absolute scale dependence into the argument of g∗. Fortu-
nately, at the temperatures of interest g∗ is insensitive to the difference between the critical
temperature Tc in QCD and the pure-glue theory [54]—it is essentially a constant at and be-
tween those temperatures. The particular temperature dependence of Eq. (34) also means
that we do not need to translate our lattice results for χ

T 4
c

into physical units, therefore

avoiding what is usually the largest source of systematic uncertainties.
However, this does not imply that all the systematic errors are erased. Instead, because

g∗ captures the relevant degrees of freedom of reality, which includes quarks, rather than a
quark-free universe, we still have an uncontrolled systematic error. This systematic will be
avoided when future lattice calculations use physical QCD parameters, while the uncertainty
in the QCD critical temperature Tc will be remain irrelevant thanks to the insensitivity of
g∗. Thus, we expect the reliability of future lattice calculations to be controlled entirely by
the accuracy of the determination of χ/T 4

c and cosmological inputs, not the accuracy of the
QCD critical temperature.
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FIG. 8: The DIGM-inspired fit with systematic fitting uncertainty shown with lines of (3H)2 for

three representative choices of fa.

Of course, with χ/T 4
c from QCD in hand, it will make sense to not simply estimate the

onset of the axion field rolling when ma ∼ 3H but to instead solve the cosmological equations
of motion numerically. Moreover, it will be simple to put reliable bounds on the pre-inflation
PQ-breaking scenario, constraining a combination of the initial θ parameter and the axion
mass. Therefore we emphasize our results in the rest of this section as the first step towards
a full-fledged calculation of axion constraints from first principles.

In Fig. 8 we plot our numerically-fit DIGM extrapolation of χ/T 4
c , the left-hand side

of Eq. (34) and three example right-hand sides for different choices of fa as a function of
temperature. The intersection gives T1/Tc as a function of fa, which is shown in Fig. 9. In
terms of the DIGM fit parameters, we have

T1
Tc

=

[
10C

π2g∗(T1)

(
MPl

fa

)2
] 1

4+n

. (35)

where the insensitivity of g∗ to temperatures in the regime of interest allows us to solve
self-consistently with ease. In a full calculation without extrapolation using a model, T1 can
be determined as a function of fa numerically from Eq. (34). In Fig. 9, our extracted T1/Tc
is compared with that of the IILM [54].

With T1 in hand, we can calculate the axion energy density using

Ωa =
ρa(Tγ)

ρc
, ρc = 3.978× 10−11

(
h2

0.701

)
eV4. (36)

The resulting energy density from the misalignment mechanism is given by

h2Ωa = 0.107(1)

(
F (θ1)θ

2
1

2γ

)(
fa

1012 GeV

)1.2074(8)

(37)
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our DIGM-inspired fits. The purple band includes the systematic fitting uncertainty and the mild

scale setting ambiguity added in quadrature. The dashed line is the results from Ref. [54] when

Tc = 154 MeV.

where the errors are determined by bootstrapping the fit results for the DIGM shown in
Table II. A bound can be derived for the post-inflation PQ-breaking scenario by starting
from this density, setting 〈θ21〉 = π2/3, and comparing with the latest dark matter density
from PLANCK [103]

Ωah
2 ≤ ΩDMh

2 = 0.1199± 0.0027. (38)

This procedure leads to an upper bound on the value of fa and Eq. (3) can be used to
translate this into a lower bound on the axion mass today. Putting all these pieces together
using lattice inputs for Eq. (15), we arrive at the bounds

Post-inflation PQ breaking,
physical g∗, mπ, fπ, Tc,

pure-glue χ

{
fa ≤ (4.10± 0.04)× 1011 GeV

ma ≥ (14.6± 0.1) µeV
(39)

which includes all the statistical, systematic and scale-setting errors from fitting to and
extrapolating with the DIGM but does not include any cosmological uncertainties. Also,
to reiterate, this is only the bound from the misalignment mechanism and does not include
string or domain wall decay, which would give even tighter bounds. In comparison, the
most comprehensive, up-to-date bound from the misalignment mechanism is given by ma ≥
21 µeV [54].

Again, it should be noted that these results are for the topological susceptibility χ from a
pure-glue calculation and not from the full QCD theory with dynamical fermionic degrees of
freedom. That being said, this calculation is still illuminating and illustrates how uncertainty
quantification due to strong dynamics can be propagated to the final steps of this calculation.
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IX. CONCLUSIONS

We performed a lattice calculation of topological susceptibility for pure Yang–Mills theory
at high temperatures and applied the results to the problem of axion cosmology. There are
two primary accomplishments of this work.

First, we developed the connection between actual lattice data and the well-known pro-
cedure for calculating the axion density, with controlled uncertainties in the input from the
non-perturbative free energy. Once lattice QCD results span the temperatures of interest,
a simple interpolating fit can be used to solve the cosmological equations of motion. In the
mean time, we must rely on model-inspired fit forms extrapolate to the high temperatures
of interest. In this regard, we find that the DIGM-like fit, Eq. (23), works remarkably well
for a theory consisting only of gluons, yielding a χ2/d.o.f ∼ 1.2 with very precise lattice data
(statistical errors roughly at the 0.2% level). However, we find that our points do not con-
form to the pure-glue expectation that the DIGM exponent n is 7, but that n = 5.64±0.04.
Also, even when propagating the systematic errors, the final bounds were found to have total
uncertainties only at the few percent level. Thus, the DIGM-like fit proves to be a good
continuous fit form for translating finite lattice calculations at discrete temperature values
to an equation that can be used to solve the cosmology evolution equations numerically.
Moreover, the lattice can provide reliable errors on the fit parameters and these errors can
be propagated to the final answers straightforwardly.

Second, we aimed to perform a detailed study of lattice systematic effects of lattice
calculations of the topological susceptibility at high temperature. To accomplish this, small
statistical errors are a must. Moreover multiple volumes, lattice spacings and discretized
definitions of the topological susceptibility are required to assess systematic effects and add
precision. As expected, it was found that the lattice artifacts affect each of the discretized
definitions of the topological susceptibility differently, and while lattice spacing effects were
the predominant error in most of the definitions, one definition (artifact-corrected, Qa) was
extremely sensitive to finite volumes at high temperatures/small lattice spacing, leading to
shifts of order 100%. Overall, it was found, as in Ref. [68, 69], that the globally-fit definition,
Qf , had virtually no systematic errors and while a distinct systematic error could be seen
in all of the other definitions, no effect larger than the statistical error bars could be quoted
for this definition.

One disclaimer that has been pointed out frequently throughout this paper is that the
lattice results were for a purely gluonic theory and the procedure for determining the axion
mass bounds assumed full QCD. This leads to multiple issues, which essentially reduce
the results in this paper to simply be a preliminary step towards being useful in realistic
experiments. The low temperature axion mass depends on the pion mass and decay constant,
which do not exist in a purely gluonic theory, and the relevant number of degrees of freedom,
g∗, depend on the number of fermions below the temperatures of interest. Second, QCD
and pure Yang–Mills differ in deconfinement temperatures by roughly a factor of two when
scales are fixed to heavy-quark scales (thus, correctly describing high temperature physics
and heavy-quark physics cannot be done simultaneously). Third, dynamical fermion zero-
modes are expected to play an important role in the temperature behavior of the topological
susceptibility, which are omitted in Yang–Mills lattice calculations.

Despite all of these limitations, it is tempting to see how the bounds behave compared
to quoted values of the axion mass bounds. The results in Eq. (39) imply that the axion
mass bound is weaker that the up-to-date value of ma > 21 µeV, and if true, would imply
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more viable parameter space for the post-inflation PQ-breaking scenario. Current and next
generation ADMX experiments will throughly explore this additional axion mass parameter
space over the next few years. Moreover, these lattice-based bounds have a well defined and
robust theoretical error associated with them, which is a very compelling feature compared
to previous bounds.

While our bounds were derived without the inclusion of fermions in the lattice calcula-
tion, they are ample motivation for future studies and calculations in this direction. From
this work many of the concerns on volume limitations have been quelled, which suggests
that lattice QCD calculations on smaller volumes may be sufficient and prohibitively large
volumes may not be needed. The lattice QCD issue of the increased auto-correlation and
freezing of topological charge could still be significant, but one potential solution is to extract
the topological susceptibility with fixed topology as in Ref. [74] or work with anisotropic
lattices to boost the volume in space while keeping the temporal direction small to go to
high temperatures. Both of these approaches should be explored further at higher precision
to accurately quantify the size of the systematic effects. Once methods of extracting topo-
logical susceptibilities at high temperatures are reliable, the next step would be to perform
this calculation for QCD. Typically, calculations of this kind start with larger-than-physical
quark masses (i.e. pion masses around 400 MeV) with non-chiral fermion discretizations.
However, using lattices with physical quark masses and chiral domain-wall fermions [60] is
most likely next step given current computing resources and given that much of the involved
scale setting procedure and non-perturbative tuning has been performed. At that stage,
the lattice QCD results will be directly applicable to cosmological simulations and will have
direct connection with experimental searches.

Acknowledgments

We are indebted to David Kaplan for many useful discussions and pointing us towards
these questions in axion cosmology. We would also like to thank Gianpaolo Carosi, Guido
Cossu, Graham Kribs, Biagio Lucini, Pierre Sikivie, and Pavlos Vranas for useful discus-
sions. We generated gauge configurations using Chroma [98] on the GPU clusters (Edge
and Surface) at LLNL. Chroma was configured to use the QDP-JIT GPU library [99] to
accelerate the production. This work was performed under the auspices of the U.S. Depart-
ment of Energy by LLNL under Contract No. DE-AC52-07NA27344. M.I.B. is supported
by DOE Grant No. DE-FG02-00ER41132. This research was partially supported by the
LLNL Multiprogrammatic and Institutional Computing program through a Tier 1 Grand
Challenge award.

[1] G. ’t Hooft, Phys.Rev. D14, 3432 (1976).

[2] J. Callan, Curtis G., R. Dashen, and D. J. Gross, Phys.Lett. B63, 334 (1976).

[3] R. Jackiw and C. Rebbi, Phys.Rev.Lett. 37, 172 (1976).

[4] C. Baker, D. Doyle, P. Geltenbort, K. Green, M. van der Grinten, et al., Phys.Rev.Lett. 97,

131801 (2006), hep-ex/0602020.

[5] D. B. Kaplan and A. V. Manohar, Phys.Rev.Lett. 56, 2004 (1986).

[6] M. Beg and H.-S. Tsao, Phys.Rev.Lett. 41, 278 (1978).

23



[7] R. N. Mohapatra and G. Senjanovic, Phys.Lett. B79, 283 (1978).

[8] H. Georgi, Hadronic J. 1, 155 (1978).

[9] A. E. Nelson, Phys.Lett. B136, 387 (1984).

[10] S. M. Barr, Phys.Rev.Lett. 53, 329 (1984).

[11] A. E. Nelson, Phys.Lett. B143, 165 (1984).

[12] L. Vecchi (2014), 1412.3805.

[13] K. Olive et al. (Particle Data Group), Chin.Phys. C38, 090001 (2014).

[14] S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo, et al., Eur.Phys.J. C74, 2890 (2014),

1310.8555.

[15] R. Peccei and H. R. Quinn, Phys.Rev.Lett. 38, 1440 (1977).

[16] R. Peccei and H. R. Quinn, Phys.Rev. D16, 1791 (1977).

[17] R. Holman, S. D. Hsu, T. W. Kephart, E. W. Kolb, R. Watkins, et al., Phys.Lett. B282,

132 (1992), hep-ph/9203206.

[18] C. Cheung, JHEP 1006, 074 (2010), 1003.0941.

[19] R. Peccei, Lect.Notes Phys. 741, 3 (2008), hep-ph/0607268.

[20] J. E. Kim and G. Carosi, Rev.Mod.Phys. 82, 557 (2010), 0807.3125.

[21] S. Weinberg, Phys.Rev.Lett. 40, 223 (1978).

[22] F. Wilczek, Phys.Rev.Lett. 40, 279 (1978).

[23] W. A. Bardeen, R. Peccei, and T. Yanagida, Nucl.Phys. B279, 401 (1987).

[24] Y. Asano, E. Kikutani, S. Kurokawa, T. Miyachi, M. Miyajima, et al., Phys.Lett. B107, 159

(1981).

[25] M. S. Turner, Phys.Rept. 197, 67 (1990).

[26] G. G. Raffelt, Phys.Rept. 198, 1 (1990).

[27] G. G. Raffelt, Ann.Rev.Nucl.Part.Sci. 49, 163 (1999), hep-ph/9903472.

[28] M. Dine, W. Fischler, and M. Srednicki, Phys.Lett. B104, 199 (1981).

[29] J. E. Kim, Phys.Rev.Lett. 43, 103 (1979).

[30] M. A. Shifman, A. Vainshtein, and V. I. Zakharov, Nucl.Phys. B166, 493 (1980).

[31] A. Zhitnitsky, Sov.J.Nucl.Phys. 31, 260 (1980).

[32] J. Preskill, M. B. Wise, and F. Wilczek, Phys.Lett. B120, 127 (1983).

[33] L. Abbott and P. Sikivie, Phys.Lett. B120, 133 (1983).

[34] M. Dine and W. Fischler, Phys.Lett. B120, 137 (1983).

[35] P. Sikivie (ADMX), Phys.Rev.Lett. 51, 1415 (1983).

[36] S. Asztalos et al. (ADMX), Phys.Rev.Lett. 104, 041301 (2010), 0910.5914.

[37] S. Asztalos, R. Bradley, G. Carosi, J. Clarke, C. Hagmann, et al., pp. 47–50 (2011).

[38] P. Ade et al. (Planck) (2015), 1502.02114.

[39] R. L. Davis, Phys.Rev. D32, 3172 (1985).

[40] R. L. Davis, Phys.Lett. B180, 225 (1986).

[41] D. Harari and P. Sikivie, Phys.Lett. B195, 361 (1987).

[42] R. Davis and E. Shellard, Nucl.Phys. B324, 167 (1989).

[43] C. Hagmann, P. Sikivie, N. Sullivan, and D. Tanner, Phys.Rev. D42, 1297 (1990).

[44] M. Nagasawa and M. Kawasaki, Phys.Rev. D50, 4821 (1994), astro-ph/9402066.

[45] S. Chang, C. Hagmann, and P. Sikivie, Phys.Rev. D59, 023505 (1999), hep-ph/9807374.

[46] C. Hagmann, S. Chang, and P. Sikivie, Nucl.Phys.Proc.Suppl. 72, 81 (1999), hep-

ph/9807428.

[47] M. Yamaguchi, M. Kawasaki, and J. Yokoyama, Phys.Rev.Lett. 82, 4578 (1999), hep-

ph/9811311.

24



[48] M. Yamaguchi, J. Yokoyama, and M. Kawasaki, Phys.Rev. D61, 061301 (2000), hep-

ph/9910352.

[49] C. Hagmann, S. Chang, and P. Sikivie, Phys.Rev. D63, 125018 (2001), hep-ph/0012361.

[50] A. Dabholkar and J. M. Quashnock, Nucl.Phys. B333, 815 (1990).

[51] R. Battye and E. Shellard, Phys.Rev.Lett. 73, 2954 (1994), astro-ph/9403018.

[52] P. Sikivie, Lect.Notes Phys. 741, 19 (2008), astro-ph/0610440.

[53] K. J. Bae, J.-H. Huh, and J. E. Kim, JCAP 0809, 005 (2008), 0806.0497.

[54] O. Wantz and E. Shellard, Phys.Rev. D82, 123508 (2010), 0910.1066.

[55] T. Hiramatsu, M. Kawasaki, K. Saikawa, and T. Sekiguchi, Phys.Rev. D85, 105020 (2012),

1202.5851.

[56] M. Kawasaki and K. Nakayama, Ann.Rev.Nucl.Part.Sci. 63, 69 (2013), 1301.1123.

[57] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev.Mod.Phys. 53, 43 (1981).
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